
A Solution to MPTCP’s inefficiencies under the
Incast problem for data center networks

Citation for published version:
Morteza Kheirkhah, Myungjin Lee, A solution to MPTCP’s inefficiencies under the incast
problem for Data Center Networks, Computer Communications, Volume 161, 2020, Pages
238-247, ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2020.07.034.

Link:
Link to published version in Science Direct

Document Version:
Preprint submitted to Elsevier

Published In:
Computer Communications

https://www.sciencedirect.com/science/article/abs/pii/S0140366420318466

A Solution to MPTCP’s inefficiencies under the Incast problem for data center networks

Morteza Kheirkhaha, Myungjin Leeb

aDepartment of Electronic & Electrical Engineering, University College London, UK
bSchool of Informatics, University of Edinburgh, UK

Abstract

In recent years several multipath data transport mechanisms, such as MPTCP and XMP, have been introduced to effectively exploit
the path diversity of data center networks (DCNs). However, these multipath schemes have not been widely deployed in DCNs.
We argue that two key factors among others impeded their adoption: TCP incast and minimum window syndrome. First, these
mechanisms are ill-suited for workloads with a many-to-one communication pattern, commonly found in DCNs, causing frequent
TCP incast collapses. Second, the syndrome we discover for the first time, results in 2-5 times lower throughput for single-path
flows than multipath flows, thus severely violating network fairness.

To effectively tackle these problems, we propose AMP: an adaptive multipath congestion control mechanism that quickly detects
the onset of these problems and transforms its multipath flow into a single-path flow. Once these problems disappear, AMP safely
reverses this transformation and continues its data transmission via multiple paths. Our evaluation results under a diverse set of
scenarios in a fat-tree topology with realistic workloads demonstrate that AMP is robust to the TCP incast problem and improves
network fairness between multipath and single-path flows significantly with little performance loss.

Keywords: Data Center Network, Multipath Transport, Congestion Control, Flow Scheduling

1. Introduction

Data center is a crucial infrastructure that drives the Inter-
net today. A large-scale data center comprises hundreds of
thousands of servers, and hosts a diverse set of online ser-
vices that require high bandwidth, low latency or both from
the network. To meet such requirements, lots of recent ad-
vances [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have focused on
improving TCP congestion control (CC) algorithms, by lever-
aging path diversity [3, 4, 5, 6], exploiting explicit congestion
signals from network switches [1, 5, 7, 13, 8], measuring de-
lays [11, 2], etc.

In this paper we focus on striking a right balance between
throughput and latency at transport layer. To that end, one
seemingly natural way is to combine a multipath tranport proto-
col (e.g., MPTCP [3]) and a low-latency tranport protocol (e.g.,
DCTCP [1]) in that the former usually achieves a high through-
put and the latter keeps switch buffer occupancy low by exploit-
ing Explicit Congestion Notification (ECN). Thus, the crux of
this idea is to maintain multiple subflows per connection using
a multipath mechanism and each subflow runs a low-latency
protocol such as DCTCP.

This makes sense because any single transport protocol is dif-
ficult to meet high-throughput and low-latency requirements.
For example, Equal Cost Multi Path (ECMP) routing would
be likely to cause collisons among long-lived DCTCP flows on
the same link, which can degrade throughput substantially. In

Email addresses: m.kheirkhah@ucl.ac.uk (Morteza Kheirkhah),
myungjin.lee@ed.ac.uk (Myungjin Lee)

contrast, MPTCP is good at fast load-balancing, overcoming
the shortcoming of ECMP. However, it tends to occupy switch
buffers aggressively, thus hurting the performance of latency-
sensitive short flows.

We conduct such integration, which we call Data Center
MultiPath (DCM, in short), and examine a similar existing ap-
proach called XMP [5]. We find that both schemes can provide
fast load-balancing while keeping switch buffer occupancy low.
However, two major challenges —TCP incast and minimum
window syndrome— still render these approaches less practi-
cal as a transport protocol for DCNs.

We carefully examine these problems when multipath
schemes are in use (§3). Multiple subflows in these MPTCP
variants boost the possibility of TCP incast in a many-to-one
communication pattern while for example senders and a re-
ceiver are co-located in a single rack. Worse, in that setting,
network resource competition between ECN-capable multipath
(e.g., DCM) and single-path (e.g., DCTCP) flows causes a se-
rious co-existence problem, which we name minimum window
syndrome. Surprisingly, the syndrome consistently makes mul-
tipath flows achieve 2-5× more throughput than single-path
flows, thus severely violating fairness among the TCP flows.
We find out that using both multiple subflows and small ECN
marking threshold is behind the syndrome.

Finally we propose AMP, an adaptive multipath congestion
control algorithm that is robust to the TCP incast problem and
effectively handles the minimum window syndrome with lit-
tle performance compromise on both throughput and latency.
In addition to good fairness and high performance, we design
AMP such that it is simple enough to keep its behavior trace-

Preprint submitted to Elsevier October 9, 2020

able and its overheads low, and can shift traffic quickly from
congested paths to less congested paths. AMP requires none
of sophisticated mechanisms such as RTT-dependent conges-
tion window (cwnd) increase (in MPTCP) and dynamic cwnd

decrease (in DCTCP).
AMP’s approach is simple but effective: it simply transforms

a multipath flow into a single-path flow at the onset of the prob-
lems. The key in AMP is the early detection of the problems.
We leverage the fact that all subflows of a multipath flow have
the smallest congestion window value, which is a good indica-
tor that all of the subflows compete with other flows on a single
link. If the minimum window state across all subflows remains
for a small time period (e.g., 1-3 RTTs), AMP executes this
transformation by deactivating all subflows but one. If AMP
no longer receives ECN-marked packets for some time period
(e.g., 8 RTTs), it reactivates all suspended subflows (§4). Our
evaluation shows that this neat technique substantially mitigates
TCP incast and improve fairness without any side-effect (§5.2).

AMP also simplifies congestion control operations, which
keeps AMP easily traceable and its overheads low. AMP just
increases only one window per RTT across all subflows, similar
to the behavior of a single-path TCP whereas the other schemes
consider RTTs of all subflows to update their cwnd. In response
to ECN signals, AMP cuts cwnd by a constant factor instead of
dynamically adjusting it based on the fraction of marked pack-
ets (§4.2). Our extensive evaluations in a large-scale fat-tree
topology with realistic traffic matrix demonstrate that AMP un-
der incast-like workloads works better than and in other work-
loads performs as well as the existing solutions, despite its sim-
plicity (§5.3).

Overall, this paper makes three main contributions:
• To the best of our knowledge, we report for the first time that

the minimum window syndrome can do exist when ECN-
capable multipath and single-path TCPs are deployed in data
centers. We carefully examine its root cause.

• We propose AMP1, an adaptive multipath TCP for data cen-
ter networks that effectively copes with the TCP incast and
minimum window syndrome. AMP is resilient against the
incast problem and ensures graceful co-existence with single-
path TCP flows.

• We evaluate AMP over a wide variety of scenarios in a large-
scale fat-tree topology, and demonstrate that AMP mitigates
buffer inflation and achieves higher fairness and comparable
performance against existing multipath protocols.

2. Preliminary

In this section we review two multipath mechanisms to facili-
tate our later discussions: (1) DCM, a new extension of MPTCP
that combines the congestion control of MPTCP and DCTCP
together; and (2) XMP, an existing proposal.

1The AMP source code is available at https://github.com/

mkheirkhah/amp. Note that we have implemented AMP on top of our
custom implementation of MPTCP in Network Simulator-3 (NS-3) [14].

