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Abstract

Compared to Intrusive Load Monitoring which uses smart power meters at each

level to be monitored, Non-Intrusive Load Monitoring (NILM) is an ingenious

way that relies on signal readings at a single point to deduce the share of the

devices that have contributed to the overall load. This reliable technique that

guarantees the safety and privacy of individual users has recently become an

increasingly popular topic, as it turns out to be a major solution to assist house-

hold users in the process of obtaining details of their electricity consumption.

The detailed consumption promotes better management of the electrical power

on the consumer side by helping to eliminate any waste of energy. In this paper,
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an edge gateway has been implemented to safely monitor the overall load in a

smart energy system. A load separation method has been introduced based on

events detected on a low-frequency power signal, which allows the consumption

profile of On/Off and multi-state devices to be generated without relying on the

knowledge of the cardinality of these devices. Following the extraction of signif-

icant features contained in the aggregate signal, an appliance profile recognition

approach is presented based on the non-parametric Mean Shift algorithm. The

ability of the proposed method to learn and deduce devices profile is validated

using the Reference Energy Disaggregation Dataset (REDD) . The experimen-

tal results show that the proposed approach is efficient in detecting events of

binary state and finite state appliances.

Keywords: Home Energy Management, Non-Intrusive Load Monitoring

(NILM), Unsupervised Learning, Non-parametric Algorithm

1. Introduction

Electric power comes as a primary component in the daily life of households

around the world. The perfect control of its production and management is

then crucial to maintain a constant availability and respond effectively to de-

mand. In light of the continual evolution of the electrification ratio and the5

exponential hike in the number of household appliances within residences, the

establishment of an adequate method for an efficient energy conservation stands

out as a matter of high necessity. On the journey towards a clean transition

to renewable energies, smart-houses implementation [1] and the installation of

solar panels on household roofs to balance between traditional and green energy10

have seen the light of day. These ingenious approaches are all aiming at re-

ducing consumption expenses, conservation of depletable resources such as coal

and gas used in electricity production, and partially limit carbon emissions into

the environment. Related statistics published in [2] show that 89% of world’s

total primary energy consumption is generated from fossil sources (coal, gas,15

nuclear, oil) versus 11% from renewable sources (hydroelectric, solar, wind and
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biomass) in 2018. In spite of the efforts made, the effective implementation of

these solutions remains a forward-looking goal, there is a long way to go. For

the time being, energy conservation remains a major alternative as not only

does it eliminate any wastage due to unnecessary use, but also benefits in terms20

of lower electricity bills and in helping the environment by reducing pollution

related to energy consumption.

Electrical Load Separation or Energy Disaggregation is the process of di-

viding the overall power used into individual consumption of each appliance

that contributed to the total load. Based on the details of single appliance’s25

consumption, users can better plan the use of their devices [3]. The itemized

power consumption of each device can be obtained by two methods: intrusive

and non-intrusive mode. The installation of smart meters on the main channel

as well as on all subordinate circuits of the household to directly measure the

transmitted electrical load is the conventional method also known as intrusive30

load monitoring [4]-[5]. The direct access to consumption right on the wires

underlies the excellent performance of this approach. The concern lies in the

cost of implementation and maintenance which increases exponentially accord-

ing to the number of devices supported or the architecture of the supervision

system. The privacy considerations also make the applicability of this solution35

challenging. The non-intrusive method employs a unique power meter usually

located at the household’s entry point to predict the consumption of appliances

used in the household. Using mathematical formulas, analysis of the graph pro-

duced by the collected measurements or artificial intelligence-based approach,

this sophisticated methodology attempts at producing the details of the total40

consumption from an installation reduced to a single power meter and a total

avoidance of intrusion. Though this approach appears to be much more complex

or hardly achievable, it offers the benefit of being economically feasible.

