
Reconstruction of the Path Graph

Chaya Keller1 ? and Yael Stein2 ??

1 Department of Mathematics, Ben-Gurion University of the Negev Beer-Sheva
84105, Israel

2 Department of Computer Science, Ben-Gurion University of the Negev Beer-Sheva
84105, Israel

Abstract. Let P be a set of n ≥ 5 points in convex position in the
plane. The path graph G(P) of P is an abstract graph whose vertices
are non-crossing spanning paths of P , such that two paths are adjacent
if one can be obtained from the other by deleting an edge and adding
another edge.
We prove that the automorphism group of G(P) is isomorphic to Dn, the
dihedral group of order 2n. The heart of the proof is an algorithm that
first identifies the vertices of G(P) that correspond to boundary paths
of P , where the identification is unique up to an automorphism of K(P)
as a geometric graph, and then identifies (uniquely) all edges of each
path represented by a vertex of G(P). The complexity of the algorithm
is O(N logN) where N is the number of vertices of G(P).

1 Introduction

A geometric graph is a graph whose vertices are a finite set of points in general
position in the plane, and whose edges are closed segments connecting distinct
points. We consider the complete convex geometric graph K(P), in which the
vertex set is a convex set P of n points in the plane, and the edges are all segments
connecting pairs of vertices. Without loss of generality we will henceforth assume
that P is the vertex set of a regular n-gon.

Definition 1 Let P be a set of n points in the plane. The path graph G(P)
is defined as follows. The vertices of G(P) are the simple (i.e., non-crossing)
spanning paths of K(P). Two such vertices are adjacent in G(P) if they differ
in exactly two edges, i.e., if one can be obtained from the other by deleting an
edge and adding another edge.

? The work of the first author was partially supported by by Grant 635/16 from
the Israel Science Foundation, by the Shulamit Aloni Post-Doctoral Fellowship of
the Israeli Ministry of Science and Technology, by the Kreitman Foundation Post-
Doctoral Fellowship and by the Hoffman Leadership and Responsibility Program of
the Hebrew University.

?? The work of the second author was partially supported by the Lynn and William
Frankel Center for Computer Science and by grant 680/11 from the Israel Science
Foundation (ISF).

1

ar
X

iv
:1

80
1.

00
32

8v
1

 [
m

at
h.

C
O

]
 3

1
D

ec
 2

01
7

The path graph was introduced in 2001 by Rivera-Campo and Urrutia-
Galicia [13] who showed that when P is in convex position, G(P) is Hamil-
tonian. Following [13], several works studied G(P) in the convex case. Akl et
al. [3] showed that |V (G(P))| = n2n−3 and that diam(G(P)) ≤ 2n − 5. Chang
and Wu [6] determined the diameter exactly, showing that diam(G(P)) = 2n−5
for n = 3, 4 and diam(G(P)) = 2n−6 for n ≥ 5. Fabila-Monroy et al. [8] showed
that the chromatic number of G(P) is n. Wu et al. [15] presented algorithms for
generating plane spanning paths efficiently. The general (i.e., non-convex) case
is less-studied, and it is not known even whether G(P) is connected for all P
(see [3]).

The study of G(P) evolved from the study of the geometric tree graph T (P)
which has all non-crossing spanning trees of P as its vertices, and two vertices
are adjacent in G(P) if they differ in exactly two edges. Defined by Avis and
Fukuda [4] as the geometric counterpart of the classical tree graph [7], T (P)
was studied in quite a few works, both in the convex and in the general case
(e.g., [1, 2, 9–12]).

Some of the central results on T (P), such as Hamiltonicity and upper/lower
bounds on the diameter (see [4,10]) already have counterparts for G(P) (proved
in [3, 6, 13]). In this paper we establish a counterpart of another result: exact
determination of the automorphism group in the convex case. For T (P), Her-
nando et al. [10] showed that Aut(T (P)) is Dn, the dihedral group of rotations
and reflections of a regular n-gon. Since Aut(K(P)) ∼= Dn, it follows that Dn is
isomorphic to a subgroup of Aut(G(P)).

Our main result is that there are no other automorphisms on G(P).

Theorem 2. Let P be a set of n ≥ 5 points in convex position in the plane, and
let G(P) be its path graph. Then Aut(G(P)) ∼= Dn.

The proof of Theorem 2 relies on an algorithm that allows recovering all
edges of each path represented by a vertex of G(P) (up to an automorphism of
K(P) as a geometric graph), given G(P) as an abstract graph. The algorithm
exploits analysis of maximal cliques in G(P), following an approach pioneered by
Urrutia-Galicia [14]. First, we use the structure of the max-cliques to identify an
ordered subset of n vertices ofG(P) that corresponds to the boundary paths of P ,
where the identification is fixed up to an automorphism of K(P). Then we show
that once the ordered subset is fixed, all edges of each path can be determined
uniquely by examining distances between various vertices of G(P). The running
time of the algorithm is O(N logN) where N = |V (G(P))|, which is close to
optimal, since for each of the N vertices of G(P) we recover the n−1 = Θ(logN)
edges in the path it represents. It should be noted that the determination of
Aut(T (P)) in [10] is non-constructive, and no efficient algorithm is known for
full recovery of T (P). In this sense, our result is stronger than the analogous
result on T (P). Likewise, while the technique of Urrutia-Galicia [14] was used
in several previous works, this is the first time it is used for complete recovery
of G(P), thus solving completely a natural graph reconstruction problem (see,
e.g., [5] for a definition and survey of reconstruction problems).

