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Abstract

We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel
graphs. Instead of defining these proximity graphs using circles, we use an arbitrary
convex shape C. Let S be a point set in the plane. The k-order Delaunay graph of S,
denoted k-DGC(S), has vertex set S, and edges defined as follows. Given p, q ∈ S, pq
is an edge of k-DGC(S) provided there exists some homothet of C with p and q on its
boundary and containing at most k points of S different from p and q. The k-order Gabriel
graph, denoted k-GGC(S), is defined analogously, except that the homothets considered
are restricted to be smallest homothets of C with p and q on the boundary.

We provide upper bounds on the minimum value of k for which k-GGC(S) is Hamilto-
nian. Since k-GGC(S) ⊆ k-DGC(S), all results carry over to k-DGC(S). In particular, we
give upper bounds of 24 for every C and 15 for every point-symmetric C. We also improve
these bounds to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11
for even-sided regular t-gons (for t ≥ 10). These constitute the first general results on
Hamiltonicity for convex shape Delaunay and Gabriel graphs.

In addition, we show lower bounds of k = 3 and k = 6 on the existence of a bottleneck
Hamiltonian cycle in the k-order Gabriel graph for squares and hexagons, respectively.
Finally, we construct a point set such that for an infinite family of regular polygons Pt,
the Delaunay graph DGPt

does not contain a Hamiltonian cycle.

1 Introduction

The study of the combinatorial properties of geometric graphs has played an important role
in the area of Discrete and Computational Geometry. One of the fundamental structures that
has been studied intensely is the Delaunay triangulation of a planar point set and some of
its spanning subgraphs, such as the Gabriel Graph, the Relative Neighborhood Graph and
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projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie
grant agreement No 734922.
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the Minimum Spanning Tree. Delaunay triangulations possess many interesting properties.
For example, among all triangulations of a given planar point set, the Delaunay triangulation
maximizes the minimum angle. It is also a 1.99-spanner [20] (i.e., for any pair of vertices
x, y, the shortest path between x and y in the Delaunay triangulation has length that is at
most 1.99 times |xy|). See [17] for an encyclopedic treatment of this structure and its many
properties.

Shamos [19] conjectured that the Delaunay triangulation contains a Hamiltonian cycle.
This conjecture sparked a flurry of research activity. Although Dillencourt [11] disproved this
conjecture, he showed that Delaunay triangulations are almost Hamiltonian [12], that is, they
are 1-tough.1 Focus then shifted on determining how much to loosen the definition of the
Delaunay triangulation to achieve Hamiltonicity. One such direction is to relax the empty
disk requirement. Given a planar point set S and two points p, q ∈ S, the k-Delaunay graph
(k-DG) with vertex set S has an edge pq provided that there exists a closed disk with p and
q on its boundary containing at most k points of S different from p and q.2 If the disk with
p and q on its boundary is restricted to disks with pq as diameter, then the graph is called
the k-Gabriel graph (k-GG). For the k-Relative Neighborhood graph (k-RNG), pq is an edge
provided that there are at most k points of S whose distance to both p and q is less than |pq|.
Note that k-RNG ⊆ k-GG ⊆ k-DG. Chang et al. [9] showed that 19-RNG is Hamiltonian.3

Abellanas et al. [1] proved that 15-GG is Hamiltonian. Currently, the lowest known upper
bound is by Kaiser et al. [15] who showed that 10-GG is Hamiltonian. All of these results
are obtained by studying properties of bottleneck Hamiltonian cycles. Given a planar point
set, a bottleneck Hamiltonian cycle is a Hamiltonian cycle whose maximum edge length is
minimum among all Hamiltonian cycles of the point set. Biniaz et al. [5] showed that there
exist point sets such that its 7-GG does not contain a bottleneck Hamiltonian cycle, implying
that this approach cannot yield an upper bound lower than 8. Despite this, it is conjectured
that 1-DG is Hamiltonian [1].

Another avenue that has been explored is the relaxation of the shape defining the Delaunay
triangulation. Delaunay graphs where the disks have been replaced by various convex shapes
have been studied in the literature. For instance, Chew [10] showed that the 4-Delaunay
graph (i.e., where the shape is an equilateral triangle instead of a disk), denoted DG4, is
a 2-spanner and that the �-Delaunay graph (i.e., where the disk is replaced by a square),
denoted DG�, is a

√
10-spanner. Bose et al. [8] proved that the convex-Delaunay graph (i.e.,

where the disk is replaced by an arbitrary convex shape) is a c-spanner where the constant c
depends only on the perimeter and width of the convex shape.

As for Hamiltonicity in convex shape Delaunay graphs, not much is known. Bonichon
et al. [7] proved that every plane triangulation is Delaunay-realizable where homothets of a
triangle act as the empty convex shape. This implies that there exist DG4 graphs that do
not contain Hamiltonian paths or cycles. Biniaz et al. [6] showed that 7-DG4 contains a
bottleneck Hamiltonian cycle and that there exist points sets where 5-DG4 does not contain

a bottleneck Hamiltonian cycle. Ábrego et al. [2] showed that the DG� admits a Hamiltonian
path, while Saumell [18] showed that the DG� is not necessarily 1-tough, and therefore does
not necessarily contain a Hamiltonian cycle.

Results. We generalize the above results by replacing the disk with an arbitrary con-

1A graph G is 1-tough if removing any k vertices from G results in ≤ k connected components.
2Note that this implies that the standard Delaunay triangulation is the 0-DG.
3According to the definition of k-RNG in [9], they showed Hamiltonicity for 20-RNG.
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Type of shape C k ≤ k ≥ Bottleneck-k ≥
Circles 10 [15] 1 [11] 8 [5]
Equilateral triangles 7 [6] 1 [6] 6 [6]
Squares 7 [Thm. 5.3] 1 [18] 3 [Lemma 6.1]
Regular hexagons 11 [Thm. 5.6] 1 [Lemma 7.1] 6 [Lemma 6.2]
Regular octagons 12 [Thm. 5.8] 1 [Lemma 7.1] -
Regular t-gons (t even, t ≥ 10) 11 [Thm. 5.7] - -
Regular t-gons (t = 3m with m odd, m ≥ 3) 24 [Thm. 3.7] 1[Thm. 7.2] -
Point-symmetric convex 15 [Thm. 4.4] - -
Arbitrary convex 24 [Thm. 3.7] - -

Table 1: Bounds on the minimum k for which k-DGC(S) is Hamiltonian and for which k-
GGC(S) contains a dC−bottleneck Hamiltonian cycle.

vex shape C. We show that the k-Gabriel graph, and hence also the k-Delaunay graph, is
Hamiltonian for any convex shape C when k ≥ 24. Furthermore, we give improved bounds for
point-symmetric shapes, as well as for even-sided regular polygons. Table 1 summarizes the
bounds obtained. Finally, we provide some lower bounds on the existence of a Hamiltonian
cycle for an infinite family of regular polygons, and bottleneck Hamiltonian cycles for the
particular cases of hexagons and squares. Together with the results of Bose et al. [8], our
results are the first results on graph-theoretic properties of generalized Delaunay graphs that
apply to arbitrary convex shapes.

Our results rely on the use of normed metrics and packing lemmas. In fact, in contrast to
previous work on Hamiltonicity for generalized Delaunay graphs, our results are the first to
use properties of normed metrics to obtain simple proofs for various convex shape Delaunay
graphs.

2 Convex distances and the C-Gabriel graph

Let p and q be two points in the plane. Let C be a compact convex set that contains the
origin, denoted ō, in its interior. We denote the boundary of C by ∂C. The convex distance
dC(p, q) is defined as follows: If p = q, then dC(p, q) = 0. Otherwise, let Cp be the convex set
C translated by the vector −→p and let q′ be the intersection of the ray from p through q and
∂Cp. Then, dC(p, q) = d(p,q)

d(p,q′) (see Fig. 1) where d denotes the Euclidean distance.

p

q

q′

Figure 1: Convex distance from p to q.

