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Abstract
Consider a set P of n points on the boundary of an axis-aligned square Q. We study the

boundary-anchored packing problem on P in which the goal is to find a set of interior-disjoint
axis-aligned rectangles in Q such that each rectangle is anchored (has a corner at some point in
P ), each point in P is used to anchor at most one rectangle, and the total area of the rectangles
is maximized. Here, a rectangle is anchored at a point p in P if one of its corners coincides
with p. In this paper, we show how to solve this problem in time linear in n, provided that the
points of P are given in sorted order along the boundary of Q. We also consider the problem for
anchoring squares and give an O(n4)-time algorithm when the points in P lie on two opposite
sides of Q.

1 Introduction

Let Q be an axis-aligned square in the plane, and let P be a set of points in Q. Call a rectangle
r anchored at a point p ∈ P if p is a corner of r. The anchored rectangle packing (ARP) problem
is to find a set S of interior-disjoint axis-aligned rectangles in Q such that each rectangle in S is
anchored at some point in P , each point in P is a corner of at most one rectangle in S, and the total
area of the rectangles in S is maximized; see Figure 1(a). It is not known whether this problem is
NP-hard. The best known approximation algorithm for this problem achieves ratio 7/12− ε due to
Balas et al. [1], who also studied several variants of this problem.

In this paper, we study a variant of the anchored packing problem in which all the points of P lie
on the boundary of Q. We refer to this variant as the boundary-anchored rectangle packing (BARP)
problem when the anchored objects are rectangles (see Figure 1(b)), while when we require to anchor
squares instead of rectangles, we call the problem the boundary-anchored square packing (BASP)
problem. We first present an algorithm that solves the BARP problem in linear time, provided
that the points of P are given in sorted order along the boundary of Q (Section 2). Despite the
simplicity of our algorithm, its correctness proof is non-trivial (Section 3). Then, we consider the
BASP problem and give an O(n4) algorithm for this problem when the points in P are on two
opposite sides of Q (Section 4).

∗A preliminary version of this paper appeared in the proceedings of 29th Canadian Conference on Computational
Geometry (CCCG 2017) [3]. The work of TB and AM is supported in part by Natural Sciences and Engineering
Research Council of Canada (NSERC).
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(a) (b)

Figure 1: Instances and (non-optimal) solutions of (a) the ARP problem, and (b) the BARP
problem.

Related results. The rectangle packing problem is related to strip packing and bin packing prob-
lems, which are well-known optimization problems in computational geometry. Rectangle packing
problems have applications in map labeling [7, 10]. Balas et al. [1] studied several variants of the an-
chored packing problem; namely, the lower-left anchored rectangle packing problem in which points
of P are required to be on the lower-left corners of the rectangles in R, the anchored square packing
problem in which every anchored rectangles is required to be a square, and the lower-left anchored
square packing problem which is a combination the two previous problems. For the lower-left rect-
angle packing problem, Freedman [9] conjectured that there is a solution that covers 50% of the
area of Q. The best known lower bound of 9.1% of the area of Q is due to Dumitrescu and Tóth [4].
Balas et al. [1] presented approximation algorithms with ratios (7/12 − ε) and 5/32 for anchored
rectangles and anchored square, respectively. They also presented a 1/3-approximation algorithm
for the lower-left anchored square packing problem, and proved that the analysis of the approxima-
tion factor is tight. Balas and Tóth [2] studied the combinatorial structure of maximal anchored
rectangle packings and showed that the number of such distinct packings with the maximum area
can be exponential in the number n of points of P ; they give an exponential upper bound of 2nCn,
where Cn denotes the nth Catalan number.

Finally, Iturriaga and Lubiw [6] studied the elastic labeling in which we are given a set of points
on the boundary of a rectangle and the goal is to anchor rectangles to these points such that no two
of them overlap. Here, elastic means that the label can have varying width and height, but each
rectangle has a pre-specified fixed area. This problem is different than BARP as for the objectives
of the two problems for instance, or having no pre-specified restriction on the area of the anchored
rectangles in the latter.
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Figure 2: BARP can be solved via maximum-weight independent set in an outer-string graph.

2 Boundary-Anchored Rectangles

In this section, we give a linear-time algorithm for the BARP problem. Before describing the
algorithm, we first briefly argue that BARP is solvable in polynomial time.

