
Minimum Cuts in Geometric Intersection Graphs

Sergio Cabello* Wolfgang Mulzer†

May 30, 2023

Abstract

Let D be a set of n disks in the plane. The disk graph GD for D is the undirected graph with
vertex set D in which two disks are joined by an edge if and only if they intersect. The directed
transmission graph G→D for D is the directed graph with vertex set D in which there is an edge
from a disk D1 ∈ D to a disk D2 ∈ D if and only if D1 contains the center of D2.

Given D and two non-intersecting disks s, t ∈ D, we show that a minimum s-t vertex cut in
GD or in G→D can be found in O(n3/2 polylog n) expected time. To obtain our result, we combine
an algorithm for the maximum flow problem in general graphs with dynamic geometric data
structures to manipulate the disks.

As an application, we consider the barrier resilience problem in a rectangular domain. In this
problem, we have a vertical strip S bounded by two vertical lines, Lℓ and Lr , and a collection
D of disks. Let a be a point in S above all disks of D, and let b a point in S below all disks of
D. The task is to find a curve from a to b that lies in S and that intersects as few disks of D
as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the
barrier resilience problem in O(n3/2 polylog n) expected time.

Keywords: computational geometry, geometric intersection graph, disk graph, unit-disk
graph, vertex-disjoint paths, barrier resilience.

Acknowledgments. Parts of this work were initiated at the Fifth Annual Workshop on Geometry
and Graphs that took place March 5–10, 2017, at the Bellairs Research Institute. We thank the
organizers and all participants for the productive and positive atmosphere.

*Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, and Institute of Mathematics, Physics and
Mechanics, Slovenia. Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-8130, J1-8155, J1-1693,
J1-2452.). Email address: sergio.cabello@fmf.uni-lj.si

†Institut für Informatik, Freie Universität Berlin, Germany. Supported in part by ERC StG 757609. Email address:
mulzer@inf.fu-berlin.de

ar
X

iv
:2

00
5.

00
85

8v
3

 [
cs

.C
G

]
 2

6
M

ay
 2

02
3

1 Introduction

Let D be a family of n (closed) disks in the plane. The disk graph GD for D is the undirected graph
with vertex set D and edge set

E(GD) = {D1D2 | D1, D2 ∈ D, D1 ∩ D2 ̸= ;}.

If the disks in D are partitioned into two sets DA and DB, one can also define a bipartite intersection
graph by considering only the edges that come from an intersection between a disk in DA and a disk
in DB. If all disks in D have the same radius, we call GD a unit-disk graph. A directed version of
disk graphs can be defined as follows: for D ∈ D, let cD ∈ D denote the center of D. The directed
transmission graph G→D is the directed graph with vertex set D and edge set

E
�

G→D
�

= {D1→ D2 | D1, D2 ∈ D, cD2
∈ D1}.

If we ignore the direction of the edges in G→D , we obtain a subgraph of GD .
Unit disk graphs are often used to model ad-hoc wireless communication networks and sen-

sor networks [GG11,ZG04,HS95]. Disks of varying sizes become relevant when different sensors
cover different areas. Moreover, general disk graphs may serve as a tool to approach other prob-
lems; for example, an application to the barrier resilience problem [KLA07] is discussed below.
Directed transmission graphs model ad-hoc networks where different entities have different power
ranges [PR10].

Minimum s-t cut in disk graphs. Consider a graph G = (V, E) with n vertices and m edges, and
two non-adjacent vertices s, t ∈ V . A set X ⊆ V \ {s, t} of vertices is called an s-t (vertex) cut if
G − X contains no path from s to t. Two paths from s to t are (interior-)vertex-disjoint if their only
common vertices are s and t. By Menger’s theorem (see, for example, [KV10, Section 8.2]), the
minimum size of an s-t cut equals the maximum number of vertex-disjoint s-t paths, both in directed
and in undirected graphs. Using blocking flows, Even and Tarjan, as well as Karzanov [ET75,Kar73]
showed that an s-t minimum-cut can be computed in time O(

p
nm). In the worst case, if m = Θ(n2),

this is O(n5/2). This was an improvement over the previous algorithm by Dinitz [Din70]; see [Din06]
for a great historical account of the algorithms. In particular, the use of DFS did not appear in his
original description [Din70], but it was developed by Shimon Even and Alon Itai and included in
Even’s textbook [Eve79]. The more recent O(m10/7)-time algorithm of Mądry [Mąd13] gives a better
running time for sparse graphs, i.e., for m= o(n7/4).