The convex set C is the unit C-disk of dC with center ō, i.e., every point p in C satisfies that
dC(ō, p) ≤ 1. The C-disk with center c and radius r is defined as the homothet of C centered at c
and with scaling factor r. The triangle inequality holds: dC(p, q) ≤ dC(p, z)+dC(z, q),∀p, q, z ∈
R2. However, this distance may not define a metric when C is not point-symmetric about
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Figure 2: (a) A triangle is a non-symmetric shape C. (b) Ĉ for this triangle is a hexagon.

the origin,4 since there may be points p, q for which dC(p, q) 6= dC(q, p). When C is point-
symmetric with respect to the origin, dC is called a symmetric convex distance function and it
is a metric. We will refer to such distance functions as symmetric convex. Moreover, dC(ō, p)
defines a norm5 of a metric space. In addition, if a point p is on the line segment ab, then
dC(a, b) = dC(a, p) + dC(p, b) (see [3, Chapter 7]).

Let S be a set of points in the plane satisfying the following general position assumption:
For each pair p, q ∈ S, any minimum homothet of C having p and q on its boundary does not
contain any other point of S on its boundary. The k-order C-Delaunay graph of S, denoted
k-DGC(S), is the graph with vertex set S such that, for each pair of points p, q ∈ S, the edge
pq is in k-DGC(S) if there exists a C-disk that has p and q on its boundary and contains at
most k points of S different from p and q. When k = 0 and C is a circle, k-DGC(S) is the
standard Delaunay triangulation.

The definition of Gabriel graphs requires the notion of a smallest homothet containing
two points on its boundary. To be able to use our techniques, it is convenient to be able
to associate a distance to the size of such smallest homothets, but dC fails on defining such
distance because dC might not be symmetric when the shape is not point-symmetric. To
circumvent this isssue, Aurenhammer and Paulini [4] showed how to define, from any convex
shape C, another shape that results in a distance function that is always symmetric: The
set Ĉ is defined as the Minkowski sum6 of C and its shape reflected about its center. For an
example, see Fig. 2. The shape Ĉ is point-symmetric and the dĈ-distance from p to q is given
by the scaling factor of a smallest homothet of C containing p and q on its boundary. The
diameter and width of Ĉ is twice the diameter and width of C, respectively. Moreover, if C is
point-symmetric, dĈ(p, q) = dC(p,q)

2 .
We define the k-order C-Gabriel graph of S, denoted k-GGC(S), as the graph with vertex

set S such that, for every pair of points p, q ∈ S, the edge pq is in k-GGC(S) if and only if
there exists a C-disk with radius dĈ(p, q) that has p and q on its boundary and contains at
most k points of S different from p and q. From the definition of k-GGC(S) and k-DGC(S)
we note that k-GGC(S) ⊆ k-DGC(S), and it can be a proper subgraph. See Fig. 3a for an
example. Further, Ĉ always contains C in its interior. However, for some non point-symmetric
convex C it is not true that GGĈ ⊆ GGC ; see Fig. 3b for an example.

4A shape C is point-symmetric with respect to a point x ∈ C provided that for every point p ∈ C there is a
corresponding point q ∈ C such that pq ∈ C and x is the midpoint of pq.

5A function ρ(x) is a norm if: (a) ρ(x) = 0 if and only if x = ō, (b) ρ(λx) = |λ|ρ(x) where λ ∈ R, and (c)
ρ(x+ y) ≤ ρ(x) + ρ(y)

6The Minkowski sum of two sets A and B is defined as A⊕B = {a+ b : a ∈ A, b ∈ B}.
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Figure 3: (a) C is a regular hexagon. Edge pq is in 2-DGC(S) but it is not in 2-GGC(S). (b)
Edge pq is in GGĈ(S) but it is not in GGC(S). (c) Many C-disks C(a, b) may exist for a and b.

3 Hamiltonicity for general convex shapes

In this section we show that the 24-order C-Gabriel graph is Hamiltonian for any point set S
in general position.

For simplicity, denote by Cr(a, b) a C-disk of radius r with the points a and b on its
boundary. For the special case of a diametral disk, i.e., when r = dĈ(a, b), we denote it by
C(a, b). Note that C(a, b) may not be unique, see Fig. 3c. In addition, we denote by DC(c, r)
the C-disk centered at point c with radius r.

Let H be the set of all Hamiltoninan cycles of the point set S. Define the dĈ-length
sequence of h ∈ H, denoted dsC(h), as a sequence of edges of h sorted in decreasing order
with respect to the dĈ-metric. Sort the elements of H in lexicographic order with respect to
their dĈ-length sequence, breaking ties arbitrarily. This order is strict. For h1, h2 ∈ H, if h1

is smaller than h2 in this order, we write h1 ≺ h2.
Let h be the minimum element in H, often called bottleneck Hamiltonian cycle. The

approach we follow to prove our bounds, which is similar to the approach in [1, 9, 15], is to
show that h is contained in k-GGC(S) for a small value of k. The strategy for proving that h
is contained in 24-GGC(S) is to show that for every edge ab ∈ h there are at most 24 points
in the interior of any C(a, b). In order to do this, we associate each point in the interior of an
arbitrary fixed C(a, b) to another point. Later, we show that the dĈ-distances between such
associated points and a is at least dĈ(a, b). Finally, we use a packing argument to show that
there are at most 24 associated points, which leads to a maximum of 24 points contained in
C(a, b).

Let ab ∈ h; we assume without loss of generality that dĈ(a, b) = 1. Let U = {u1, u2, . . . , uk}
be the set of points in S different from a and b that are in the interior of an arbitrary fixed
C(a, b).7 When traversing h from b to a, we visit the points of U in the order u1, . . . , uk. For
each point ui, define si to be the point preceding ui in h. See Fig. 4a.

Note that if a point p is in the interior of C(a, b), then for any q on the boundary of
C(a, b) there exists a C-disk (not necessarily diametral) through p and q contained in C(a, b).
Moreover, any diametral disk through p and q has size smaller than or equal to the size of
this C-disk. Therefore, dĈ(a, ui) < 1 and dĈ(b, ui) < 1 for any i ∈ {1, . . . , k}. Furthermore,
we have the following:

Claim 3.1. Let 1 ≤ i ≤ k. Then dĈ(a, si) ≥ max{dĈ(si, ui), 1}
7Since S is in general position, only a and b can lie on the boundary of C(a, b).
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DC(u′, dC(u′, p))
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(b)(a)

a

b

C(a, b)

s1u1

s2

u2

u3

s3
r

dC(u
′, p)

Figure 4: (a) Example of U in C(a, b). (b) DC(u, r) is contained in DC(u
′, dC(u

′, p)) where
u′ = λu with λ > 1.

Proof. If s1 = b, then dĈ(a, s1) = 1 and dĈ(s1, u1) < 1. Otherwise, define h′=(h\{ab, siui})∪
{asi, uib}. For sake of a contradiction suppose that dĈ(a, si)<max{dĈ(si, ui), 1}. It holds
that dĈ(a, si) < max{dĈ(si, ui), dĈ(a, b)} since dĈ(a, b) = 1. Also, dĈ(ui, b) < 1 since ui ∈
C(a, b). Thus, max{dĈ(a, si), dĈ(ui, b)} < max{dĈ(si, ui), dĈ(a, b)}. Therefore h′ ≺ h, which
contradicts the definition of h.

Claim 3.1 implies that, for each i ∈ {1, . . . , k}, si is not in the interior of C(a, b).