2.1. DCM

An intuitive and reasonable approach is to combine MPTCP
and DCTCP. The main idea is to enable each subflow of
MPTCP with the ECN response mechanism of DCTCP. On top
of the basic MPTCP algorithm, which swiftly shifts traffic from
highly congested to less congested paths, DCM handles ECN-
marked packets similar to DCTCP for each subflow. That is,
each subflow of DCM adjusts its sending rate in proportion to
the extent of congestion, represented by the amount of ECN-
marked packets. For instance, when a subflow rapidly reduces
its cwnd due to receiving a large amount of ECN-marked pack-
ets over a few windows of data, DCM moves the traffic from
that subflow to other subflows with better network condition
(e.g. with larger cwnd and low RTT). In this way, each sub-
flow of DCM follows DCTCP to reduce its cwnd and MPTCP
to increase its cwnd.
The DCM does, in short:
• For each ACK on subflow s, ws ← ws + min(a

wtotal
, 1

ws
)

• For each loss, ws ←
ws
2

• For first marked ACK in a window, ws ← ws(1 −
αs
2)

ws is a cwnd size of subflow s, wtotal is
∑

r wr for all r and
a controls the aggressiveness of cwnd increase across all sub-
flows. The following formula calculates the value of a:

a = wtotal
maxr (wr/rtt2

r)
(
∑

r(wr/rttr))2 (1)

Here maxr is the maximum value across all subflows. For in-
stance, when an MPTCP flow encounters a path with high RTT
and low packet drop probability, it increases its aggressiveness
to fully utilize that path. The aggressiveness is also capped by
1

ws
to prevent a subflow to increase its cwnd more than one seg-

ment per RTT, ensuring that a subflow, and in turn, the MPTCP
flow, is not harming other competing (possibly, single-path)
flows.
αs is an estimate of the fraction of marked packets on subflow

s and is updated once per window of data (roughly an RTT) as
follows:

αs = (1 − g)αs + gFs (2)

Fs is the fraction of marked packets (in the last window of
data) on subflow s; g is a (constant) weight coefficient for ex-
ponentially averaging αs. When αs → 0, ws decreases gently;
as αs → 1, ws does more aggressively.

2.2. XMP

XMP is another multipath congestion control algorithm that
aims to strike a balance between latency-throughput trade-
offs. XMP combines an ECN-based scheme for controlling the
buffer occupancy in switches and a rate-based congestion con-
trol algorithm for balancing traffic among its subflows.
The XMP does, in short:
• Every window of data on subflow s, ws ← ws + δs

• For each loss, ws ←
ws
2

• For first marked ACK in a window, ws ← ws(1 − 1
β
)

2

https://github.com/mkheirkhah/amp
https://github.com/mkheirkhah/amp

ToR

switch

...

D

S1

S2

S3

Sn

S1

S2

S3

Sn

Figure 1: A many-to-one communication scenario over a 10Gbps bottleneck
link.

����

��

���

����

�����

������

�� �� �� ��

�
�
�
�

�
�
�
�

�
��
�
�

�����������

�����
���
���

Figure 2: Impact of the TCP incast on different multipath protocols (DCM and
XMP) and DCTCP. DCM and XMP use four subflows per connection. File size
is 128KB, link capacity is 10Gbps, and switch buffer size is 100 packets. The
y-axis is log-scaled.

δs dictates the amount of cwnd increase for each subflow,
calculated once per window of data; and β is a fixed reduction
factor (set to 4 in [5]). The value for δs is calculated by the
following formula:

δs =
rtts

rttmin
×

ws/rtts∑
r(wr/rttr)

(3)

XMP is in principle similar to MPTCP and DCM, but there
are differences, too. One of them is that in XMP, network con-
gestion is signaled via packet queuing delay (inferred through
RTT) and ECN-marked packets.

3. Issues of MPTCP variants

MPTCP and its ECN-capable variants have not been widely
deployed in DCNs. While there may be several other rea-
sons, we identify two key technical issues. First, the ECN-
capable MPTCP variants (DCM and XMP) are unable to handle
incast-like traffic; many applications (MapReduce [15], Parti-
tion/Aggregate [1], etc.) have a many-to-one communication
pattern that is prevailing in DCNs. Second, the ECN-capable
MPTCP variants fail to gracefully coexist with an ECN-capable
single-path TCP such as DCTCP; an MPTCP variant can hurt
DCTCP flows’ throughput significantly. We call this problem
the minimum window syndrome. In what follows, we demon-
strate the impact of these two problems via simulation under a
simple topology shown in Figure 1.

3.1. TCP incast

TCP incast can happen in applications which have barrier-
synchronized workload and a high fan-in communication pat-

tern. A unique characteristic of the barrier-synchronized work-
load is that traffic of multiple TCP flows to the same destination
arrives in a bursty fashion at a bottleneck switch, which has a
shallow buffer. This causes bursty packet losses and eventually
triggers expensive timeout at TCP senders, which substantially
delays the completion of a job [1].

TCP incast is a well-studied topic [1, 10] and for instance
DCTCP mitigates the problem using ECN. Unfortunately, the
ECN-capable MPTCP variants are still susceptible to the TCP
incast even in the help of ECN. To demonstrate that, we create a
simulation environment as shown in Figure 1 using NS-3 [16].
The simulation setup is as follows. Every 1 second k number
of multipath flows join to a bottleneck link with a fixed interval
of 50µs where k = 10, 20, 30, 40 while setting the flow size to
128KB. Each simulation lasts for 20 sec. Each multipath flow
has 4 subflows. In the setup, we test DCM and XMP. We also
separately run DCTCP as baseline.

Figure 2 shows that DCTCP overall outperforms DCM and
XMP. In many cases the average flow completion time (FCT)
of DCTCP is almost 1-2 orders of magnitude shorter than that
of DCM and XMP; when k = 30, the average FCT of DCTCP is
about 2ms whereas that of DCM and XMP is over 800ms. Fur-
thermore, the FCT distribution of DCTCP has a narrow stan-
dard deviation (i.e., the whisker bar in the graph), but the stan-
dard deviation of XMP and DCM is large (less than 1 millisec-
ond for DCTCP vs. above 1 second for DCM and XMP). This
means that the other schemes have a long-tailed FCT distribu-
tion and make some flows experience much higher FCTs (due
to retransmission timeouts).

From these results, it is evident that the multipath variants
cannot handle the TCP incast problem. The reason is somewhat
obvious. The MPTCP variants maintain 4 subflows. Hence, one
multipath flow generates at least 4 packets per RTT. More num-
ber of multipath flows implies a sharp increase of the probabil-
ity of burst packet losses. For example, every RTT 30 multipath
flows shown in Figure 2 generate at least 120 packets, which are
far exceeding the queue length (i.e., 100 packets in this case) of
the bottleneck switch.

Without giving up the benefit of a multipath protocol, a (prac-
tical and possibly natural) way to deal with this problem may
be allowing both multipath and single-path protocols and let-
ting them share the DCN fabric. The basic idea is to permit
DCTCP for latency-sensitive applications and multipath proto-
cols for bandwidth-hungry services. However, keeping grace-
ful co-existence of these two different protocols turns out to be
challenging, which we discuss next.

3.2. Minimum window syndrome

In the presence of ECN-capable multipath (e.g., DCM and
XMP) and single-path TCP flows (e.g., DCTCP), serious un-
fairness between them can occur. The key characteristic of
this problem is that when all the subflows of DCM or XMP
flows compete with DCTCP flows on the same bottleneck link,
DCTCP flows obtain 2-5 times less amount of bandwidth and
higher queueing delay than they should. We call this co-
existence problem the minimum window syndrome.

3

S1

Switch queue

K = 4

S2

Some packets

are ECN-marked

(a) Normal situation

S1

K = 4

S2

S3

S4

S5

All packets are

ECN-marked

(b) Persistent buffer inflation

S1

K = 4

S2

S3

S4

S5

A multipath flow with 4 subflows

sends 4 packets per RTT
~
~~~
~
~~~

All packets are ECN-marked

(c) Minimum window syndrome

Figure 3: Illustration of the minimum window syndrome. The syndrome leads to severe unfairness and escalates the likelihood and impact of persistent buffer
inflation significantly.

