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Abstract

We present an implementation of a recent algorithm to compute shortest-path trees
in unit disk graphs in O(n log n) worst-case time, where n is the number of disks.

In the minimum-separation problem, we are given n unit disks and two points s
and t, not contained in any of the disks, and we want to compute the minimum number
of disks one needs to retain so that any curve connecting s to t intersects some of
the retained disks. We present a new algorithm solving this problem in O(n2 log3 n)
worst-case time and its implementation.

1 Introduction

In this paper we consider two geometric optimization problems in the plane where unit
disks play a prominent role. For both problems we discuss efficient algorithms to solve
them, provide an implementation of these algorithms, and present experimental results on
the implementation.

The first problem we consider is computing a shortest-path tree in the (unweighted)
intersection graph of unit disks. The input to the problem is a set D of n disks of the same
size, each disk represented by its center. The corresponding unit disk (intersection) graph
has a vertex for each disk, and an edge connecting two disks D and D′ of D whenever
D and D′ intersect. An alternative, more convenient point of view, is to take as vertex
set the set of centers of the disks, denoted by P , and connecting two points p and q of
P whenever the Euclidean length |pq| is at most the diameter of a disk. The graph is
unweighted. Given a root r ∈ P , the task is to compute a shortest-path tree from r in this
graph. See Figure 1.

The second problem we consider is the minimum-separation problem. The input is a
set D of n unit disks in the plane and two points s and t not covered by any disks of D.
We say that D separates s and t if each curve in the plane from s to t intersects some disk
of D. The task is to find the minimum cardinality subset of D that separates s and t. See
the left of Figure 1 for an example of an instance. Formally, we want to solve

min |D′|
s.t. D′ ⊆ D and D′ separates s and t.

Unit disks are the most standard model used for wireless sensor networks; see for
example [8,11,21]. Often the model is referred as UDG. This model provides an appropriate
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Figure 1: Left: unit disks and two additional points s and t. Middle: intersection graph of
the disks. Right: a shortest-path tree in the graph.

trade off between simplicity and accuracy. Other models are more accurate, as for example
discussed in [14,16], but obtaining efficient algorithms for them is much more difficult.

While unit disks give a simple model, exploiting the geometric features of the model
is often challenging. Shortest paths in unit disk graphs are essential for routing and
are a basic subroutine for several other more complex tasks. A somehow unexpected
application of shortest paths in unit-disk graphs to boundary recognition is given in [20].
The minimum-separation problem and variants thereof have been considered in [2, 9]. The
problem is dual to the barrier-resilience problem considered in [1, 13,15]. It is not obvious
that the minimum-separation problem can be solved optimally in polynomial time, and
the known algorithm for this uses as a subroutine shortest paths in unit disk graphs.
Thus, both problems considered in this paper are related and it is worth to consider them
together.

Our contribution We are aware of three algorithms to compute shortest-path trees in
unit disk graphs in O(n log n) worst-case time: one by Cabello and Jejčič [3], one by Chan
and Skrepetos [5], and one Efrat, Itai and Katz [7]. Here we report on an implementation
of a modification of the algorithm in [3], and compare it against two obvious alternatives.
The only complex ingredients in the algorithm is computing the Delaunay triangulation and
static nearest-neighbour queries, but efficient libraries are available for this. The algorithm
of [7] would be substantially harder to implement and it has worse constants hidden in
the O-notation. The algorithm of [5] for single source shortest paths is implementable
and we expect that it would work good in practice. However, this last algorithm has been
published only very recently, when we had completed our research.

As mentioned before, it is not obvious that the minimum-separation problem can
be solved in polynomial time. In particular, the conference version [10] of [9] gave 2-
approximation algorithm for the problem. Cabello and Giannopoulos [2] provide an exact
algorithm that takes O(n3) worst-case time and works for arbitrary shapes, not just disks.
In this paper we improve this last algorithm to near-quadratic time for the special case of
unit disks. The basic principle of the algorithm is the same, but several additional tools
from Computational Geometry exploiting that we have unit disks have to be employed
to reduce the worst-case running time. Furthermore, we implement a variant of the new,
near-quadratic-time algorithm and report on the experiments.

Assumptions We will assume that unit disk means that it has radius 1/2. Up to scaling
the input data, this choice is irrelevant. However, it is convenient for the exposition
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because then the disks intersect whenever the distance between their centers is 1. The
implementation and the experiments also make this assumption.

Henceforth P will be the set of centers of D. All the computation will be concentrated
on P . In particular, we assume that P is known. (For the shortest path problem, one
could possibly consider weaker models based on adjacencies.)

We will work with the graph G61(P ) with vertex set P and an edge between two points
p, q ∈ P whenever their Euclidean distance |pq| is at most 1. In the notation we remove
the dependency on P and on the distance. Thus we just use G instead of G61(P ). For
simplicity of the theoretical exposition we will sometimes assume that G is connected. It
is trivial to adapt to the general case, for example treating each connected component
separately. The implementation does not make this assumption.

