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Abstract

Recently, cognitive radio sensor networks (CRSN) have evolved as a result
of the introduction of cognitive capabilities to conventional wireless sensor
networks. In most CRSN designs, secondary users and/or sensor nodes are
permitted, under certain constraints, to use the limited resources of a primary
network. One major challenge with CRSN is how to optimally appropriate
and use the limited resources available in driving their communication de-
mands. To overcome this challenge, in this paper, we develop a resource
allocation (RA) model that is capable of achieving a target quality of service
(QoS) demand for the heterogeneous CRSN, despite the huge resource con-
straints imposed on the network. The RA problem developed is a complex
optimisation problem. We analyse and solve the complex RA problem using
the optimisation approaches of integer linear programming, Lagrangian du-
ality and by a heuristic. We then study the performance of the RA model for
the different solution approaches investigated. The results obtained are used
to establish the optimality-complexity trade-off, which is a critical criterion
for QoS decision-making in practical CRSN applications.

Keywords:
Cognitive radio sensor networks, heterogeneous networks, optimisation,
resource allocation, wireless sensor networks.

1. Introduction

The quest for highly reliable and very productive wireless communication
models and designs has continued to increase exponentially, so much that
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keeping up remains a challenge for telecommunication stakeholders. In meet-
ing this daunting challenge, researchers, both in academic field and the indus-
try, now have the huge task of investigating and employing next-generation
(xG) wireless network prototypes with the capability of achieving outstand-
ing results, especially in the aspects of data rates, throughput, latency, speed,
etc. that such networks can realise [1]. Some of the emerging technologies
being developed are the fifth generation communication, internet-of-things
networks, massive multiple input multiple output networks, autonomous ve-
hicles and artificial intelligence-based technologies.

As new technologies emerge to meet present-day and future wireless com-
munication expectations, a major challenge, however, is that the newly evolv-
ing wireless technologies usually require large bandwidths and substantial
spectrum space for efficient service provisioning [2]. Regrettably, the fre-
quency spectrum is no longer an ubiquitous communication resource. As
it stands, there is already an ongoing problem of spectrum scarcity or un-
availability for wireless communication. The problem of spectrum scarcity is
one of the major barriers to achieving the desired results for xG communica-
tions, since it significantly undermines the effectiveness and productivity of
most emerging technologies. In response, some new technologies are being
advanced to help overcome the obstacle of spectrum scarcity for xG systems.
One such technology is cognitive radio networks (CRN) [3].

The CRN promises to mitigate the limiting problem of spectrum scarcity,
and has therefore continued to gain attention as one of the ideal candidate
technologies for emerging xG wireless communication networks. In typical
CRN designs, the same spectrum space is assigned to and used by both pri-
mary users (PUs) and secondary users (SUs), either simultaneously or in an
opportunistic manner, under certain predefined conditions (or constraints).
A very good example of such constraints is the amount of interference that
the PUs can accommodate while the SUs transmit their data. For the CRN to
be effective, the SUs have to transmit below the interference limits of the PU
network while they communicate [4]. At the same time, the SUs must seek
to utilise their very limited resources optimally to realise the best productiv-
ity for their network. To achieve this, appropriate resource allocation (RA)
models to help carry out fair and efficient distribution of limited resources, so
as to achieve utmost results for the CRN, are necessary [5]. Already, several
useful RA models for the CRN are being developed and applied.

Just as new and/or improved RA models for the CRN are being devel-
oped, the CRN is also finding application in many other emerging wireless
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network prototypes. One such recent application of the CRN is in wireless
sensor networks (WSN). The intermix of WSN and CRN has resulted in a
relatively new xG wireless technology called cognitive radio sensor networks
(CRSN) [6]. The CRSN design is equipped with adaptability and flexibil-
ity in spectrum allocation, which potentially improves spectrum utilisation
above that in conventional WSN. Hence, in the CRSN, some benefits are de-
rived that may not always be achievable in conventional WSN designs. Such
benefits include the ability to use multiple channels simultaneously by each
user to fit in with a number of spectrum regulation demands, user adaptabil-
ity to help reduce the amount of power consumed during transmission, the
use of channels in an opportunistic manner during bursty traffic, and much
more [7].

The CRSN paradigm is still an evolving technology. As it develops, a crit-
ical aspect of its evolution is the development of RA models and solutions
for practical CRSN applications. In this paper, we develop and analyse an
appropriate RA model for the heterogeneous CRSN. In the model, three as-
pects of heterogeneity are considered for the CRSN, namely a heterogeneous
network, heterogeneous channels and heterogeneous users (or user demands).
The incorporation of heterogeneity into the RA model for the CRSN gives
a more practical representation of the network, albeit exacerbating the com-
plexity of the RA problem. We then investigate three very useful solution
approaches to the RA problem developed. From the approaches investigated,
both optimal and suboptimal solutions are realised for the RA problem. The
results obtained are used to establish the optimality-complexity trade-off,
which is a critical consideration in quality of service (QoS) decision-making
for practical CRSN applications.

