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Abstract Vehicular crowdsensing allows the rapid, predictable movement of
vehicles, as well as their wide variety of sensors, to gather sensing data in
crowdsensing applications. Recruitment algorithms are used to select a subset
of participants in an area that will provide the most complete coverage. In
this paper, we explore two variations of the vehicular recruitment problem.
In the first problem, which we refer to as the priority based vehicle recruit-
ment problem, we consider coverage areas in which subsets must be covered.
In the multisensor variation, we consider coverage areas which require differ-
ent types of sensors, in which participating vehicles have one or more sensor
types onboard. For each, we implement a mixed integer programming model
which returns optimal solutions, as well as a heuristic for obtaining approxi-
mate solutions. In the unbudgeted priority vehicular recruitment performance
evaluation, our heuristic on average obtains only 0.05% lower utility at 1.78%
higher recruitment cost. In the budgeted runs, our heuristic obtains on average
only 0.02% lower utility at 0.59% higher recruitment costs. In the unbudgeted
multisensor vehicular recruitment performance evaluation, our heuristic ob-
tains only 0.04% lower utility at 1.10% higher recruitment cost, and in the
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budgeted runs we obtain 11.33% lower utility at 0.27% higher recruitment
cost.

1 Introduction

Compared to existing wireless sensor networks, participatory sensing utilizes
the presence of ordinary users in order to capture sensing data. Using wire-
less networks, this data is shared among users, or sent to a central service
which utilizes the data in an application [6]. The use of incentives encour-
ages users to participate in crowdsensing networks. Participatory sensing does
not assume all users will participate and has to receive confirmation from a
participant that it will contribute data. Opportunistic sensing, however, as-
sumes all users automatically participate, without any explicit authorization.
[2]. Existing works have almost exclusively considered mobile devices.

Devarakonda et. al [4] place sensing units in vehicles and use them to
measure air quality throughout an area of interest. Rana et. al [11] utilize the
microphones available on smartphones to measure noise pollution through an
area. Hull et. al [9] propose a traffic monitoring system where smartphones
located in vehicles can measure congestion, delays, and conditions using their
Sensors.

However, mobile devices are not always ideal for crowdsensing applications
due to their limited resources [2]. The sensors and network modems can es-
pecially consume processing power and battery life, as well as cost associated
with data transmission. Modern vehicles, however, are being built with several
onboard processors, storage space, and larger batteries (especially electric ve-
hicles). Their rapid and predictable movement allows few participants to cover
a large area. There are over 70 sensors installed in new vehicles as of 2013 [5],
which makes them ideal for crowdsensing.

Several existing works all describe a similar framework for vehicular crowd-
sensing. A road side service provider receives sensing tasks from applications.
Having knowledge of vehicle positioning throughout an area, it recruits vehi-
cles that can obtain the sensing data, by providing incentives to the vehicles,
obtaining and aggregating the data, and then using it within an application.

In this paper we present several contributions:

— Propose two new variations of the vehicular recruitment problem referred
to as the priority based vehicular recruitment problem where coverage areas
are assigned different priorities, and the multisensor vehicular recruitment
problem where sensing tasks require multiple types of sensors

— Develop a MIP (mixed integer programming) model for providing solutions
to the priority based vehicular recruitment problem, as well as a heuristic
for obtaining approximate solutions

— Propose a MIP model for the multisensor vehicular recruitment problem,
as well as a heuristic for the multi sensor vehicular recruitment problem
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The organization of the paper is as follows: in section 2 we describe some
most relevant prior work. Our priority based vehicle recruitment problem is
introduced in section 3 along with our proposed algorithm and related ex-
perimental results. We introduce multi sensor vehicle recruitment problem in
chapter 4. It also includes our proposed algorithm and related experimental
results.