Organization of the paper In Section 2 we discuss the theoretical algorithms for both
problems and their guarantees. In Section 3 we discuss the implementations and the
experimental results.

2 Description of algorithms

2.1 Shortest-path tree in unit-disk graphs

We describe here the algorithm of Cabello and Jejčič [3] to compute a shortest path tree in
G from a given root point r ∈ P . As it is usually done for shortest path algorithms, we
use tables dist [·] and π[·] indexed by the points of P to record, for each point p ∈ P , the
distance dG(s, p) and the ancestor of p in a shortest (s, p)-path.

The pseudocode of the algorithm, which we call UnweightedShortestPath, is in
Figure 2. We explain the intuition, taken almost verbatim from [3]. We start by computing
the Delaunay triangulation DT (P ) of P . We then proceed in rounds for increasing values
of i, where at round i we find the set Wi of points at distance exactly i in G from the source
r. We start with W0 = {r}. At round i, we use DT (P ) to grow a neighbourhood around
the points of Wi−1 that contains Wi. More precisely, we consider the points adjacent to
Wi−1 in DT (P ) as candidate points for Wi. For each candidate point that is found to lie
in Wi, we also take its adjacent vertices in DT (P ) as new candidates to be included in
Wi. For checking whether a candidate point p lies in Wi we use a data structure to find a
nearest neighbour of p in Wi−1. If the distance from p to its nearest neighbour w in Wi−1
is smaller than 1, then the shortest path tree is extended by connecting p to w.

Cabello and Jejčič [3] show that the algorithm correctly computes the shortest-path
tree from r. If for nearest neighbors we use a data structure that, for n points, has
construction time Tc(n) and query time Tq(n), and the Delaunay triangulation is computed
in TDT (n) time, then the algorithm takes O(TDT (n) + Tc(n) + nTq(n)) time. Standards
tools in Computational Geometry imply that TDT (n) = O(n log n), Tc(n) = O(n log n) and
Tq(n) = O(log n). This leads to the following.

Theorem 1 (Cabello and Jejčič [3]). Let P be a set of n points in the plane and let r
be a point from P . In time O(n log n) we can compute a shortest path tree from r in the
unweighted graph G61(P ).

It is clear that, when computing the shortest path tree from several sources, we only
need to compute the Delaunay triangulation once.
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UnweightedShortestPath(P, r)

1 build the Delaunay triangulation DT (P )
2 for p ∈ P
3 dist [p] = ∞
4 π[p] = nil
5 dist [r] = 0
6 W0 = {r}
7 i = 1
8 while Wi−1 6= ∅
9 build data structure for nearest neighbour queries in Wi−1

10 Q = Wi−1 // candidate points
11 Wi = ∅
12 while Q 6= ∅
13 q an arbitrary point of Q
14 remove q from Q
15 for qp edge in DT (P )
16 if dist [p] =∞
17 w = nearest neighbour of p in Wi−1
18 if |pw| 6 1
19 dist [p] = i
20 π[p] = w
21 add p to Q
22 add p to Wi

23 i = i+ 1
24 return dist [·] and π[·]

Figure 2: Algorithm from [3] to compute a shortest path tree in the unweighted case.

2.2 Minimum separation with unit-disk

Cabello and Giannopoulos [2] present an algorithm for the minimum separation problem
that in the worst-case runs in cubic-time. The algorithm has one feature that is both an
advantage and a disadvantage: it works for any reasonable shapes, like segments or ellipses,
and not just unit disks. This means that it is very generic, which is good, but it cannot
exploit any properties of unit disks.

In this section we are going to describe an algorithm to solve the minimum separation
problem for unit disks in roughly quadratic time. The improvement is based on 3 ingredients.
The first ingredient is a reinterpretation of the algorithm of [2] for disks. In the original
algorithm, we had to select a point inside each shape. For disks there is a natural, obvious
choice, the center of the disk. This allows for a simpler description and interpretation of
the algorithm. We provide the description in Section 2.2.1

The second ingredient is the efficient algorithm for shortest-path trees for the graph
G. The third ingredient is a compact treatment of the edges of G using a few tools from
Computational Geometry, namely range trees, point-line duality, and nearest-neighbour
searches. This is explained in Section 2.2.2.
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2.2.1 Generic algorithm specialized for unit disks

Let us first introduce some notation. Recall that s and t are the two points to separate.
Each walk W in the graph G = G61(P ) defines a planar polygonal curve in the obvious
way: we connect the points of P with segments in the order given by W . We will relax the
notation slightly and denote also by W the curve itself. For any spanning tree T of G and
any edge e ∈ E(G) \ E(T ), let cycle(T, e) be the unique cycle in T + e. Finally, for any
walk in G(P ), let cr2(st,W ) be the modulo 2 value of the number of crossings between
the segment st and (the curve defined by) W . The following property is implicit in [2] and
explicit in [4]:

Let T be any spanning tree of G. The set of unit disks with centers in P
separate s and t if and only if there exists some edge e ∈ E(G) \ E(T ) such
that cr2(st, cycle(T, e)) = 1.