A summary of the important contributions in this paper are as follows:

• An appropriate RA model that incorporates the concept of heterogene-
ity into the CRSN is designed. This gives a more realistic representation
of the CRSN.

• An investigation into practical optimisation approaches for solving the
RA problem developed for heterogeneous CRSN is carried out.

• The various optimisation solution approaches investigated are com-
pared to establish an optimality-complexity trade-off, which gives an
important basis for QoS decision-making in practical CRSN applica-
tions.
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The remaining parts of this paper are organised thus: Section 2 gives a
review of recent works on the CRSN, Section 3 presents the system model for
RA in heterogeneous CRSN, Section 4 shows how the RA problem for het-
erogeneous CRSN is successfully reformulated as an integer linear program-
ming (ILP) problem and then solved using classical optimisation, Section
5 describes the use of the concept of Lagrangian duality for solving the RA
problem for heterogeneous CRSN, Section 6 describes the use of an appropri-
ate heuristic for solving the RA problem for heterogeneous CRSN, Section 7
provides and compares some important results from the solution approaches
investigated, and Section 8 gives the concluding remarks.

2. Review of Relevant Literature

The problems of RA in modern wireless communication networks have
generally been described as optimisation problems [5]. Investigating tech-
niques for solving RA problems in newly emerging wireless networks is an
ongoing research focus. Several approaches are being developed to address
these RA problems. A comprehensive review of RA problems and solution
approaches in CRN has been carried out in [8], while an equally impressive
review of RA problems and solutions for CRSN has also been provided in
[9]. In this section, we discuss some of the most recent works on RA for the
CRSN.

The authors in [10] employed the simultaneous wireless information and
power transfer technique for resource sharing in CRSN. The model used the
concepts of cooperative relaying, energy harvesting, wireless power transfer
and power splitting in realising a low-cost CRSN for remote monitoring ap-
plications. Exact expressions for the outage probability and throughput were
derived for the CRSN, making the results very useful and most likely trans-
ferable. Other work that has considered the use of wireless power transfer
in RA for the CRSN is reported in [11]. In the model, both the SU and PU
in the CRSN are wirelessly powered, while the SU rate is maximised using a
dual optimisation method.

In [12], the authors employed the techniques of spectrum leasing and wire-
less energy harvesting for achieving RA in CRSN. The RA problem is de-
veloped as a joint subchannel, power and leasing time optimisation problem
and solved suboptimally after splitting it into three sub-problems, namely
subchannel allocation, power allocation and time allocation. The authors
in [13] and [14] employed the technique of deep reinforcement learning in
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developing RA solutions for the CRSN. One important advantage of employ-
ing deep learning architecture is that the network devices can learn from
their environment, and adjust their parameters, thereby achieving very high
efficiency in the use of network resources. The results presented show im-
provement in energy conservation, PU protection and decision on the best
choice of spectrum and power in the CRSN.

The authors in [6] developed a two-level heterogeneous CRSN and investi-
gated an RA solution for the network. The two aspects of heterogeneity that
were considered are the heterogeneous radio environment and heterogeneous
traffic. The RA scheme employed for the heterogeneous CRSN developed
is called the improved pliable cognitive medium access protocol. Further-
more, a scheduling and queueing-based approach is used in determining the
average delay and throughput performances of the CRSN. Results presented
show improvement in the performance measures of interest over similar or
comparative models for the CRSN.

From the RA problems and solution approaches reviewed above (and
other similar approaches for the CRSN), it is clear that more than one ap-
proach may be employed for solving RA problems, with each approach having
its own uniqueness, benefits, limitations and/or challenges. The implication
of this is that employing a single approach to address RA problems in practi-
cal CRSN applications may not be in the best interest of the CRSN. This is
because single-approach-based solutions may be inadequate in providing the
desired result, especially when comparative analyses are required for some
important decision-making, which could be in terms of QoS, cost, return on
investment, etc.

In practical CRSN applications, there are some RA solution approaches
that are capable of providing timeous solutions, although such solutions may
be significantly suboptimal. Meanwhile, there may be cases where achiev-
ing optimal solutions would be quite critical, almost non-negotiable, for the
type of applications or demands for which the network is to be employed.
In contrast, even though the goal for most networks is usually to achieve
optimal solutions, there may be other practical cases and/or applications
of CRSN where suboptimal solutions that are sufficiently close to optimal
would be good enough, especially if such solutions are obtained with some
significant savings in the amount of time, resources and/or computational
demands required in obtaining them. These considerations are important in
QoS decision-making for practical networks, as the RA model for heteroge-
neous CRSN developed in this paper shows.
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3. System Model

In this section, we describe and analyse the system model for the hetero-
geneous CRSN. This helps to establish the basis for the application of the
different RA solution approaches investigated and analysed in this paper.