2 Related Work

We review several existing recruitment algorithms for crowdsensing applica-
tions. Existing crowdsensing works utilized mobile devices extensively. Reddy
et. al [12] describe several approaches for selecting mobile participants. They
utilize several factors including past participation and availability to determine
how reliable a participant’s data is. The system requires that participants’
trajectories are known or predetermined at the time of recruitment, and that
its reputation score meets the requirement. Coverage is defined as the num-
ber of equally sized geographic areas covered by at least one selected partici-
pant. They compare three approaches; a random approach, where participants
are selected at random until the budget is exhausted; the naive approach,
which continuously selects the participant providing the most coverage; and
the heuristic approach which is identical to the naive approach but updates
the unique coverage of other participants after a participant is selected. Each
of the techniques describe select participants until the total incentive budget
has been exhausted. The simulation results show that the greedy approach
outperforms the other two approaches.

Abdelhamid et. al [7] propose a framework for selecting an optimal sub-
set of vehicular participants in crowdsensing networks. They describe three
different objectives; one objective to maximize coverage, another to minimize
cost, and finally one which minimizes coverage overlap. The maximum cover-
age model aims to achieve the highest coverage possible with no regard to cost
or redundancy. The minimum cost model minimizes the total recruitment cost
while still meeting the optimal level of coverage found in the previous model.
The minimum overlap model minimizes redundant coverage while again still
maintaining optimal coverage obtained by the first maximum coverage model.
The authors perform simulations on randomly generated areas of interest and
divide the area into equal sized sections. Each vehicle is assigned a reputa-
tion value at random between 0 and 1. The particular problem is shown to be
NP-hard in other related. Due to the speed at which vehicles move, a solution
has a very short shelf life before it becomes too inaccurate. Because of this,
the authors mention the need for heuristics to obtain approximate solutions
in polynomial time.

Abdelhamid et. al [1] also propose several heuristic algorithms for the ve-
hicular recruitment problem. The paper builds upon their work in [7]. The
algorithms attempt to obtain as much coverage as possible in polynomial time,
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as the optimal solution requires exponential time in the worst case. They first
remove any trajectories with a reputation less than the threshold. The al-
gorithm repeatedly selects the vehicle covering the most uncovered area and
subtracting its incentive cost from the budget. Vehicles providing no coverage
are removed from consideration. The algorithm runs until all area is covered,
there are no more vehicles to consider, or the budget has been met. The RBMC
algorithm makes no attempt to minimize incentive cost, so the authors pro-
pose a second algorithm, RBMC-MC, with the additional goal of minimizing
cost. The algorithm works the same as RBMC, but when selecting the vehicle
covering the most area, uses cost as a tie breaker. In their performance evalu-
ation, they compare the performance of their heuristic algorithms to solutions
obtained by the optimal framework in [7]. They run various scenarios with
different number of vehicles, as well as with a variety of reputation thresholds
and budgets. Their results show that they are able to achieve nearly the same
coverage as optimal with equal or slightly higher recruitment costs overall.
However, Campioni et al [3] show that in the worst case their algorithm is
unbounded and they propose a new algorithm to solve the problem.

Yi et. al [15] propose the Fast-VPR algorithm. They consider a two di-
mensional grid of equal sized cells over a period of time rather than a single
dimension. They define coverage as the union of grid cells covered across all
time periods. Instead of using a budget constraint, they introduce a parameter
A which is used to restrict the total recruitment cost of a solution. The algo-
rithm aims to maximize coverage by recruiting a a subset of vehicles with the
lowest possible recruitment cost. The algorithm starts from a set containing all
vehicles and an empty set and compares the change in utility from removing
the vehicle from the initial full set and adding it to the initial empty set and
probabilistically adding it to the solution. The performance evaluations utilize
both synthetic, randomly generated vehicle trajectories, as well as real world
trajectories from a traffic dataset. The authors also evaluate performance using
both randomized pricing models as well as a pricing model where the incentive
cost of a participant is related to the number of grid cells it covers. They also
compare their algorithms using randomly generated trajectories, as well as real
world trajectory datasets. They compare their algorithm to the Greedy-SC al-
gorithm proposed by He et. al [8]. Both algorithms are compared in terms of
spatiotemporal coverage. Their results show that while they achieve slightly
less coverage than Greedy-SC, FastVPR returns solutions in less time.