An outline. It is easy to see [1] that in any rectangle packing the boundaries of rectangles must
lie on the grid Γ: the union of the boundary of Q and the extension of inward rays from all points
until they hit the opposite boundary. For each point p ∈ P , there are O(n2) potential rectangles of
Γ anchored at p, and so we have a total of O(n3) candidate rectangles from which we must pick an
independent set (with respect to their intersection graph) such that the sum of the weights (defined
to be the area of each rectangle) is maximized. If all points are on the boundary, then it is easy to
represent each rectangle as a string (i.e., a Jordan curve) such that all strings have a point on the
infinite face and two strings intersect if and only if not both rectangles should be taken; see Figure 2.
This class of graphs is known as the outer-string graphs for which it is known that maximum-weight
independent set is solvable in O(N3) time, where N denotes the number of segments in a geometric
representation of the input graph [8]. As such, BARP is solvable in O(n9) time, but this is rather
slow.

In this section, we give key insights that lead to a much faster algorithm. Define a cell to be
a maximal rectangle not intersected by lines of the grid Γ. Given an optimum solution S, define
a hole of S to be a maximal connected region of Q that is not covered by S, see Figure 3(b). We
show the following in Section 3:

Theorem 2.1. An optimal solution S either covers all of Q, or it has exactly one hole which is a
single cell.

It is quite easy to test whether all of Q can be covered (see Lemma 3.7). In particular, this is
always feasible if two points have the same x-coordinate or the same y-coordinate. In consequence,
for the following discussion we assume that no two points have the same x- or y-coordinate. If we
cannot cover all of Q, then we want to minimize the size of the hole. However, there are a quadratic
number of cells, and more crucially, not all cells are feasible; i.e., could be holes. The second key
result is therefore the following (by Theorem 2.2):
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Lemma 2.1. Given the (at most four) points defining the boundary of a cell ψ, we can test in O(1)
time whether some packing covers Q− ψ.

This immediately gives an O(n2) algorithm to find the best solution of type Q−ψ: consider the
cells in order, test whether they are feasible and then find the corresponding packing that maximizes
the area among those that are feasible. However, it is not necessary to test each cell individually.
We can characterize exactly when a cell ψ is feasible, based solely on where the supporting lines of
ψ (which are either the boundary of Q or rays emanating from some points) have their endpoints.
Hence, we do not need to look at individual cells, but at the list of points on the four sides, to find
the minimum area hole. In the following, we describe this in more details.

We write PB (resp., PL, PT and PR) for the points of P on the bottom (resp., left, top and
right) side. For a point p in the plane, we denote by x(p) and y(p) the x- and y-coordinates of p,
respectively. The following theorem, which we will prove in Section 3, characterizes possible optimal
solutions; Figure 7 on page 10 illustrates these configurations.

Theorem 2.2. Any BARP instance has an optimal solution S with i ≤ 4 rectangles. Moreover
(up to rotating the instance by a multiple of 90◦ and/or reflecting horizontally) the anchor-points
p1, . . . , pi used by S satisfy one of the following:

1. i = 1, and p1 is the leftmost point of PT ∪ PB.
2. i = 2, and one of the following holds:

(a) p1 is the bottommost point of PL and p2 is the leftmost point of PT ∪ PB, or
(b) p1 and p2 are the two points of PT ∪ PB with the closest x-coordinates.

3. i = 3, p1 ∈ PB and p2 ∈ PT ∪ PB have closest x-coordinates with x(p1) < x(p2), and p3 is the
lowest point in PL.

4. i = 4, p1 ∈ PL and p3 ∈ PR have closest y-coordinates with y(p1) > y(p3), and p2 ∈ PT and
p4 ∈ PB have the closest x-coordinates with x(p4) < x(p2).

Algorithm. Our algorithm proceeds as follows. For each of the four rotations, for each of the
two reflections, and for each rule 1, 2(a), 2(b), 3, and 4 in Theorem 2.2, compute the corresponding
point set. Each of these up to 40 point sets defines a cell H, and a packing that covers Q−H (see
also Lemma 3.5). The algorithm returns the one that has the smallest hole H.

Having PL, PT , PR, and PB sorted along the boundary of Q, we can also compute sorted lists of
PL ∪ PR and PT ∪ PB in linear time. The closest pair within each or between two of them can be
computed in linear time.

The correctness will be proved in Section 3. The proof does not use that Q is a square, only
that it is an axis-aligned rectangle. We hence have:

Theorem 2.3. The boundary anchored rectangle packing problem for n points, given in sorted order
on the boundary of a rectangle, can be solved in O(n) time.

3 Correctness of the Algorithm

We first consider the cases when the square Q can be covered entirely by a packing.

Observation 3.1. Assume one of the following holds.
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Figure 3: (a) The grid Γ. (b) White regions are holes. Graph G(S) is in red (thick); filled vertices
are points of P . The max-segment s1 is introduced while s2 is not.