3.1. Model Description

Figure 1: The system model for underlay heterogeneous CRSN

The system model developed in this paper is an underlay, heterogeneous
CRSN model. The model is presented in Figure 1. The underlay architecture
is employed because it makes it possible for all the network subchannels to be
available for use by the secondary network, as long as the secondary network
devices transmit their data within the interference threshold permitted by
the PUs. The model can, however, be easily studied for the overlay CRSN.
This can be achieved by simply including the probabilities of miss-detection
and false alarm in the permissible interference constraint.
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In the CRSN model developed, three heterogeneous considerations are
incorporated, namely network heterogeneity, channel heterogeneity and user
heterogeneity. Network heterogeneity is incorporated by designing the pri-
mary network to run differently from but simultaneously with the secondary
network. This allows each network to use different configurations and/or
parameters to drive its operations. Channel heterogeneity is incorporated in
the design by the use of the orthogonal frequency division multiple access
(OFDMA) technique. Then, user heterogeneity is incorporated in the de-
sign by having both SUs and sensor nodes (SNs) working alongside in the
secondary network of the CRSN.

Furthermore, in the CRSN system model being studied, the primary net-
work covers a large geographical area made up of a number of PUs. The
activities of the PUs are coordinated by a PU base station. Within this ge-
ographical area, a number of smaller secondary networks are permitted to
work independently but simultaneously with the primary network. A sec-
ondary network base station (SNBS) coordinates the activities of the devices
of the secondary network. The SNs in the CRSN are similar to the SUs in
that they contain cognitive radio units that enable them to act like the SUs.
Thus, the SNs are able to dynamically adapt their communication parame-
ters such as the subchannels, modulation options, transmission power, etc.
to meet their communication demands. However, the SNs in the secondary
networks are different from the SUs in that they have the inherent limitations
of other conventional SNs, such as limitation in memory capacity, processing
capability, transmission power, etc.

3.2. Model Analysis

In the design, there are L PUs (indexed by l) and K secondary network
devices (indexed by k) in the CRSN model. The secondary network devices
are divided into K1 SUs and K2 = (K − K1) SNs. There are N OFDMA
subchannels (indexed by n) in the space of each SNBS. Furthermore, the
N subchannels are divided into N1 and N2, where N1 represents the sub-
channels allocated to the SUs (that is, the subchannels allocated to K1) and
N2 represent the subchannels allocated to the SNs (that is, the subchannels
allocated to K2). In all, N = N1 + N2. Rate weights w1 for SUs and w2 for
SNs are associated with the respective secondary network types.

The decision on which subchannels are to be allocated to each SU or SN
is made by the SNBS. This decision is passed to the SUs and SNs through a
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distinct control channel. We assume that the SUs/SNs and the SNBS com-
municate perfectly over the control channel. A slow fading model is used
for modelling the environment of the communication network. The modula-
tion scheme for a subchannel determines the data rate c transmitted on that
subchannel. We have employed four modulation schemes for the secondary
network in our model. These modulation schemes are the binary phase shift
keying (BPSK), quadrature amplitude modulation (4-QAM), 16-QAM and
64-QAM. The bit rates that can be transmitted by the four modulation
schemes employed are c = 1, 2, 4 and 6 bits per OFDMA symbol respec-
tively. However, there is an important difference between allocations for the
SNs and for the SUs. Since the SNs are very limited in computational power
and memory space, assigning high modulation schemes to them is undesir-
able. Therefore, to avoid high modulation schemes being assigned to the
SNs, the modulation schemes assigned to them are restricted to the BPSK
and 4-QAM.

Furthermore, a parameter ρ is used to define the bit error rate (BER)
requirement at the receiver end of the secondary network. In a subchannel,
for a given value of ρ, the modulation scheme that is applied will deter-
mine the minimum power Pr(c, ρ) required to achieve ρ [15]. Therefore,
it is easy to calculate the minimum power required to achieve ρ for the
four modulation schemes under consideration. For BPSK modulation, the
minimum power is given as PBPSK(1, ρ) = Zφ[erfc−1(2ρ)]2. Similarly, the
minimum power for the M-ary QAM schemes is given as PM−QAM(c, ρ) =
2(2c−1)Zφ

3
[erfc−1( cρ

√
2c

2(
√
2c−1))]

2. In the minimum power equations, erfc(x) =

( 1√
2π

)
∫∞
x
e
−t2
2 dt is the complementary error function, π = (22/7), and Zφ is

the noise power spectral density. The value of Zφ remains constant for all
subchannels in the network.

Generally, the transmission power of the secondary network devices will
increase in a non-linear manner when the number of bits on the subchannels
of those devices increases, for a particular ρ value. We represent the power
gain matrix between a PU and the SNBS as Hp ∈ RL×N , meaning that the
subchannel power gain between the PU l and the SNBS at any subchannel n
is Hp

l,n. We then represent the subchannel power gain matrix between any SU

or SN and the SNBS as Hs ∈ RK×N , meaning that the power gain between
the kth SU or SN and the SNBS at the nth subchannel is Hs

k,n. Hence, to
transmit ck,n bits over the nth subchannel to the kth SU or SN, and with a
BER threshold ρ, transmission power Pk,n(ck,n, ρ) is required. Pk,n(ck,n, ρ) is
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given as [15];

Pk,n(ck,n, ρ) =
P (ck,n, ρ)

Hs
k,n

. (1)

Since the SUs can be assigned any modulation scheme to transmit, they
can be treated as users having a minimum rate requirement. On the other
hand, since the SNs are assigned to transmit with the lower modulation
schemes, they are invariably best-effort users, meaning that the resources
available have to be shared among all the SNs using a fair proportionality
factor. With the SUs having a minimum rate requirement, we denote Rk

as the minimum data rate required by SU k (more broadly, each secondary
network device i has a data rate Ri assigned to it). Also, with the SNs being
best-effort users, each SN has a value γk as the normalised proportional
fairness factor assigned to it.