For the multisensor vehicular recruitment problem in section 4, we draw
inspiration from Liu et al. [10]. They propose both an optimal participant re-
cruitment mechanism as well as a greedy participant recruitment algorithm for
the heterogeneous vehicular recruitment problem. They consider a sensing area
where different grid cells require different types of sensors, such as vibration
sensors, brightness sensors, and temperature sensors. A number of vehicles
travel throughout the sensing area, each with a subset of the sensor types
onboard, as well as a predefined trajectory. They propose a multi objective
optimization model to minimize the difference between required and collected
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data matrices for all sensing tasks. However, they note that this problem is
difficult to solve, so they break the problem down by sensing tasks and assign
a weight to each task. They then propose the HPR (heterogeneous participant
recruitment) strategy. Essentially, the algorithm repeatedly selects the partic-
ipant with the highest utility, and pays it an incentive. This repeats until all
incentives are depleted or all participants have been evaluated. The algorithm
loops through all time periods. In their performance evaluation, they test the
algorithms using the T-drive trajectory dataset [16], which contains weekly
trajectories of over 10, 000 taxis. Using a variety of budgets, the authors found
that the proposed greedy strategy could collect 85.4 % of sensing data with
34 % incentive budget.

Xiao et. al [14] propose the DUR (Deadline-sensitive User Recruitment)
problem for mobile crowdsensing networks. The problem is similiar to most
other crowdsensing user recruitment algorithms, although they consider prob-
abilistic coverage, as participants do not always follow their announced tra-
jectory. Although they do not specifically consider vehicles, the concepts can
be adapted to vehicular crowdsensing networks. They prove that the DUR
problem can be formulated as a non-trivial set cover problem. They also pro-
pose a greedy algorithm, called gDUR, to obtain approximate solutions to the
problem. They also consider a variation of the problem which considers sens-
ing duration deadlines, called dDUR. Since their problem formulation differs
slightly from existing works, they summarize the various techniques and de-
velop two more algorithms for comparison to their algorithms, called MCUR
(Minimum Cost User Recruitment) and MCURP (MCUR with Probabilistic
Mobility). They compare the algorithms on both real world and synthetic mo-
bility trace datasets. They use a variety of time durations and deadlines. In
all cases, their gDUR and dDUR algorithms have vastly improved recruitment
cost (67 to 96% ) compared to MCURP and 166 to 227% larger successful pro-
cessing ratios compared to MCUR. However, they found that MCUR, achieved
lower costs compared to their algorithms, because it did not consider the dead-
line constraint, so would select fewer users, which resulted in lower successful
processing ratios. Also, in some cases, MCURP achieved larger successful pro-
cessing ratios, because the algorithm usually selected many more users, but
this resulted in much larger recruitment costs. In the synthetic traces, they
found that gDUR and dDUR had between 59 to 67.6% fewer recruitment costs
and 12.2 to 17 times larger successful processing ratios compared to MCUR.

Xiao et. al [13] explore a game theory strategy for the vehicular recruit-
ment problem. The authors formulate the problem as a game. Each vehicle
selects a different sensing strategy based on the sensing cost, its radio channel
state, and the expected payment from the mobile crowdsensing server. Vehi-
cles are paid by the server based on the accuracy of their sensing data. They
implement learning strategies so that the vehicles and server can estimate sys-
tem paremeters over time without explicitly knowing the system model. They
compare various learning strategies compared to a greedy strategy and com-
pare them in random generated simulations. They also compare all strategies
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to a random selection method. Their results show that a PDS learning tech-
nique improves learning speed, greatly increases the utility of cars, and reduces
energy usage compared to the random and Q-learning methods.