Claim 3.2. Let 1 ≤ i < j ≤ k. Then dĈ(si, sj) ≥ max{dĈ(si, ui), dĈ(sj , uj), 1}.

Proof. For sake of a contradiction suppose that dĈ(si, sj) < max{dĈ(si, ui), dĈ(sj , uj), 1}.
Consider the Hamiltonian cycle h′ = h \ {(a, b), (si, ui), (sj , uj)} ∪ {(si, sj), (ui, a), (uj , b)}.
As in Claim 3.1 we have that dĈ(ui, a) < 1 and dĈ(uj , b) < 1. So, max{dĈ(si, sj), dĈ(ui, a),
dĈ(uj , b)} < max{dĈ(si, ui), dĈ(sj , uj), dĈ(a, b)}. Therefore, h′ ≺ h which contradicts the
minimality of h.

The dC-distance from a point v to a region C is given by the minimum dC-distance from
v to any point u in C.

Observation 3.3. Let u /∈ DC(ō, r) for some r ∈ R+ and let p be the intersection point of
∂DC(ō, r)) and line segment ōu. Then, the dC-distance from u to DC(ō, r) is dC(u, p).

Proof. Since p is in ∂DC(ō, r) and u /∈ DC(ō, r), u = λp for some λ > 1 ∈ R. In addition, the
dC-distance from u to DC(ō, r) is at least dC(u, p). For the sake of a contradiction suppose that
the dC-distance from u toDC(ō, r) is less than dC(u, p). Thus, there exists a point v ∈ ∂DĈ(ō, r)
such that dĈ(u, v) < dĈ(u, p), and rλ = dĈ(ō, u) ≤ dĈ(ō, v) + dĈ(v, u) < dĈ(ō, v) + dĈ(p, u) =
r + rλ− r = rλ, which is a contradiction.

Without loss of generality assume that a is the origin ō. Since for any point u in C(a, b),
dĈ(ō, u) = dĈ(a, u) ≤ 1, we have that DĈ(ō, 1) contains C(a, b). Also, from Claim 3.1, we

have that si is not in the interior of DĈ(ō, 1) for all i ∈ {1, . . . , k}. Let DĈ(ō, 2) be the Ĉ-disk
centered at ō = a with radius 2. For each si /∈ DĈ(ō, 2), define s′i as the intersection of

∂DĈ(ō, 2) with the ray
−→̄
osi. Let s′i = si when si is inside DĈ(ō, 2). See Fig. 5.

Observation 3.4. If sj /∈ DĈ(ō, 2) (with 1 ≤ j ≤ k), the dĈ-distance from s′j to DĈ(ō, 1) is 1.
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ō=a

bC(a, b)

si sj = λs′j

s′i

s′j
DĈ(ō, 2)

DĈ(ō, 1)

p

st = s′t

Figure 5: C(a, b) has radius 1, DĈ(ō, 1) is the Ĉ-disk with radius 1 centered at ō and DĈ(ō, 2)

is the Ĉ-disk with radius 2 centered at ō. The points s′i and s′j are projections of si and sj on

∂DĈ(ō, 2), respectively. The dashed Ĉ-disk is centered at s′j and has radius 1.

Proof. Since sj /∈ DĈ(ō, 2), s′j is on the boundary of DĈ(ō, 2) and dĈ(ō, s
′
j) = 2. Let p be the

intersection point of ∂DĈ(ō, 1) and ōsj . Then dĈ(ō, p) = 1. By Observation 3.3 the dĈ-distance
from s′j to DĈ(ō, 1) is dĈ(s

′
j , p) = dĈ(p, s

′
j) = dĈ(ō, s

′
j)− dĈ(ō, p) = 2− 1 = 1.

The following claim is needed to prove our key lemma. Intuitively, this claim shows that
if there is a point-symmetric C-disk C of radius r centered at a point u such that r ≤ dC(u, ō),
then C is contained in any C-disk with ∂C ∩ −→̄ou on its boundary such that its center u′ lies
on the ray ōu and is farther to ō than u. For an example, see Fig. 4b.

Claim 3.5. Let C be a point-symmetric convex shape. Let u be a point in the plane different
from the origin ō. Let r < dC(u, ō). Let p be the intersection point of ∂DC(u, r) and line
segment ōu. Let u′ = λu, with λ > 1 ∈ R, be a point defined by vector u scaled by a factor of
λ. Then DC(u, r) ⊂ DC(u′, dC(u′, p)). (See Fig. 4b.)

Proof. Let q ∈ DC(u, r); then dC(u, q) ≤ dC(u, p). Since u is on the line segment u′p, we
have that dC(u

′, p) = dC(u
′, u) + dC(u, p). Hence dC(u

′, q) ≤ dC(u
′, u) + dC(u, q) ≤ dC(u

′, u) +
dC(u, p) = dC(u

′, p). Therefore, DC(u, r) is contained in DC(u
′, dC(u

′, p)).

Using the previous claims we can prove a key lemma stating that for every pair of points
s′i and s′j , we have that dĈ(s

′
i, s
′
j) ≥ 1. From this lemma we can conclude that any pair of

Ĉ-disks with radius 1
2 centered at s′i and s′j are internally disjoint, which allows us to bound

|U | via a packing argument.

Lemma 3.6. For any pair si and sj with i 6= j, we have that dĈ(s
′
i, s
′
j) ≥ 1.

Proof. If both si and sj are in DĈ(ō, 2), then from Claim 3.2 we have that dĈ(s
′
i, s
′
j) =

dĈ(si, sj) ≥ 1. Otherwise, we assume, without loss of generality, that dĈ(ō, sj) ≥ dĈ(ō, si).
Then, sj /∈ DĈ(ō, 2). Since s′j is on the line segment ōsj , we have sj = λs′j for some λ > 1.
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a = ō

b

C(a, b)

s′i

s′j

DĈ(ō, 2)

DĈ(ō, 1)

DĈ(ō, 5
2

)

Dj

Di

s′t
Dt

D0

Figure 6: The Ĉ-disks D0, Di, Dj and Dt of radius 1
2 are centered at a, s′i, s

′
j and s′t, respec-

tively. Such Ĉ-disks are contained in the Ĉ-disk DĈ(ō,
5
2).

Let p be the intersection point of ∂DĈ(ō, 1) and ōsj . Since dĈ defines a norm, we have
dĈ(λs

′
j , ō) = λdĈ(s

′
j , ō). By Observation 3.4 we have that dĈ(sj , p) = dĈ(sj , ō) − dĈ(p, ō) =

λdĈ(s
′
j , ō)−1 = 2λ−1. From Observation 3.3 it follows that the dĈ-distance from sj to DĈ(ō, 1)

is equal to dĈ(sj , p). Further, dĈ(sj , s
′
j) = dĈ(sj , ō) − dĈ(s

′
j , ō) = 2λ − 2. Let us prove that

dĈ(s
′
i, s
′
j) ≥ 1. For sake of a contradiction suppose that dĈ(s

′
i, s
′
j) < 1. Let Ds′j

= DĈ(s
′
j , 1).