Triggering the syndrome. We discuss when the syndrome can
occur through examples shown in Figure 3. We assume that
network switches ECN-mark packets only if their instant queue
length is larger than a marking threshold K. Such switches are
widely deployed in data centers. To keep the discussion simple,
let us assume K = 4 and zero propagation delay. That is, as
soon as packet leaves the queue, sender can send a new packet
as it receives acknowledgment instantly.

In Figure 3(a), two single-path flows share the bottleneck
link fairly by generating on average two packets per RTT
(bounded by queuing delay); in other words, cwnd in each flow
oscillates between 1-3 packets.

Now suppose that 5 single-path flows compete with each
other as illustrated in Figure 3(b). Because K = 4, a new arriv-
ing packet finds the queue length is always equal to K, meaning
that it is the 5th packet in the queue. Thus, all packets across
flows are ECN-marked all the time, and each flow is forced to
reduce its cwnd to one packet. Even though there is no way to
further reduce cwnd (as it is one packet), the number of packets
arriving at the queue always exceeds K. This causes persistent
buffer inflation (also discussed in [17]), but there is no unfair-
ness across flows.

Finally, Figure 3(c) illustrates a case where the single-path
flow in S 5 is replaced with one multipath flow having four sub-
flows. Similar to the previous case, all packets across flows are
ECN-marked. Even if the cwnd of the single-path flows and all
subflows reduces to one packet, the number of packets in flight
far exceeds K all the time. However, since all the subflows be-
long to one multipath flow, the flow ends up sending four times
more packets than single-path ones. Furthermore, the syndrome
substantially escalates the likelihood and impact of the persis-
tent buffer inflation (see the buffer length twice as large as K in
Figure 3(c)), which can potentially harm latency-sensitive short
flows.

Conditions for the syndrome. In reality, BDP needs to be con-
sidered and is a few tens of packets in DCNs [5, 13]. Thus, to
create the syndrome, more than (BDP + K) number of flows are
necessary. However, the MPTCP variants set minimum con-
gestion window size (cwndmin)—an internal constant that gov-
erns the minimum number of packets a sender can send regard-
less of congestion level—to two packets2. Thus, the number

2MPTCP and XMP use two packets to probe congestion level on each path
(see a detailed discussion in [18] and Algorithm 1 in [5]). DCTCP also uses

��

��

��

��

��

��

��

� � � � � � �

�
�
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�

���������������

����� ���

(a) (K, r) = (10, {2 . . . 8}). Average goodput of 8
DCTCP flows and one XMP flow.

��

��

��

��

� � �� ��

�
�
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�

���������������

����� ���

(b) (K, r) = (20, 4). Average goodput of varying
number of DCTCP flows and one XMP flow.

Figure 4: The minimum window syndrome under various conditions. K: ECN
marking threshold, and r: the number of subflows.

of flows including single-path flows and subflows in multipath
flows should be larger than (BDP + K)/cwndmin.
Demonstration of the syndrome. Now suppose a setup in
Figure 1 where an ECN-enabled switch connects n sending
servers and one receiving server. The receiver is equipped with
DCTCP, DCM and XMP; server S 1 runs DCM (or XMP) hav-
ing r subflows, and the remaining n − 1 servers with DCTCP
(n ≥ 2). Those n senders send traffic to the receiver.

We do various simulations by varying parameters and study
the impacts of the syndrome. We change the simulation dura-
tion from 10ms to 1 sec, use 1Gbps and 10Gbps link and test
both DCM and XMP. Across these variations, we observe a very
similar trend. Thus we only show the results of the 1 sec du-
ration over 10Gbps link using XMP in interest of space. We
depict a setting as (K, r) where K is the ECN marking thresh-
old and r is the number of subflows.

Varying number of subflows: Given 8 DCTCP flows and one

two packets originally, but a recent study proposed to use one packet for the
value (see page 11 in [19]) and the DCTCP source was patched accordingly.
Unless otherwise stated, we set cwndmin = 2 for consistency in this paper.

4

DCM or XMP flow, we vary the number of subflows from 2 to
8, while setting K = 10 and cwndmin = 2 as suggested in [5];
thus, the setting is (10, {2 . . . 8}).

Figure 4(a) shows that the syndrome begins as soon as the
DCM or XMP flow starts to use three subflows or more. When
four subflows are used, the XMP flow obtains 2.3× higher
goodput than DCTCP flows. The figure clearly demonstrates
that the number of subfows is a key factor that triggers the
problem. DCTCP flows seem to have no problem in the 2-
subflow case. However, the problem recurs when at least about
16 DCTCP flows are in use (not shown for brevity). Worse,
using two subflows costs about 10% goodput loss (e.g., 1Gbps
out of 10Gbps rate) when compared to using four subflows [5].
Also, a number of subflows (e.g., 8 subflows) are in general ben-
eficial when there exist lots of parallel paths in a large DCN [3].
Thus, using a smaller number of subflows is not a fundamental
solution.

Different marking threshold: As a small marking threshold
can be a potential cause of the problem, increasing K may be
useful. However, this can also introduce an additional delay,
which might hurt the flow completion time of latency-sensitive
short flows. Nevertheless, we test K = 20. With the setting (20,
4), we vary the number of DCTCP flows.

Figure 4(b) shows that increasing the marking threshold
marginally alleviates the problem; given 8 DCTCP flows, a
goodput gap between DCTCP and DCM or XMP is a factor
of two. In contrast, recall that the gap is a factor of 2.3 under
the same condition in Figure 4(a). We also tested a case where
cwndmin = 1 while keeping the setting as (10, 4). This reduced
the likelihood of the syndrome, but we observed that a slight
increase of the number of DCM or XMP flows (from 1 to 4)
triggered the syndrome, when 8 DCTCP flows are given (the
exact graph is omitted).

Summary. We obtain two key findings from these results. First,
the condition that triggers the minimum window syndrome is
relatively simple: the total number of packets in flight from
both multipath and single-path flows should exceed BDP plus
K frequently. In our setup, BDP is 20 packets. In Figure 4(a),
the condition begins to hold when the setting has 3-4 subflows
for the XMP flow and 8 DCTCP flows (the average number
of packets in flight is about 30-32). Second, tweaking those
parameters either alleviates the problem marginally or makes
performance loss inevitable.

4. Design

We propose AMP, a multipath congestion control mecha-
nism that coexists well with ECN-capable single-path TCPs and
is resilient against TCP incast. In designing AMP, in addition
to the obvious objectives—high throughput and low latency, we
have the following design objectives:

• Good fairness: Multipath and single-path TCP flows
should be able to achieve their fair share of bandwidth at
a bottleneck link, even in the presence of an incast-like
traffic pattern.

DCTCP flow

[2s, 3s]

DCTCP flow

[1s, 2s]

D1

D2

D3

S1

S2

S3

Subflow 1

Subflow 2

Figure 5: A setup for testing traffic shifting time. An orange line represents a
subflow of a multipath flow.

• Fast traffic shifting: Multipath flows should be able to
avoid congested paths quickly. This especially helps
latency-sensitive short single-path TCP flows experience
less impact due to congestion.

• Simplicity: An algorithm should be kept as simple as pos-
sible so that its behaviors are easily analyzed and its over-
heads are kept low.

To achieve the above objectives, we deliberately test existing
solutions: DCM and XMP. In analyzing them, we make several
key observations essential for our design.

4.1. Key observations

(1) The number of subflows for a multipath flow should not
be static. Multiple subflows are in general beneficial to obtain
high throughput. On the contrary, in the presence of the TCP
incast and minimum window syndrome, it is effective to have a
smaller number of subflows (ideally, one subflow), as discussed
in §3. However this costs throughput performance. Thus hav-
ing the static number of subflows can only achieve either good
fairness against single-path flows or high throughput, but not
both of them. Thus, the number of subflows should be adjusted
adaptively, which can be done by (de)activating subflows in an
online fashion. However, it is inappropriate to deactivate sub-
flows incrementally because mitigating the two problems can
take too long, which may cause significant queuing delay to
latency-sensitive short flows over a longer period of time.