(i) there exists a point p1 ∈ P on a corner of Q, or
(ii) there exist two points p1, p2 ∈ PL ∪ PR that have the same y-coordinates, or

(iii) there exist two points p1, p2 ∈ PT ∪ PB that have the same x-coordinates.

Then we can cover all of Q with anchored rectangles.

Proof. In case (i), one rectangle anchored at p1 can cover all of Q. In case (ii) and (iii), two
rectangles anchored at p1, p2 can cover all of Q.

Since these conditions are easily tested, we assume for most of the remaining section that none
of (i)–(iii) holds. (We will see that this implies that there must be a hole.)

We need some notation. Throughout this section, let S be an optimal solution for the BARP
problem. The term “rectangle” now means one of the rectangles used by S. Define G(S) to be
the graph whose vertices are the rectangle-corners that are not corners of Q, and whose edges are
coincident with the rectangle-sides not on the boundary of Q; see Figure 3(b).

We define a max-segment of G(S) to be a maximal chain s of collinear edges of G(S). We say
that s is introduced if at least one endpoint of s belongs to P and is used as anchor-point for some
rectangle of S. For example, in Figure 3(b), s1 is introduced but s2 is not. Every edge e belongs
to exactly one max-segment se; we say that e is introduced if se is. In Figure 3(b), e1, e2 and e3
are introduced. We already know [1] that all boundaries of rectangles can be assumed to lie on the
grid Γ, but we need to strengthen this and prove the following:

Lemma 3.1. There exists an optimal solution S such that all max-segments of S are introduced.

Proof. Let S be an optimal solution that, among all optimal solutions, minimizes the number of
max-segments. Assume for contradiction that there exists a max-segment s that is not introduced.
After rotation we may assume that s is horizontal. Let V be the vertical slab defined by the two
vertical lines through the endpoints of s; see Figure 4.

Consider moving s upward in parallel, i.e., shortening the rectangles A with their bottom sides
on s and lengthening the rectangles B with their top sides on s. Observe first that these rectangles
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Figure 4: Illustration of the proof of Lemma 3.1.

indeed can be shortened/lengthened, because none of them can be anchored at a point on s: the
only points of s that are possibly in P are its ends, but neither of them anchors a rectangle since s
is not introduced. If this move of s increases the coverage, then S was not optimal, a contradiction.
If this decreases the coverage, then moving downward in parallel would increase the coverage, a
contradiction. So the covered area must remain the same during the move. Shift s up until it
hits either the boundary of Q or intersects some other horizontal max-segment of G(S). If s hits
the boundary of Q, then s disappears and will be deleted from G(S). If s intersects some other
horizontal max-segment s′ of G(S) (which may be inside V or only share an endpoint with the
translated s) then the two max-segments merge into one. Either way we decrease the number of
max-segments, which contradicts the choice of S and proves the lemma.

From now on, without further mentioning, we assume that S is an optimal solution where all
max-segments are introduced. We also assume that, among all such optimal solutions, S minimizes
the number of rectangles.

Lemma 3.2. Every internal vertex of G(S) has degree three or four.

Proof. Every internal vertex of G(S) resides on the corner(s) of axis-aligned rectangle(s), and so
has degree at least 2 and at most 4. Assume for contradiction that there is a vertex b of G(S) that
has degree exactly 2, and let a and c be its neighbours. After possible rotation, we may assume that
a lies to the left of b, and c lies above b, as depicted in Figure 5. Thus, b is the bottom-right corner
of some rectangle r1, and no other rectangle has b on its boundary. This implies that the region to
the right of bc and below ab belongs to some hole H. So rectangle r1 is anchored either on the left
or the top side of Q; after a possible diagonal flip we assume that it is anchored on the left.

Define aP and cP to be the points of P that introduced ab and cb, respectively; we know that
these must be on PL respectively PT since b has degree 2. By definition of “introduced” some
rectangle rc is anchored at cP . We claim that rc cannot have cP as its top-right corner. Assume for
contradiction that it has. Then we can expand rc (if needed) to cover the entire rectangle spanned
by aP and cP ; this can only increase the coverage. In particular, the expanded rc covers all of r1.
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Figure 5: Illustration of the proof of Lemma 3.2.

We know that r1 6= rc since r1 was anchored on the left side of Q. This contradicts that S has the
minimum number of rectangles, so rc has cP as its top-left corner.