A consequence of this is that finding a minimum separation amounts to finding a
shortest cycle in G that crosses the segment st an odd number of times. Moreover, one can
show that we can restrict our search to a very concrete family cycles, as follows. Consider
any optimal cycle W ∗ and let r∗ be any vertex in W ∗. Fix a shortest-path tree Tr∗ from
r∗ in G. When there are many, the choice of Tr∗ is irrelevant. Then, the set of cycles

{cycle(Tr∗ , e) | e ∈ E(G) \ E(Tr∗)}

contains an optimal solution. This follows from the co-called 3-path condition. We include
here the key property that implies this claim and spell out a self-contained proof. See [2]
for very similar ideas.

Lemma 2. Let W ∗ be a shortest cycle in G that crosses the segment st an odd number of
times and let r∗ be any vertex in W ∗. Fix a shortest-path tree Tr∗ from r∗ in G. Then, the
set of cycles {cycle(Tr∗ , e) | e ∈ E(G) \E(Tr∗)} contains a shortest cycle of G that crosses
st an odd number of times.

Proof. For any points p and q of P , let Tr∗ [p → q] be the unique path contained in Tr∗

from p to q. For every edge pq of G, let walk(Tr∗ , pq) be the closed walk that follows
Tr∗ [r

∗ → p], then the edge pq, and finally Tr∗ [q → r∗]. We then have the following relation
modulo 2:∑

pq∈W ∗
cr2(st,walk(Tr∗ , pq))

=
∑

pq∈W ∗

(
cr2(st, Tr∗ [r

∗ → p]) + cr2(st, pq) + cr2(st, Tr∗ [q → r∗])
)

=
∑

pq∈W ∗
cr2(st, pq)

= cr2(st,W
∗)

= 1.

In the second equality we have used that each path Tr∗ [r
∗ → p] and its reverse Tr∗ [p→ r∗]

appears an even number of times in the sum, and thus cancel out modulo 2. Parity implies
that, for some edge p0q0 of W ∗, we have cr2(st,walk(Tr∗ , p0q0)) = 1. It must be that
p0q0 /∈ E(Tr∗) because for each edge pq of Tr∗ it holds cr2(st,walk(Tr∗ , pq)) = 0.

Since cr2(st,walk(Tr∗ , p0q0)) = cr2(st, cycle(Tr∗ , p0q0)) because the path from r∗ to
the lowest common ancestor of p and q in Tr∗ is counted twice on the left side of the
equality, we have cr2(st, cycle(Tr∗ , p0q0)) = 1.
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Since r∗ is a vertex of W ∗ and p0q0 is an edge of W ∗, the length of W ∗ is at least the
length of Tr∗ [r

∗ → p0] plus 1, for the edge p0q0, plus the length of Tr∗ [q0 → r∗]. However,
this second part is exactly the length of walk(Tr∗ , p0q0), which is at least the length of
cycle(Tr∗ , p0q0).

We have shown that, for some edge p0q0 ∈ E(G) \ E(Tr∗), the cycle cycle(Tr∗ , p0q0) is
not longer than W ∗ and crosses st an odd number of times. The result follows.

Since we do not know a vertex r∗ in the shortest cycle of G, we just try all possible roots
as candidates. (This leads to the option of having a randomized algorithm, by selecting
some roots at random, for the case where the optimal solution is large.) Thus, for each
vertex r of G, we fix a shortest-path tree Tr from r in G, and then the size of the optimal
solution is given by

min{1 + dG(r, p) + dG(r, q) | r ∈ P, pq ∈ E(G) \ E(Tr), cr2(st, cycle(Tr, pq)) = 1}.

The values cr2(st, cycle(Tr, e)) can be computed in constant amortized time per edge
with some easy bookkeeping, as follows. Consider a fixed tree Tr. For each point p ∈ P we
store N [p] as the parity of the number of crossings of the path in Tr from r to p. When
p is not the root, the value N [p] can be computed from the value of its parent π[p] in Tr
using that N [p] = N [π[p]] + cr2(st, pπ[p]). In the algorithm we have written it this way
(lines 4–6), but one can also compute the values at the time of computing the shortest
path tree Tr.