Furthermore, we represent the maximum power available on the nth sub-
channel by Φn = ΣK

k=1Pk,n, while we represent the transmission power of the
kth SU or SN over that subchannel n by Pk,n. We represent the interference
channel gain between the SNBS and the lth PU on subchannel n by Hp

l,n,
while we represent the permissible interference power to the PU l from all
the SUs and SNs combined by εl. Finally, we represent the maximum trans-
mission power of the SNBS by Pmax. The formulation of the RA optimisation
problem for heterogeneous CRSN becomes;

max y =

( N1∑
n=1

K1∑
k=1

w1ck,n +
N∑

n=(N1+1)

K∑
k=(K1+1)

w2ck,n

)
,

ck,n ∈ {0, 1, 2, 4, 6}

(2)

subject to
N∑
n=1

ck,n ≥ Rk; k = 1, 2, · · · , K1 (3)

Rk

K∑
i=(K1+1)

Ri

= γk; k = K1 + 1, K1 + 2, · · · , K (4)

( N1∑
n=1

K1∑
k=1

Pk,n +
N∑

n=(N1+1)

K∑
k=(K1+1)

Pk,n

)
≤ Pmax (5)
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( N1∑
n=1

ΦnH
p
l,n +

N∑
n=(N1+1)

ΦnH
p
l,n

)
≤ εl; l = 1, 2, ..., L (6)

ck,n = 0 if ck′,n 6= 0, ∀ k′ 6= k; k = 1, 2, ..., K (7)

ck,n ∈ {0, 1, 2} ∀ n ∈ N2. (8)

The throughput or total data rate that the secondary network achieves
(that is, the combined data rate of all the SUs and SNs) is captured in the
objective function of Equation (2). The constraint in Equation (3) is the
constraint employed to meet the SUs’ QoS demand. Thus, Equation (3) es-
tablishes that for the model to be feasible, the minimum data rate required
to achieve the QoS demand for each SU must always be provided. In Equa-
tion (4), a fair distribution of the data rates to the SNs is achieved. This is
done by the use of γk (a proportional fairness factor) to appropriately allocate
data rates to all available SNs. Equation (5) represents the power constraint.
The constraint simply means that when the transmission power of all SUs
and SNs is added, the total must still be less than or equal to the maximum
power of the SNBS. Equation (6) is the interference constraint. The con-
straint shows that for each PU in the network, when the total interference
from all surrounding secondary devices (SUs and SNs) is combined, the total
interference must still not exceed the threshold interference limit that the
PU can accommodate. Equation (7) establishes the OFDMA requirement
of mutual exclusivity in subchannel allocation for the SUs and SNs. The
constraint means that a subchannel, once allocated to a secondary network
device, cannot be allocated to any other secondary network device within the
network in that same time frame. The constraint in Equation (8) explains
that only the BPSK and 4-QAM modulation schemes can be assigned to the
SNs whenever they have data to transmit (0 data rate is allocated to the
SNs when they do not have any data to transmit). Equation (4) can be
equivalently rewritten as;

R1 : R2 : . . . : RK2 = γ̃1 : γ̃2 : . . . : γ̃K2 , k = K1 + 1, K1 + 2, · · · , K, (9)

with γ̃k being the product of γk and
∑K

i=(K1+1)Ri.
The RA problem formulation for heterogeneous CRSN given in Equa-

tions (2) - (8) is an NP-hard problem. This is easily established by closely
examining the power constraint in Equation (5). Generally, NP-hard opti-
misation problems are quite difficult to solve. We investigate three different
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but very important approaches to solve the RA problem for heterogeneous
CRSN. The solutions are then compared and used to establish an important
basis for QoS decision-making in practical CRSN applications.

4. Solution through Integer Linear Programming Reformulation

Despite the fact that it is a complex NP-hard problem, an important
contribution of this paper is that we are able to obtain optimal solutions
for the RA problem for heterogeneous CRSN. In this section, we present
the ILP solution approach as a good approach for optimally solving the RA
problem for heterogeneous CRSN. Indeed, the approach is able to achieve
optimal results for the complex NP-hard RA problem because the particular
reformulation process employed does not in any way alter the scope of the
original RA problem.