(2) The cwnd values in subflows are a cue for the TCP in-
cast and syndrome. Detecting these problems early is key to
adjusting the number of subflows. We notice that when these
problems are about to occur, subflows are in a unique status
where the cwnd values across all subflows are always equal to
a minimum (e.g., two packets in [5, 3]). This is a good indica-
tor that these problems are in effect because it is unlikely that
all subflows of a multipath flow passing through different paths
face excessive congestion, especially in a large-scale data cen-
ter that has 100s of parallel paths between a pair of source and
destination.

(3) Adaptive cutback of cwnd at subflow slows down traf-
fic shifting. One of differences between DCM and XMP is
the response mechanism to ECN-marked packets. In DCM a
subflow cuts its cwnd in proportion to the fraction of marked
packets over a window (see Eq. (2)); whereas in XMP a sub-
flow decreases its window by a constant factor β (see §2.2). To
understand the effect of this difference, we modify MPTCP to

5

��

���

���

���

���

�� ������ ������

�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(a) MPTCP (β = 4)

��

���

���

���

���

�� ������ ������
�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(b) DCM

Figure 6: Traffic shifting times of MPTCP and DCM. MPTCP finishes its traffic
shifting at 2.003s and DCM does at 2.007s; DCM is 4ms slower than MPTCP.

reduce the cwnd of subflow by a constant factor (we use β = 4)
when it sees ECN-marked packets and examine traffic shifting
times for MPTCP with β = 4 and DCM.

Given a topology shown in Figure 5, a multipath flow (DCM
or MPTCP) with two subflows begins to traverse from S 2 to D2
at 0s. Then, S 3 sends traffic to D3 using DCTCP within interval
(1s, 2s) and another DCTCP flow from S 1 to D1 for (2s, 3s).
At 2s, a multipath flow is sending its entire traffic through the
upper path and we plot how cwnd of each subflow varies within
interval (1.999s, 2.01s) after the second DCTCP flow appears
on the upper path. Figure 6 shows that MPTCP finishes traffic
shifting about 4ms faster than DCM.

The reason is because a DCTCP subflow in DCM conserva-
tively reduces cwnd based on the fraction of marked packets.
Hence, even if there exists a congestion-free path, a DCM flow
shifts its traffic slowly. In contrast, with a constant factor (e.g.,
β = 4), MPTCP is aggressive enough to make a subflow on
the congested path quickly reduce its window, thereby achiev-
ing faster traffic shifting than DCM. This conservative nature
of DCTCP perfectly makes sense if a flow traverses one path
only. However, because the subflows of a multipath flow travel
through multiple different paths in general, it is more appropri-
ate to get rid of traffic from the congested path rather than to
withstand against congestion.

(4) RTT measurements of subflows are unnecessary for up-
dating their cwnd. Interestingly, both DCM and XMP rely on
RTT measurements in increasing cwnd of subflows. DCM in-
herits MPTCP’s design principles, one of which targets to ad-
dress the RTT mismatch issue [18] that can occur when there
are paths with high RTT and low loss probability and paths with
low RTT and high loss probability. However, higher RTT typi-
cally means large queuing delay and hence high loss probability
in DCNs because DCNs usually have a symmetrical structure
where all paths between a pair of servers have the same length.
Thus, DCNs have no paths that cause the RTT mismatch prob-
lem.

Moreover, ECN tends to equalize RTTs throughout the data
center network when network switches react to instant queue
length with a small ECN marking threshold [1, 5]. Assuming
5-hop paths with 10Gbps links, 10 packets of marking thresh-
old and 1500B packets, a maximum RTT difference is just about
108µs. In average cases, as the utilization of network links in-
creases, the RTT difference will become even smaller. Thus,
differentiating the sending rate of each subflow based on such

Algorithm 1: Pseudocode of AMP

1 /* Subflow suppression/release */

2 SuppressSubflows(nRound)
3 nSF = 0 /* counter for subflows */

4 for subflow s ∈ [1, . . . , n] do
5 if ws = cwndmin then nSF← nSF + 1
6 end
7 if nSF = n then nRound← nRound + 1
8 else nRound← 0
9 if nRound ¡ γ then return

10 for subflow s ∈ [2, . . . , n] /* at γ rounds */

11 do
12 actives ← false
13 end
14 ReleaseSubflows(ACK, nRound)
15 if ACK.marked then nRound← 0
16 else nRound← nRound + 1
17 if nRound ¡ τ then return
18 for subflow s ∈ [2, . . . , n] /* at τ rounds */

19 do
20 actives ← true
21 end
22 /* RTT-agnostic CWND increase */

23 IncreaseCWND(s, wtotal)

24 /* For each ACK of subflow s */

25 ws ← ws + 1/wtotal

26 /* Constant factor CWND decrease to ECN */

27 RespondToECN(s)
28 /* For the first marked ACK of subflow s

per window */

29 ws ← max (ws(1 − 1/β), cwndmin)
30 /* Response to duplicate ACKs */

31 DecreaseCWND(s)
32 ws ← max (ws/2, cwndmin)

a small RTT difference would not bring much benefit. Even
in a case that a path is highly congested, sources can quickly
identify it with ECN signals and do traffic shifting accordingly.

4.2. AMP algorithm

We now discuss the exact algorithm of AMP designed with
the above four observations. AMP mainly consists of three
components: (i) subflow suppression/release, (ii) constant fac-
tor decrease of congestion window, and (iii) RTT-agnostic con-
gestion window increase.

The subflow suppression/release is a key mechanism that en-
sures graceful coexistence between multipath and single-path
flows. The second component enables fast traffic shifting. The
final part, as its name suggests, excludes RTT measurements,
without any performance penalty, from the part of increasing
cwnd, which overall makes our algorithm simple. Algorithm 1
shows the pseudocode of AMP, that we explain next in detail.

Subflow suppression/release (SSR). The SSR mechanism per-
mits detection of cases where all subflows belonging to an AMP

6

flow struggle at the same bottleneck link due to congestion. A
representative example is a many-to-one communication pat-
tern (e.g., incast) where multiple flows (and subflows) compete
for bandwidth at a last mile hop (i.e., ToR switch). Upon detec-
tion, AMP transforms its flow to a single-path flow. Once con-
gestion disappears, AMP converts its flow from a single-path
flow to a multipath one.

Subflow suppression consists of two steps: detection and
suppression. (1) At detection step, AMP checks whether the
cwnd of all its subflows has been equal to a minimum win-
dow size for γ number of consecutive RTTs (lines 3-9 in Al-
gorithm 1). (2) At suppression step, if the previous detection
condition is met, AMP deactivates all its subflows except for
the initial one by resetting active flag (lines 11-13).

AMP conducts subflow release similarly. If the initial sub-
flow does not receive any more marked packets for τ number of
consecutive RTTs (lines 15-17), AMP reactivates all those in-
activated subflows (lines 19-21). When releasing the subflows,
AMP sets active flag for each subflow.

Overall, while it is a simple heuristic, SSR ensures fairness
between multipath and single-path flows at a shared bottleneck
link. It also helps to accommodate more senders during an
incast-like episode or to reduce the chance of costly timeouts.
We demonstrate SSR’s efficacy in §5.2.

RTT-agnostic congestion window increase. As discussed in
§4.1, employing an ECN-based congestion control tends to
equalize RTTs in DCNs. The difference in RTTs for paths is
at most K packets where K is a small marking threshold at
switches (say, 10 packets). In addition, the RTT mismatch prob-
lem does not exist in DCNs, either. Based on these insights,
for each non-duplicate ACK of subflow, we simply increase its
cwnd by 1/wtotal (line 25 in Algorithm 1) where wtotal is the to-
tal window size across all subflows. This ensures that AMP can
only increase one segment per RTT across all subflows, pre-
serving network fairness with single-path flows at bottleneck
links [20, 18].