3 Priority Based Vehicle Recruitment Problem

In this section we propose a new variation of the vehicle recruitment problem.
We start from the same formulation as mentioned in section 3. The main objec-
tive function is still to maximize utility. However, we consider slightly different
problem scenarios. In addition, we develop a heuristic to obtain approximate
solutions and compare its performance to the MIP model. In this formulation,
we consider maximizing coverage of an area where some important areas must
be covered. That means, there are some areas (priority areas) that has to be
covered. In addition, we need to cover other areas as much as we can. In all
other existing variations of this problem, each section of coverage area is equal
in coverage priority. However, in this problem instance, we design a frame-
work that ensures high priority areas are covered, by adding a constraint to
the formulation such that certain grid cells must be covered at specified time
periods. A grid cell refers to a single section of area requiring sensing coverage.
The size of the grid cell would depend on the sensing application and would
be decided by those deploying the crowdsensing system.

3.1 Problem Definition

In the real world, not all sensing areas are equally important. For example,
an area might not normally be sensed except in the case of a situation or
emergency. Or, an area may not need to be sensed except for certain times of
day, and then in off peak hours priority can be given to other areas.

It is critical for efficient vehicular crowdsensing that service providers be
able to efficiently recruit vehicles based on coverage areas with various levels
of priority. Doing so ensures cheaper and more useful sensing data.

We now describe the problem formulation. V refers to the set of available
vehicles, and S refers to the selected subset of V' that are chosen to provide
coverage. U refers to the utility of a selected subset S, which is defined in
equation 3.

The objective function, which is maximized, aims to maximize utility:
max U(S) (1)
such that:

SCv (2)

The utility is calculated as follows:
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U(S) = f(S) = cost(S5) 3)

f refers to the coverage obtained by a solution, and cost refers to the
recruitment cost associated with that selection of vehicles.
R, indicates which grid cells a vehicle v covers at time period ¢.

We calculate coverage for each grid cell g at each time period ¢ in equations
4 and 5. cg4 is equal to the number of vehicles in the current solution covering
a grid cell g at time period ¢, and c;t is equal to 1 if ¢4 is greater than 0 and
0 otherwise.

cqg={veV:veS ge Ry} (4)
C;t < |Cgt|; vgvt € GaT (5)

fls)= > ¢ (6)

t,geT,G

We also add a constraint that ensures certain grid cells are covered during
certain time periods:

C_:]t 2 1; V(g,t) € Greq (7)

Greq contains ordered pairs (g,t) if a grid cell g must be covered at time
period t.

3.2 Heuristic Priority-Based Vehicle Recruitment

In this section we describe a heuristic algorithm to solve the priority-based
vehicle recruitment problem. Since the MIP formulation described in the above
section is NP-hard, we propose a heuristic solution to produce approximate
solutions in polynomial time.

The heuristic algorithm works as follows. The algorithm iterates through
each time period ¢ € T. For each time period, it calculates the set of grid cells
that must be covered at this time. It then calculates the grid cells covered by
the current solution. It then subtracts the covered cells from the required cells
to determine which cells still need to be covered. It iterates through the set
of available vehicles, choosing the one adding the most utility to the current
solution. Like some of our existing heuristics, it calculates the cost per unit
of utility increase and chooses the cheapest one. When a vehicle is selected,
the cells it covers are removed from the set of uncovered cells and added to
the set of covered cells. This process repeats until all required cells have been
covered, and then the algorithm repeats this process, selecting vehicles to cover
as many non required grid cells as possible. The budgeted version works in the
same way, but only considers vehicles that can be afforded under the current
budget.
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Algorithm 1 Unbudgeted Required Coverage Heuristic

: Set of vehicles V'

: Set of grid cells G

Set of time periods T'