2

The paper is organized as follows. Hereinafter, we present notations and
a simple observation used throughout the paper. In Section 2 we study the
structure of maximal cliques in G(P). In Section 3 we prove the main theorem.
We conclude the paper with a complexity analysis, in Section 4, and a few open
problems.

Notations

In this section we present notations and simple observations that will be used in
the sequel.

Throughout the paper, P is a set of points in convex position in the plane.
The edges of K(P), the complete geometric graph on P , are divided into two
classes: n boundary edges of Conv(P) and

(
n
2

)
−n diagonals, i.e., edges internal to

Conv(P). We denote the set of boundary edges by B(P), and say that x, y ∈ P
are neighboring if (x, y) ∈ B(P). An automorphism of K(P) as a geometric
graph is an automorphism of K(P) as an abstract graph that, in addition, maps
crossing edges into crossing edges and non-crossing edges into non-crossing edges.

As defined above, G(P) denotes the (non-crossing) spanning path graph of
P . For v ∈ V (G(P)), P (v) denotes the path represented by v. For the sake
of convenience, we sometimes use the term P (v) also for the edge-set of the
path represented by v. We stress that we usually denote this edge-set by v; the
notation P (v) is used for it only in places when the meaning is clear from the
context.

The set of boundary edges of P (v), that is, P (v)∩B(P), is denoted by B(v).
The set of diagonals of P (v) is denoted by D(v) = P (v) \ B(v). P (v) is called a
boundary path if all its edges are boundary edges. We denote the set of vertices
of G(P) that represent boundary paths by B. Note that while B(v) denotes the
boundary edges of a specific path, B denotes a subset of the vertices of G(P).

For any graph G, the distance between vertices x, y, denoted dist(x, y), is the
shortest length of a path in G from x to y. The distance of a vertex from a set C
of vertices is defined as dist(x, C) = miny∈C dist(x, y). The degree of a vertex v in
a graph G is the number of edges of G that emanate from v, and is denoted by
degG(v). A vertex is called a leaf if its degree is 1. An edge is called a leaf edge
if one of its endpoints is a leaf. A vertex that is not a leaf is called an internal
vertex.

We use the following simple observation on the structure of simple spanning
paths of P .

Observation 3 Let S be a simple spanning path of a set P of points in convex
position in the plane. Then:

1. Both leaf edges of S are boundary edges.
2. If S is not a boundary path, then its leaves cannot be neighboring vertices of

the boundary.

The easy proof of the observation is omitted.

3

2 Maximal Cliques in G(P)

The reconstruction of the paths represented by vertices of G(P) requires a ful-
crum to start with. Our fulcrum is understanding of the maximal cliques in
G(P). We note that the approach of exploiting maximal cliques for this purpose
was pioneered by Urrutia-Galicia [14] in the context of geometric tree graphs,
and used recently in [12].

Definition 4 A max-clique in a graph G is a maximal (with respect to inclusion)
clique included in G. Since a max-clique is a complete graph on its vertex set,
we shall identify a max-clique with its set of vertices.

We start our discussion of max-cliques with purely combinatorial consid-
erations that do not exploit the geometric nature of the problem. Let u, v ∈
V (G(P)) be neighbors. We denote by ū and v̄ the sets of edges of P (u) and
P (v), respectively. Clearly, |ū∪ v̄| = n, |ū∩ v̄| = n− 2, and |ū4v̄| = 2. Let w be
a common neighbor of u and v in G(P) (if it exists). Since |P (w)| = n− 1 and
P (w) differs from each of P (v), P (u) in exactly two edges, there are exactly two
possibilities for w̄:

1. w̄ ∩ (ū4v̄) = ∅, and then (ū ∩ v̄) ⊂ w̄, i.e., w̄ consists of ū ∩ v̄ plus an
additional edge,

2. (ū4v̄) ⊂ w̄, and then w̄ ⊂ (ū∪ v̄), i.e., w̄ consists of all edges of ū∪ v̄ except
for one edge of ū ∩ v̄.

Note that if w satisfies (1), then each other common neighbor of u, v, w (i.e.,
each other element of the max-clique that contains u, v, w) also satisfies (1).
Conversely, each w,w′ that both satisfy (1) are neighbors. The same holds with
(1) replaced by (2). Hence, we obtain:

Corollary 5 Each edge (u, v) ∈ E(G(P)) is contained in at most two max-
cliques:

– An intersection max-clique

I(u, v) = {w ∈ V (G(P)) : w̄ = (ū ∩ v̄) ∪ {e}, for some e 6∈ ū ∩ v̄},

– A union max-clique

U(u, v) = {w ∈ V (G(P)) : w̄ = (ū ∪ v̄) \ {e}, for some e ∈ ū ∪ v̄.