We then have for each shortest-path tree Tr

∀pq ∈ E(G) \ E(Tr) : cr2(st, cycle(Tr, pq)) = N [p] +N [q] + cr2(st, pq) (mod 2)

∀pq ∈ E(Tr) : 0 = N [p] +N [q] + cr2(st, pq) (mod 2)

because crossings that are counted twice cancel out modulo 2. In particular, the path in
Tr from r to the lowest common ancestor of p and q is counted twice. This implies that we
can just check for all edges pq of G whether the sum N [p] +N [q] + cr2(st, pq) is 0 modulo
2. The final resulting algorithm, denoted as GenericMinimumSeparation, is given in
Figure 3. '

&

$

%

GenericMinimumSeparation(P, s, t)

1 best = ∞ // length of the best separation so far
2 for r ∈ P
3 (dist [ ], π[ ]) = shortest path tree from r in G(P )

// Compute N [ ]
4 N [r] = 0
5 for p ∈ P \ {r} in non-decreasing values of dist [p]
6 N [p] = N [π[p]] + cr2(st, pπ[p]) (mod 2)
7 for pq ∈ E(G(P ))
8 if N [p] +N [q] + cr2(pq, st) (mod 2) = 1
9 best = min{best , dist [p] + dist [q] + 1}

10 return best

Figure 3: Adaptation of the generic algorithm to compute the minimum separation for
unit disks.
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Let us look into the time complexity of the algorithm. For each point r ∈ P we have to
compute a shortest-path tree in G. This can be done in O(n log n) in our case, as discussed
in Section 2.1. Then, for each edge pq of G some constant amount of work is done. Thus
for each point r we spend O(n log n+ |E(G)|). This is cubic in the worst-case. We could
get an improved running time if we can treat all the edges of G compactly. This is what
we explain next.

2.2.2 Compact treatment of edges

From now on we will assume that s is the origin and t is the point (0, τ), with τ > 0. Thus,
the segment st is vertical and t is above s. The implementation just assumes that st is
vertical with s below t. A simple rigid transformation can be applied to the input to get
to this setting.

We will use the data structure in the following lemma. It is essentially a multi-level
data structure consisting of a 2-dimensional range tree T with a data structure for nearest
neighbour at each node of the secondary structure of T .

Lemma 3. Let B be a set of n points with positive x-coordinates. We can preprocess
B in O(n log3 n) time such that, for any query point a with negative x-coordinate, we
can decide in O(log3 n) time whether the set {b ∈ B | ab intersects σ and |ab| 6 1} is
empty. The same data structure can handle queries to know whether the set {b ∈ B |
ab does not intersect σ and |ab| 6 1} is empty.

Proof. We are going to use point-line duality and range trees. These are standard concepts
in Computational Geometry; see for example [6, Chapters 5 and 8]. We assume that the
reader is familiar with the topic. Figure 4 may be helpful in the following discussion.

L∗
b1

L∗
b2

L∗
b5

L∗
b4
L∗
b3

s

t

a

b1

b2

b3
b4

b5

t∗

primal dual

s∗
L∗
a

ϕ1

ϕ2

ϕ(a) ϕ(b1)
ϕ-plane

ϕ1

ϕ2

ϕ(b2)

ϕ(b3)

ϕ(b4)
ϕ(b5)

σ∗

Figure 4: Transformation in the proof of Lemma 3.

We use the following precise point-line duality: the non-vertical line ` ≡ y = mx+ c is
mapped to the point `∗ = (m,−c) and vice-versa. Let L be the set of non-vertical lines.
Let σ be the line segment st. Let σ∗ be the set of points dual to non-vertical lines that
intersect σ. Thus

σ∗ = {l∗ | ` ∈ L, ` ∩ σ 6= ∅}.

Since we assumed that s = (0, 0) and t = (0, τ), in the dual space σ∗ is the horizontal slab

σ∗ = {(m,−c) ∈ R2 | 0 6 c 6 τ}.

For every point p ∈ R2, outside the y-axis, let L∗p be the set of points dual to the lines
through p that intersect σ:

L∗p = {`∗ | ` ∈ L, p ∈ `, and σ ∩ ` 6= ∅}.
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In the dual space, L∗p is a segment with endpoints (ϕ1(p), 0) and (ϕ2(p),−τ), for some
values ϕ1(p) and ϕ2(p) that are easily computable. Namely, ϕ1(p) is the slope of the line
through p and (0, 0) while ϕ2(p) is the slope of the line through p and (0, τ). The segment
L∗p is contained in the slab σ∗ and has the endpoints on different boundaries of σ∗. Finally,
define the mapping ϕ(p) = (ϕ1(p), ϕ2(p)). Thus, ϕ maps points in the plane with nonzero
x-coordinate to points in the plane.

Let a be any point to the left of the y-axis and let b be a point to the right of the y-axis.
The segment ab intersects σ if and only if L∗a intersects L∗b . Namely, an intersection of L∗a
and L∗b is dual to the line through a and b. The segments L∗a and L∗b intersect if and only
if the order of their endpoints on the boundaries of σ∗ are reversed. Moreover, since a is to
the left of the y-axis and b is to the right of the y-axis, if the segment ab intersects σ, then
ϕ1(a), the slope of the line through a and (0, 0), is smaller than ϕ1(b), the slope of the line
through b and (0, 0). Thus we have the following property:

ab ∩ σ 6= ∅ ⇐⇒ ϕ1(a) 6 ϕ1(b)) and ϕ2(a) > ϕ2(b)).

Given a point a to the left of the y axis, the set of points b ∈ B with the property that ab
intersects σ corresponds to the points b with ϕ(b) in the bottom-right quadrant with apex
ϕ(a).