NILM was first introduced by G. W. Hart[6] under the guiding principle

that the total energy entering a house is equivalent to the sum of the energy45

utilized by all the domestic devices increased by a negligible noise quota. NILM

solutions are basically categorized into two groups depending on the approach
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used to implement the solution. Therefore, there are supervised solutions and

unsupervised solutions[7]. As the name implies, a supervised solution makes

use of additional information during the energy disaggregation process. These50

are methods using a probabilistic approach, classification algorithms, regression

or deep neural networks methods that first try to learn the pattern followed by

the consumption profile of the devices and then use it to detect the use of the

device in the total load at a later stage. Although this approach is an obvious

way to go, it has the disadvantage of only supporting the devices on which55

the experiment was carried out. A new device would thus be undetectable by

such a solution. Purely unsupervised solutions are mostly based on blind source

separation, clustering of detected events or graph signal processing. This type

of solution is highly valuable since the number of devices used or the knowledge

of their signature is not required. This makes them more robust since they have60

no limitation on the number of devices supported.

Due to the unrealistic nature of having some training data available to per-

form in-depth analysis of energy used for a real household scenario, the unsu-

pervised NILM is the main field in which this work aims to make a valuable

contribution. The proposed approach is a low-complexity event-based solution65

that uses a non-parametric clustering algorithm for grouping events detected

on a low-frequency signal. The validation of our algorithm with the REDD

demonstrates its effectiveness.

The objectives of this contribution are to present an algorithm to detect

events occurring on the main electrical channel of a household and to group them70

through an inductive method that can be scaled up to practical use since it does

not require the cardinality of appliances used in the house. We then illustrate a

generalizing module which makes it possible to obtain the consumption profiles

of household appliances both of ON/Off and multi-state type.

The rest of this work is organized as follows: Section II presents the general75

NILM framework, Section III exposes the related work, Section IV encapsulates

the details of the proposed solution, Section V outlines the solution validation

experiments and the discussion of the result obtained and Section VI concludes
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our contribution.

2. Related Terminologies80

The main objective of NILM research remains the estimation of the contri-

bution of each appliance in a habitation based solely on knowledge of the total

incoming load. The overall load model can be formulated as follows:

P (t) =

n∑
i=1

Pi(t) + e(t) (1)

in which n stands for the cardinality of appliances present in the household,

P (t) the overall load entering the household,Pi(t)the individual consumption of

appliance i at time t,and e(t)the small margin of error or noise present in the

circuits. Based on the above formulation of electrical load disaggregation, sev-

eral approaches have been explored to overcome the aforementioned problem.85

The steady state and transient state represent the commonly used examples.

The steady state represents the operating phase during which the power used

is almost constant. This characteristic is easily detected on low frequency data

since the steady state is generally spread over several measurements. However,

steady state has the downside of being inefficient in differentiating devices hav-90

ing relatively identical levels of power consumption used simultaneously. The

transient state, on the other hand, studies the high-definition curve produced

when the device is switched on or off, or when moving from one operating mode

to another. Detection of this type of feature requires high frequency sampling.

As such a feature is identified over a relatively short period of time, the risk of95

overlapping is low.

In order to better understand the diversity among household appliances, a

classification into four distinct groups has been established according to their

operating profile [8]-[9]. The operating profile depends on the internal compo-

sition of each appliance. Consequently, the design of a solution can be directed100

toward particular types of appliances for an in-depth study of the case. The

four classes of appliances are as follows:

5



� ON/OFF or type I devices: it groups devices that have only two operating

modes such as a table lamp; such appliances are either on or off.

� Finite State Machine (FSM) or type II: They are devices that have more105

than two operating modes. We can take the case of a ventilator that works

according to the speed of rotation set by the user.