In the ILP approach, the original RA problem for heterogeneous CRSN
is cleverly reformulated as an ILP problem while capturing all the details
in the original problem. This is achieved by studying the structure of the
problem. The idea used in achieving the reformulation is not entirely new,
as it has been explored in some previous works on RA for the CRN, such as
[16] and [15]. The idea is only now expanded in this paper to capture the
intricacies of the heterogeneous CRSN. From a close look at the structure
of the RA problem for heterogeneous CRSN developed in Equations (2) -
(8), two distinct points stand out. The first clear observation is that the
bits (0,1,2,4 or 6) assigned to the subchannels in the secondary network are
strictly integer values. The other important observation is that in allocating
bits to the SUs and SNs, each subchannel either has one or more bits assigned
to it for data transmission or does not have any bit assigned to it, which is
invariably a binary decision.

The above-mentioned observations are jointly considered and employed in
carrying out the reformulation of the RA problem for heterogeneous CRSN
in Equations (2) - (8) to an ILP. The reformulated ILP problem is much
easier to solve, and any of the classical optimisation techniques for solving
ILP problems can be employed for solving the reformulated problem. Since
the process of achieving the ILP reformulation of the RA problem developed
for heterogeneous CRSN is in many ways similar to the ILP reformulations
for CRN that have already been carried out and well documented by the
authors in some of their previous works, the details on the ILP reformulation
are not presented in this paper. The authors encourage interested readers to
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access their earlier works in [15] and [16] for a detailed explanation of the re-
formulation process. However, for necessary completeness, the reformulated
problem is summarised in this section.

Let x1 represent the bit allocation vector for the SUs and x2 represent the
bit allocation vector for the SNs (x being the combined allocation vector for
all SUs and SNs), let b1 be the modulation order vector for the SUs and b2
be the modulation order vector for the SNs, let Bi ∈ ZK1×NK1C be the data
rate matrix for the SUs and Bj ∈ Z(K−K1)×N(K−K1)C be the equivalent data
rate matrix for the SNs, let A ∈ {0, 1}N×NKC be the total power matrix for
the secondary network with p1 being the power transmission vector for the
SUs and p2 being the equivalent power transmission vector for the SNs. The
operator � signifies the Schur-Hadamard product (that is, the entry-wise
product) of two entities. Then, the ILP reformulation of the RA problem for
heterogeneous CRSN given in Equations (2) - (8) becomes:

y∗ = max
x

[(w1 � b1)Tx1 + (w2 � b2)Tx2] (10)

subject to
Bix1 ≥ Rk; k = 1, 2, · · · , K1 (11)

Bjx2 = γ̃k; k = K1 + 1, K1 + 2, · · · , K (12)

[(p1)Tx1 + (p2)Tx2] ≤ Pmax (13)(
Hp[A(p1 � x1)] +Hp[A(p2 � x2)]

)
≤ εl (14)

0N ≤ Ax ≤ 1N (15)

x ∈ {0, 1}, b2 ∈ {0, 1, 2}, {w1, w2} ∈ R+. (16)

The newly reformulated RA problem in Equations (10) - (16) is a com-
binatorial linear optimisation problem. A number of standard solution tech-
niques for solving combinatorial optimisation problems have been developed
already. For the reformulated RA problem for heterogeneous CRSN pre-
sented in Equations (10) - (16), the well-established branch-and-bound (BnB)
optimisation technique, embedded with the implicit enumeration tool, is used
for solving the RA problem. This optimisation technique is employed because
of its advantage of being able to identify the most viable branch for optimal
solutions quite quickly [15].
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5. Solution through Lagrangian Duality

Indeed, the ILP analysis of the RA problem for heterogeneous CRSN
presented in the previous section is capable of achieving optimal solutions.
However, the high level of computational complexity would make its imple-
mentation almost impracticable, especially when the network is of a large.
Therefore, it is necessary to develop and employ other useful approaches that
reduce the computational demand for the network. This is another important
contribution of this paper. In this section, the Lagrangian duality approach
is employed as a computationally less demanding approach to solving the
complex RA problem of heterogeneous CRSN.

In the Lagrangian duality approach, the major constraints in the RA
problem are first dualised. With the dualisation achieved, a new dual problem
is formed. The new dual problem is then solved by applying the well-known
Karush Kuhn Tucker (KKT) conditions to it [17]. To help formulate the dual
problem, we take the reformulated ILP problem in Equations (10) - (16) as
the primal problem. Then, the dual problem is obtained by minimising the
dual function over the dual variables (this helps to obtain the highest value of
the upper bound for the problem). The Lagrangian dual problem is developed
in this section.

First, we write the Lagrangian function as follows;

L(x, η, δ, τ, %) =
(
(w1 � b1)Tx1 + (w2 � b2)Tx2

)
+ηT

(
Bix1 −Rk

)
+ δT

(
Bjx2 − γk

)
+ τT

(
(p1)Tx1 + (p2)Tx2 − Pmax

)
+%T

(
Hp[A(p1 � x1)] +Hp[A(p2 � x2)]− εl

)
,

(17)

in which case η, δ, τ, % are the Lagrangian multipliers. Then, we obtain the
corresponding dual function of the Lagrangian function. This is given as;

g(η, δ, τ, %) = max
x

L(x, η, δ, τ, %). (18)

This means that,

g(η, δ, τ, %) = max
x

[(
(w1 � b1)Tx1 + (w2 � b2)Tx2

)
+ηT

(
Bix1 −Rk

)
+ δT

(
Bjx2 − γk

)
+ τT

(
(p1)Tx1 + (p2)Tx2 − Pmax

)
+%T

(
Hp[A(p1 � x1)] +Hp[A(p2 � x2)]− εl

)]
.