In addition, given three vertices in a max-clique in G(P), they uniquely deter-
mine its type.

Note that by this definition, u, v ∈ I(u, v) and u, v ∈ U(u, v).

Remark 6 For ease of notation, we call I(u, v) an “intersection max-clique”
even if I(u, v) = {u, v}, i.e., it contains only two vertices. This is a slight abuse
of notation, since in such a case, I(u, v) may be properly contained in U(u, v),
and thus, not be a max-clique by the definition above. Similarly, we call U(u, v)
a “union max-clique” even if |U(u, v)| = 2.

4

Fig. 1. These two Hamiltonian paths are neighbors in G(P), and are included in an
intersection-clique of size 4, and in a union-clique of size 2 (only these two paths).

Now we present a geometric characterization of the two types of max-cliques.

Intersection max-clique. Given two neighbors u, v ∈ V (G(P)), the intersec-
tion ū∩ v̄ can be viewed as a disjoint union of two simple paths (x1, x2, . . . , xk),
(y1, y2, . . . , y`), where {xi}, {yj} ⊂ P , 1 ≤ k, ` ≤ n − 1, and k + ` = n. Each
element in I(u, v), including u and v, is obtained from ū ∩ v̄ by adding one of
the four edges (xk, y`), (xk, y1), (x1, y`), (x1, y1), such that the resulting path is
non-crossing. If none of these four edges crosses edges of ū∩v̄, we get |I(u, v)| = 4
(see Figure 1). If (w.l.o.g.) (x1, y1) crosses e ∈ ū∩ v̄, w.l.o.g. e = (xj , xj+1), then
(x1, y`) also crosses e (since all the path (y1, . . . , y`) lies on the same side of e)
and then |I(u, v)| = 2 (see Figure 2).

Fig. 2. These two Hamiltonian paths are neighbors in G(P), and generate a maximal
clique of size 2. I.e., the intersection-clique is identical to the union-clique, both of size
2.

5

Fig. 3. These two Hamiltonian paths are neighbors in G(P), and are included in an
intersection-clique of size 2 and in a union-clique of size n.

Union max-clique. Given two neighbors u, v ∈ V (G(P)), where P (u) =
(x1, x2, . . . , xn), it is easy to see that ū ∪ v̄ is either of the form ū ∪ {(x1, xj)}
where 2 < j ≤ n, or of the form ū ∪ {(xj , xn)} where 1 ≤ j < n − 1. Assume
w.l.o.g. the former holds.

Each element in U(u, v), including u and v, is obtained from ū∪v̄ by removing
an edge, such that the resulting graph is a non-crossing spanning path. We
distinguish between two cases:

– If ū∪ v̄ = ū∪{(x1, xn)} then the edge (x1, xn) crosses at most one edge of ū
(as otherwise, P (v) cannot be non-crossing). If (x1, xn) crosses e ∈ ū, then
we must have v̄ = ū ∪ {(x1, xn)} \ {e} and |U(u, v)| = 2. If (x1, xn) does
not cross any edge of ū then ū ∪ v̄ is the boundary of Conv(P), and thus
|U(u, v)| = n (see Figure 3).

– If ū ∪ v̄ = ū ∪ {(x1, xj)} for j < n then we must have v̄ = ū ∪ {(x1, xj)} \
{(xj−1, xj)} and then |U(u, v)| = 2.

Summarizing the above, we have the following.

Corollary 7 Let P be a set of n ≥ 5 points in convex position in the plane, and
let G(P) be the path graph of P . Then:

– Each intersection max-clique of G(P) is either of size 2 or 4.
– Among the union max-cliques, all are of size 2 except for a single max-clique

of size n, in which each vertex represents a boundary path that contains all
edges of B(P) except for one.

3 The Automorphism Group of G(P)

In this section we show that given G(P) as an abstract graph, we can recover all
edges of each path represented by a vertex of G(P), up to an automorphism of

6

K(P) as a geometric graph. This clearly implies that Aut(G(P)) is the dihedral
group of order 2n. (For sake of completeness, we prove this easy implication at
the end of the section.)

The proof proceeds in three steps:

1. We detect all vertices of G(P) that represent boundary paths. Namely, we
find an ordered subset of n vertices of G(P) with a bijection between them
and the boundary edges of K(P), fixed up to an automorphism of K(P) as
a geometric graph.

2. We divide all vertices of G(P) into levels according to their distance from
the family of boundary paths, and use the identification of boundary paths
to recover uniquely all boundary edges of each path represented by a vertex
of G(P).

3. We use the relation between vertices at adjacent levels to recover uniquely
all diagonals of each path represented by a vertex of G(P).