� Continuously Variable Devices (CVD) or type III: Here are devices that

have a random consumption profile that varies all the time. They usually

do not have a steady state and so no signature vector.110

� Permanent Consuming Devices (PCD) or type IV: They are appliances

which never go completely off or which continue to consume an insignif-

icant amount of current even when they are not in use; this is the case

of the majority of smart devices, which always wait for a signal from the

users to start working.115

3. Related Works

One of the most recent approaches that have been utilized to tackle the en-

ergy disaggregation challenges is based on appliance usage patterns in the active

power signal. With a spectral decomposition algorithm, [10] proposed a study

that estimates, according to the time and day, whether a device is switched120

on or off and the active load required in the following minutes. A cloud based

using the Markov chain appliance modeling is used in [11] to build an online

NILM solution. The core of the solution relies on the Factorial Hidden Markov

model that disaggregate in real-time on the event detected from the transient’s

features captured on the main signal. The cloud-based NILM architecture does125

not rely on training with the ground-truth readings from household appliances

and supports a smart-grid usage. Another recent work makes use of Activities

of Daily Livings (ADL) to build a classification method using a deep learning ar-

chitecture for sensing the activation of specific major household devices [3].The
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proposed approach is tested on the UK-DALE [12] dataset and the results con-130

firm the effectiveness of the solution. Various adaptations of the Hidden Markov

Models (HMM) have been evaluated for forecasting the possible combinations

of operation state of residential appliances [13]-[14]. The study of [15] used a

Factorial Hidden Markov Models (FHMM) to determine the device-specific load

models considering the overall power readings which obtained a disaggregation135

efficiency of 90% and 80% respectively for type I and type II devices. The re-

search of Yong et al. [16] was directed toward the establishment of a system for

event matching built on the improved Kuhn-Munkras algorithm. By a three-

fold approach including the event detection, appliance signature establishment

and the load identification using the event matrix, thay have obtained a sat-140

isfactory experiment result of the proposed approach on the publicly available

REDD dataset.

Classification and clustering algorithms have also been used in the design

of methods for electrical load separation. An evaluation of a modified version

of the k-nearest neighbor classifier (K-NN), a hierarchical clustering approach145

(HAC) and a custom build device matching (DevMat) approach is presented in

[17]. The model presented in this paper is an event -based clustering approach

that support instant detection. The study results show that high frequency

features may greatly improve the load disaggregation process.

Using an auto-associative neural network, Lorena et al. [18] illustrate a deep150

learning based appliance load forecasting solution. The auto-associative neural

networks are arranged in parallel and they compete against one another when a

new input vector is entered and the closest recognition is accepted to identify the

given electrical device. Validation experiments with the REDD and UK-DALE

datasets show that the proposed method achieves a performance higher than155

95%. Subsequently, [8] presents an approach based on a novel signature using

different reflection rate to emphasize on the variation of the aggregated power

signal. The load separation model uses a Long Short-Term Memory Recurrent

Neural Network (LSTM-RNN) architecture and an additional advanced deep

learning. The evaluation experiments with the UK-DALE dataset produced a160
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satisfactory result. Also, a Convolutional Neural Network (CNN) -based method

is proposed by [7] for appliance consumption prediction based on the previous

operation mode. The work of reference [19] is a real-time identification system

of several devices from measurements of a smart meter by the means of a multi-

label consistent deep dictionary learning and deep transform learning. The165

study has introduced energy disaggregation as a multi-label classification issue.

The hypothesis is that during training, no more than the total power signal

data and the logs (ON/OFF status) of the various appliances are used. Yanchi

et al. have mainly been interested by the junction between image classification

and NILM problem [20]. They used a pre-trained deep learning model on visual170

recognition dataset for analyzing the changes in the V-I trajectory. The findings

of this research show that the proposed method improves the current results in

the field and that a future generalization of the solution can be envisaged.

A new methodology to predict the energy usage of a family home, or group

of homes, based on electrical power disaggregation and graph spectral cluster-175

ing is introduced by [21]. In this approach, the overall energy usage is divided

into individual device signals and the power of each device is predicted indepen-

dently. Subsequently, Marisa et al. describe the implementation of an algorithm

for extracting electrical properties and pattern detection, which can be used to

estimate the power consumption of each appliance based on the house’s overall180

electrical load signal [22]. Experiments demonstrated the effectiveness of the

suggested solution. Kitisak et al. also presents in [23] an investigation on the

impact of lowering the sampling rate using a Recurrent Neural Network architec-

ture. Experience has shown that the result of disaggregating the overall reading

remains acceptable even when the interval between measurements increases to185

a given threshold.