If the right side rs(r1) of r1 is a sub-segment of bc, then we can stretch r1 to the right to increase
the coverage of S, contradicting optimality. So rs(r1) must be a strict super-segment of bc, which
in particular implies that c is interior and has no leftward edge. Since c is a vertex, it must have a
rightward edge; let d be the vertex of H to the right of c. Let r2 be the rectangle whose bottom-left
corner is c; this exists since edge cd is the boundary of some rectangle(s), but the area below cd
belongs to hole H. Rectangle r2 cannot be anchored on the right, otherwise we could expand rc to
cover all of r2 and reduce the number of rectangles, a contradiction. So r2 is anchored on the top,
which implies that r2 = rc, else they would overlap.

If the bottom side bs(r2) of r2 is a sub-segment of cd, then we can stretch r2 down to increase
the coverage of S. So bs(r2) is a strict super-segment of cd, which implies that d is interior. We
iterate this process three times as follows. (i) Let e be the vertex of H that is below d, and let
r3 be the rectangle whose top-left corner is d. Argue as before that r3 is anchored at the right
endpoint dP of the max-segment through cd, therefore the left side ls(r3) is a strict super-segment
of de and e is interior. (ii) Let f be the vertex of H that is to the left of e, and let r4 be the
rectangle whose top-right corner is e. Argue as before that r4 is anchored at the bottom endpoint
eP of the max-segment through de, therefore the top side ts(r4) is a strict super-segment of ef and
f is interior. (iii) Finally, let g be the vertex of H that is above f (possibly g = a). Now observe
that the max-segment through fg cannot reach the boundary of Q without intersecting r4, r1 or r2.
Therefore, fg is not introduced—a contradiction.

We assumed that neither case (ii) nor (iii) of Observation 3.1 holds, which means that any grid-
line of the grid Γ has exactly one end in P . So, we can direct the edges of the grid (and with it the
edges of G(S)) from the end in P to the end not in P . See also Figure 7. Define a guillotine cut to
be a max-segment of G(S) for which both endpoints are on the boundary of Q.
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Lemma 3.3. If there is no guillotine cut, then S has a hole H. Furthermore, H is a rectangle, H
is not incident to the boundary of Q, and the boundary of H is a directed cycle of G(S).

Proof. We claim that no vertex w of G(S) on the boundary of Q is a sink. For if the unique
edge incident to w were directed from some vertex v to w, then by Lemma 3.1 and the way we
directed the edges of G(S), the point p that introduced vw would be on the opposite side and
hence the max-segment pw would be a guillotine cut. Likewise no interior vertex w can be a sink,
because deg(w) ≥ 3 by the previous lemma, which implies that two incident edge of w have the
same orientation (horizontal or vertical). One of them then becomes outgoing at w since we direct
edges along grid-lines. So G(S) has no sink, which implies that it has a directed cycle C. The
region enclosed by C has no point on the boundary, so no rectangle anchored on the boundary can
cover parts of it without intersecting C. So the interior region of C is a hole H not incident to the
boundary. We know that H is a rectangle since it has no vertex of degree 2 by the previous lemma,
hence in particular no reflex vertex.

We use the previous lemma in the proof of our following stronger claim.

Lemma 3.4. If S has holes, then it has a hole H that is a rectangle. Furthermore, every interior
corner of H has an incoming edge that lies on H.

Proof. We prove by induction on the cardinality of S. If S is empty then H = Q and we are done.
Assume that S is not empty. If there is no guillotine cut, then H is a rectangle by Lemma 3.3 which
is interior and whose boundary is a directed cycle; this satisfies all claims. Assume now that there
is a guillotine-cut aa′, say it is horizontal. Since case (ii) of Observation 3.1 does not hold, not both
a and a′ can belong to P , say a′ 6∈ P . Segment aa′ divides Q into two rectangles Q1 and Q2 with
Q1 above Q2; see Figure 6(a). There is a rectangle r1 that is anchored at a; up to a vertical flip we
may assume that r1 is inside Q1. Observe that r1 must cover all of Q1, else we could find a solution
with more coverage or fewer rectangles. Thus S′ := S \ {r1} is an anchored-rectangle packing for
Q2 with anchor-points in P \ {a}. Notice that S′ must be optimal for Q2, else we could get a better
packing for Q by adding r1 to it. It cannot cover all of Q2 since S had holes. Therefore, S′ has a
hole H and by induction hypothesis H is a rectangle; observe that H is also a rectangular hole in
S. This finishes our proof of the first claim.