The amount of cwnd increase of AMP also strikes a right bal-
ance. Given an congestion control algorithm C, let the amount
of cwnd increase of a subflow per ACK be Cinc. For instance,
the amount, 1/wtotal, is AMPinc.

Now suppose RTT difference among all subflows is negligi-
ble. Then, Eq. (1) for DCM reduces to a ≈ wmax/wtotal where
wmax is the maximum window size across all subflows. The in-
creasing amount per ACK is then about wmax/(wtotal)2 which we
call DCMinc. In case of XMP, Eq. (3) reduces to δs ≈ ws/wtotal.
Note that δs is the amount of cwnd increase per RTT in XMP.
Since ws is the current window size of subflow s, the subflow
would receive ws number of ACKs. Thus, for every ACK,
XMP increases cwnd of a subflow by 1/wtotal, which is XMPinc.
Putting it together, we have

DCMinc ≤ AMPinc ≈ XMPinc

Note that if wmax approaches wtotal, DCMinc ≈ AMPinc. Look-
ing at these relationships among three algorithms, the increment
is comparable across all of them, but AMP’s algorithm is much
simpler than the other two.

cwnd increase Response to ECN SSR

AMP ws + 1/wtotal ws(1 − 1/β) 3

DCM
ws + min(a

wtotal
, 1

ws
) ws(1 − αs/2)

7
a as in Eq. (1) αs as in Eq. (2)

XMP
ws + δs ws(1 − 1/β) 7

δs as in Eq. (3)

Table 1: Summary on AMP, DCM and XMP.

��

���

����

�����

������

�� �� �� �� �� ���
�
�
�
�
�
�
��
�
�
��
�

�
�
�
��
�
�
�
�

������������������������

�������
�������
�������

Figure 7: The impact of τ (i.e., the exit threshold) on the number of suppression
episodes.

Constant factor decrease of congestion window. In AMP a
subflow responds to ECN signals once every window of data
(i.e., approximately an RTT) by reducing its cwnd with a con-
stant factor β, as depicted at line 29 of Algorithm 1. The param-
eter β should be determined such that a link is fully utilized. In
other words, a queue should not be completely drained due to
cwnd reduction. In [5], this problem of choosing β is formu-
lated as follows:

BDP + K
β

≤ K,

Note β ≥ 2; otherwise, it reduces cwnd more aggressively than
a standard TCP. We choose β using this formula. For instance,
consider a DCN where each link has 1Gbps speed and RTT
is about 250µs [1] (i.e., BDP is about 20 packets). If we set
K = 10, β ≥ 3. Since computing BDP even for other link speed
(e.g., 10Gbps) is easy, it is straightforward to set β after K is
first determined.
Summary. Table 1 highlights key mechanisms of AMP, DCM
and XMP. From the table, we see that AMP is much simpler
than other solutions, easing the tuning of AMP. A key differen-
tiator is the subflow suppression/release mechanism that miti-
gates the TCP incast and minimum window syndrome.

5. Evaluation

In this section we evaluate AMP via extensive simulations
using NS-3 [14]. For comparison, we use DCTCP, DCM and
XMP3. We first study how to tune the parameters of AMP. We
then examine AMP under a few basic scenarios. In particular,
we will answer robustness of AMP against the TCP incast, its

3We do not use any ECN-incapable TCP because it does not coexist with
ECN-capable TCPs at all [19].

7

����

��

���

����

�����

������

�������

�� �� �� ��

�
�
�
�

�
�
�
�

�
��
�
�

�����������

�����
���

���
���

(a) Flow Size of 128KB

��

���

����

�����

������

�������

�� �� �� ��

�
�
�
�

�
�
�
�

�
��
�
�

�����������

�����
���

���
���

(b) Flow Size of 256KB

��

���

����

�����

������

�������

�� �� �� ��

�
�
�
�

�
�
�
�

�
��
�
�

�����������

�����
���

���
���

(c) Flow Size of 512KB

Figure 8: Impact of the TCP incast on different multipath protocols. A multipath protocol (AMP, XMP and DCM) is only used to transfer the incast traffic. A
whisker bar denotes standard deviation. The y-axis is log-scaled.

effectiveness to the minimum window syndrome, and its speed
in traffic shifting. We finally study the overall performance of
AMP under a large-scale fat-tree topology that represents a re-
alistic data center network.

Basic configuration. Throughout our simulations, the follow-
ing parameters are used without any change: (i) a link rate of
10Gbps, (ii) a link delay of 2µs, (iii) an MSS of 1400 bytes,
(iv) a maximum queue size of 100 packets, and (v) β = 4 for
AMP and XMP. We also tested AMP over 1Gbps settings and
observed that the trends were similar to those of 10Gbps set-
tings. We only show the results under the 10Gbps settings in
interest of space.

We set a default value for each of the following parameters:
(i) the number of subflows per multipath flow = 4, (ii) the min-
imum congestion window size, cwndmin = 2 packets, and (iii)
the ECN marking threshold, K = 10 packets. When necessary
(e.g., for further analysis), we change their values.

Evaluation metrics. We have four key metrics: Jain’s fairness
index [21], goodput, flow completion time (FCT) and job com-
pletion time (JCT). We define JCT as a time period until all
flows in a job finish their transmission from its beginning.

5.1. Parameter tuning

The subflow suppression/release (SSR) mechanism has two
parameters: γ to begin the subflow suppression process and τ
to finish it. We empirically determine γ and τ.

First, setting γ is relatively easy; we test different γ values
(1-10 RTTs) in the presence and absence of the TCP incast and
minimum window syndrome. If there indeed exist the two prob-
lems in the network, it is important to begin the suppression
process early enough to alleviate their impact quickly. When
γ ≥ 3 (in RTTs), AMP reacts these problems slowly. For in-
stance, under the same setting for the TCP incast shown in
Figure 2, average FCT of AMP, when γ = 3, is an order of
magnitude higher than that of DCTCP. When γ = 1, there is a
chance of false alarm. We find AMP performs best when γ = 2,
which we use by default.

Second, setting τ (i.e., the exit threshold) should be more
cautious. The risk involved in selecting τ is oscillation. If τ is
too small, AMP will repeatedly begin and end the suppression
process. The frequent oscillation may be synchronized across
AMP flows, which subsequently causes faster queue build-up
due to traffic bursts when all suspended subflows across flows

are reactivated simultaneously. This may make all incoming
packets ECN-marked, which in turn leads to the repetition of
the whole suppression process by suspending all subflows.

To find a suitable value for τ, we conduct simulations while
varying τ and using 3-5 AMP flows under the topology shown
in Figure 1. Figure 7 depicts how many suppression episodes
happen across different τ values and the number of flows. Ide-
ally, there must be only one episode. However, when τ <
6, there are more than one episode; moreover, the count of
episodes varies a lot when the number of AMP flows is differ-
ent. When τ ≥ 6, the SSR mechanism becomes stable (meaning
that there is only one episode), and the median queue length is
just about 10 packets. Therefore, we set τ = 8 as default (to be
conservative).

5.2. Microbenchmarking

Robustness against the TCP incast. Multipath congestion
control mechanisms usually work poorly when they are used
for traffic that is short-lived and has a high fan-in pattern (e.g.,
TCP incast). To understand how well AMP tolerates such a traf-
fic pattern, we use the same simulation setup used in §3.1. That
is, there is no mix of single-path and multipath flows; we use
multipath protocols only to transfer high fan-in short-lived traf-
fic. This time we vary file size from 128KB to 1MB. DCTCP is
used again as baseline.