Throughout this section, we can notice that several angles have been used

for the establishment of electrical load separation systems. However, it should

be noted that the elaboration of an adoptable solution must take into account

the complexity of implementation and a diversity of appliance types, while pro-190

ducing a high-performance system that will not decrease when the experimental
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environment changes. The privacy concern during data transmission between

different component of the designed system is a critical factor that should not

be ignored [24]. Those are the fundamental constraints that impedes research

in the field of NILM. Based on the model presented in [25], we propose an ad-195

vanced energy disaggregation method that relies on the overall power collected

at a low frequency. Considering the results of the validation experiments, we

can conclude that the presented solution fulfills the requirements for a practical

use.

4. The Proposed Algorithm200

The process of obtaining an estimation of the electrical energy used by each

individual appliance is described on Figure 1.

Figure 1: Energy disaggregation framework overview

4.1. Data Acquisition and Preprocessing

The collection of measurement data of the energy consumed involves a data-

center based module where the different nodes of the system act to transform205
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and centralize the captured information from the electrical sensors. Various

edge service architecture can be considered for the design of such a system [26]

- [27]. The work of Xu et al. introduced a two-phase offloading optimization

approach to enhance the security related to data exchange between the various

units of an IoT architecture [28] - [29]. This paper explores a novel utility-210

aware task offloading method and a joint optimization method on the offloading

problem. Blockchain architecture also constitutes a reliable approach to assure

data integrity for an edge computing system [30]. At this stage, smarts power

meters are deployed in the circuits to measure the energy flow. For the purposes

of experience, the total incoming load only goes beyond the sufficient data to215

deduce the energy of the appliances used in the household and furthermore

for evaluating the proposed solution. The consumption of individual appliance

or group of appliances is also required for an in-depth study of each type of

appliance, for supplying input data for learning algorithms and additionally for

the validation of the results after the load disaggregation process. Thus, the first220

layer of our edge computing architecture is made up of electrical sensors that

will measure the voltage and current deployed in the circuits connected to each

device. The data is then routed to the house’s gateway for further investigation.

The preprocessing consists in aligning the collected data in order to adjust the

current and voltage data as well as to ensure the synchronization of the time225

axes of the various measurements. After computing the power corresponding

to the collected data, an encryption using the twofish or advanced encryption

standard algorithm is performed on the raw data in order to ensure a secure

transfer to the long-term storage system located on the cloud [31].

The data is generally available in low frequency (sampling rate less than or230

equal to 1 hertz) or high frequency (up to KHz or MHz). The low frequency data

allows to observe the steady state of the appliances while the high frequency data

offers in addition the details of the transient state. Therefore, the features taken

into account during data collection are of great importance as they determine

the choice of approach to be used and increase the scope of study during the235

experimental period. Several features can be supported such as voltage, current,
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active power, passive power, reactive power, real power, apparent power and

more. A detailed description of electrical energy data collection system can

be found in [32] - [33]. In terms of load separation system design, the use of

the minimum feature which is the low-frequency power readings is considerably240

encouraged since the majority of smart meters available on the market support

this configuration [34].

4.2. The Proposed Unsupervised NILM Algorithm

The proposed algorithm can be subdivided into three essential phases, namely:

event detection and feature extraction, significant event clustering and finally245

the appliance power profile identification and load reconstitution. The flow-

chart of the proposed dsolution is illustrated in on Figure 2.

Figure 2: Proposed solution flow-chart
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4.2.1. Event Detection and Feature Extraction

Starting from the aggregated signal of the house, this module is responsible

of tracking and retrieving significant changes that have taken place during a250

defined time interval. The event detection module works in our case with the

assumption that only one event could occur during a time frame θt. We then

examine the time series to find obvious indications of the occurrence of an event

using a threshold value E chosen according to the error β in the measurements

of the incoming load (power grid noise) and the minimum consumption Pmin255

of the low consumption devices used in the household.