3.1 Identification of a “copy” of the boundary of Conv(P) inside
G(P)

As shown in Section 2, B, the set of vertices of G(P) that represent boundary
paths, is a unique max-clique of size n in G(P). This is already a sufficient
identification of B as a set, (i.e., without order), but for sake of obtaining an
efficient algorithm for the reconstruction problem, we suggest here an alternative
identification of B as a set, based on the fact that B is exactly the set of vertices
of maximum degree in G(P):

Claim 8 For any v ∈ B, degG(P)(v) = 3n − 7, and for any u ∈ V (G(P)) \ B,
degG(P)(u) < 3n− 7.

Proof. Let v ∈ B. Any neighbor of v in G(P) represents a simple Hamiltonian
path, obtained from P (v) by deleting an edge and replacing it with another edge.
If the deleted edge is a leaf edge of P (v), only one neighbor of v is obtained,
and if the deleted edge is an internal edge of P (v), then three neighbors of v are
obtained. Indeed, note that deletion of an internal edge transforms P (v) into
two boundary paths of total length n− 2. There are four options to add an edge
that will connect these paths into a single Hamiltonian path. Since P (v) is a
boundary path, all of them constitute simple paths. Exactly one of them is the
original path P (v), and so, deletion of any internal edge contributes 3 neighbors
of v. Hence,

degG(P)(v) = 3(n− 3) + 2 = 3n− 7.

On the other hand, let u ∈ V (G(P))\B. By the definition of B, P (u) contains
a diagonal e, and the two endpoints of P (u) are located on different sides of e.
As above, any neighbor of u in G(P) represents a simple Hamiltonian path,
obtained from P (u) by deleting an edge and replacing it with another edge. If
the deleted edge is a leaf edge of P (u), then after the deletion we are left with a

7

boundary path of length n−2 and an isolated vertex. The new edge replacing the
removal boundary edge has to connect the isolated vertex to one of the leaves of
the boundary path. However, for one of the two leaves, this edge crosses e and so
cannot be added. For the other leaf, we return to the original path P (u). Hence,
u has no neighbor in G(P) that is obtained by deleting a leaf edge of P (u).
Furthermore, by deleting an internal edge of P (u), at most three neighbors of u
can be obtained, as above, and thus degG(P)(v) < 3n− 7. ut

Now, after identifying B as a subset of V (G(P)), note that each v ∈ B can
be represented by the unique boundary edge of P that is not contained in P (v),
which we denote by ev. In order to determine (to the extent possible) what is
the boundary edge ev that corresponds to v, and thus to identify a copy of the
set of boundary edges of K(P) in G(P), we use the following observation.

Observation 9 Let u, v ∈ B. The edges eu and ev share a vertex if and only if
(u, v) is not contained in a maximal clique of size 4 in G(P).

Proof. If eu∩ev = {x} then P (u)∩P (v) is a two-component forest in which one
component is a boundary path S of length n − 2 and the other component is
{x}. In such a case, each element of I(u, v) is obtained by adding to P (u)∩P (v)
an edge that connects x to an endpoint of S. Hence, the only elements of I(u, v)
are u and v. On the other hand, from Corollary 7, |U(u, v)| 6= 4, and therefore
(u, v) is not contained in any maximal clique of size 4.

If eu ∩ ev = ∅, then P (u) ∩ P (v) is a two-component forest in which the
components are boundary paths S, S′ of length ≥ 1, i.e., contain at least two
vertices of P . In such a case, there are four different edges connecting an endpoint
of S to an endpoint of S′, and hence, |I(u, v)| = 4. ut

Observation 9 allows identifying a “copy” of the boundary of Conv(P) in
G(P), as follows. Define a graph whose vertex set is B, such that v, w ∈ B are
connected by an edge if and only if ev, ew share a single vertex. Clearly, the
resulting graph is a cycle of length n. Identify this cycle with the boundary of
Conv(P), in such a way that each boundary edge e corresponds to some v ∈ B,
and each x ∈ P corresponds to a pair {v, w} such that ev ∩ ew = {x}. Note that
the identification is fixed only up to an automorphism of K(P) as a geometric
graph. However, this is clearly best possible, since any automorphism of K(P)
induces an automorphism of G(P).

3.2 Recovery of the boundary edges of each path

We divide the vertices of G(P) into levels according to the number of diagonals
they contain.

Notation 10 For v ∈ V (G(P)), the level of v is `(v) = |D(v)|.

The following observation shows that the levels of the vertices can be recov-
ered from G(P). This observation was made in Lemma 3.2 of [3] in order to show
that the diameter of G(P) is at most 2n− 5. For sake of completeness, we also
give a simple proof here.

8

Observation 11 For each v ∈ V (G(P)), we have `(v) = dist(v,B).

Proof. It is clear from the definition of B that `(v) = 0 if and only if v ∈ B, and
that for any v ∈ V (G(P)) we have dist(v,B) ≥ `(v). The inequality dist(v,B) ≤
`(v) will follow by induction once we show that each v ∈ V (G(P)) with `(v) > 0
has a neighbor u ∈ V (G(P)) with `(u) = `(v)− 1.