Now, consider a corner c of H that is interior to Q. If c is interior to Q2, then by induction
hypothesis it has an incoming edge that lies on H. Assume that c is not interior to Q2 and thus
it lies on aa′ and c 6= a, a′. Consider an interior vertical edge e of H; see Figures 6(b) and 6(c).
Observe that e is directed upwards because otherwise the max-segment se containing it would have
intersect r1. It follows that all interior vertical edges of H are directed upwards. Therefore the
vertical edge of H that is incident to c is also upward and hence incoming to c as desired.

Hence, hole H must satisfy this hole-condition on the edge directions (at least for some optimal
solution S); that is, every interior corner of H has an incoming edge that lies on H. It turns out
that this condition is also sufficient.

Lemma 3.5. Let H be a rectangle whose sides lie on Γ. If H satisfies the hole-condition, then there
exists a packing that covers Q \H.

Proof. Let p1, . . . , pi (for some i ≤ 4) be the points of P that defined the grid lines on which the
sides of H reside. We distinguish cases (1)–(4) depending on how many sides of H are interior,
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Figure 6: With a guillotine cut, a hole can be found in Q2 recursively.

where case (2) splits further into cases (2a) and (2b) depending on whether the sides are adjacent
or parallel. After possible rotation, the hole is situated as shown in Figure 7. Every interior corner
of H has an incoming edge that is on H, which (up to reflection) forces the location of some of
p1, . . . , pi as indicated in the figure. In all cases, one verifies that i rectangles anchored at p1, . . . , pi
suffice to cover Q \H.

We are now ready to prove Theorem 2.1. To this end, we first show the following:

Lemma 3.6. If S has holes, then it has exactly one hole H, and H is a cell of Γ.

Proof. Lemma 3.4 shows that we may assume H to be a rectangle that satisfies the hole-condition.
By Lemma 3.5, we can cover Q\H with anchored rectangles, which by maximality of S means that
H is unique.

If H is not a cell, then it is bisected by some grid-line ` into two pieces H1 and H2. If some
H ′ ∈ {H1, H2} satisfies the hole-condition (i.e., all interior corners have incoming edges on H ′),
then we can create a packing that covers Q \ H ′ ⊃ Q \ H, which contradicts the minimality of
S. In fact, by inspecting the possible configurations of H in cases (1), (2a), (2b), (3), and (4), as
well as possible placements of the “undecided” anchor-points and the orientation/direction of ` (see
Figure 8, which shows all but one case), we observe that H ′ satisfies the hole-condition as we can
cover Q \ H ′ in each of these cases. So, there is a contradiction in all cases, and H must be one
cell.

By Lemma 3.6, we have characterized solutions that have holes. It remains to characterize solu-
tions that do not have holes; i.e., to show that conditions (i)–(iii) of Observation 3.1 are necessary.

Lemma 3.7. If Q can be covered with anchored rectangles, then one of (i), (ii) or (iii) holds.

Proof. Let S be a packing that covers all of Q. If G(S) has no edge, then all of Q must be covered
by one rectangle, which hence must be anchored at a corner of Q and (i) holds. So assume that
G(S) has edges. By Lemma 3.3, since S has no hole there must be a guillotine-cut aa′, say it is
horizontal. If both a and a′ are in P then (ii) holds and we are done, so assume a ∈ P and a′ /∈ P .
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Figure 7: Any rectangle whose boundary is directed suitably can be realized as hole.

Recall the rectangles Q1, Q2 and r1 from the proof of Lemma 3.4 and observe that S′ := S \{r1}
covers all of Q2 using anchor-points in P ′ := P \ {a}. Apply induction to S′, P ′, Q2. If (i) holds
for them, then P ′ has a point on a corner of Q2, which by a, a′ /∈ P ′ is also a corner of Q and we
are done. If (ii) holds for them, then two points in P ′ ⊂ P have the same y-coordinate and we are
done. Finally (iii) cannot hold for S′, P ′, Q2 because the top side of Q2 has no point of P ′ on it
since a′ 6∈ P .

We are finally ready to prove Theorem 2.2. Let S be the optimal solution with the minimum
number of rectangles. If S covers all of Q, then by Lemma 3.7 one of (i)–(iii) holds. If (i) holds, then
the corner in P will be chosen under rule (1). (In these and all other cases, “chosen” means “after
a suitable rotation and/or reflection”.) If (ii) or (iii) holds then the two points with the coinciding
coordinate will be chosen under rule (2b).