We can use a 2-dimensional range tree to store the point set ϕ(B), where each point
b ∈ B is identified with its image ϕ(b). Moreover, for each node v in the secondary level of
the range tree, we store a data structure for nearest neighbours for the canonical set P (v)
of points that are stored below v in the secondary structure.

For any query a ∈ A, the points b ∈ B such that ab intersects σ are obtained by
querying the 2-dimensional range tree for the points of ϕ(B) contained in the quadrant

{(x, y) | ϕ1(a) 6 x and ϕ2(a) > y}.

This means that we get the set {b ∈ B | ab intersects σ} as the union of canonical subsets
P (v1), . . . , P (vk) for k = O(log2 n) nodes in the secondary levels of the 2-dimensional range
tree. For each such canonical subset P (vi), we query for the nearest neighbour of a. If
for some vi we get a nearest neighbour at distance at most 1 from a, then we know that
{b ∈ B | ab intersects σ and |ab| 6 1} is non-empty. Otherwise the set is empty.

The construction time of the 2-dimensional range tree is O(n log n). Each point
appears in O(log2 n) canonical subsets P (v). This means that

∑
v |P (v)| = O(n log2 n),

where the sum iterates over all nodes v in the secondary data structure. Since for each
node v in the secondary level we build a data structure for nearest neighbours, which
takes O(|P (v)| log |P (v)|), the total construction time is O(n log3 n). For the query time,
the standard 2-dimensionsal range tree takes O(log2 n) time to find the O(log2 n) nodes
v1, . . . , vk such that

k⋃
i=1

P (vi) = {b ∈ B | ab intersects σ},

and then we need additional O(log n) time per node to query for a nearest neighbor.
Answering the queries for {b ∈ B | ab does not intersect σ and |ab| 6 1} is done simi-

larly (and the same data structure works), we just have to query for 2 of the other quadrants.
(The top-left quadrant of ϕ(a) is always empty.)

Inside the data structure of Lemma 3 we are using a data structure for nearest
neighbours with construction time O(n log n) and query time O(log n). If we would use
another data structure for nearest neighbours with construction time Tc(n) and query time
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Tq(n), then the construction time in Lemma 3 becomes O(Tc(n log2 n)) and the query time
is O(Tq(n) · log2 n).

From the theoretical perspective is would be more efficient to compute the union⋃
b∈B
{(x, y) ∈ R2 | x < 0, |(x, y)b| 6 1, (x, y) intersects σ}

and make point location there. Since the regions cannot have many crossings, good
asymptotic bounds can be obtained. However, such approach seems to be only of theoretical
interest and the improvement on the overall result is rather marginal.

Consider now a fixed root r. Assume that we have computed the shortest path tree Tr
and the corresponding tables π[ ], dist [ ] and N [ ], as discussed in Section 2.2.1. We group
the points by their distance from r:

Wi = {p ∈ P | dist [p] = i}, i = 0, 1, . . .

A standard property of BFS trees, that also holds here, is that all the distances from the
root for any two adjacent vertices differ by at most 1. That is, the neighbours of a point
p ∈ P in G are contained in Wdist [p]−1 ∪Wdist [p] ∪Wdist [p]+1. We will exploit this property.

We make groups Lj
i and Rj

i (where L stands for left and R for right) defined by

Lj
i = {p ∈ P | dist [p] = i, p.x < 0, N [p] = j}, where j = 0, 1 and i = 0, 1, . . .

Rj
i = {p ∈ P | dist [p] = i, p.x > 0, N [p] = j}, where j = 0, 1 and i = 0, 1, . . .

We are interested in edges pq of G such that N [p] +N [q] + cr2(st, pq) = 1 (mod 2). Up to
symmetry (exchanging p and q), this is equivalent to pairs of points (p, q) in one of the
following two cases:

• for some i ∈ N and some j ∈ {0, 1}, we have p ∈ Lj
i∪R

j
i , q ∈ L

1−j
i ∪R1−j

i ∪L1−j
i−1∪R

1−j
i−1 ,

|pq| 6 1, and pq does not cross st;

• for some i ∈ N and some j ∈ {0, 1}, we have p ∈ Lj
i ∪R

j
i , q ∈ L

j
i ∪R

j
i ∪ L

j
i−1 ∪R

j
i−1,

|pq| 6 1, and pq crosses st.

Each one of these cases can be solved efficiently. Up to symmetry, we have the following
cases:

• If we want to search the candidates (p, q) ∈ Lj
i ×L

1−j
i′ (that cannot cross st since they

are on the same side of the y-axis), we first preprocess L1−j
i′ for nearest neighbours.

Then, for each point p in Lj
i , we query the data structure to find its nearest neighbour

qp in Lj
i . If for some p we get that |pqp| 6 1, then we have obtained an edge pqp of G

with cr2(cycle(Tr, pqp)) = 1 and dist [p] + dist [qp] + 1 = i+ i′ + 1. If for each p we

have |pqp| > 1, then Lj
i × L

1−j
i′ does not contain any edge of G. The overall running

time, if m = |Lj
i |+ |L

1−j
i′ |, is O(m logm).