(19)
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Factorising, it becomes;

g(η, δ, τ, %) = −Rk
Tη − γkT δ − P T

maxτ − εlT%

+ max
x

[
(w1 � b1)Tx1 + (w2 � b2)Tx2 +Bi

Tηx1

+Bj
T δx2 + p1τx1 + p2τx2 +

(
Hp[A(p1 � x1)] +Hp[A(p2 � x2)]

)T
%

]
.

Therefore, the dual problem d∗ is obtained as follows;

d∗ = min
η,δ,τ,%

g(η, δ, τ, %) = min
η,δ,τ,%

max
x

L(x, η, δ, τ, %).

That is,
d∗ = min

η,δ,τ,%
−Rk

Tη − γkT δ − P T
maxτ − εlT% (20)

subject to,
η, δ, τ, % ≥ 0 (21)

(w1�b1)T +(w2�b2)T +Bi
Tη+Bj

T δ+p1τ+p2τ+Hpp1A%+Hpp2A% = 0
(22)

b2 ∈ {0, 1, 2}. (23)

The dual optimisation problem of the RA for heterogeneous CRSN given
in Equations (20) - (23) is easily solved using the KKT conditions. Further-
more, it provides a good upper bound for the reformulated ILP problem in
Section 4.

6. Solution through Fast BnB-based Heuristic

In this section, we employ a heuristic as a very useful third approach to
solving the RA problem developed for heterogeneous CRSN. The heuristic
employed is quite fast, and it is based on the BnB solution initially inves-
tigated in Section 4. It is common knowledge that, more often than not,
solutions obtained using heuristics turn out to be suboptimal. Yet, in the
RA problems for xG networks, such as for the heterogeneous CRSN being
considered, heuristic solutions are still very useful, especially in cases where
QoS expectations and optimality-complexity trade-off are critical criteria in
the network design.

The heuristic algorithm developed in this paper seeks to circumvent the
negative impact of one of the constraints in the heterogeneous CRSN design.
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The constraint is that the decision variable x must always take binary integer
values of either 0 or 1. This constraint significantly exacerbates the complex-
ity of the RA problem. Therefore, in the reformulated ILP RA problem for
heterogeneous CRSN presented in Equations (10) - (16), if it is possible to
integer-relax the decision variable x, the complexity of the problem can be
significantly reduced. Integer relaxation means that the variable x is permit-
ted to take decimal values between 0 and 1, unlike in the previous Sections
4 and 5 where the variable x was strictly binary (either 0 or 1).

The new problem obtained by integer-relaxing x is solved using the op-
timisation technique employed in Section 4. Right from the first iteration,
it is obvious that the decision variable will take the value of 1 for some sub-
channels. For all those subchannels in which x is 1 at the first iteration,
the allocation is taken to be already determined. After this first iteration,
a very simple algorithm is used to allocate appropriate data rates to all the
remaining unallocated subchannels (that is, the subchannels in which the
value of x gave decimal numbers). The heuristic algorithm used in this pa-
per evolves from the work in [18]. The algorithm is employed because it is
fast and BnB-based. The algorithm is presented in Table 1.

7. Discussion of Results

In the paper, we have developed an important RA model for heteroge-
neous CRSN and have investigated and employed three different but useful
approaches to solving the resulting complex NP-hard RA problem. In this
section, we now present some numerical and simulation results for the RA
problem. Further, by comparing the different solution approaches, we are
able to establish the optimality-complexity trade-off, which is an important
basis for QoS decision-making in heterogeneous CRSN.

In the simulation, a MATLAB-based optimisation solver called YALMIP,
developed in [19], is used to carry out the optimisation process. To model
the heterogeneous CRSN, we set up an OFDMA-based network with the
number of subchannels N = 64. Random multipath fading is used as the
fading model. The total number of PUs in the system L = 4. The SUs
K1 = 2, with each having a minimum rate requirement of 64 bits per symbol.
The remaining data are allocated to the SNs K2 = 2 in a proportionally
distributed manner using a fairness factor. In the setup, the small number
of devices used is intended to make the interpretation of the results easy to
understand and follow. The small network design also means that network
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Table 1: BnB-based heuristic for RA in heterogeneous CRSN

Steps Algorithm for fast suboptimal subchannel allocation
1 Relax the strict integer constraint in the reformulated ILP RA prob-

lem for heterogeneous CRSN presented in Equations (9) - (16). To
achieve this, change the constraint x ∈ [0, 1] in Equation (16) to
0 ≤ x ≤ 1. This means that x can now be any value between 0
and 1, decimal values inclusive.