AMP is as good as DCTCP apart from a case of 40 flows, in
which AMP performs slightly worse than DCTCP (Figure 8).
However, AMP outperforms XMP and DCM; in most cases the
average FCT of AMP is almost 1-2 orders of magnitude shorter
than that of XMP and DCM. For instance, Figure 8(a) shows
that when the number of flows is 30 and flow size is 128KB,
the FCT of AMP is about 2ms and that of XMP and DCM is
over 800ms. In addition, AMP has a narrow standard devia-
tion in its FCT distribution, but XMP and DCM have a large
standard deviation (1-2ms for AMP vs. 1 second for XMP and
DCM). This confirms that AMP presents a stable FCT perfor-
mance even under various TCP incast scenarios. Note that the
y-axis of the graph is presented in log scale.

The SSR mechanism in AMP mitigates the possibility of
buffer overflow significantly, thus that of the expensive TCP
timeout. When the number of flows is 30 in Figure 8(a), we ob-
serve that AMP has no timeout during the simulation whereas
XMP and DCM face up to 10 and 16 timeouts respectively
(with 7 timeouts at 90th percentile for both schemes). Notably,

8

����

����

����

����

��

� � �� ��

�
�
��

�
�
�
��
�
�
�
�
�
��
�
�
�

������������������
��� ��� ���

(a) No. of multipath flows = 1

����

����

����

����

��

� � �� ��

�
�
��

�
�
�
��
�
�
�
�
�
��
�
�
�

������������������
��� ��� ���

(b) No. of multipath flows = 2

����

����

����

����

��

� � �� ��

�
�
��

�
�
�
��
�
�
�
�
�
��
�
�
�

������������������
��� ��� ���

(c) No. of multipath flows = 4

Figure 9: Fairness obtained when a multipath scheme (AMP, XMP and DCM) competes with DCTCP flows under the minimum window syndrome. Each multipath
flow generates 4 subflows. AMP outperforms XMP and DCM.

��

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
�

��������������������

���
���
���

(a) One multipath flow

��

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
�

��������������������

���
���
���

(b) 4 multipath flows

Figure 10: Queue length distribution. (a) no syndrome: 4 DCTCP flows and
one multipath flow. (b) intensive syndrome: 4 DCTCP flows and 4 multipath
flows.

when flow size is smaller than 128KB (e.g., 64KB), all mul-
tipath schemes work as well as DCTCP and there is little dif-
ference among the three multipath approaches; even the SSR
mechanism is not triggered at all as the flow size is too small.
Thus, if the flow size is at least as large as 128KB, our approach
would work better than others as we observe a similar trend for
a flow size of 1MB (graph omitted).

Effectiveness to the minimum window syndrome. We use the
topology shown in Figure 1 and test the impact of the syndrome
on different schemes while varying the number of DCTCP
flows and multipath flows. All flows arrive at 0 sec and end
at 1 sec.

Figure 9 shows that in almost all cases AMP outperforms the
other two schemes. As the number of multipath flows increases,
we find the syndrome aggravates fairness even in the presence
of a small number of DCTCP flows (cf., two cases of 4 DCTCP
flows between Figures 9(a) and 9(c)). Note that the syndrome
itself is weak in some cases (e.g., given less than 8 flows in
Figure 9(a) and 4 flows in Figure 9(b)); thus marginal differ-
ence in fairness is observed among the three schemes.

Since the syndrome causes persistent buffer inflation, we ex-
amine queue length. From Figure 10, we make two observa-
tions. When there is no syndrome (Figure 10(a)), the queue
length distributions across AMP, XMP and DCM are similar.
On the other hand, when 4 DCM and XMP flows are used
(Figure 10(b)), the queue length is more than 20 packets (100%
inflation at median) all the time. On the contrary, the queue
length difference of AMP is just about 2 packets (at median,
10 packets in Figure 10(a) and 12 packets in Figure 10(b)). If
the intensity of the syndrome grows, the queue length will be-

��

���

���

���

���

�� ������ ������
�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(a) AMP

��

���

���

���

���

�� ������ ������

�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(b) XMP

Figure 11: Traffic shifting speed.

come more inflated accordingly. In general AMP can mitigate
the persistent buffer inflation better than other schemes even if
the syndrome is more intensive.

The SSR mechanism is key to high performance in both fair-
ness and delay. When we disable SSR, all three approaches
present equally poor performance.
Traffic shifting speed. We now evaluate how quickly AMP
shifts traffic. We run the same simulation done in §4.1 under
the setup in Figure 5. Recall that DCM’s traffic shifting time is
about 7ms. Figure 11 shows that both AMP and XMP achieve
similar traffic shifting time (about 3ms), reassuring DCTCP’s
slowness in shifting traffic and suggesting that a fixed amount
of congestion window reduction to ECN signals is suitable for
multipath congestion control mechanisms.

5.3. Large-scale simulation
We now study the overall performance of AMP with different

workloads in a realistic data center setup. As many data center
networks employ a multi-rooted tree topology [22, 23, 24], we
use a 3-tier fat-tree topology that has 128 servers, 32 ToR, 32
aggregate and 16 core switches. ECMP routing is employed to
select a path on a per-flow basis.
Incast with background traffic. We aim to examine the per-
formance of a high fan-in workload (i.e., incast traffic) in the
presence of background traffic. Specifically, we use DCTCP to
generate the incast traffic and a multipath protocol for the back-
ground traffic. Note that this scenario is different from one in
§5.2 where a multipath protocol is used to transfer the incast
traffic.

Setting: We consider a scenario where a client makes parallel
reads in a cluster filesystem in the presence of background traf-
fic. We model this as a unit of job: a client sends a 2KB request

9

��

����

����

����

����

��

���� ���� ���� ���� �� ���� ���� ���� ����

�
�
�

������������������������

�����
���
���
���

(a) 4 subflows

��

����

����

����

����

��

���� ���� ���� ���� �� ���� ���� ���� ����

�
�
�

������������������������

�����
���
���
���

(b) 6 subflows

��

����

����

����

����

��

���� ���� ���� ���� �� ���� ���� ���� ����

�
�
�

������������������������

�����
���
���
���

(c) 8 subflows

Figure 12: Job completion time of incast workloads. DCTCP is used for generating incast traffic and background traffic is generated by using AMP, DCM, XMP
and DCTCP (baseline) separately. A key in the legend denotes the protocol name used for background traffic.

��

����

����

����

����

��

�� �� �� �� ��

�
�
�

��������

�����
���
���
���

(a) Short Flows

��

����

����

����

����

��

�� �� �� �� �� ���

�
�
�

��������������

�����
���
���
���

(b) Long Flows

��

���

���

���

���

���� ���� ��� ����

�
�
�
��
���
�
���
��
�
���
�

�
��
�

�����������������

�����
���

���
���

(c) Network utilization

Figure 13: FCT, goodput and network utilization performance. Short flows are only generated by DCTCP, and each protocol in the legend is used for long flows.
Thus, in (a), FCT is for short DCTCP flows given a different protocol for long flows. Similarly, (b) presents goodput of each protocol used for long flows.

to 10 servers, each of which in turn sends back a 64KB block
of response data to the client. One job ends after receiving all
blocks. Thereafter a new job begins. There are 8 parallel jobs,
and clients and servers in each job are randomly selected. Each
host sends a long flow to a randomly selected host to generate
traffic on background. The flow size is determined by a Pareto
distribution with shape parameter of 1.5 and mean of 192MB.
Once a long flow ends, a new one begins immediately. A simu-
lation continues until 1000 long flows are completed.

Results: Figure 12 presents job completion times of short
DCTCP flows. Notice from the figure that a key in the legend is
the protocol name used for long flows. We plot, as a baseline,
the case where DCTCP is also used for long flows. Overall, we
make two observations.

First, AMP does not harm short DCTCP flows even if multi-
path flows use as many as 8 subflows. The results in Figure 12
show that the AMP case (i.e., AMP is used for long flows)
obtains slightly better JCT performance than the baseline case
across all scenarios.