• If we want to search the candidates (p, q) ∈ Lj
i × R

j
i′ such that pq crosses st, we

first preprocess R1−j
i′ as discussed in Lemma 3 into a data structure. Then, for each

point p ∈ Lj
i we query the data structure (for crossing st). If we get some nonempty

set, then there is an edge pq of G with p ∈ Lj
i , q ∈ R

j
i′ , cr2(cycle(Tr, pq)) = 1 and

dist [p] + dist [q] + 1 = i+ i′+ 1. Otherwise, there is no edge pq ∈ Lj
i ×R

j
i′ that crosses

st. The overall running time, if m = |Lj
i |+ |R

j
i′ |, is O(m log3m).
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• If we want to search the candidates (p, q) ∈ Lj
i ×R

1−j
i′ such that pq does not cross st,

we first preprocess R1−j
i′ as in Lemma 3 into a data structure. Then, for each point

p ∈ Lj
i we query the data structure (for not crossing st). The remaining discussion is

like in the previous item.

We conclude that each of the cases can be done in O(m log3m) worst-case time, where m is
the number of points involved in the case. Iterating over all possible values i, it is now easy
to convert this into an algorithm that spends O(n log3 n) time per root r. We summarize
the result we have obtained. This improves for the case of unit disks the previous, generic
algorithm.

Theorem 4. The minimum-separation problem for n unit disks can be solved in O(n2 log3 n)
time.

Proof. Let P be the centers of the disks and, as before, consider the graph G = G61(P ).
For each root r ∈ P we build the shortest-path tree and the sets Wi, L

0
i , L

1
i , R

0
i , L

1
i for all

i in O(n log n) time. We then have at most n iterations where, at iteration i, we spend
O(|Wi ∪Wi−1| log3 |Wi ∪Wi−1|) time. Since the sets Wi are disjoint, adding over i, this
means that we spend O(n log3 n) time per root r ∈ P .

Correctness follows from the foregoing discussion and the fact that the algorithm is
computing the same as the generic algorithm.

The resulting new algorithm is given in Figure 5. As before, the variable best stores the
length of the shortest cycle (or actually rooted closed walk) that we have found so far. We
can start setting best = n+ 1 at start. If eventually we finish with the value best = n+ 1,
it means that there is no feasible solution for the separation problem. When we consider a
root r we are interested in closed walks rooted at r and length at most best . Since any
closed walk through a vertex of Wi has length at least 2i, we only need to consider indices i
such that 2i < best . Moreover (and this is not described in the algorithm, but it is done in
the implementation), we can consider first the pairs that give walks for length 2i first, like
for example L0

i × L1
i−1 and then the ones that give length 2i+ 1, like for example L0

i × L1
i .

If we use this order, as soon as we find an edge in the while-loop, we can finish the work
for the root r, and move onto the next root.

3 Implementation and experiments

We have implemented the algorithms of Section 2 in C++ using CGAL version 4.6.3 [19]
because it provides the more complex procedures we need: Delaunay triangulations and
Voronoi diagrams [12], range trees [17], and nearest neighboours [18]. Although in some
cases we had to make small modifications, it was very helpful to have the CGAL code
available as a starting point. The coordinates of the points were Cartesian doubles.

Experiments were carried out in a laptop with CPU i7-6700HQ at 2.60 Ghz, 8GB of
RAM, and Windows 10. All times we report are in seconds.

Data generation Data points were generated uniformly at random in the following
polygonal domains: rectangles without holes, rectangles with a ”small” rectangular hole,
rectangles with a ”large” rectangular hole, rectangles with 4 ”small” rectangular holes, and
rectangles with 4 ”large” rectangular holes. The precise proportions of the domains with
holes are in Figures 6 and 7. We generated 1K, 2K, 5K, 10K, 20K and 50K points for the
cases where the outer rectangle has sizes 4× 1, 8× 2,. . . , 128× 32. The data was generated
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SeparationUnitDisksCompact(P, s, t)

1 best = n+ 1 // length of the best separation so far
2 for r ∈ P
3 (dist [ ], π[ ]) = shortest path tree from r in G61(P )

// Compute the levels Wi

4 for i = 0 . . . n
5 Wi = new empty list
6 for p ∈ P
7 add p to Wdist [p]