By Observation 3.4, dĈ(s
′
j , p) = 1. Therefore, p is on ∂Ds′j

. Now, we consider two cases:

Case 1) si ∈ DĈ(ō, 2). Then dĈ(ō, si) ≤ 2. Since dĈ(s
′
i, s
′
j) < 1, we have si ∈ Ds′j

. From

Claim 3.5 it follows that Ds′j
is contained in DĈ(sj , dĈ(sj , p)). Thus, s′i ∈ DĈ(sj , dĈ(sj , p))

and dĈ(sj , s
′
i) = dĈ(sj , si) ≤ dĈ(sj , p). Since S is in general position, uj is in the interior of

DĈ(ō, 1). Hence, dĈ(sj , si) ≤ dĈ(sj , p) < dĈ(sj , uj), which contradicts Claim 3.2.
Case 2) si /∈ DĈ(ō, 2). Then dĈ(ō, si) > 2. Thus, si = δs′i for some δ > 1 ∈ R. Moreover,
since dĈ(ō, sj) ≥ dĈ(ō, si) and s′i, s

′
j are on ∂DĈ(ō, 2), δ ≤ λ. Hence, si is on the line segment

s′i(λs
′
i). Let Dsj = DĈ(sj , 2λ − 1). Note that λ < 2λ − 1 because λ > 1. Since dĈ defines

a norm, dĈ(sj , λs
′
i) = dĈ(λs

′
j , λs

′
i) = λdĈ(s

′
j , s
′
i) < λ < 2λ − 1. Hence, λs′i ∈ Dsj . In

addition, since dĈ(sj , p) = 2λ − 1, from Claim 3.5 it follows that Ds′j
⊆ Dsj . Therefore,

s′i ∈ Dsj . Thus, the line segment s′i(λs
′
i) is contained in Dsj . Hence, si ∈ Dsj . Then,

dĈ(sj , si) ≤ 2λ− 1 = dĈ(sj , p) < dĈ(sj , uj) which contradicts Claim 3.2.

Theorem 3.7. For any set S of points in general position and convex shape C, the graph
24-GGC(S) is Hamiltonian.

Proof. For each si we define the Ĉ-disk Di = DĈ(s
′
i,

1
2). We also set D0 := DĈ(ō,

1
2) (recall

that we can assume without loss of generality that a = ō). By Lemma 3.6, each pair of
Ĉ-disks Di and Dj (0 < i < j ≤ k) are internally disjoint. Note that, if s′i is on ∂DĈ(ō, 2),
then D0 and Di are internally disjoint. On the other hand, if s′i is in the interior of DĈ(ō, 2),
then by definition s′i = si. Thus, by Claim 3.1 D0 is internally disjoint from Di. See Fig. 6.
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Since s′i ∈ DĈ(ō, 2) for all i, each disk Di is inside DĈ(ō,
5
2). In DĈ(ō,

5
2), there can be at

most
Area(DĈ(ō, 5

2
))

Area(D0) =
( 5
2

)2Area(Ĉ)
( 1
2

)2Area(Ĉ)
= 25 internally disjoint disks of type Di. Thus, since D0

is centered at a, there are at most 24 points s′i in DĈ(ō, 1). As a consequence, there are at
most 24 points of S in the interior of C(a, b), and the bottleneck Hamiltonian cycle of S is
contained in 24-GGC(S).

4 Hamiltonicity for point-symmetric convex shapes

In this section we improve Theorem 3.7 for the case where C is convex and point-symmetric.
We use similar arguments to those in Section 3.

Consider h defined as before, i.e., h is the minimum Hamiltonian cycle in H. Let ab be an
edge in h and consider an arbitrary fixed C(a, b). In this section it will be more convenient to
assume without loss of generality that dC(a, b) = 2 and that C(a, b) is centered at the origin
ō. Thus, C(a, b) = DC(ō, 1), see Fig. 7. Consider again the set U = {u1, . . . , uk} defined as in
Section 3, and let si be the predecessor of ui in h.

Using that dC(a, b) = 2dĈ(a, b) when C is point-symmetric, we can prove the following
claims.

Claim 4.1. dC(si, a) ≥ max{dC(si, ui), 2}.

Proof. By Claim 3.1 we have that dC(si, a)=2dĈ(si, a)≥2 max{dĈ(si, ui), 1}=max{2dĈ(si, ui),
2} = max{dC(si, ui), 2}.

Claim 4.2. Let 1 ≤ i < j ≤ k, then dC(si, sj) ≥ max{dC(si, ui), dC(sj , uj), 2}.

Proof. By Claim 3.2 we have that dC(si, sj)= 2dĈ(si, sj) ≥ 2 max{dĈ(si, ui), dĈ(sj , uj), 1} =
max{2dĈ(si, ui), 2dĈ(sj , uj), 2}= max{dC(si, ui), dC(sj , uj), 2}.

a
b

ō

C(a, b)

DC(ō, 3)

p

s′j

sj

si = s′i

1

Figure 7: C(a, b) has radius 1 and it is centered at ō. The point sj is not in DC(ō, 3), so s′j is
the intersection point of ōsj ∩∂DC(ō, 3). The dotted C-disk is centered at s′j and has radius 2.

From Claim 4.1, we have that si is not in the interior of DC(ō, 1) = C(a, b) for all i ∈
{1, . . . , k}. Let DC(ō, 3) be the C-disk centered at ō with radius 3. For each si /∈ DC(ō, 3),
define s′i as the intersection of ∂DC(ō, 3) with the ray

−→̄
osi. We let s′i = si when si is inside

DC(ō, 3). See Figure 7.
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The following lemma is similar to Lemma 3.6. We show that every pair s′i and s′j are
at dC-distance at least 2. This lemma allows us again to reduce our problem to a packing
problem.

Lemma 4.3. For any pair si and sj with i 6= j, we have that dC(s
′
i, s
′
j) ≥ 2. Moreover, if at

least one of si and sj is not in DC(ō, 3), then dC(s
′
i, s
′
j) > 2.

Proof. If both si and sj are in DC(ō, 3), then from Claim 4.2 we have that dC(s
′
i, s
′
j) =

dC(si, sj) ≥ 2. Otherwise, assume without loss of generality that dC(ō, sj) ≥ dC(ō, si). Then
sj /∈ DC(ō, 3) and s′j is on the line segment ōsj . Thus, sj = λs′j for some λ > 1. Let
p be the intersection point of ∂C(a, b) and ōsj . By Observation 3.3 the dC-distance from
s′j to C(a, b) is dC(s

′
j , p) = dC(s

′
j , ō) − dC(p, ō) = 2. Since dC defines a norm, dC(sj , p) =

dC(sj , ō)− dC(p, ō) = λdC(s
′
j , ō)− 1 = 3λ− 1, and this corresponds to the dC-distance from sj

to C(a, b). Further, dC(sj , s
′
j) = dC(sj , ō) − dC(s′j , ō) = 3λ − 3. For sake of contradiction we

suppose that dC(s
′
i, s
′
j) ≤ 2. Thus, s′i is in DC(s

′
j , 2). We consider the following two cases.

Case 1) si ∈ DC(ō, 3). Then dC(ō, si) ≤ 3. Since dC(s
′
i, s
′
j) ≤ 2, si = s′i ∈ DC(s

′
j , 2).

From Claim 3.5 follows that DC(s
′
j , 2) ⊂ DC(sj , 3λ − 1). Thus, si ∈ DC(sj , 3λ − 1). Hence,

dC(sj , s
′
i) = dC(sj , si) ≤ dC(sj , p). Since S is in general position, uj is in the interior of C(a, b).

Therefore, dC(sj , si) ≤ dC(sj , p) < dC(sj , uj), which contradicts Claim 4.2.
Case 2) si /∈ DC(ō, 3). Then s′i ∈ ∂DC(ō, 3) and si = δs′i for some δ > 1. Moreover,
since dC(ō, sj) ≥ dC(ō, si) and s′i, s

′
j are on the boundary of DC(ō, 3), δ ≤ λ. Hence, si is

on the line segment s′i(λs
′
i). Note that 2λ < 3λ − 1 because λ > 1. Since dC defines a

norm, dC(sj , λs
′
i) = λdC(s

′
j , s
′
i) ≤ 2λ < 3λ − 1. Hence, λs′i ∈ DC(sj , 3λ − 1). In addition,

from Claim 3.5 it follows that DC(s
′
j , 2) ⊆ DC(sj , 3λ − 1). Thus, s′i ∈ DC(sj , 3λ − 1) and

the line segment s′i(λs
′
i) is contained in DC(sj , 3λ − 1). Then, si ∈ DC(sj , 3λ − 1) and

dC(sj , si) ≤ 3λ− 1 = dC(sj , p) < dC(sj , uj), which contradicts Claim 4.2.