If S has holes, then by Lemma 3.4 its unique hole H is a cell such that all interior corners of
H have incoming edges on H. Let p1, . . . , pi be the points that introduce interior sides of H. We
know that H has one of the types shown in Figure 7, and p1, . . . , pi hence will be considered under
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Figure 8: If a hole that satisfies the hole-condition is bisected by a line `, then this gives rise to a
smaller hole H ′ that satisfies the hole-condition.

the corresponding rule. Moreover, all point sets that fit the type can be realized by Lemma 3.5.
So H must be the one that minimizes the area, which corresponds to the points minimizing the
x-distance resp. y-distance. So one of rules 1, 2a, 2b, 3 or 4 applies to the points p1, . . . , pi and
Theorem 2.2 holds.

4 Boundary-Anchored Squares

Recall that Q is an axis-aligned square in the plane and P is a set of points on the boundary of
Q. In the boundary anchored square packing (BASP) problem we want to find a set of disjoint
axis-aligned squares in Q that are anchored at points of P and maximize the total area. For this
problem we are unable to find a grid—as we did for rectangle packing—that discretizes the problem
such that the sides of every square in an optimal solution lie on that grid. It might be tempting to
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Figure 9: (a) The grid lines for every point p. (b) An optimal solution in which the square anchored
at w is not introduced by Γ.

obtain a grid as follows. For every point p on the bottom side of Q we add the following lines to
the grid (see Figure 9(a)):

(1) one vertical line through p,

(2) one horizontal line through the top side of the largest square in Q that has p on its bottom-left
corner, and one for a similar square that has p on its bottom-right corner, and

(3) for every other point q on the bottom side of Q, we add one horizontal line through the top
side of the square that has the segment pq as its bottom side.

We add similar lines for points that are on the left side, the right side, and the top side of Q.
Let Γ be the resulting grid. We construct a set of points for which no optimal solution of the BASP
is introduced by Γ. Figure 9(b) shows a set of six points with an optimal solution associated for
them. A point p lies on the bottom side of Q and at distance δ from the bottom-left corner of Q,
for a small δ > 0. Five points u, v, w, x, y arranged on the top side of Q from left to right such that
w is the mid-point of the top side of Q, |vw| = |wx| = 1.5δ, and |uv| = |xy| = ε, for a small ε that
is much less than δ. Any optimal solution for this setting contains the largest square in Q that has
p on its bottom-left corner. Also any optimal solution contains the two squares that are anchored
at u and y as depicted in Figure 9(b). The solution shown in Figure 9(b) is optimal. Any optimal
solution contains two squares of side-length δ and one square of side-length δ/2 that are anchored
at v, w, x. The square of side-length δ/2 is not defined by Γ, no matter on which of v, w, x it is
anchored.

In the rest of this section we consider two special cases where the points of P lie only on one
side of Q, or on two opposite sides of Q. Later we will see that the two opposite-side case can be
reduced to some instances of the one-side case.
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4.1 Points on one side

In this section we consider a version of the BASP problem where the points of P lie only on one
side of Q. We consider a more general version where Q is rectangle and the points of P lie on a
longer side of Q. To avoid confusion in our notation, we use R to represent such a Q. Let w and h
denote the width and height of R, respectively. We assume that the longer side of R is parallel to
the x-axis and points of P lie on the bottom side of R; see Figure 10. We introduce a grid Γ such
that any optimal solution for this problem is defined by Γ. This grid contains the following lines:

(1) a vertical line through p,

(2) a horizontal line through the top side of the largest square in R that has p on its bottom
left-corner, and one for a similar square that has p on its bottom-right corner,

(3) for every other point q, that is at distance at most h from p, we add one horizontal line through
the top side of the square that has the segment pq as its bottom side, and

(4) one vertical line through the right side of the largest square in R that has p on its bottom-left
corner, and one for a similar square that has p on its bottom-right corner.

Based on the construction of Γ, we define a set S of squares that are obtained as follows. For
every point p ∈ P we add to S three types of squares (see Figure 10(a)):

T1 the largest square in R that has p on its bottom-left corner, and the largest square in R that
has p on its bottom-right corner,

T2 for every other point q, that is within distance h from p, we add a square that has the segment
pq as its bottom side, and

T3 for every other point q to the right (resp. left) of p, which is within distance 2h from p, we
add a square of side length |pq| − h that has p on its bottom-left corner (resp. bottom-right
corner).

The set S contains O(n2) squares and all of them are introduced by Γ. We say that a square is
introduced by a grid if at least three of its sides lie on the grid. The following lemma enables us to
discretize the problem.

Lemma 4.1. Consider an optimal solution for the variant of the BASP problem where the points
lie only on the bottom side of the input rectangle. Then, all squares of the solution belong to S.