// Compute N [ ] for the elements of Wi and
// and construct L0

i , L
1
i , R

0
i , R

1
i

8 N [r] = 0
9 for i = 1 . . . n

10 for p ∈Wi

11 N [p] = N [π[p]] + cr2(st, pπ[p]) (mod 2)
12 if p to the left of the y-axis

13 add p to L
N [p]
i

14 if p to the right of the y-axis

15 add p to R
N [p]
i

16 i = 1
17 while 2i < best and Wi 6= ∅

// length 2i; within each side of the y-axis
18 search candidates in L0

i × L1
i−1

19 search candidates in L1
i × L0

i−1
20 search candidates in R0

i ×R1
i−1

21 search candidates in R1
i ×R0

i−1
// length 2i; across y-axis crosing σ

22 search candidates in L0
i ×R0

i−1 crossing σ
23 search candidates in L1

i ×R1
i−1 crossing σ

24 search candidates in L0
i−1 ×R0

i crossing σ
25 search candidates in L1

i−1 ×R1
i crossing σ

// length 2i; across y-axis not crosing σ
26 search candidates in L0

i ×R1
i−1 not crossing σ

27 search candidates in L1
i ×R0

i−1 not crossing σ
28 search candidates in L0

i−1 ×R1
i not crossing σ

29 search candidates in L1
i−1 ×R0

i not crossing σ
// length 2i+ 1; within each side of the y-axis

30 search candidates in L0
i × L1

i

31 search candidates in R0
i ×R1

i

// length 2i+ 1; across y-axis crosing σ
32 search candidates in L0

i ×R0
i crossing σ

33 search candidates in L1
i ×R1

i crossing σ
// length 2i+ 1; across y-axis not crosing σ

34 search candidates in L0
i ×R1

i not crossing σ
35 search candidates in L1

i ×R0
i not crossing σ

36 i = i+ 1
37 return best

Figure 5: New algorithm for minimum separation with unit disks.

once and stored. For the minimum-separation problem s was placed in the middle of a
hole and t vertically above s in the outer face. Some of these domains are not meaningful
for the minimum-separation problem because the disks centered at the points cover s.
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Figure 6: Data generation with a small hole (left) and a large hole (right).
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Figure 7: Data generation with four small holes (right) and four large holes (right).

Shortest-path tree in unit-disk graphs We have implemented the algorithm de-
scribed in Section 2.1. For the shortest-path tree we used the Delaunay triangulation as
provided by CGAL. The data structure for nearest neighbour queries is a small extension
of the one provided by [12], which in turn is based on the Delaunay triangulation. When
making a query for nearest neighbour of p in Wi−1 (line 17 in Figure 2), we have the option
to provide an extra parameter that acts as some sort of hint: if the nearest neighbour is
near the hint, the algorithm is faster. For our implementation, we exploit this as follows.
Consider an iteration of the while loop (lines 13–22). If the point q is from Wi−1 then we
use a point in a face of DT (Wi−1) incident to q as the hint for all the points p considered in
the iteration. If the point q is not from Wi−1, then we already know that q ∈Wi and thus
π[q] ∈Wi−1. In this case we use use a point in a face of DT (Wi−1) incident to π[q] as hint
for all the points p considered in the iteration. Using such hints reduced the running time
substantially, so we used this feature in the implementation. Note that this improvement
does not come with guarantees in the worst-case. In the tables we refer to this algorithm
as SSSP .

We compared the implementation with two obvious alternative algorithms to compute
shortest-path trees. The first alternative is to build the graph G = G61(P ) explicitly. Thus,
for each pair of points p, q we check whether their distance is at most one and add an edge
to a graph data structure. We can then use breadth-first-search (BFS) from the given root
r. The preprocessing is quadratic, and the time spent to compute a shortest-path tree
depends on the density of the graph G. In the tables we refer to this algorithm as BFS .

The second alternative we consider is to use a unit-length grid. Two points (x, y) and
(x′, y′) are in the same grid cell if and only if (bxc, byc) = (bx′c, by′c). We store all the
points of a grid cell c in a list `(c). The non-empty lists `(c) are stored in a dictionary,
where the bottom-left corner of the cell is used as key. We can then run some sort of BFS
using this structure. The list `(c) for a cell c maintains the points that have not been
visited by the BFS tree yet. When processing a point p in a cell c, we have to treat all
the points in the lists of c and its 8 adjacent cells as candidate points. Any point that is
adjacent to p is then removed from the list of its cell. The preprocessing is linear, and
the time spent to compute a shortest-path tree depends on the distribution of the points.
It is easy to produce cases where the algorithm would need quadratic time. For each

12



shortest-path tree we compute the lists and the dictionary anew. (This step is very fast in
any case.) In the tables we refer to this algorithm as grid .

As mentioned earlier, we did not implement the algorithm of Chan and Skrepetos [5]
because of time constraints. We expect that it would work good.

The measured times are in Tables 1–5. For SSSP and BFS we report the preprocessing
time that is independent of the source (like building the Delaunay triangulation or building
the graph) and the average time spent for a shortest-path tree over 50 choices of the root.
For grid we just report the total running time; assigning points to the grid cells and putting
them into a dictionary is almost negligible. As it can be seen, the results for SSSP are
very much independent of the shape and, for dense point sets it outperforms the other
algorithms.