Consider a leaf x of P (v). Clearly, exactly one of the boundary edges of K(P)
that emanate from x is included in P (v). Denote by (x, y) the boundary edge
that is not included in P (v). Since `(v) > 0, y cannot be a leaf of P (v) (see
Observation 3). Thus, y is adjacent in P (v) to w, z. Without loss of generality,
the points x,w lie on different sides of the edge (y, z) as depicted in Figure 4.
(Otherwise, x, z must lie on different sides of (y, w).) In such a case, u, defined
by P (u) = P (v) ∪ {(x, y)} \ {(y, z)}, is a neighbor of v in G(P) that satisfies
`(u) = `(v)− 1. ut

x

z

y
w

Fig. 4. An illustration for the proof of Observation 11.

For each v ∈ V (G(P)) of level d, there are exactly d+ 1 boundary edges that
are not contained in P (v). The following observation shows that these edges can
be recovered by observing the elements of B whose distance from v is exactly d.
This observation follows from Lemma 5 of [6]. For sake of completeness, we give
its simple proof here.

Observation 12 Let v ∈ V (G(P)) with `(v) = d. Let

B(P) \ B(v) = {e1, e2, . . . , ed+1}.

The set {w ∈ B : dist(w, v) = d} has exactly d + 1 elements, which are the
vertices of B that correspond to the edges e1, e2, . . . , ed+1.

9

Proof. It is clear that if w ∈ B and dist(w, v) = d, then the only boundary edge
not contained in P (w) must be one of e1, e2, . . . , ed+1. On the other hand, let
w ∈ B be such that ei 6∈ P (w). We claim that there exists a path of length d in
G(P) from v to w. By the proof of Observation 11, from each v′ ∈ V (G(P)) with
`(v′) > 0 we can move to a neighbor of lower level by choosing a leaf x, adding
a boundary edge that emanates from it, and removing another edge. Since each
such v′ has two leaves that are not neighboring on B(P) (see Observation 3), at
each step there are two possible boundary edges that can be added. Hence, we
can construct a path in which ei is not added at any step, and thus, is missing
also in the path whose level is 0. That final path must be P (w). ut

Since the set {w ∈ B : dist(w, v) = d} can be detected in G(P), Observa-
tion 12 implies that we can recover B(v) for all v ∈ V (G(P)).

3.3 Recovery of the diagonals of each path

Our next goal is the full recovery of P (v) for any path v ∈ V (G(P)), i.e.,
determination whether (x, y) ∈ P (v) or not for each (x, y) ∈ E(K(P)). We
use the following observation.

Observation 13 Let P1, P2, . . . , Pk be disjoint boundary paths, possibly includ-
ing degenerate (i.e., single-vertex) paths, that cover - in the aforementioned order
- all the vertices of P . There are at most k possible ways to extend P1∪P2∪. . .∪Pk

into a simple spanning path P (v) such that B(v) = P1 ∪ P2 ∪ . . . ∪ Pk by adding
k − 1 diagonals.

Proof. It is easy to see that a degenerate Pi cannot be an endpoint of a path
P (v) such that B(v) = P1 ∪ P2 ∪ . . . ∪ Pk, and that choosing an endpoint of one
of the Pi’s to be an endpoint of the path P (v) determines P (v) uniquely (i.e.,
leaves a single possibility to add the k− 1 diagonals), see Figure 5. As there are
at most 2k such endpoints and each path has two endpoints, at most k different
paths can be constructed. ut

The determination of the diagonals is performed by induction on `(v). The
case `(v) = 0 is already done, since the boundary edges were recovered in Sec-
tion 3.2. As the case `(v) = 1 is somewhat different from the other cases, we
present it separately.

Let v ∈ V (G(P)) satisfy `(v) = 1. In such a case, B(v) consists of two paths
P1, P2. Clearly, neither of them is degenerate, and at least one of them – w.l.o.g.,
P1 – contains at least two edges since n ≥ 5 (see Figure 6)3. Denote the endpoints
of P1 by a, c and the vertex of P1 adjacent to a by b. Furthermore, denote the
endpoint of P2 adjacent to c by d, and the other endpoint of P2 by y.

So far, we can recover P1 and P2. After they are recovered, by Observa-
tion 13, there are only two possibilities for P (v): adding either (c, y) or (a, d).
The following observation allows distinguishing between these two cases.

3 One can check easily that if n = 4, then our main theorem does not hold, because
of the symmetry between pairs of paths in level 1.

10

P1

P2

P3

P4

P1

P2

P3

P4

Fig. 5. An illustration for Observation 13, where k = 4. There are two possibilities to
add 3 diagonals here (dashed).

d y

a

b

c

P1

P2

d y

a

b

c

P1

P2

Fig. 6. An illustration for the two cases of Observation 14.

Observation 14 With the above notations, if P (v) = P1 ∪ P2 ∪ {(a, d)} then
there exists a neighbor v′ of v such that `(v′) = 2 and (a, b) 6∈ P (v′). If P (v) =
P1 ∪ P2 ∪ {(c, y)} then there is no such neighbor.