Set Greqgtindicating required coverage for grid cell g at time ¢
Set of required cells RC'

Set of covered cells CC

Set of uncovered cells UC

: Set Ryt containing grid cells covered by v at time t

9: Set of costs C for each vehicle v

10: Set of selected vehicles S

11: for t € T' do

12: RC ={g€G:g¢c Greqgt}

13: CC={geG:g€ Rt VveS}

14: UC =RC-CC

15: while UC # 0 do

16: covering_vehicles =vehicles not currently selected and which cover one or more
uncovered required cells at this time period

SIS o e

17: Do = %;U(S) for each covering vehicle
18: max_v = vehicle with highest p,

19: for each grid cell g covered by maz_v do
20: CC=CCuUg

21: fort € T do

22: CC={geG:g€ Ry,veS}

23: uc=G-cCccC

24: while UC # () do

25: covering-vehicles =vehicles not currently selected and which cover one or more
uncovered grid cell at this time period

26: Py = %;U(S) for each covering vehicle
27: max_v = vehicle with highest p,

28: for each grid cell g covered by max_v do
29: cC=CCuUg

3.3 Performance Evaluation

In this section we use our MIP framework as a benchmark to provide an
upper bound on utility so that we can evaluate the solutions produced by our
heuristic. We generate random scenarios with a variety of number of vehicles.
We demonstrate algorithm performance with up to 500 vehicles as we feel
this is a reasonable number of vehicles to expect at most in a particular area
for a sensing application. We also randomly assign required coverage to grid
cells at a time period with a 0.01 probability. Our reasoning for selecting a
low probability of required coverage is that many of the randomly generated
problem instances were infeasible with a higher probability. Each vehicle is
assigned a random recruitment cost between 0 and 1.

In order to ensure feasible runs, we set the budget as a function of the
number of vehicles, as a scenario with a large number of vehicles and a very
small budget is often found to be infeasible by the MIP model.

Table 1 shows the average recruiter utility and recruitment cost across all
scenarios. In the scenarios with small numbers of vehicles, the heuristic returns
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MIP RC RC_Heuristic

Average of Average of
Number of Ve- Utility Average of Utility Average of
hicles Cost Cost
50 927.5 23.98 927.5 23.98
100 1876.5 45.99 1876.35 46.08
150 2557.35 65.23 2557 65.41
200 3364.25 84.31 3364 84.55
250 3649.6 92.93 3648.25 94.23
300 4078.5 105.92 4076.8 107.74
350 4189.2 117.27 4186.5 119.93
400 4498.65 125.85 4496.1 128.44
450 5240.1 131.43 5236.25 135.16
500 5232.7 136.79 5228.65 140.76

Table 1 Unbudgeted priority based vehicular recruitment

solutions very close to optimal. In the 50 vehicle scenario the heuristic achieves
the same utility with only 0.01% higher recruitment cost. In the 100 to 200
vehicle scenarios, the heuristic achieves 0.01% lower utility, at between 0.20 to
0.27% higher recruitment costs. In 250 and 300 vehicle scenarios, the heuris-
tic achieves only 0.04% lower utility at 1.41 and 1.72% higher recruitment
costs. With 350 and 400 vehicle scenarios, the heuristic achieves only 0.06%
lower utility at 2.06 and 2.26% higher recruitment cost. With 450 vehicles, the
heuristic achieves 0.07% lower utility at 2.84% higher recruitment cost. In the
final scenario with 500 vehicles, the heuristic achieves just 0.08% lower utility
with only 2.9% higher recruitment cost. While the performance differences in-
crease as the number of vehicles increases, the heuristic still achieves solutions
very close to optimal.