While the algorithm SSSP has guarantees in the worst case, for BFS and grid one
can construct instances where the behavior will be substantially bad. For example, to
the instance with 10K points in a rectangle of size 32× 8 with a small hole we added 1K
points quite cluttered. The increase in time with respect to the original instance was for
SSSP 9,7% (preprocessing) and 13,6% (one root), for BFS it was 21,9% (preprocessing)
and 56,5% (one root), and for grid it was 25%.

Rectangle without holes 20K points
size rectangle 4× 1 8× 2 16× 4 32× 8 64× 16 128× 32

SSSP preprocessing 0.018 0.018 0.018 0.018 0.019 0.021
SSSP average/root 0.011 0.012 0.012 0.012 0.013 0.013
BFS preprocessing 18.70 13.46 12.03 11.40 11.32 11.13
BFS average/root 2.437 1.018 0.321 0.069 0.017 0.005
grid 1.309 1.130 0.474 0.160 0.060 0.035

50K points

SSSP preprocessing 0.051 0.050 0.053 0.051 0.051 0.053
SSSP average/root 0.034 0.037 0.037 0.036 0.035 0.036
BFS preprocessing >2min 86.12 74.76 74.15 72.41 71.49
BFS average/root memory limit 6.524 2.422 0.510 0.119 0.035
grid 6.297 7.125 3.188 0.923 0.301 0.139

Table 1: Times for shortest paths in rectangles without holes.

Minimum separation with unit-disk We have implemented the algorithm Gener-
icMinimumSeparation and the new algorithm based on a compact treatment of the edges.
The shortest-path trees are constructed using the algorithm of Section 2.1. The table N [ ]
and the sets L0

i , L
1
i , R

0
i , R

1
i are constructed at the time of computing the shortest-path tree.

In the data structure of Lemma 3, we do use a 2-dimensional tree as the primary
structure, making some modifications of [17]. In the secondary structure, for nearest
neighbour, instead of using Voronoi diagrams, we used a small modification of the kd-trees
implemented in [18]. In some preliminary experiments this seemed to be a better choice.
In our modification, we make a range search query for points at distance at most 1, and
finish the search whenever we get the first point. In the new algorithm, before calling
to the function to candidates pairs, like for example L0

i ×Ri
1, we test that both sets are

non-empty. This simple test reduced the time by 30-50% in our test cases.
Besides the new algorithm we also implemented the generic algorithm of Section 2.2.1.

The measured times are in Tables 6–7. For the case of 4 holes we always put t above the
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Rectangle 1 small hole 10K points
size rectangle 4× 1 8× 2 16× 4 32× 8 64× 16 128× 32

SSSP preprocessing 0.011 0.012 0.009 0.010 0.010 0.009
SSSP average/root 0.004 0.005 0.005 0.005 0.006 0.006
BFS preprocessing 3.724 3.033 2.890 2.826 2.874 2.841
BFS average/root 0.587 0.248 0.078 0.021 0.006 0.002
grid 0.258 0.313 0.119 0.049 0.022 0.015

20K points

SSSP preprocessing 0.019 0.019 0.019 0.019 0.018 0.023
SSSP average/root 0.010 0.012 0.011 0.012 0.013 0.013
BFS preprocessing 15.22 13.47 11.51 11.66 11.73 11.38
BFS average/root 2.402 1.045 0.369 0.088 0.023 0.006
grid 1.122 1.339 0.461 0.181 0.074 0.036

Table 2: Times for shortest paths in rectangles with a small hole.

Rectangle 1 large hole 5K points 10K points
size rectangle 32× 8 64× 16 128× 32 32× 8 64× 16 128× 32

SSSP preprocessing 0.004 0.005 0.005 0.009 0.010 0.010
SSSP average/root 0.002 0.002 0.002 0.005 0.005 0.005
BFS preprocessing 0.751 0.767 0.742 2.783 3.175 2.804
BFS average/root 0.006 0.003 0.002 0.025 0.012 0.006
grid 0.018 0.012 0.008 0.053 0.032 0.022

Table 3: Times for shortest paths in rectangles with a large hole.

rectangle and s in one hole. It seems that the choice of the hole does not substantially
affect the experimental time in our setting.

To show that our new algorithm can work substantially faster than the generic algorithm,
we created an instance where we expect so. For this we take the rectangle of size 32× 8
with one small hole, the original 2K points, and add 500 extra points on a vertical strip
of width 1 within the domain and symmetric with respect to segment st. The generic
algorithm took 435 seconds and the new algorithm took 94 seconds. If instead we add 1K
points, the generic algorithm takes more than 15 minutes and the new algorithm takes 173
seconds.

References

[1] S. Bereg and D. G. Kirkpatrick. Approximating barrier resilience in wireless sensor
networks. Proc. 5th ALGOSENSORS, pp. 29–40. Springer, LNCS 5804, 2009, http:
//dx.doi.org/10.1007/978-3-642-05434-1_5.

[2] S. Cabello and P. Giannopoulos. The complexity of separating points in the plane. Al-
gorithmica 74(2):643–663, 2016, http://dx.doi.org/10.1007/s00453-014-9965-6.
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