Proof. If P (v) = P1 ∪ P2 ∪ {(a, d)}, then v′ defined by P (v′) = P1 ∪ P2 ∪
{(a, d)} ∪ {(a, c)} \ {(a, b)} is the desired neighbor. If P (v) = P1 ∪ P2 ∪ {(c, y)}
and a neighbor v′ is constructed by removing the edge (a, b) (see Figure 6),the
added edge must be (a, d) (it must emanate from a as otherwise a is isolated,
and the other endpoint must be d as all other vertices are already of degree 2),
and this is impossible since (a, d) crosses (c, y). ut

Observation 14 implies that if `(v) = 1 then all edges of P (v) can be recov-
ered. Assume now that `(v) := k−1 ≥ 2 and that for any v with `(v) ≤ k−2 we
can recover all edges of P (v). We show that all edges of P (v) can be recovered.

The boundary edges of P (v) can be divided into k (possibly degenerate) paths
P1, P2, . . . , Pk that can be recovered by the technique of Section 3.2. Once they

11

Pi+1
d

a

b

c
Pi

(a)

pi+1
d

a

b

c
pi

(b)

Fig. 7. Illustrations for Observation 15. In (a), a is a leaf of P (v), while in (b) a is not
a leaf, but b is a leaf of P (v).

are recovered, by Observation 13, in order to fully recover P (v), it is sufficient
to determine which of the endpoints of the Pi’s is a leaf of P (v). Note that as
mentioned above, a degenerate Pi cannot be a leaf of P (v), and that there are at
least two non-degenerate Pi’s, as any spanning path has at least two boundary
edges, and they lie in different Pi’s unless the path is a boundary path. The
leaves of P (v) can be determined using the following observation.

Observation 15 Let Pi be non-degenerate. Denote the endpoints of Pi by a, c,
denote the endpoint of Pi+1 adjacent to a by b (see Figure 7(a)). Then a is a
leaf of P (v) if and only if there exists a neighbor v′ of v such that `(v′) = k− 2,
(a, b) ∈ P (v′), and c is a leaf of P (v′).

Proof. If a is a leaf of P (v), as depicted in Figure 7(a), then (b, c) ∈ P (v). Hence,
v′ defined by P (v′) = (P (v) \ {(b, c)}) ∪ {(a, b)} is the desired neighbor.

If both a and b are internal vertices of P (v) then there does not exist a neigh-
bor v′ with (a, b) ∈ P (v′), since P (v) ∪ (a, b) contains two vertices of degree 3.

Finally, if a is an internal vertex of P (v) and b is a leaf of P (v), as depicted in
Figure 7(b), then Pi+1 is not degenerate. Denote its other endpoint by d. Then
the only neighbor v′ of v such that `(v′) = k − 2 and (a, b) ∈ P (v′) satisfies
P (v′) = (P (v) \ {(a, d)}) ∪ {(a, b)}. In P (v′), d is a leaf, and hence, c cannot be
a leaf of P (v′) as by Observation 3 this would imply that v′ is a boundary path,
contrary to the assumption k ≥ 3. This completes the proof. ut

Combining observations 14 and 15, we can recover all edges of any v ∈
V (G(P)), by induction on `(v).

12

3.4 The automorphism group of G(P) is Dn

As mentioned above, it is clear that any automorphism of K(P) as a geometric
graph induces an automorphism of G(P). It is well-known that Aut(K(P)) =
Dn, and thus, Dn ↪→ Aut(G(P)) (i.e., Dn is isomorphic to a subgroup of
Aut(G(P))).

On the other hand, any automorphism of G(P) must preserve the sizes of
the max-cliques, and in particular, preserve the set B. Moreover, it must pre-
serve the information whether for v, w ∈ B, the edges ev, ew share a vertex
(see Observation 9). Hence, it must preserve the identification of a “copy” of
the boundary of Conv(P) in G(P) presented in Section 3.1 (which is defined
up to an automorphism of K(P)). Finally, it follows from the recovery process
presented in Sections 3.2 and 3.3 that an automorphism of G(P) is completely
determined by its action on the copy of the boundary of Conv(P) in G(P).
Therefore, Aut(G(P)) ∼= Dn.

4 Complexity Analysis

The algorithmic approach presented in the previous sections allows us not only to
show that Aut(G(P)) ∼= Dn, but also to recover the edges of all paths represented
by vertices of G(P) efficiently. The following theorem calculates the complexity
of our algorithm.

Theorem 16. Let G(P) be the path graph of a set P of n ≥ 5 points in convex
position in the plane, and denote N := |V (G(P))| = n2n−3 (see [3]). The edges
of all paths represented by vertices of G(P) can be recovered in time O(N logN).