One approach for scanning the data is to compare the local variation from

the measurements over the time frame θt. If we consider θt = 5s for a signal

measured at the frequency of 1 Hz, the local average ω(t) of the power at time t

can be obtained by Eq. (2) and the local variation ϕ(t) is deduced as presented

in Eq. (3). The change at time t is considered as an event if ϕ(t) is equal or

greater than the threshold E .

ω(t) =
1

5

n<5∑
i=0

P (t− i) (2)

ϕ(t) =

√√√√1

5

n<5∑
i=0

(P (t− i)− ω(t))2 (3)

Whilst this method is ingenious and effective for the detection of ON/OFF

appliances, it has some limitations to handle events of relatively similar mag-

nitude that occur during the selected θt time interval or identifying a transient

phase that covers atime frame higher than θt. Due to the stochastic nature

of the occurrence of events, we have considered in addition to the local power

variation the direct difference Eq. (4) between two measurements, which makes

our algorithm more sensitive to major changes that occur. The basic formula

for this variation is as follows:

∆P (t) = |P (t)− P (t− 1)| ≥ ε (4)

where ∆P (t) is the absolute value of the power difference of the power between
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each pair of measurements, t is the time for which we check the occurrence of

the event and E is the threshold for a change to be considered as significant.

The process used to detect the events that have taken place on the aggregate260

signal is presented at the level of the algorithm, as shown in Table 1.

Table 1: A SIGNIFICANT EVENT DETECTION ALGORITHM

Input: Time series of aggregated power P (t), threshold ε and time frame θt.

Output: Set of significant events.

Begin

For each measurement in aggregated power reading

Compute ω(t) and ϕ(t) using θt

Compute ∆P(t)

If ϕ(t) ≥ ε then

Register P(k) = ϕ(t) as event

Add the time t to T(k)

Else If ∆P(t) ≥ ε then

Register P(k) = P(t) - P(t-1) as event

Add the time t to T(k)

Else

Time t is part of a steady state

End If

End For

End

Note: P (k) is the feature vector of events and T (k) the occurrence time.

The features obtained from event detection of the events include the am-

plitude of the transition and the time reference at which the event occurred.

Figure 3 illustrates the frequency distribution of the identified features over a

day’s duration. We can notice an apparent parity between the events with pos-265

itive and negative amplitudes. This is due to the fact that a positive amplitude

event representing the switching on of the device or the beginning of a new
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operating phase has a high chance of having an event with similar amplitude

but negative marking the shutdown of the device or the end of this operating

phase. This explains the normal distribution of events around the zero value.270

Figure 3: Distribution of the extracted features over one day

4.2.2. Significant Event Clustering

In this section, all the features are categorized using the absolute value of

the event magnitude. The objective of this exercise is to implicitly group the

events marking the beginning and the end of the steady states of the devices in

order to simplify the identification of power consumption cycles. The use of the275

absolute value of the selected variations constitutes a first level of reinforcement

of the symmetrical character which must dominate the distribution of events.

It also has the advantage of reducing the complexity level regarding the data to

be clustered and thus the computation demand of the clustering algorithm.

Given the inability to know the number of devices and the number of op-280

erating phases involved, the grouping algorithm must be inductive enough to

automatically identify the required number of clusters to effectively subdivide

the events. With this in mind, we used an adaptation of the Mean Shift [35]

algorithm which is a density-based algorithm that needs no prerequisite infor-
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mation regarding the number of clusters, and does not constrain the shape of285

the clusters. Considering an ensemble of data points, the algorithm iteratively

allocates every individual data point to the nearest cluster centroid. Since the

direction to the nearest cluster centroid is defined by the location of most of

the proximate points, at each iteration, every data point will move closer to the

location of the majority of the points, which is or will eventually result in the290

center of the cluster. The output of the algorithm is in the form of a linking of

any point to its cluster.

Figure 4 shows a distribution of events in several clusters according to the

amplitude of the change that occurred.

Figure 4: Example of event grouping on the microwave channel of house 1.

4.2.3. Appliance Power Profile Identification and Load Reconstitution295

The guiding principles that lead our research are among others:

� a single event can occur during the time frame separating two measure-

ments.