Theorem 4.4. For any set S of points in general position and point-symmetric convex shape
C, the graph 15-GGC(S) is Hamiltonian.

Proof. For each si ∈ S we define the C-disk Di = DC(s
′
i, 1). We also set D0 := DC(a, 1). From

Lemma 4.3, each pair of C-disks Di and Dj are internally disjoint, for 0 < i < j ≤ k. Note
that, if s′i is on ∂DC(ō, 3), then D0 and Di are internally disjoint. On the other hand, if s′i
is in the interior of DC(ō, 3), then by definition s′i = si. Thus, by Claim 4.1 D0 is internally
disjoint from Di. Consider DC(ō, 4). Since, s′i ∈ DC(ō, 3) for all i ∈ {1, . . . k}, then each disk

Di is inside DC(ō, 4). Hence, in DC(ō, 4) there can be at most Area(DC(ō,4))
Area(C) = 42Area(C)

Area(C) = 16
internally disjoint disks of type Di. Since D0 is centered at a, there are at most 15 points
s′i in DC(ō, 3). Therefore, there are at most 15 points of S in C(a, b), and the bottleneck
Hamiltonian cycle of S is contained in 15-GGC(S).

5 Hamiltonicity for regular polygons

An important family of point-symmetric convex shapes is that of regular even-sided polygons.
When C is a regular polygon Pt with t sides, for t even, we can improve the previous bound
by analyzing the properties of the shape for different values of t.
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D1

D2D3D4

D5

D6 D7 D0

C(a, b)

a

b
ō

Figure 8: Lines x = −1, x = 1, y = −1, and y = 1 split D�(3, ō) into nine unit squares:
C(a, b), D0, . . . , D7.

5.1 Hamiltonicity for squares

First, we consider the case when the polygon is a square. In this case, we divide D�(ō, 3) into
9 disjoint squares of radius 1 and show that there can be at most one point of {a, s′1, . . . , s′k}
in each such square. We use lines x = −1, x = 1, y = −1, and y = 1 to split D�(ō, 3) into 9
squares of radius 1. Refer to Fig. 8. Let D0, D1, . . . , D7 be the squares of radius 1 in D�(ō, 3)
different from C(a, b), ordered clockwise, and where D0 is the top-right corner square. In the
following lemma we prove that there is at most one point of {a, s′1, . . . , s′k} in each Di. Let
indices be taken modulo 8. Note that each Di shares a side with Di−1, and for each odd i,
Di shares a side with C(a, b). Moreover, there exists a Di that contains a on its boundary.
We will associate any point in D�(ō, 3) (not in the interior of C(a, b)) to a unique square Di

in the following way: Let p be a point in Di. If p does not lie on the shared boundary of
Di and some other Dj , then p is associated to Di. If i is odd and p is the intersection point
Di ∩ Di−1 ∩ Di−2, then p is associated to Di−2 (p can be a or b). Otherwise, if p is on the
edge Di ∩Di−1, then p is associated to Di−1.

Observation 5.1. Any two points at d�-distance 2 in a unit square must be on opposite sides
of the square.

Lemma 5.2. There is at most one s′j associated to each Di. Moreover, the Di containing
the point a on its boundary has no s′j associated to it.

Proof. Suppose that there are two points s′j and s′m associated to Di. From Lemma 4.3
we have that d�(s′j , s

′
m) ≥ 2. Also, since Di is a unit square, d�(s′j , s

′
m) ≤ 2. Therefore,

d�(s′j , s
′
m) = 2. Then Lemma 4.3 implies that sj and sm must be inside DC(ō, 3). In addition,

by Observation 5.1, the points sj and sm are on opposite sides of the boundary of Di. For
simplicity we will assume that d�(ō, sj) ≥ d�(ō, sm). If i is even, then the d�-distance of
sj to C(a, b) is exactly 2. We refer to Fig. 9a and 9b. Recall that, by our general position
assumption, uj is in the interior of C(a, b). Thus, the d�-distance from sj to C(a, b) is less
than d�(sj , uj), i.e., d�(sj , uj) > 2. Hence, d�(sj , sm) = 2 < d�(sj , uj) which contradicts
Claim 4.2. Therefore, if i is even, there is at most one point in Di, which is associated to it.
If i is odd, then sj is either on Di ∩ Di−1 or Di ∩ Di+1, or on Di ∩ ∂DC(ō, 3) (see Fig. 9c
and 9d). If sj is on Di ∩Di−1 or Di ∩Di+1, then only one of sj and sm is associated to Di.
If sj is on Di ∩ ∂DC(ō, 3), then by Observation 5.1, sm is on C(a, b), which by our general

11



D0

D0sj

sm

sm

sj

C(a, b) C(a, b)

D7

sj

sm

C(a, b)

D7

sm

C(a, b)

sj

a a a a

bb b b

(a) (b) (c) (d)

Figure 9: Cases (a) and (b) contradict Claim 4.2. Case (c) contradicts our general position
assumption. In case (d) only one point, sj , is associated to D7.

position assumption implies that sm = b, since sm 6= a. Thus, d�(sj , uj) > 2 = d�(sj , sm),
which contradicts Claim 4.2. Therefore, there is only one point associated to Di.

Finally, if Di contains a, then there is no point s′j in Di. Indeed, assume for sake of
a contradiction that s′j ∈ Di. Then, sj is not in Di, otherwise, d�(a, sj) < d�(sj , uj),
contradicting Claim 4.1. Thus, s′j is on Di ∩ ∂D�(ō, 3) and sj = λs′j for some λ > 1.
Hence, d�(s′j , a) = 2, which means that a ∈ D�(s′j , 2). Let p be the point ōs′j ∩ ∂C(a, b). By
Claim 3.5, D�(s′j , 2) ⊂ D�(sj , d�(sj , p)). So, a ∈ D�(sj , d�(sj , p)) and d�(sj , a) < d�(sj , uj),
contradicting Claim 4.1.

Theorem 5.3. For any set S of points in general position, the graph 7-GG�(S) is Hamilto-
nian.

Proof. From Lemma 5.2 we have that for each 0 ≤ i ≤ 7 there is at most one point of
{a, s′1, . . . , s′k} associated to Di, and any square containing a has no s′i associated to it. Since
there is at least one Di containing a, there are at most 7 points s′j in D�(ō, 3). Therefore,
there are at most 7 points of S in the interior of C(a, b), and the bottleneck Hamiltonian cycle
of S is contained in 7-GG�(S).

5.2 Hamiltonicity for regular hexagons

D5

D0

D1

D2

D3

D4

Q4 Q5

Q0

Q1Q2

Q3

P6(a, b)

ō
a

b

Figure 10: The bold hexagon is the boundary of DP6(ō, 3). Such hexagon is divided into 13
interior-disjoint regions: 6 quadrangles—a third of a unit P6-disk—and 7 unit P6-disks.
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The analysis for the case of hexagons is similar to the previous one. First we divide the
hexagon DP6(ō, 3) into 13 different regions C(a, b), D0, . . . , D5, Q0, . . . , Q5, shown in Fig. 10.
Let indices be taken modulo 6. We will associate a point in DP6(ō, 3) (not in the interior of
C(a, b)) to a region Di or Qi in the following fashion. If a point is in the interior of Di or
Qi we say that such point is associated to Di or Qi, respectively. If a point is on the edge
Di ∩Di−1 or edge Di ∩Qi−1, then such point is associated to Di−1 and Qi−1, respectively. In
the case when a point is the vertex Di ∩Di−1 ∩Qi−1, we say that such point is associated to
Di−1. When a point is on the edge Di ∩Qi then we associate it with Di. See Fig. 11.