Second, more number of subflows in DCM or XMP makes
the JCT of short DCTCP flows grow quickly. When XMP
is used for long flows, the 90th percentile JCT is 1.2ms in
the 4-subflow case (Figure 12(a)), 1.5ms in the 6-subflow case
(Figure 12(b)), and 1.8ms in the 8-subflow case (Figure 12(c)).
In contrast, the 90th percentile JCT is 1.1ms in case where AMP
even has 8 subflows, thus reducing JCT by 0.6ms (39% im-
provement) compared to the corresponding XMP case.

Summary: From the above observations, we conclude that
our SSR mechanism reduces buffer inflation effectively and
hence makes competing short DCTCP flows finish faster. While
we recommend 4 subflows per multipath flow, AMP may safely
support up to 8 subflows.

General workload. We now study interaction between short
and long flows. Our goal here is to confirm that, despite its
simplicity, AMP works as well as other schemes and its SSR
mechanism brings no harm.

Setting: 50% of the servers run long flows, and the remaining
servers generate short flows scheduled by a Poisson flow arrival
with rate λ = 256 flows/s. Those long flows last for 10 sec to
increase chance of saturating the network. The size for short
flow is chosen between 1KB and 1MB at uniformly random.
We only present results of cases where short flows use DCTCP
and long flows use a multipath protocol because other combi-
nations (e.g., DCTCP for long flows and a multipath protocol
for short flows) that we tested make no significant difference
in performance compared to a base case where both short and
long flows use DCTCP only.

We use permutation traffic matrix that has been used in many
previous works [25, 5, 3, 26, 27, 28]. Specifically, a host estab-
lishes at most two connections: one for receiving traffic and the
other for sending traffic. For sending traffic, the host chooses
its receiver at random.

Results: Figure 13(a) shows the FCT results of different
schemes. A key in the legend denotes a protocol used for long
flows. We observe that short DCTCP flows achieve the best
FCT result when AMP and XMP are used for long flows. The
worst FCT performance was observed when DCTCP is used
for long flows because DCTCP suffers from poor ECMP load-
balancing. In case of long DCM flows, DCTCP flows work
reasonably well and about 10% of the short DCTCP flows ob-
tain longer FCTs than DCTCP flows competing with long AMP
flows. This is because DCM’s traffic shifting is slower than that
of AMP, thus causing a high queuing delay.

The long flows of AMP and XMP show little difference in

10

��

����

����

����

����

��

�� ����� ���� ����� ���� ����� ����

�
�
�

��������

�����
���
���
���

Figure 14: The FCT of short DCTCP flows with data mining workload used
in pFabric [29]. If a flow size < 100KB, the flow is short; otherwise, it is
considered long. The short and long flows coexist. A key in the legend denotes
a protocol used for long flows.

goodput. Interestingly, DCM achieves the best performance,
which is because it trades (queuing) delay for goodput. Again,
using DCTCP for long flows yields the worst goodput perfor-
mance due to the same reason in the FCT case.

Figure 13(c) shows the mean network utilization at all layers
of the fat-tree topology. As expected, the multipath schemes
perform equally well because they balance their load among
multiple paths.

We also examine those schemes in a fat-tree topology with
128 servers using a realistic data mining workload [29] and
under an intensive condition that an average inter-flow arrival
time in each server is about 780µs. Figure 14 depicts the FCT
of short DCTCP flows when another type of protocol is used
for long flows. When AMP is used for long flows, the 90th
percentile FCT of short DCTCP flows is 0.18ms, but the cor-
responding FCT for XMP and DCM is 0.27ms and 0.28ms
respectively (∼55% improvement over the two schemes). We
observe a similar level of improvement at the 99th percentile:
0.78ms for AMP, 1.35ms for XMP and 1.41ms for DCM. Note
that the goodput distribution of long flows across all schemes is
almost identical (graph omitted).

Summary: Our results suggest that ECN alone can signal
network congestion fast enough for multipath congestion con-
trol and considering RTT as part of an ECN-based multipath
congestion control brings little benefit in the current setting of
DCNs. The results also confirm that a fixed amount of con-
gestion window reduction to ECN signals enables faster traffic
shifting than adjusting the window dynamically. Thus AMP is
light and as good as other solutions.

6. Related Work

Pathological congestion events. TCP incast [30] and TCP out-
cast [31] are well-known pathological TCP problems in DCNs.
The TCP incast is a congestion collapse incident for TCP flows
that belong to barrier-synchronized workloads with a high fan-
in traffic pattern. A bursty packet arrival overflows shallow
switch buffer, leading to expensive TCP timeouts. In contrast,
in the TCP outcast, when a few flows from one input port com-
pete for an output port with many flows from another input
port, the few flows are penalized more severely. These prob-
lems are fundamentally different from the minimum window
syndrome studied in this work. While those problems require

switch buffer overflow, the syndrome does not; but it results in
severe unfairness between ECN-capable single-path and multi-
path TCP flows.
Multipath congestion control. A transport layer protocol that
exploits multiple paths between source and destination has been
an active area of research [32, 12, 33, 3, 5, 34, 35]. MPTCP [3]
divides a TCP flow into multiple subflows. Since those sub-
flows may take different paths, MPTCP shifts traffic between
its subflows to avoid congested paths. XMP [5] is similar to
MPTCP, but it leverages ECN to maintain low buffer occu-
pancy. MMPTCP [4] uses a packet scattering technique to im-
prove delay performance of short flows while it acts as a regu-
lar MPTCP for long flows. Unfortunately, these schemes fail to
handle TCP incast and minimum window syndrome. On the
contrary, AMP is simpler and handles those problems better
than these schemes.
ECN-based congestion control. In data centers, many ECN-
based proposals adopt instant queue length based ECN. As one
of the earlier works in this category, DCTCP [1] reacts to the ex-
tent of congestion estimated from the fraction of marked pack-
ets. D2TCP [7] and L2DCT [8] build upon DCTCP; D2TCP
focuses on decreasing the likelihood of missed deadlines for
TCP flows, and L2DCT aims to reduce FCT for short flows.
ECN*[13] proposes dequeue marking to improve the perfor-
mance of both short and long flows. Since a small threshold is
used in all of these schemes, they can be prone to the minimum
window syndrome when ECN-capable multipath protocols are
deployed together.
Delay-based congestion control. Delay-based congestion con-
trol mechanisms had continuous attention in the past for the
Internet [36, 37, 38] and wireless networks [39, 40]. Lately, re-
freshed interest in those mechanisms has grown in the context
of DCNs [11, 2]. DX [11] and TIMELY [2] measure queu-
ing delays at the microsecond granularity, and use the mea-
surements to keep buffer occupancy low. These approaches
are single-path protocols; they may suffer from poor load-
balancing of ECMP as DCTCP does. Thus, it would be of in-
terest to extend AMP for delay-based schemes.
Scheduling, prioritization and load balancing. A large body
of work focuses on scheduling and prioritization [29, 41, 42,
28, 43, 44], or load balancing [45, 46] to support low latency in
DCNs. For scheduling and prioritization, some rely on priority
queuing with multiple queues [43, 44]; others conduct decen-
tralized [29, 28] or centralized scheduling [41]; one combines
different strategies adopted in prior works [42]. Load balanc-
ing schemes [45, 46] break a flow down into small groups of
packets, which are in turn distributed across multiple paths. In
general, these approaches may be useful to mitigate the TCP
incast and minimum window syndrome.

7. Conclusion

In this paper we presented that existing multipath congestion
control mechanisms fail to handle (1) the TCP incast problem
that causes temporal switch buffer overflow due to synchro-
nized traffic arrival; and (2) the minimum window syndrome

11

that causes persistent buffer inflation and serious unfairness. To
overcome the limitation of the existing solutions, we proposed
AMP that adaptively switches its operation between a multiple-
subflow mode and single-subflow mode. Our extensive evalu-
ation results showed that AMP is simple yet effective to those
problems and in general works well, which makes deploying
AMP in data centers attractive.