3.4 Budgeted Priority Based Vehicle Recruitment Problem

In this section we modify the problem introduced in the previous section to
add a budget constraint. Sometimes a service provider may have a limited
amount of incentives to provide to participants but still need to provide sens-
ing coverage for an area. By introducing a budget the service provider can limit
the amount of incentives it has to pay out to participants while still attaining
the best coverage possible. We use the same MIP framework as the normal
priority based vehicle recruitment problem, with the exception of the follow-
ing constraint which limits the recruitment cost of a solution S to a budget
constraint B:

> ¢, <B (8)

veES

The budgeted version works the same way, but keeps track of the current
solution cost and only considers vehicles that can be added to the solution
while still staying under the specified budget.
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Algorithm 2 Budgeted Required Coverage Heuristic

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

SIS R e

: Set of vehicles V'
: Set of grid cells G

Set of time periods T'

Set R! containing grid cells covered by v at time ¢
Set of costs C for each vehicle v

Budget B

Set of selected vehicles S

. current_cost = 0

: fort € T do
RC ={g9€G:g€ Greqqt}
CC={geG:g€ Ryt VveS}
UC =RC-CC
while UC # 0 do
covering_vehicles = vehicles not currently selected which cover one or more

uncovered required cells, and which can be afforded under the current budget
_ U(S+v) U(S)
py = ———=———= for each covering vehicle
maxr_v = Vehlcle with largest p,
S =SUmazv
current_cost = current_cost + Cmaz_v
for each grid cell g covered by maz_v do
CC=CCug
for t € T do
CC={geG:g€ Ry,veS}
uc=G-cCccC
while UC # () do
covering-vehicles = vehicles not currently selected and which cover the current
grid cell at this time period, which can be afforded by the current budget

26: v = M for each covering vehicle
27: maxr_v = vehlcle with highest py,
28: for each grid cell g covered by max_v do
29: cC=CCuUg
MIP RC Budgeted RC Heuristic Budgeted
Average Average Average Average
Budget Nur.nber of Utility Cost Utility Cost
vehicles
25 910.00 23.78 910.00 23.78
50 50 1242.00 25.76 1242.00 25.76
100 1046.00 24.52 1046.00 24.69
50 2211.00 45.82 2211.00 45.97
100 100 2002.00 46.96 2001.00 47.02
200 1868.00 46.11 1868.00 46.11
100 3036.00 82.90 3036.00 82.95
200 200 3039.00 83.36 3039.00 83.54
400 3209.00 77.78 3208.00 78.43
125 3523.00 90.96 3520.00 93.04
250 250 3539.00 97.53 3538.00 98.22
500 3396.00 101.48 3396.00 101.86

Table 2 Budgeted Priority Based Vehicular Recruitment
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The performance differences are very similar for the budgeted problem. In
the 50 vehicle scenarios, the heuristic is only on average 0.23% more expensive
than the optimal solution while achieving the same coverage in all budgets.
In the 100 vehicle scenarios, the heuristic only returns 0.02% lower utility on
average with only 0.16% higher recruitment costs. In the 200 vehicle scenario,
the heuristic solution is 0.36% more expensive than optimal with only 0.01%
lower utility on average. In the final scenarios with 250 vehicles, the heuristic
has 0.04% lower utility with 1.90% higher recruitment costs on average.

4 Multi Sensor Vehicle Recruitment Problem

In this section we propose a framework for solving multi sensor coverage. Sen-
sors are generally designed to sense a particular phenomenon and nothing else.
However, different areas contain different sensing tasks that only certain sen-
sors can measure. Additionally, not all vehicles contain every type of sensor
in order to perform these sensor tasks. Therefore, we reformulate the original
framework to consider multiple sensors per vehicle, with each portion of cov-
erage area requiring one or more types of sensors and only consider an area
covered if a selected vehicle covers the area with the correct type of sensor.