Proof. Our proof is by contradiction. Consider an optimal solution S for this problem and assume
that it contains a square s that does not belong to S. Without loss of generality we assume that s
has a point p on its bottom-left corner. Since s is not of type (T1), the top side of s does not lie on
the top side of R. Also, the right side of s does not lie on the right side of R. If the right side of s
does not touch any other square in S, then we can enlarge s and increase the total area of S which
contradicts its optimality. Let r be the square that touches the right side of s. Let q be the point
that r is anchored on. Since s is not of type (T2), q is the bottom-right corner of r. Moreover, since
s is not of type (T3), r is not a largest square that is anchored at q.

So, we have two touching squares s and r and none of them are maximum squares. See Fig-
ure 10(b). Without loss of generality assume that s is not smaller than r. By concurrently enlarging
s and shrinking r by a small amount, the gain in the area of s would be larger than the loss in the
area of r. This will increase the total area of S which contradicts its optimality.
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Figure 10: (a) The construction of S (b) Illustration of the proof of Lemma 4.1.

As a consequence of Lemma 4.1, to solve the BASP problem, it suffices to find a subset of
non-overlapping squares in S with maximum area. For every square s ∈ S, we introduce a closed
interval Is with the bottom side of s. We set the weight of Is to be the area of s. Let I be the
set of these intervals. Any maximum-weight independent set of intervals in I corresponds to a set
of non-overlapping squares in S with maximum area. A maximum-weight independent set of m
intervals, given in sorted order of their left endpoints, can be computed in O(m) time [5]. The set
S contains O(n2) squares and can be computed within the same time bound. Consequently, I can
be computed in O(n2) time. Having the points of P sorted from left to right, the sorted order of
the intervals in I can be obtained within the same time bound. Thus, the total running time of our
algorithm is O(n2).

4.2 Points on two opposite sides

In this section we study a version of the BASP problem where the points of P lie on two opposite
sides of square Q. We show how to reduce an instance of this problem into O(n2) instances of the
one-sided version. Since the one-sided version can be solved in O(n2) time, this reduction implies
an O(n4)-time solution for the two-sided version. We refer to a square that is anchored at a top
point (resp. bottom point) by a top square (resp. a bottom square).

Lemma 4.2. For any optimal solution for the BASP problem, where the input points lie only on
the top and bottom sides of the input square, there exists no horizontal line ` that intersects both a
top square and a bottom square in its interior.

Proof. Suppose for a contradiction that such line ` exists, say it intersects a top square s and a
bottom square r. Since ` crosses both s and r, the height of s plus the height of r is larger than h
(the height of the boundary square). This implies that their total width is also larger than h. Since
s and r are non-overlapping, there is a vertical line which separates s from r. These two facts imply
that the width of the boundary square is larger than h, which is a contradiction.

By Lemma 4.2, for every optimal solution there exists a horizontal line that separates its top
squares from its bottom squares; refer to such a line as a separating line. We introduce a set L of
O(n2) horizontal lines and claim that for every optimal solution of the BASP problem, there exists
a separating line that belongs to L. Assume that Q is the unit square, and its bottom-left corner
is the origin. For a point p, let px denotes its x-coordinate. First, we add to L the horizontal line
y = 1/2. Then, for every point p on the bottom side of Q we add the following lines to L (see
Figure 11(a)):
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Figure 11: (a) The lines that are added to L for p. (b) Illustration of the proof of Lemma 4.3.

(1) y = px; this line represents the top side of the largest square that has p on its bottom-right
corner.

(2) y = 1− px; this line represents the top side of the largest square that has p on its bottom-left
corner.

(3) for every point q 6= p on the bottom side of Q, we add y = |px − qx|; this line represents the
top side of the square that is anchored at p and has another corner at q.

(4) for every point q 6= p on the bottom side of Q, we add y = |px − qx|/2; this line represents
the the top side of the square that is anchored at p and has another corner at the mid-point
of the segment pq.

Then, for every point p on the top side of Q, we add to L the lines analogous to items (1)–(4).

Lemma 4.3. For any optimal solution of the BASP problem, there exists a separating line that
belongs to L.

Proof. Consider an optimal solution S for this problem. Let s be the largest square in S and,
without loss of generality, assume that s is a bottom-square and that p is the bottom-left corner
of s; see Figure 11(b). By Lemma 4.2, there exists a separating line for S. Let ` be the line that
touches the top side of s; observe that ` is separating since it intersects no top square by Lemma 4.2.
If ` is below the line y = 1/2, then due to maximality of s, y = 1/2 is also a separating line for S
and belongs to L. Assume that ` is above y = 1/2.