D5

D4

Q4

Figure 11: The dashed boundary of D5 is associated to D4 and the dotted one is associated
to Q4. The rest of D5 is associated to D5.

Observation 5.4. Any two points at dP6-distance 2 in a unit hexagon D must be on opposite
sides of D.

In the following lemma we show that the hexagon DP6(ō, 3) contains at most 11 points
s′1, . . . , s

′
k.

Lemma 5.5. There is at most one point s′j associated to each region of type Di or Qi.
Moreover, there is no point s′j in the hexagon Di that contains a.

Proof. If a point is in the interior of Di or Qi then by Observation 5.4 there is no other point
in the same region.

Note that if Qi contains two points at dP6-distance 2, then by Observation 5.4 such points
are exactly Di ∩Qi ∩ ∂DP6(ō, 3) and Di+1 ∩Qi ∩ ∂DP6(ō, 3). Since the points on Di ∩Qi are
associated to Di, the intersection point Di ∩ Qi ∩ ∂DP6(ō, 3) is not associated to Qi. Thus,
there is at most one point associated to Qi.

If Di contains a point s′j that is on Di∩∂DP6(ō, 3), then there cannot be another s′m ∈ Di:
Otherwise, by Observation 5.4, s′m would be on the boundary of P6(a, b), in which case s′m = b
due to our general position assumption. Since, dP6(s′j , s

′
m) = 2, it follows from Lemma 4.3

that sj would be in DP(ō, 3). Thus, dP6(sj , sm) = 2 < dP6(sj , uj) which contradicts Claim 4.2.
Consequently, if Di contains two points s′j and s′m then by Observation 5.4 either: 1) one is
on the edge Di ∩Qi and the other is on the edge Di ∩Di−1 (see Fig. 12a); or 2) one is on the
edge Di ∩Di+1 and the other is on the edge Di ∩Qi−1 (see Fig. 12b). In either case, just one
point is associated to Di.

Finally, if Di contains a, then there is no point s′j in Di. Indeed, suppose for sake of
contradiction that s′j ∈ Di. Then, sj is not in Di because, by Claim 4.1, dP6(a, sj) ≥
dP6(sj , uj). Thus, s′j is on Di∩∂DP6(ō, 3) and sj = λs′j for some λ > 1. Hence, dP6(s′j , a) = 2
and a ∈ DP6(s′j , 2). Let p be the intersection point ōs′j∩∂P6(a, b). By Claim 3.5, DP6(s′j , 2) ⊂
DP6(sj , dP6(sj , p)) and, thus, a ∈ DP6(sj , dP6(sj , p)). We obtain that dP6(sj , a) < dP6(sj , uj),
which again contradicts Claim 4.1.

The following theorem holds.
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D5

D0D4

Q4 Q5

P6(a, b)

D5

D0D4

Q4 Q5

P6(a, b)

s′m

s′j s′j

s′m

(a) (b)

a

b

a

b

Figure 12: In both, (a) and (b), D5 contains exactly two points at dP6-distance 2.

1

P8

3
cos(π

8 )

Figure 13: The incircle of the octagon P8 has Euclidean radius 1. The octagon P8 is inscribed
in a circle of Euclidean radius 3

cos(π
8

) ; such circle is also known as the circumcircle of P8.

Theorem 5.6. For any set S of points in general position, the graph 11-GGP6(S) is Hamil-
tonian.

5.3 Hamiltonicity for regular even-sided t-gons where t ≥ 8

For the remaining regular polygons with an even number of sides, we use the circumcircle 8

of DPt(ō, 3) in order to give an upper bound on the number of points in DPt(ō, 3) at pairwise
Euclidean distance at least 2. Without loss of generality we assume that the incircle 9 of the
unit Pt-disk has Euclidean radius 1. See Fig. 13.

In this section we will first treat the case t ≥ 10, and afterwards the case t = 8.

Theorem 5.7. For any set S of points in general position and regular polygon Pt with even
t ≥ 10, the graph 11-GGPt(S) is Hamiltonian.

Proof. Let Pt be a polygon with t ≥ 10 sides and t even. Then DPt(ō, 3) is inscribed in a
circle of radius r = 3

cos(π
t

) . Since the function cos(πt ) is an increasing function for t ≥ 2,

we have that r ≤ 3
cos( π

10
) . Therefore, DPt(ō, 3) is inside the circumcircle of a decagon with

incircle of radius 3. In addition, from Lemma 4.3 we know that for any pair of points s′i, s
′
j in

DPt(ō, 3), dPt(s
′
i, s
′
j) ≥ 2. Since the incircle of the 2-unit Pt-disk has Euclidean radius 2, we

8The circumcircle of a polygon P is the smallest circle that contains P.
9The incircle of a polygon P is the largest circle in the interior of P that is tangent to each side of P.
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have that d(s′i, s
′
j) ≥ 2. Hence, it suffices to show that there are at most 12 points in DPt(ō, 3)

at pairwise Euclidean distance at least 2. Fodor [13] proved that the minimum radius R of a
circle having 13 points at pairwise Euclidean distance at least 2 is R ≈ 3.236, which is greater
than 3

cos( π
10

) ≈ 3.154. Thus, DPt(ō, 3) contains at most 12 points at pairwise dPt-distance at

least 2. Since a is also at dPt-distance at least 2 from all s′i’s, there are at most 11 points of
S inside Pt(a, b).

For the case of octagons, the radius of the circumcircle of DP8(ō, 3) is greater than 3.236,
so we cannot use the result in [13]. However, we can use a similar result from Fodor [14] to
prove an analogous theorem:

Theorem 5.8. For any set S of points in general position, the graph 12-GGP8(S) is Hamil-
tonian.

Proof. From Lemma 4.3 we know that, for any pair of points s′i, s
′
j in DP8(ō, 3), dP8(s′i, s

′
j) ≥ 2.

Since the incircle of the 2-unit P8-disk has Euclidean radius 2, we have that d(s′i, s
′
j) ≥ 2.

Hence, it suffices to show that there are at most 13 points in DP8(ō, 3) at pairwise Euclidean
distance at least 2. The regular octagon DP8(ō, 3) is inscribed in a circle of radius r =

3
cos(π

8
) ≈ 3.247. By a result of Fodor [14], the smallest radius R of a circle containing 14

points at pairwise Euclidean distance at least 2 is R ≈ 3.328. Hence, DP8(ō, 3) contains at
most 13 points at pairwise Euclidean distance at least 2. Since a is also at dP8-distance at
least 2 from all s′i’s, there are at most 12 points of S inside P8(a, b).

6 Lower bounds for the existence of bottleneck Hamiltonian
cycles in k-GG� and k-GGP6

In this section we give lower bounds on the minimum values of k for which the graphs k-GG�
and k-GGP6 contain a bottleneck Hamiltonian cycle. This is useful to understand to what
extent we can use the bottleneck Hamiltonian cycle for showing Hamiltonicity in a k-GGC
in order to improve the known upper bounds on k. The proofs are very similar to those
in [5, 6, 15].

Lemma 6.1. There exists a point set S with n ≥ 17 points such that 2-GG�(S) does not
contain any d�-bottleneck Hamiltonian cycle of S.

Proof. Consider the point set S in Fig. 14. The length of edge ab is d�(a, b) = 1, and the two
dashed squares have radius 1 and are centered at a and b. Notice that any C(a, b) contains
at least 3 points from U = {u1, u2, u3, u4}, so ab /∈ 2-GG�(S).