� all devices can have a power profile represented by more than one steady
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state (ON/OFF devices as well).300

� there may be interleaving between the operating phases of devices of dif-

ferent types.

At this stage, we have of the characteristics of the significant transitions

that happened on the main channel grouped by class according to the event’s

amplitude similarity. The profile identification module takes care of identifying305

the beginning and end of each steady state. Inside each cluster, positive values

are supposed to represent the starting point of an operating phase while an exit

transition from an operating phase is represented by an event with negative

amplitude. It is then a question of finding all the pairs of events delimiting the

beginning and the end of the power cycles of a device as well as the level of310

consumption during this period. This process is two-fold:

a) ON/OFF case

During this process, the power cycles that are supposed to belong to the

same device are tracked within each cluster obtained from the event grouping

step. After matching two events, the times t1 and t2 representing respectively315

the on and off event of the cycle are recorded in addition to the cluster center

value as the amplitude of the steady state. The events that have not been

matched are also retained for the next step which will consist in checking their

membership as a multi-state device.

b) Finite State Machine case320

Once the power cycles existing on the internal plane of each cluster have

been identified, the next step will be to rescan the occurrence profile of the

latter in order to detect events that fall immediately after each other or the

ones that are separated by an intermediate cycle. This is the first step in the

identification of power cycles that could belong to the same device.325

Devices whose energy profile is made up of operating phases that have dif-

ferent amplitudes will naturally see their events scattered over various groups

according to their amplitudes. The example of microwaves can be considered in

Figure 4. A more sophisticated search is made by looking for the missing part
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of each cluster events that were not matched in the previous step.330

This process starts with the high amplitude cluster points. By combining

the centers of lower amplitude clusters, we look for the best set of events that

satisfies the current case.

After finding the events that define the power cycles, we obtain a set of

operating mode delimited by a start time t1 and an end time t2, an amplitude335

for each cycle and a marker that identifies all the cycles that have been assigned

to the use of the same device by our algorithm. The next task consists in

reconstructing both the consumption profile of the detected devices as well as

at the main channel by summing up the consumption models detected. The

validation of this step is discussed in the second experiment presented in section340

5. The output of the load reconstruction module consists of a set of consumption

profile detected from the aggregated signal.

4.2.4. Appliance Recognition

The appliance reocgnition module aims at recognition from a detected con-

sumption pattern, the device that generated it. This task is carried out in two

phases, which are described as follows: i) at first, the similarity between a de-

tected usage pattern and the actual consumption pattern of a device from the

dataset is evaluated by using the maximum likelihood classifier. Thus, each

profile is then attached to the device that obtained the highest similarity rate;

ii) second, we compare the extracted power profile to the signal of the indexed

device. An event is considered correctly assigned if it has been detected in the

chosen θt time interval and with an amplitude which is approximately equal to

the one recorded at the device level with an error δ bounded as defined in Eq.

(5) below, where ε represents the power grid noise:

0 ≤ δ ≤ ε (5)

During this process, we report the values of True Positive, True Negative

False Positive and False Negative, the estimated state and the actual state for345

future evaluation of our algorithm in Section 5.
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5. Validation of the Proposed Solution

This section provides the context for validating the proposed solution. The

experiments were carried out on using the Reference Energy Disaggregation

Dataset (REDD) [36]. The dataset is made up of the power readings collected350

from six real houses over three to nineteen days at a frequency of 1 hertz on the

main channel and every 3 seconds on the subsequent level circuits in the low fre-

quency folder. In addition to the overall signal, this data set also provides power

readings of the consumption of appliances such as refrigerator, dishwasher, light-

ing, air conditioner, microwave, etc., which is a mixture of data from different355

types of appliance available for research. Due to the frequency of power readings

and the set of appliances taken into account in the various houses, this dataset

constitutes an adequate source of data for the execution of the evaluation ex-

periments of our work.