The rest of our proof is by contradiction. By a similar reasoning as in the proof of Lemma 4.2,
we argue that s is the only bottom square that touches `. However, there might be arbitrarily many
top squares that touch `. Let a denote the y-coordinate of `. We continuously move ` up and down
within the vertical range [a− ε, a+ ε], for a very small amount ε. Then, the y-coordinate of ` is x,
where x ∈ [a− ε, a+ ε]. While moving ` in this range, we change (enlarge or shrink) some squares
of S as follows and keep track of their area (see Figure 11(b)):
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• We change s in such a way that its top side always lies on `. Thus, the are of s would be x2.

• Observe that the right side of s does not touch the boundary square because otherwise `
would have been added to L by item (2). There can be only one square in S that touches
the right side of s. If such a square exists, then let s1 denote that square, and assume that
it is anchored at a point q; see Figure 11(b). The point q is on the bottom-right corner of s1
because otherwise ` would have been added to L by item (3). We change s1 in such a way
that its left side always touches the right side of s. Thus, the area of s1 is (|pq| − x)2

• Let S2 be the set of all top squares that touch `. We change these squares in such a way that
their bottom sides touch `. The area of every such square is (1− x)2.

• We construct a set S3 of top squares as follows. Consider every square s2 ∈ S2 and let s2 be
anchored at a point u. If there is a top square s3 in S that touches s2 from the side that does
not contain u, then we add s3 to S3. Let s3 be anchored at v as depicted in Figure 11(b). The
point v is not on the boundary of s2 because otherwise ` would have been added to L by item
(3). Also, the square s3 does have the same size as s2 because otherwise ` would have been
added to L by item (4); in fact s3 is smaller than s2. We change s3 in such a way that it always
touches s2. Thus, by moving ` in the above range, the area of s3 will be (|uv| − (1− x))2.

Let S′ be the set of the above squares; i.e., S′ = {s, r} ∪ S2 ∪ S3. After performing the above
adjustments, the squares in S remain non-overlapping. Also the squares in S \S′ remain unchanged.
Thus, by moving ` on the vertical range [a−ε, a+ε], we obtain a valid solution for the BASP problem.
For a given x ∈ [a− ε, a+ ε], the total area of the squares in S′ is

f(x) = x2 + (|pq| − x)2 + |S2| · (1− x)2 +
∑
s3∈S3

area(s3),

where |S2| denotes the cardinality of S2. As discussed above, the area of s3 is of the form
(c − (1 − x))2 for some constant c. This implies that f(x) = αx2 + βx + γ for some constants
α > 0, β, and γ. This means that f(x) is a convex function on the domain [a − ε, a + ε]. Thus,
the maximum value of f(x) is attained at an endpoint of the domain, but not at a. Therefore, the
original solution S, for which ` has y-coordinate a, cannot be an optimal solution for the BASP
problem.

The set L contains O(n) lines per point of P , and thus, O(n2) lines in total. These lines can be
computed in O(n2) time. By Lemma 4.3, for every optimal solution there exists a separating line in
L. Therefore, by checking every line ` in L and taking the one that maximizes the total area of the
two one-sided instances of the problem (one for each side of `), we can solve the two-sided version
of the problem in O(n4) time.

Remark. A restricted version of the BASP problem, where every point of P should be assigned
a non-zero square, can be solved in O(n) time for the one-sided case, and in O(n2) time for the
two-sided case. In the one-sided case, we have a constant number of squares/intervals per point
because we only need to check its two neighbors. By a similar reason, in the two-sided case we get
a constant number of lines per point, and thus, O(n) lines in total.
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5 Conclusion

In this paper, we considered the anchored rectangle and square packing problems in which all points
are on the boundary of the square Q. By exploiting the properties of an optimal solution, we gave an
optimal linear-time exact algorithm for the rectangle packing problem. Observe that our algorithm
covers nearly everything for large n (contrasting with the fraction of 7/12−ε achieved in the non-
boundary case [1]). For there are (up to rotation) at least n/2 points in RB ∪ PT , which define
n/2 + 1 vertical slabs. Rule (1) or (2b) will consider the narrowest of them as hole, which has area
at most 1/(n/2 + 1) if Q has area 1. So, we cover a fraction of 1−O(1/n) of Q. We also considered
the square packing problem when the points on P are on two opposite sides of Q, and gave an
O(n4)-time algorithm for this problem.

The most interesting open question is to determine the complexity of the BARP or BASP
problem for when the points of P can lie in the interior of Q. Is it polynomial-time solvable?
As a first step, it would be interesting to characterize which polygonal curves on Q ∪ Γ could be
boundaries of a hole in a solution. Moreover, the complexity of the BASP problem when the points
of P are on all four sides of Q remains open.
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