Let R = {r1, r2, r3, r4, t1, . . . t7}. For each point in R there is a red square centered at such
point with radius 1 + ε, where ε is a small positive value. Thus, d�(ri, ui) = 1 + ε, d�(ri, a) >
1+ε, d�(ri, b) > 1+ε and d�(ri, rj) > 1+ε, for i 6= j. The cycle h=(a, b, u1, r1, u2, r2, t1, t2, t3,
t4, t5, t6, t7, r3, u3, r4, u4, a) is Hamiltonian and the maximum length of its edges in the d�-
distance is 1+ε. Hence, any d�-bottleneck Hamiltonian cycle of S has at most 1+ε maximum
edge d�-length.

We will show that the edge ab is in every d�-bottleneck Hamiltonian cycle of S. Let h′ be
a d�-bottleneck Hamiltonian cycle. Since the d�-distance from a and b to any point in R is
greater than 1 + ε, in h′, a and b can only be connected between each other or to the points
in U . Note that u2 has to be connected to r1 and r2 in h′, since otherwise r1 or r2 would be
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Figure 14: The diagonal-pattern square is a C(a, b) with a as a vertex, and the gray-filled
square is a C(a, b) with b as vertex. The union of both squares contains all the possible C(a, b).
The bold edges belong to h in the proof of Lemma 6.1.

adjacent to an edge whose d�-length is greater than 1 + ε. Similarly, u3 has to be connected
to r3 and r4 in h′, since otherwise r3 or r4 would be adjacent to an edge of d�-length greater
than 1 + ε. Finally, a and b have to be connected to each other, since otherwise both would
be adjacent to u1 and u4, which does not produce a Hamiltonian cycle.

In summary, ab is included in any d�-bottleneck Hamiltonian cycle, and since ab /∈ 2-
GG�(S), the lemma holds.

Lemma 6.2. There exists a point set S with n ≥ 22 points such that 5-GGP6(S) does not
contain any dP6-bottleneck Hamiltonian cycle of S.

Proof. We proceed in the same fashion as in the previous proof. Consider the point set S in
Fig. 15. The length of edge ab is dP6(a, b) = 1, and the dashed hexagons have radius 1 and are
centered at a and b. Notice that there is exactly one C(a, b), and it contains all points from
U = {u1, . . . , u6}. Therefore, ab /∈ 5-GGP6(S). Let R = {r1, . . . , r6, t1, . . . t8}. For each point
in R there is a red regular hexagon centered at such point with radius 1+ε, where ε is a small
positive value. Thus, dP6(ri, ui)=1 + ε, dP6(ri, a)>1 + ε, dP6(ri, b)>1 + ε and dP6(ri, rj)>1 +
ε, with i 6= j. The cycle h=(a, b, u1, r1, u2, r2, u3, r3, t1, t2, . . . , t8, r4, u4, r5, u5, r6, u6, a) is
Hamiltonian, and the maximum length of its edges in the dP6-distance is 1 + ε.
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Figure 15: The gray hexagon is the unique C(a, b), and it contains 6 points of S. The bold
edges belong to h in the proof of Lemma 6.2.

Let h′ be a dP6-bottleneck Hamiltonian cycle. Let us show that ab ∈ h′. Since the
dP6-distance from a and b to any point in R is greater than 1 + ε, in h′, a and b can only
be connected between each other or to the points in U . Note that u3 has to be adjacent
to r2 and r3; otherwise, r2 or r3 would be adjacent to an edge of dP6-length greater than
1 + ε. Similarly, u2, u4, u5 have to be adjacent to r2 and r3, to r4 and r5, and to r5 and r6,
respectively. Finally, a and b have to be connected to each other, otherwise both would be
adjacent to u1 and u6 which does not produce a Hamiltonian cycle. Therefore, ab is included
in any d�-bottleneck Hamiltonian cycle, and since ab /∈ 5-GGP6(S), the lemma holds.

7 Non-Hamiltonicity for regular polygons

Until now we have discussed upper and lower bounds for k, so that k-GGC contains a bottle-
neck Hamiltonian cycle. As mentioned in Section 2, k-GGC ⊆ k-DGC , thus all upper bounds
given in the previous sections hold for k-order C-Delaunay graphs as well, but not the lower
bounds. In this section we present point sets for which DGPt is not Hamiltonian. For t = 4,
Saumell [18] showed that for any n ≥ 9 there exists a point set S such that DG�(S) is
non-Hamiltonian, so we focus on t ≥ 5.

First, we present particular cases of t ≥ 5 for which DGPt is non-Hamiltonian. Later on,
we present a generalization of these point sets and show the non-Hamiltonicity for an infinite
family of DGPt .
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Figure 16: For each t ∈ {5, 6, 7, 8, 9, 10, 11} the graph DGPt(S) is non-Hamiltonian.

7.1 Non-Hamiltonicity for regular polygons with small number of sides

In this section we prove that DGPt fails to be Hamiltonian for every point set when t =
5, 6, . . . , 11 (see Fig. 16).

Lemma 7.1. For any n ≥ 7 and any t ∈ {5, 6, . . . , 11}, there exists an n-point set S such
that DGPt(S) is non-Hamiltonian.

Proof. Let t ∈ {5, 6, . . . , 11}. Consider the graph DGPt(S) in Fig. 16 for such t. Note that
such graph is indeed a Pt-Delaunay graph, since for each edge there exists a Pt-disk that
contains its vertices on its boundary and is empty of other points of S. Also, note that some
edges from the convex hull of S do not appear in such graphs. Finally, notice that there
exists an area r that is not contained in any of the Pt-disks associated to the edges of the
outer face or the triangle 4p1p2p3. Such area can have an arbitrary number of points in its
interior, say n−6. Now, let G′ = DGPt(S)\{p1, p2, p3}. The graph G′ consists of 4 connected
components, so DGPt(S) is not 1-tough. Since every Hamiltonian graph is 1-tough, DGPt(S)
is non-Hamiltonian.

7.2 An infinite family of regular polygons such that DGPt is non-Hamiltonian

Based on the point sets given in the previous section, we construct an n-point set S, with
n ≥ 7, such that the following theorem holds.

Theorem 7.2. Let Pt be a regular t-gon, where t > 3 and t is an odd number and multiple of
three. For any n ≥ 7, there exists an n-point set S such that DGPt(S) is non-Hamiltonian.

Our construction is a generalization of the ones in the previous section. However, in order
to be able to prove that DGPt(S) has the desired structure for arbitrary large values of t, we
have to define it in a very precise way.

Before we proceed to prove Theorem 7.2, we need some new definitions and a few auxiliary
claims.
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Let Pt be a regular t-gon, where t = 3(2m+ 1) for some positive integer m. Without loss
of generality, we assume that Pt is oriented so that its bottom side is horizontal. We also
assume that its vertices are given in counterclockwise order.

p1p2

p3

Figure 17: An equilateral triangle pointing downwards.

Consider three points p1, p2 and p3 in the plane that define an equilateral triangle T as
in Fig. 17. Let c be the circumcenter of the triangle T . Let C1, C2 and C3 be three circles
circumscribing the triangles 4p1p2c, 4p2p3c and 4p3p1c, respectively. These three circles
are Johnson circles,10 they have the same radius r, and they intersect at c. Let c1, c2 and c3

be the centers of C1, C2 and C3, respectively. Notice that the line segments p2c2 and c3p1 are
vertical, and that ∠ccipi+1 = π

3 and ∠picic = π
3 , for all i modulo 3. See Fig. 18.

p1p2

p3

C2

C1

C3

p4

u v

T ′

c1

c
c2 c3

T

Figure 18: The circles C1, C2, C3 contain triangles 4p1p2c, 4p2p3c and 4p3p1c, respectively.
The big triangle T ′ = 4p4uv is the anticomplementary triangle of T .

Consider the anticomplementary triangle11 T ′ = 4p4uv of T defined as in Fig. 18. Let
P1
t ,P2

t and P3
t be the three t-gons inscribed in C1, C2 and C3, respectively. See Fig. 19.