We draw inspiration from Liu et al. [10] . They also consider coverage
of areas which require multiple sensor types. They propose a utility scheme
to determine how much utility a vehicle can add by being selected, and also
propose a participant recruitment algorithm. However, they consider uncertain
trajectories and use probabilistic methods of determining where vehicles move,
whereas we use a fixed model where the location of vehicles is already known.
They also propose an optimal recruitment algorithm to provide a benchmark to
compare their greedy partipant recruitment algorithm. During performance of
their participant recruitment algorithms they compare them using a real world
trajectory dataset and vary both budgets and distribution of sensors among
vehicles.

However, due to the fact that Liu et. al [10] consider vehicles with uncertain
trajectories and we only consider vehicles with certain trajectories, we do not
compare to their algorithm in our performance evaluation.

4.1 Problem Definition
The objective function still aims to maximize the utility function, U. S refers

to the set of selected vehicles, which is a subset of V', which is the set of all
available vehicles.

max U(.S) (9)
such that:
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Scv (10)

The utility is calculated as follows:

U(S) = f(S) — cost(S) (11)

When calculating coverage, we only consider vehicles that have that grid
cell’s sensor type in the calculation.

For each grid cell g at time period ¢, coverage c is calculated as the number
of selected vehicles which cover that cell at that time period, but also have the
sensors required to provide coverage for that grid cell. Then, ¢’ is calculated
as 1 if |¢| > 0 for a particular grid cell g at time ¢, and 0 otherwise.

Therefore, the coverage calculation changes to:

cgr) ={v €S :g€ Ry Gtypey € Viype,} (12)
Cor < legil; Vg, t € G,T (13)

flo)= Y ey (14)

t,geT,G

For each vehicle v € V', Vitype, contains the types of sensors vehicle v has.
A vehicle can have one or more sensors onboard. Gtype contains the type of
sensor required for grid cell g to be covered at time period ¢.

4.2 Heuristics

We also propose several heuristic algorithms for the multisensor vehicular re-
cruitment problem. We propose both an unbudgeted and budgeted version.

The unbudgeted heuristic works as follows. The algorithm iterates over
each time period ¢t € T and grid cell g € G. It first checks if this grid cell is
covered by any vehicles already selected, and skips it if so. It then calculates
which vehicles can cover this cell based on whether the vehicle is located at the
grid cell at the specified grid cell at the time period and contains the type of
sensor required by the grid cell. It calculates the cost per unit of utility gained
and chooses the vehicle with the cheapest ratio and adds it to the solution.

The budgeted version works the same as the unbudgeted version, but keeps
track of recruitment cost and only considers vehicles that can be added to the
solution set without exceeding the specified budget.
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Algorithm 3 Unbudgeted Multisensor Vehicle Recruitment Heuristic

1: Set of vehicles V/
2: Set of sensor types Sensor
3: Set of grid cells G
4: Set of time periods T
5: Set Ry: containing grid cells covered by v at time ¢
6: Set of costs C for each vehicle v
7: Set of selected vehicles S
8: for t € T do
9: for g € G do
10: coveragegt = vehicles covering this grid cell at this time period with the required
sensor type
11: if coveragegs # () then
12: Continue
13: covering vehicles = vehicles not currently selected which cover grid cell g and
contain the required type of sensor to cover g
14: Py = M for each covering vehicle
15: maxr_v = Vehlcle with largest p,
16: S =SUmazwv

Algorithm 4 Budgeted Multisensor Vehicle Recruitment Heuristic

: Set of vehicles V'

: Set of sensor types Sensor

Set of grid cells G

Set of time periods T'

Set R+ containing grid cells covered by v at time ¢
Set of costs C' for each vehicle v
Set of selected vehicles S

. current_cost =0

9: Budget B

10: for t € T do

11: for g € G do

QDU W

12: coveragegr = grid cells covered by current solution at this grid cell and time
period which can be afforded under the current budget