References

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, M. Sridharan, Data Center TCP (DCTCP), in: ACM
SIGCOMM, 2010.

[2] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, D. Zats, TIMELY: RTT-based Congestion Control
for the Datacenter, in: ACM SIGCOMM, 2015.

[3] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, M. Wischik, D.and Han-
dley, Improving Datacenter Performance and Robustness with Multipath
TCP, in: ACM SIGCOMM, 2011.

[4] M. Kheirkhah, I. Wakeman, G. Parisis, MMPTCP: A Multipath Transport
Protocol for Data Centers, in: IEEE INFOCOM, 2016.

[5] Y. Cao, M. Xu, X. Fu, E. Dong, Explicit multipath congestion control for
data center networks, in: ACM CoNEXT, 2013.

[6] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo,
Y. Xiong, X. Wang, Y. Zhao, Fast and Cautious: Leveraging Multi-path
Diversity for Transport Loss Recovery in Data Centers, in: USENIX
ATC, 2016.

[7] B. Vamanan, J. Hasan, T. Vijaykumar, Deadline-aware Datacenter TCP
(D2TCP), in: ACM SIGCOMM, 2010.

[8] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
B. Khan, Minimizing flow completion times in data centers, in: IEEE
INFOCOM, 2013.

[9] S. Lee, M. Lee, D. Lee, H. Jung, B. Lee, TCPRand: Randomizing TCP
payload size for TCP fairness in data center networks, in: IEEE INFO-
COM, 2015.

[10] H. Wu, Z. Feng, C. Guo, Y. Zhang, ICTCP: Incast congestion control for
TCP in data-center networks, IEEE/ACM Transactions on Networking
(ToN) 21 (2) (2013) 345–358.

[11] C. Lee, C. Park, K. Jang, S. Moon, D. Han, Accurate latency-based con-
gestion feedback for datacenters, in: USENIX ATC, 2015.

[12] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, R. Y. Wang, A trans-
port layer approach for improving end-to-end performance and robustness
using redundant paths., in: USENIX ATC, 2004.

[13] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, Y. Zhang, Tuning ECN for Data
Center Networks, in: ACM CoNEXT, 2012.

[14] M. Kheirkhah, I. Wakeman, G. Parisis, Multipath-TCP in ns-3, in: Work-
shop on NS3, 2014.

[15] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large
Clusters, in: USENIX OSDI, 2004.

[16] Network Simulator 3, https://www.nsnam.org/, last checked: 2017-
01-27.

[17] M. Alizadeh, A. Javanmard, B. Prabhakar, Analysis of DCTCP: Stability,
Convergence, and Fairness, in: ACM SIGMETRICS, 2011.

[18] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, Design, Imple-
mentation and Evaluation of Congestion Control for Multipath TCP, in:
USENIX NSDI, 2011.

[19] G. Judd, Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter, in: USENIX NSDI, 2015.

[20] F. Kelly, T. Voice, Stability of End-to-end Algorithms for Joint Routing
and Rate Control, SIGCOMM Comput. Commun. Rev. 35 (2) (2005) 5–
12.

[21] R. Jain, A. Durresi, G. Babic, Throughput Fairness Index: An Explana-
tion, aTM Forum/99-0045 (1999).

[22] M. Al-Fares, A. Loukissas, A. Vahdat, A Scalable, Commodity Data Cen-
ter Network Architecture, in: ACM SIGCOMM, 2008.

[23] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, S. Sengupta, VL2: A Scalable and Flexible Data
Center Network, in: ACM SIGCOMM, 2011.

[24] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, et al., Jupiter rising:
A decade of clos topologies and centralized control in google’s datacen-
ter network, ACM SIGCOMM Computer Communication Review 45 (4)
(2015) 183–197.

[25] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hed-
era: Dynamic Flow Scheduling for Data Center Networks, in: USENIX
NSDI, 2010.

[26] P. Costa, H. Ballani, D. Narayanan, Rethinking the Network Stack for
Rack-scale Computers, in: USENIX HoCloud, 2014.

[27] M. Kheirkhah, MMPTCP: A Novel Transport Protocol for Data Centre
Networks, Ph.D. thesis, University of Sussex (2016).

[28] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, S. Shenker,
pHost: Distributed Near-optimal Datacenter Transport Over Commodity
Network Fabric, in: ACM CoNEXT, 2015.

[29] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
S. Shenker, pFabric: Minimal Near-optimal Datacenter Transport, in:
ACM SIGCOMM, 2013.

[30] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, B. Mueller, Safe and Effective Fine-grained TCP
Retransmissions for Datacenter Communication, in: ACM SIGCOMM,
2009.

[31] P. Prakash, A. Dixit, Y. C. Hu, R. Kompella, The TCP Outcast Problem:
Exposing Unfairness in Data Center Networks, in: USENIX NSDI, 2012.

[32] H.-Y. Hsieh, R. Sivakumar, pTCP: An end-to-end transport layer protocol
for striped connections, in: IEEE ICNP, 2002.

[33] J. R. Iyengar, P. D. Amer, R. Stewart, Concurrent multipath transfer us-
ing SCTP multihoming over independent end-to-end paths, IEEE/ACM
Transactions on networking (ToN) 14 (5) (2006) 951–964.

[34] M. Kheirkhah, I. Wakeman, G. Parisis, Short vs. Long Flows: A Battle
That Both Can Win, in: ACM SIGCOMM, 2015.

[35] A. Dixit, P. Prakash, Y. C. Hu, R. R. Kompella, On the Impact of Packet
Spraying in Data Center Networks, in: IEEE INFOCOM, 2013.

[36] L. S. Brakmo, L. L. Peterson, TCP Vegas: End to end congestion avoid-
ance on a global Internet, IEEE Journal on selected Areas in communica-
tions 13 (8) (1995) 1465–1480.

[37] K. Tan, J. Song, Q. Zhang, M. Sridharan, A compound TCP approach for
high-speed and long distance networks, in: IEEE INFOCOM, 2006.

[38] D. X. Wei, C. Jin, S. H. Low, S. Hegde, FAST TCP: motivation, architec-
ture, algorithms, performance, IEEE/ACM Transactions on Networking
(ToN) 14 (6) (2006) 1246–1259.

[39] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, R. Wang, TCP west-
wood: Bandwidth estimation for enhanced transport over wireless links,
in: ACM MobiCom, 2001.

[40] C. P. Fu, S. C. Liew, TCP Veno: TCP enhancement for transmission over
wireless access networks, IEEE Journal on selected areas in communica-
tions 21 (2) (2003) 216–228.

[41] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, H. Fugal, Fastpass:
A Centralized Zero-queue Datacenter Network, in: ACM SIGCOMM,
2014.

[42] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, F. R. Dogar,
Friends, Not Foes: Synthesizing Existing Transport Strategies for Data
Center Networks, in: ACM SIGCOMM, 2014.

[43] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, H. Wang, Information-
agnostic Flow Scheduling for Commodity Data Centers, in: USENIX
NSDI, 2015.

[44] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, J. Crowcroft, Queues Don’T Matter when You Can
JUMP Them!, in: USENIX NSDI, 2015.

[45] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese,
CONGA: Distributed Congestion-aware Load Balancing for Datacenters,
in: ACM SIGCOMM, 2014.

[46] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, A. Akella, Presto:
Edge-based Load Balancing for Fast Datacenter Networks, in: ACM SIG-
COMM, 2015.

12

https://www.nsnam.org/

	Introduction
	Preliminary
	DCM
	XMP

	Issues of MPTCP variants
	TCP incast
	Minimum window syndrome

	Design
	Key observations
	AMP algorithm

	Evaluation
	Parameter tuning
	Microbenchmarking
	Large-scale simulation

	Related Work
	Conclusion