For the purpose of validation experiments of the proposed algorithm, we have360

chosen ε = 0.02KW. The choice of this threshold is explained by the comparison

results between the aggregated consumption and the sum of the appliances

having contributed to the total load in Figure 5 and the difference between them

(as shown in Figure 6). This allows to evaluate the amplitude of the interference

(Figure 6) during data collection. The interference is obtained by calculating365

the difference between the aggregate power and the total consumption of devices

for the times t when the readings are available for the main channel as well as for

the devices in the subchannels. Although it is obvious that the threshold must

be set to make a clear difference between changes due to unwanted electrical or

electromagnetic energy that degrades the quality of signals and data, the low370

consumption appliances must also be taken into account.

5.1. Evaluation Metrics

To evaluate our work, we used a set of commonly used metrics to validate

electrical energy disaggregation solutions presented in [3] and [11]. These are

Precision Eq. (6) which is the positive predictive values, Recall Eq. (7) which
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Figure 5: Evaluation of the overall load versus the sum of the consumption of the registered

devices.

represents the true positive rate or sensitivity, the Disaggregation Accuracy Eq.

(8), F-measure Eq. (9) the harmonic mean of Precision and Recall, and the

Total Energy Correctly Assigned Eq. (10) which meters the quantity of power

that has been properly allocated.

Precision(P ) =
TP

TP + FP
(6)

Recall(R) =
TP

TP + FN
(7)

Accuarcy(Acc.) =
TP + FN

TP + TN + FP + FN
(8)

F −measure(F1) = 2× P ×R
P +R

(9)

TECA = 1−

∑T
t=1

∑K
i=1

∣∣∣ŷ(i)t − y
(i)
t

∣∣∣
2
∑T

t=1 ȳt
(10)
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Figure 6: Interference on the aggregate signals

where TP stands for true-positives (properly predicted that the device is ON),

TN denotes true-negative (properly predicted that the device is OFF), FP lies

for false-positives (the device is predicted as ON but OFF), and FN for false-375

negatives (the device is ON but predicted OFF), ŷ
(i)
t represents the isolated

apparatus load, ŷ
(i)
t represents the initial apparatus load, ȳt is the monitored

aggregate signal, K is the cardinality of apparatus load and T is the number of

samples.

5.2. Experimental Scenarios380

The first experiment aims to validate the event detection and features ex-

traction module using the aggregated signal. The scan of one day data was

performed considering the time frame θt = 5 seconds. The collected features

obviously show the ability of the proposed method to identify significant events

that took place during a day. The distribution of these events is shown in385

Figure 7. It is possible to observe a high concentration in the middle of the

day, which is generally due to the daily activity of the household occupants.
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We also see fairly high peaks during the night, which indicates the presence of

special-purpose equipment. Further on, we also performed the grouping of the

extracted features and the identification of the consumption profiles using the390

extracted features from one-day data of each house. The results obtained are

presented in Table 2.

Figure 7: Events detected over a period of one day.

Table 2: Event Detection Evaluation Over One Day Consumption

House Number P (%) R (%) F1(%) Acc (%) TECA (%)

1 97.43 99.09 98.25 95.21 90.62

2 99.33 96.34 97.81 98.10 95.02

3 97.68 96.67 97.18 95.15 89.91

4 96.38 98.76 97.56 94.98 87.37

5 98.35 88.03 92.91 98.37 78.41

6 97.08 88.37 92.52 96.94 92.04

P: Precision, R: Recall, F1: F-measure, Acc: Disaggregation Accuracy, TECA:

Total Energy Correctly Assigned.
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The evaluation of the proposed solution using domain estimation metrics

indicates relatively good performance depending on the complexity of the ag-

gregated signal. It is also worth noting the efficiency of the reconstruction of395

the consumption profiles of the devices that contributed the total load during

the 24-hour period considered.

The second experiment follows the validation of our solution’s ability to

extract essential characteristics from the aggregated load collected over a 24-

hour period. Therefore, we propose here an evaluation based on data from400

houses 1 and 6, which have a wide variety of household appliances. Using

an algorithm that goes through the data from these houses, we created the

power models of the appliances and then verify the rendering with the appliance

recognition module. Figure 8 and 9 show the detected and actual power profiles

for a typical day respectively.405

Figure 8: Extracted power profile of a typical day from House 1.
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Figure 9: Actual power profile of a typical day from House 1.