We note that this complexity is not far from optimal, since the graph G(P)
contains N vertices, and its recovery requires identifying the path of size n−1 ≈
logN that each vertex represents. In the proof of the theorem we will use an
auxiliary lemma. Recall that by Claim 8, the degree of each vertex v in G(P) is
at most O(n) = O(logN). The lemma asserts that the average degree is much
smaller - namely, bounded by a constant.

Lemma 17 |E(G(P))| = O(N).

The proof of the lemma will be presented at the end of this section, and
meanwhile we present the proof of the theorem.

Proof (of Theorem 16). We go over the steps of the algorithm that recovers the
edges of all paths and calculate the complexity of each step.

Recovery of the boundary paths. As mentioned in Section 3.1, identifying
the set B of all boundary paths as a set, can be done by finding the vertices of
degree 3n− 7 in G(P). The complexity of this step is∑

v∈V (G(P))

deg(v) = 2|E(G(P))| = O(N),

13

using Lemma 17.

Detecting a “copy” of the boundary of Conv(P) in G(P). As mentioned
in Section 3.1, once the set B of vertices that represent the n boundary paths is
found, this step can be performed easily by going over all edges spanned by pairs
of vertices in B and checking whether each such edge is contained in a max-clique
of size 4 or not. By Corollaries 5 and 7, for each such pair u, v, it is sufficient
to check whether there exists w ∈ V (G(P)) \ B which is a common neighbor of
u and v. Since the number of neighbors of any vertex in G(P) is bounded by
O(logN), the complexity of this step is less than O(log4N) operations.

Recovering all edges of each path.
We prove that this third step can be performed in O(N logN) operations,

using the following strategy. For each v ∈ V (G(P)), we store three types of
information:

1. B(v) (i.e., the set of boundary edges of P (v)),
2. `(v) (i.e., the level of v),
3. The endpoints of P (v).

Note that by the proof of Observation 13, items (1)–(3) yield full recovery of the
edges of P(v).

We go over the vertices of G(P) by levels, starting with level 0, then level 1
(i.e., the neighbors of the vertices in level 0 that were not dealt with yet), then
level 2, etc.

For each v ∈ V (G(P)) with `(v) = i ≥ 2, items (1)–(3) for v can be computed
instantly given items (1)–(3) for all neighbors of v at level (i− 1) (as described
in Observation 15 and in the proof of Observation 11).

For vertices with `(v) = 1, recovery of item (3) requires the knowledge of
items (1)–(2) for their neighbors at levels 0,2 (as described in Observation 14).
Hence, after computing items (1)–(3) for all vertices at level 0, we compute
items (1)–(2) for the vertices at level 1, then items (1)–(2) for vertices at level 2,
then item (3) for vertices of level 1, then item (3) for vertices at level 2, and
then all items in increasing order of levels.

The treatment of each vertex v requires going over each neighbor u of v,
and (in the worst case) reading the information-type B(u) whose size is at most
n− 1. Eventually, each edge of G(P) is considered twice, where each treatment
requires O(n) operations, and thus, by Lemma 17, the total number of operations
is bounded by O(nN) = O(N logN). Therefore, the total time complexity of our
algorithm is O(N logN), as asserted. ut

Now, it only remains to prove Lemma 17.

Proof (of Lemma 17). By symmetry, we may consider the vertices v of G(P)
that correspond to paths P (v) in which one leaf x0 ∈ P is fixed, and then
multiply the result by n. We represent any such path P (v) = 〈x0, x1, . . . xn−1〉
by a binary vector 〈α0, α1, . . . αn−1〉 where α0 = 0, and αi = 0 if and only if the

14

edge (xi−1, xi) in P (v) is a boundary edge. Note that αn−1 = 0. Assume that
P (v) contains at least two diagonals. We call P (v) a path of type t if

t = min
i
{αi 6= 0}+ min

j
{αn−j 6= 0},

namely, if P (v) starts with k − 1 boundary edges and ends with l− 1 boundary
edges, for some k, l ≥ 2 such that k + l = t.

We observe that a neighbor of v in P (v) can be obtained only by deleting
one out of the first k edges or the last l edges of P (v), and adding another edge
instead. Indeed, deletion of any other edge of P (v) decomposes P (v) into two
paths, where a leaf of the first one is x0, a leaf of the second one is xn−1, the
diagonal (xk−1, xk) belongs to the first path and separates x0 from the second
path, and the diagonal (xn−l−1, xn−l) belongs to the second path and separates
xn−1 from the first path. Therefore, there does not exist any edge that can be
added to the union of these two paths in order to form a simple path (except
for the deleted edge).

On the other hand, for any deletion of one of the first k edges or one of the
last l edges of a path P (v) of type t, there exist at most 4 edges that can be
added to the union of the two paths in order to obtain a Hamiltonian path.
Hence, the number of neighbors of v in G(P) is bounded by 3(k + l) = 3t.

In addition, for any path of type t there are t − 3 possible choices of k, l as
above, and thus, the number of paths of type t whose endpoint is x0 is bounded
by O(t · 2n−1−t), which implies that the total number of paths of type t is
bounded by O(n · t · 2n−1−t). To conclude, the number of edges of G(P) of the
form (v, v′) where P (v) is a path of type t with at least two diagonals, is bounded
by O(n · t2 · 2n−1−t).