2 The integer-relaxed problem is solved using the BnB method to
obtain a solution for x.

3 The results from step (2) are used to identify and separate the
subchannels that turn out x = 1 in the solution. The number of
subchannels that turn out x = 1 in step (2) is represented by M .
We make ΩM a set indexing all subchannels in M , with Ω′M being
the set indexing the remaining subchannels that do not appear in
M .

4 All subchannels in ΩM are allocated based on the positions of the 1s
in xn

N (n ∈ ΩM). Clearly then, only the subchannels in Ω′M remain
to be allocated. The network’s complexity is reduced very much
after this step.

5 The remaining subchannels (that is, the subchannels in Ω′M), are
now allocated as follows: initialise m = M and TheBest = ∅ (that
is, an empty set); use the BnB technique to solve the resulting
problem to obtain the solution or TheBest.

6 After solving, the subchannels in Ω′M are allocated according to the
positions of 1s in TheBest and the algorithm is stopped. Also, if
TheBest = ∅, the message ‘FAIL’ is indicated and the algorithm
is stopped.

complexity is kept minimal as much as possible. However, the RA model
developed is quite scalable, and the solution approaches investigated can be
employed for a much larger network.

Another important parameter for the simulation is the interference. When
the PUs transmit, they interfere with the SUs and SNs. Such interference is
seen as noise at the SUs and SNs and a constant power spectral density of
0.01 mW/subchannel is used to capture that interference. The BER ρ = 0.01
is used for all SUs and SNs. The simulation is carried out using 100 random
channel pairs of Hs and Hp. The rate weights w1 = w2 = 1 are used for both
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Figure 2: A plot of the comparative total data rates for three different models, namely a
homogeneous CRSN model, a traffic-based heterogeneous CRSN model and the multiple-
based heterogeneous CRSN model developed in this paper. The maximum SNBS power
is set as 30 dBm.

secondary network categories.
For the purpose of validation, we compare the results obtained in this

paper with the results from two similar RA models for the CRSN. Figure 2
provides such a comparison. We have chosen the results from the work in
[20], which is a homogeneous CRSN design, and the results from the work
in [21], which is a traffic-based heterogeneous CRSN design. The difference
between our model and the models in the comparative works is clear. Unlike
in [20], our model is not homogeneous but heterogeneous. Further, unlike in
[21], our model incorporates not only traffic (or user demand) heterogeneity
but also channel and network heterogeneity in its CRSN design. We compare
the results for the total data rate or throughput that the network achieves,
since it is a common performance measure investigated in all three models.
To make the results comparable, we used equivalent parameters for the mod-
els being compared to derive similar total data rate results, which are then
compared to the results from our model. In comparing our model with oth-
ers, for fairness, we use the results for the ILP approach because it gives an
optimal solution for the heterogeneous CRSN, and compare these with the
best results obtained in the other models. The results show that our ILP so-
lution outperforms the two comparative models in terms of throughput. This
is because of the various heterogeneous concepts incorporated in the design,
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ILP solution (Simulation)

ILP solution (Numerical)

Lagrangian duality solution (Simulation)

Lagrangian duality solution (Numerical)

Heuristic solution (Simulation)

Heuristic solution (Numerical)

Figure 3: A plot of the total data rate versus the maximum permissible interference by
the PUs for both numerical and simulation results. The maximum SNBS power is set as
30 dBm. The results for the ILP, Lagrangian duality and by heuristic are compared.

and because of the optimal solution realised by successfully reformulating the
RA problem and solving optimally using the ILP approach.

Figure 3 presents the results of the throughput or total data rate of the
secondary network (both SUs and SNs combined) when the three solution
approaches investigated in this paper are compared. In addition, results from
both the numerical analysis and the simulation are presented. In the graph,
the interference threshold of the PUs was gradually increased from 20 to 30
dBm, at a constant SNBS power of 30 dBm. The important observation
from this plot is that all three approaches employed provide similar solution
patterns, which stands as a strong validation of the results. The solutions are
also similar to the results from comparative CRN and CRSN models, such
as in [15, 22], which helps to validate the results further.

Importantly, in Figure 3, by carrying out a comparative evaluation of the
results for the three solution approaches investigated, we can easily provide
an important basis for QoS decision-making in the heterogeneous CRSN. In
terms of data transmission (that is, considering the throughput or total data
rate achieved by the network), the results in Figure 3 show that the ILP
approach outperforms the Lagrangian duality approach, which itself outper-
forms the heuristic approach. The implication of this result is that in certain
CRSN scenarios where optimality is the critical QoS consideration, classical
optimisation solution approaches such as the ILP, which achieves optimal
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Figure 4: A plot of the average data rate versus the maximum permissible interference by
PUs. The maximum SNBS power is set as 30 dBm. The results for the ILP, Lagrangian
duality and by heuristic are compared.

or almost optimal solutions, are the preferred solution approaches for such
CRSN applications.