After profile identification, the reconstitution of the total aggregate load is

necessary to have an overview of the amount of energy that has been taken into

account by the algorithm. A comparison of the two loads is made in Figure 10

where we can notice the great similarity between the values predicted and the

real one. The final phase was to evaluate how good our energy was distributed410

between the various devices. The details per device are presented in Table 3.

It should be noted that the high-consumption devices are effectively detected

while the low-consumption device exhibits relative inefficiency. This is due to the

large number of low (less than 100 W) amplitudes cycles detected. This creates

a noticeable disproportion in the distribution of the characteristics after the415

clustering step (Figure 11). However, the misclassification of those devices has

a relatively low impact on the final results since they are not widely represented

and also did not record a long period of use.
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Figure 10: Two days actual and predicted overall load.

Figure 11: Distribution of extracted features from 5 subsequent days of House 6.
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Table 3: Disaggregation Result Per Appliance

Appliance Accuracy

Stove 89.74(%)

Refrigerator 99.03(%)

Lighting 82.64(%)

Washer dryer 91.14(%)

Air Conditioning 93.61(%)

Electric heater 97.43(%)

Dishwasher 95.56(%)

Microwave 98.41(%)

Overall 93.45(%)

The prowess of the appliance signal reconstitution module can be appreciated

from the refrigerator load identification shown in Figure 12.420

Figure 12: Reconstituted energy signal versus ground truth signal of a refrigerator

The experiment based on houses 1 and 6 were successfully carried out in

324s duration, resulting in average 4s per day. This second experiment led to
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a performance of 98.89% accuracy and TECA of 90.60% which is a satisfactory

result.

We made use of the python programming language assisted by the NumPy,425

Pandas and Matplotlib libraries to perform the research experiments. The

hardware side was covered by an Intel® Core� i7-4720HQ computer running

at 3.50GHz, 16GB RAM memory and a graphics accelerator GPU NVIDIA

GEFORCE GTX 960M.

5.3. Results and Discussion430

Our solution for energy disaggregation based on the principles originally

defined by Hart [6] has proven to be effective due to its low complexity and

ability to effectively separate the loads consumed by ON/OFF and Finite State

Machine (FSM) appliances in a household. In the above experimental scenarios,

we have successfully evaluated all the steps of the solution using the publicly435

available experimental data from the REDD. The comparison of our results

with the state of the art is provided in Table 4. As the approaches investigated

and the underlying conditions on which these studies were based are not the

same, a profound comparison cannot be made reliably. Nevertheless, on the

basis of the evaluation metrics presented, it appears that the solution proposed440

in this contribution takes up the challenge in terms of the general classification

of performance.

Table 4: Performance Comparison Between The Proposed Solution And Others

Approach Accuracy F-measure TECA

Proposed approach 98.89 96.04 90.60

AANNS [18] 98.7 95.4 −

PBN [10] 84.0 88.5 −

FHMM [11] − − 98.65

Viterbi Algorithm [37] − 81.1 −
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6. Conclusion and Future Work

In this contribution, we propose a novel event-based method for NILM based

on a non-parametric clustering algorithm and the active power as unique elec-445

trical feature. This research effort aims to produce a cost-effective solution

that does not require human intervention during the disaggregation process

and minimizes both computational and hardware complexity while preserving

a high accuracy. In short, the study presents an approach for analyzing the

overall electrical load and generalizing the meaningful features contained in the450

signal for later identification of its aggregated components. The experiments

and validation results of the proposed solution with data from the six houses

of the REDD confirm the efficiency of the presented approach in estimating

the consumption of ON/OFF and multi-states devices. Although our approach

performs effectively, it has some limitations regarding the ability to handle Con-455

tinuously Variable Devices (CDV). In future research, the potential of inference

algorithms for predicting appliance consumption may be an interesting direction

to address the randomness of continuously variable devices.
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