The number of edges of G(P) of the form (v, v′) where P (v) and P (v′) are
paths that contain at most one diagonal, is bounded by O(n3) and thus is neg-
ligible.

Putting things together, the number of edges in G(P) is at most

|E(G(P))| = O

(
n−1∑
t=4

n · t2 · 2n−1−t
)

= O

(
n · 2n−1 ·

n−1∑
t=4

t2

2t

)

≤ O

(
n · 2n−1 ·

∞∑
t=0

(t+ 2)(t+ 1)

2t

)
= O(n · 2n−1)

= O(N),

where the penultimate equality follows from the well-known equality

∞∑
t=0

(t+ 2)(t+ 1)

2t
= 16,

that can be easily proved by differentiating twice the series
∑∞

t=0 x
t and substi-

tuting x = 0.5. ut

15

Open Problems

We conclude this paper with a few questions for further research that stem from
our results.

The automorphism group of other subgraphs of T (P). In [11], Hernando
showed that if P is a set of points in convex position and T (P) is its geometric
tree graph, then Aut(T (P)) ∼= Dn, as we showed for G(P). In view of the fact
that G(P) is a subgraph of T (P), it is reasonable to ask whether Aut(G′(P)) ∼=
Dn holds also for other subgraphs G(P) ⊂ G′(P) ⊂ T (P). For example, does
this hold for the graph of simple spanning trees with maximal degree ≤ d?

Points in general position. What can be said if the points of P are in general
(rather than convex) position? Can we prove that Aut(G(P)) ∼= Aut(K(P))?

Abstract graphs. What happens in the abstract case? That is, if G′(P) is the
path graph of abstract K(P), is this true that Aut(G′(P)) ∼= Aut(K(P)) ∼= Sn?
It was shown in [12] that this holds for the tree graph of K(P).

Acknowledgments

The authors are grateful to Gila Morgenstern for her contribution in the first
steps of this research.

References

1. O. Aichholzer, F. Aurenhammer, and F. Hurtado, Sequences of spanning trees and
a fixed tree theorem, Comput. Geom. 21 (2002), pp. 3-20.

2. O. Aichholzer and K. Reinhardt, A quadratic distance bound on sliding between
crossing-free spanning trees, Comput. Geom. 37 (2007), pp. 155-161.

3. S. G. Akl, K. Islam, and H. Meijer, On planar path transformation, Inform. Pro-
cess. Let. 104 (2007), pp. 59-64.

4. D. Avis and K. Fukuda, Reverse Search for Enumeration, Discrete Applied Math-
ematics 65(1), pp. 21–46, 1996.

5. J. A. Bondy and R. L. Hemminger, Graph reconstruction – a survey, J. Graph
Theory l (1977), pp. 227-268.

6. J.-M. Chang and R.-Y. Wu, On the diameter of geometric path graphs of points
in convex position, Inform. Process. Letters 109(8) (2009), pp. 409-413.

7. R. L. Cummins, Hamilton circuits in tree graphs, IEEE Trans. Circuit Th., 13(1)
(1966), pp. 82–90.

8. R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and
D. R. Wood, On the chromatic number of some flip graphs, Disc. Math. Theor.
Comput. Sci. 11(2) (2009), pp. 47–56.

9. A. Garćıa, M. Noy, and J. Tejel, Lower bounds on the number of crossing free
subgraphs of Kn, Comput. Geom. 16 (2000), pp. 211-221.

10. M. C. Hernando, F. Hurtado, A. Márquez, M. Mora and M. Noy, Geometric Tree
Graphs of Points in Convex Position, Discrete Applied Mathematics 93(1), pp. 51–
66, 1999.

16

11. M. C. Hernando, Complejidad de Estructuras Geométricas y Combinatorias, Ph.D.
Thesis, Universitat Politéctnica de Catalunya, 1999 (in Spanish). Available online
at: http://www.tdx.cat/TDX-0402108-120036/

12. C. Keller and M. A. Perles, Reconstruction of the geometric structure of a set
of points in the plane from its geometric tree graph, Discrete and Computational
Geometry 55(3) (2016), pp. 610-637.

13. E. Rivera-Campo and V. Urrutia-Galicia, Hamilton cycles in the path graph of a
set of points in convex position, Comput. Geom. 18 (2001), pp. 65-72.

14. V. Urrutia-Galicia, Algunas Propiedades de Gráficas Geométricas, Ph.D. Thesis,
Universidad Autonóma Metropolitana Unidad Iztapalapa, México D.F., 2001 (in
Spanish).

15. R.-Y. Wu, J.-M. Chang, K.-J. Pai, and Y.-L. Wang, Amortized efficiency of gen-
erating planar paths in convex position, Theor. Comput. Sci. 412(35) (2011),
pp. 4504-4512.

17

http://www.tdx.cat/TDX-0402108-120036/

	Reconstruction of the Path Graph