In Figure 4, the results of the average data rates achieved by the different
types of devices in the secondary network are presented. The results com-
pare the three solution approaches developed in this paper. The interference
threshold of the PUs was gradually increased from 20 to 30 dBm. A con-
stant SNBS power of 30 dBm was assumed. It should be observed that in
the results obtained, the QoS demands of the SUs were consistently met by
providing the minimum rate requirement for SUs. The SNs only share the re-
maining resources after the SUs’ requirements have been satisfied. However,
as the amount of resources available for transmission is gradually increased,
the performance of the SNs improves while the SUs’ performance remains
fairly constant, signifying that the SNs’ capabilities can be improved by in-
creasing available resources for them. The results for the average data rate
are in line with the total data rate results presented in Figure 3. Therefore,
the interpretations and implications are similar. The ILP approach outper-
formed the Lagrangian duality and heuristic approaches, again signifying
that when optimality is the critical QoS consideration, the ILP approach is
the preferred solution method for heterogeneous CRSN applications. How-
ever, in applications where optimality is not a crucial demand, other solution
approaches such as the Lagrangian duality or the heuristic presented in this
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Figure 5: A comparison of the different solution approaches in terms of the complexity of
the various solution models investigated. The computational demand is plotted against
an increasing number of subchannels.

paper may be favourably considered.
Figure 5 compares the computational implications of the three RA so-

lution approaches investigated for the heterogeneous CRSN. For the ILP
and the Lagrangian duality approaches, the number of arithmetic operations
performed before arriving at solutions is used to calculate the computational
complexity of the model investigated. The total computational complexity
of the heuristic is calculated by summing the number of operations carried
out in the two parts of the algorithm (the first part being the solution of the
relaxed problem and the second part being the allocation of the remaining
subchannels). The results presented show that the computational complexity
of the heuristic is significantly less than those of the ILP and the Lagrangian
duality, especially as the network gets larger. From the results, it can be
deduced that in heterogeneous CRSN scenarios where network complexity
and/or the amount of time and resources spent to arrive at solutions are
the most critical QoS considerations (that is, the time taken and the level of
network complexity involved are more important than obtaining optimal so-
lutions), developing heuristics for solving such RA problems is the preferred
solution approach.

From all the results presented, the importance of the Lagrangian duality
approach can be deduced. In terms of performance, this approach stands
between the approaches of ILP (which gives solutions that are optimal or
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Figure 6: A comparison of different suboptimal solution approaches for solving RA prob-
lems in the CRSN. The Lagrangian duality approach employed in this paper is compared
with the Dinkelbach approach used in [23] and the Nash equilibrium approach used in
[24].

closest to optimal) and heuristic (which always gives suboptimal solutions).
While it is not as optimal as the ILP, the Lagrangian duality approach is
also not as computationally demanding as the ILP. Again, while it is closer
to optimal than the heuristic, the Lagrangian duality approach is also more
computationally complex than the heuristic. Therefore, the Lagrangian du-
ality (or any other approach that may be employed) is good for consideration
in heterogeneous CRSN scenarios where results are supposed to be near opti-
mal, while at the same time not being too computationally demanding. Some
other non-heuristic approaches that have been used in recent works on the
CRSN are the Dinkelbach approach used in [23] and the Nash equilibrium
approach used in [24]. Figure 6 compares the Lagrangian duality solution
employed in this paper with the suboptimal solutions achieved in [23] and
[24]. The solutions are quite similar once the same parameters are employed
for simulating the network.

8. Conclusion

In this paper, a practical and very realistic RA model for heterogeneous
CRSN has been developed and analysed. The inclusion of heterogeneity in
the CRSN model exacerbates the complexity of the RA problem formulation.
By studying the structure of the problem, a number of approaches that solves
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the RA problem for heterogeneous CRSN are investigated. In the first solu-
tion approach, an ILP reformulation of the original problem is carried out.
We then use the well-developed BnB optimisation technique with the implicit
enumeration tool to solve the reformulated ILP problem. Optimal solutions
are obtained using this approach. However, we argue that the high compu-
tational complexity requirement could make it an improbable approach for
practical considerations, especially when the network is substantial in size. A
second approach that reduces the computational complexity demand is then
investigated. The second approach investigated is the Lagrangian duality
approach. The approach uses the fact that, by dualising the ILP problem,
the complex constraint in the ILP formulation is easily eliminated. The re-
sulting dualised problem is solved using the well-established KKT conditions.
In the third approach, a heuristic is developed to solve the RA problem. The
heuristic relaxes the integer constraint, thereby making the complexity sig-
nificantly less. Solutions from all three approaches are compared in terms
of optimality and computational complexity, and the importance of each so-
lution approach is established. The results are shown to be quite useful for
QoS decision-making in practical heterogeneous CRSN applications.
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BER Bit error rate
BnB Branch and bound
BPSK Binary phase shift keying
CRN Cognitive radio networks
CRSN Cognitive radio sensor networks
ILP Integer linear programming
KKT Karuch-Khun-Tucker
OFDMA Orthogonal frequency division multiple access
PU, PUs Primary user, primary users
QAM Quadrature amplitude modulation
QoS Quality of service
RA Resource allocation
SN, SNs Sensor node, sensor nodes
SNBS Sensor node base station
SU, SUs Secondary user, secondary users
WSN Wireless sensor networks
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