13: if coverageg: # 0 then

14: Continue

15: covering vehicles = vehicles covering this grid cell at this time period with the

required sensor type and which can be afforded under the current budget

16: Py = M for each covering vehicle

17: max_v —vehlcle with largest p, value
18: S =SUmaxwv
19: current_cost = current_cost + Cmaz_v
MIP Multisensor Multisensor Heuristic
\1\;:;132; of é:ielg;ge of Average of é:ﬁ;;}ge of Average of
Cost Cost
50 691.05 21.47 691.05 21.48
100 1513.05 45.47 1513.05 45.53
250 2904.35 106.04 2904.05 106.41
500 4441 151.52 4437.9 154.64

Table 3 Unbudgeted multi sensor vehicle recruitment
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MIP Multisensor Multisensor Heuristic
Budgeted Budgeted
Average Average Average Average
Budget Number -of | {70 Cost Utility Cost
vehicles
25 743 21.03 743 21.03
50 50 679 20.87 679 20.87
100 818 22.51 818 22.51
200 705 23.77 705 23.80
25 1581 24.97 1419 25.00
100 50 1591 49.13 1591 49.13
100 1570 42.00 1570 42.00
200 1270 42.70 1270 42.70
25 2347 24.99 1568 24.99
250 50 2799 49.97 2212 50.00
100 2728 99.85 2709 99.74
200 2587 95.19 2587 95.72
25 3043 24.99 1865 25.00
500 50 3700 49.99 2916 49.98
100 4066 99.89 3678 100.00
200 4197 153.93 4195 155.62

Table 4 Budgeted multisensor vehicle recruitment

4.3 Performance Evaluation

In the first set of runs (table 3) we do not impose a budget constraint on either
of the algorithms. In the 50 and 100 vehicle scenarios the heuristic achieves
the same utility that the MIP model does. Recruitment costs are only 0.04 and
0.13% higher, respectively. In the 250 vehicle scenario the heuristic utility is
0.01% lower with 0.35% higher recruitment cost. In the final scenario with 500
vehicles the heuristic utility was on average 0.07% lower with 2.06% higher
recruitment costs.

In the budgeted runs (table 4), we run a variety of budgets for each scenario
with a varying number of vehicles. In small budgets, the biggest performance
difference can be seen between the heuristic and MIP model. In the runs
with a budget of 25, the heuristic achieves the same utility in the 50 vehicle
scenario but this decreases as the number of vehicles increases, to 10.25, 33.19,
and 38.71% lower utility, respectively. Recruitment costs are similiar (between
0.01 and 0.1% higher).

In the runs with a budget set to 50 , utility is the same for 50 and 100
vehicle scenarios, and 20.97 and 21.19 percent lower in 250 and 500 vehicle
scenarios. In the 100 budget runs, the performance gap continues to further
decrease. The heuristic utility is optimal in 50 and 100 vehicle scenarios and
only 0.07% lower in the 250 vehicle scenario. Recruitment costs are also the
same as optimal in 50 and 100 vehicle scenarios. In the largest scenario with
500 vehicles, the heuristic utility is only on average 9.54% lower than optimal
with only 0.10% higher recruitment cost. In the largest budget run, with a
budget of 250, the heuristic performs very closely to the MIP model. In all
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scenarios but the largest, the heuristic achieves optimal utility at very similar
recruitment costs. In the largest scenario with 500 vehicles the heuristic results
in 0.05% lower utility at 1.10% higher recruitment cost.

5 Conclusion

In this paper, we have proposed both a mixed integer programming model for
a new variant of the vehicular recruitment problem, which we call the priority
based vehicular recruitment problem. We do the same for an existing variation,
also known as the multisensor or heterogeneous vehicular recruitment problem,
where vehicles contain different types of sensors for different sensing areas.
For both problems, we also develop a heuristic which we compare to solutions
obtained by the optimal models. Results show we obtain very similar coverage
at similar recruitment costs. In the multisensor performance evaluation, our
heuristic underperforms compared to the MIP model in low budgets with large
numbers of vehicles, but the performance gap lessens as the budget parameter
increases.
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