10A set of Johnson circles is a set of three circles of the same size that mutually intersect each other in a single
point. For a survey about the properties of Johnson circles, we refer the reader to the Johnson Theorem [16].

11Let C be the circle with center C1 ∩ C2 ∩ C3 and radius 2r. The anticomplementary triangle of T has as
vertices the three tangent points of C with the Johnson circles.
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P2
9

P3
9
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Figure 19: Inscribed t-gons for t = 9. The angles α and α′ are less than π
9 .

Claim 7.3. The points p1, p2 and p3 are on ∂P3
t ∩∂P1

t , ∂P1
t ∩∂P2

t and ∂P2
t ∩∂P3

t , respectively.

Proof. Recall that t = 3(2m+ 1) with m > 0. Let a1b1 be the bottom side of ∂P1
t . Since the

line segment c1c is vertical, c1c bisects a1b1. Thus, the angle formed by c1c and the i-th vertex
of ∂P1

t is given by π
t + 2(i−1)π

t . In particular, for i = m+1 we obtain 2mπ
t + π

t = (2m+1)π
3(2m+1) = π

3 ,

which is precisely ∠cc1p2. Hence, p2 ∈ ∂P1
t . The proof for p1 ∈ ∂P1

t is symmetric.
Since the bottom sides of ∂P2

t and ∂P3
t are horizontal, the top-most vertices of ∂P2

t and
∂P3

t are p2 and p1, respectively. Therefore p1 ∈ ∂P1
t ∩ ∂P3

t and p2 ∈ ∂P1
t ∩ ∂P2

t .
On the other hand, since the top-most point of ∂P2

t is p2, the angle formed by p2c2 and

the i-th vertex of ∂P2
t is given by 2iπ

t . In particular, for i = 2m+ 1 we obtain 2(2m+1)π
3(2m+1) = 2π

3 ,

which is precisely ∠p2c2p3. Thus, p3 ∈ ∂P2
t . Similarly, we can show p3 ∈ ∂P3

t .

Given points a and b, we next show how to define a polygon which we call the Pt-of-
influence of a and b. Recall that the vertices v1, . . . , vt of Pt are oriented counterclockwise,
where v1 is the top-most one. The i-th oriented edge of Pt is defined by ei = −−−→vivi+1. We
define the oriented line `i as the supporting line of the edge ei with the same orientation
as ei. For each `i, we consider two oriented lines parallel to `i, one passing through a and
another through b. Among all these lines, we only take those having a and b on its left or on
the line. Now, consider the left half-planes defined by such oriented lines; the intersection of
these half-planes defines the Pt-of-influence of a and b. See Fig. 20a. Since a point p is in a
Pt-disk if p is on the left of each supporting line `i or on `i, any Pt-disk containing a and b
contains their Pt-of-influence.
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p3
u vα′

p5
p6

α

`p64

2π
9

π
9

p6p5
`p65

`p51

`p54

`p65

`p69

(a) (b)

Figure 20: The dashed area next to each line represents the half-plane with points on the left
of the line. (a) The bold polygon is the P9-of-influence of p5 and p6. (b) The points p5 and
p3 are on the left of `p65 and on the right of `p64 .

Let p5 and p6 be two points on the boundary of P2
t and P3

t , respectively, such that
α = ∠p5p3u <

π
t and α′ = ∠vp3p6 <

π
t . See Fig. 19.

Claim 7.4. Any Pt-disk containing p5 and p6 on its boundary contains p3 in its interior.

Proof. Note that if p3 is in the interior of the Pt-of-influence of p6 and p5 then the claim
follows. Let us show first that p3 is in the Pt-of-influence of p6 and p5 (but not necessarily
in its interior). We denote by `pi the parallel line to `i passing through point p. Without loss
of generality assume that p5 is above the horizontal line passing through p6. Note that α′

is equal to the inner angle at p6 formed by the horizontal line passing through p6 and edge
p6p3, and this angle is less than π

t . Also, note that for h = t−1
2 + 1, `h is horizontal. Finally,

observe that the angle formed by consecutive `pi and `pi+1 is 2π
t . Then, p3 is contained in the

wedge defined by `p6h and `p6h−1 with inner angle 2π
t that lies above `p6h . Refer to Fig. 20b.

Since α′ < π
t , this wedge contains the wedge defined by edge p6p3 and `p6h , which contains p5.

Thus, p5 is on the left of `p6h and on the right of `p6h−1. The lines of the form `p6i that have p5

on its left are the ones encountered when rotating `p6h along p6 counterclockwise until it hits
p5; the total angle of rotation is π minus the inner angle formed by p5p6 and `p6h . Therefore,
these lines are `p6h , `

p6
h+1, . . . , `

p6
t . Since the wedge defined by `p6h and `p6t containing p5 has

angle π
t , p3 also lies on such wedge and p3 is on the left of `p6t . Moreover, the angle of the cone

containing p5 formed by `p6h and `p6i , for any i ∈ {h+ 1, . . . , t}, is at least π
t . Hence, p3 lies on

the left of `p6i for all i ∈ {h, . . . , t}. Similarly, we show that `p5i has p6 on its left if and only if
i = {1, . . . , t−1

2 }, and these lines also have p3 on its left. Thus, p3 is in the Pt-of-influence of
p5 and p6. Moreover, since p3 is strictly on the left of all the mentioned relevant lines, p3 is in
the interior of the Pt-of-influence of p5 and p6. Therefore, p3 is in the interior of any Pt-disk
containing p5 and p6.

Now, we proceed to prove Theorem 7.2.

Proof of Theorem 7.2. Since the bottom side eb of P1
t is horizontal and the intersection of

the three circles C1, C2, C3 is only the point c, there is an empty space in C1 bounded by eb
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and the circular arcs of C2 and C3 with endpoints c and the intersection points eb ∩ C2 and
eb ∩ C3. Let us call such area Ac. See Fig. 21. Let S

′
be a set of n − 6 points in general

position contained in Ac. Let S = {p1, p2, p3, p4, p5, p6} ∪ S
′
.

eb

c

P1
9

Ac

C1

C2C3

Figure 21: The gray area Ac is contained in the interior of C1 \ (C2∪C3) and is not contained
in P1

9 .

Since for i = 1, 2, 3 the Pt-disk P it contains no point of S in its interior, from Claim 7.3
it follows that the edges p1p2, p2p3, p3p1 are in DGPt(S).12 Also, since for each of the edges
p5p2, p2p4, p4p1, p1p6, p6p3 and p3p5, its endpoints lie on ∂P it for some fixed i ∈ {1, 2, 3}, such
edges are in DGPt(S). By Claim 7.4, p5p6 /∈ DGPt(S). Hence, the outerface of DGPt(S) is
given by the edges p5p2, p2p4, p4p1, p1p6, p6p3 and p3p5.

The graph DGPt(S) is not 1-tough because DGPt(S) \ {p1, p2, p3} consists of four con-
nected components, namely, {p4}, {p5}, {p6} and DGPt(S

′). Therefore, DGPt(S) is not
Hamiltonian.

8 Conclusions

In this paper we have presented the first general results on Hamiltonicity for higher-order
convex-shape Delaunay and Gabriel graphs. By combining properties of metrics and packings,
we have achieved general bounds for any convex shape, and improved bounds for point-
symmetric shapes, as well as for even-sided regular polygons. For future research, we point
out that our results are based on bottleneck Hamiltonian cycles, in the same way as all
previously obtained bounds [1, 9, 15]. However, in several cases, as we show in Section 6, this
technique is reaching its limit. Therefore a major challenge to effectively close the existing
gaps will be to devise a different approach to prove Hamiltonicity of Delaunay graphs.
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