The size of a minimum s-t vertex cut in a network G is a key estimator for its vulnerability. Since
such networks often arise from geometric settings, it is natural to consider the case where G is a
disk graph. A particularly interesting scenario of this kind is the barrier resilience problem, an
optimization problem introduced by Kumar, Lai, and Arora [KLA07]. In one variant of the problem,
we are given a vertical strip S bounded by two vertical lines, Lℓ and Lr , and a collection D of disks.
Each disk D ∈ D represents a region monitored by a sensor. Let a be a point in S above all disks of
D, and let b a point in S below all disks of D. The task is to find a curve from a to b that lies in
the strip S and that intersects as few disks of D as possible (the disks do not need to lie inside S).
This models the resilience of monitoring a boundary region with respect to (total) failures of the
sensors. Kumar, Lai, and Arora show that the problem reduces to an Lℓ-Lr minimum-cut problem in
the intersection graph of D ∪ {Lℓ, Lr}. We mention that for another variant of the problem, where
the endpoints a and b can lie in arbitrary locations, the complexity status is still unknown, despite
many efforts by several researchers [ACGK17,BK09,CK14,EL20,KLSS18,TK11].

A variant of the problem, called minimum shrinkage, was recently introduced by Cabello et
al. [CJLM20]. Here, the task is to shrink some of the disks, potentially by different amounts, such
that there is an a-b curve that is disjoint from the interiors of all disks. The objective is to minimize
the total amount of shrinkage. Cabello et al. provide an FPTAS for the version where the path is

1

vin voutv

G G′

Figure 1: Transforming a vertex v ∈ V (G) \ {s, t} to get from G to G′.

restricted to lie inside a vertical strip and the endpoints a and b are above and below all the disks.
This result is achieved by reducing the problem to a barrier resilience instance with O(n2/ϵ) disks of
different radii. In contrast, when the endpoints a and b can lie in arbitrary locations, the problem is
weakly NP-hard [CC20].

Our Results. We exploit the geometric structure to provide a new algorithm to find the minimum s-t
cut in disk graphs and directed transmission graphs in O(n3/2 polylog n) expected time. For this, we
adapt the approach of Even and Tarjan [ET75], extending it with suitable geometric data structures.
Our method is similar in spirit to the algorithm by Efrat, Itai, and Katz [EIK01] for maximum bipartite
matching in (unit) disk graphs. However, since our graph is not bipartite, the structure of the graph
is more complex and additional care is needed.

2 Minimum s-t Cut in Disk Graphs

Let D be a set of n disks in the plane, and let s, t ∈ D be two non-intersecting disks. We show how
to compute the maximum number of vertex disjoint paths between s and t in GD and in G→D . This
also provides a way to find a minimum s-t (vertex) cut. For this, we adapt the algorithm of Even
and Tarjan [ET75] to our geometric setting. First, we suppose that certain geometric primitives
are available as a black box, and we analyze the running time under this assumption. Then, we
instantiate these primitives with appropriate data structures to obtain the desired result.

2.1 Generic algorithm

Let G be a graph with n vertices and m edges, and let s and t be two non-adjacent vertices of G. We
want to find the maximum number of paths from s to t in G that are pairwise vertex disjoint. The
graph G is assumed to be directed.1

First, we transform the graph G into another graph G′ in which every vertex other than s and
t has in-degree or out-degree 1. More precisely, for each vertex v ∈ V (G) \ {s, t}, we perform
the following operation: we replace v with two new vertices vin and vout, add the directed edge
vin�vout, replace every directed edge u�v with u�vin, and replace every directed edge v�w with
vout�w; see Figure 1. The vertices s and t remain untouched. The transformed graph G′ has 2n− 2
vertices and m+ n− 2 edges. It is bipartite, as can be seen by partitioning the vertices into the sets
{s}∪ {vout | v ∈ V (G) \ {s, t}} and {t}∪ {vin | v ∈ V (G) \ {s, t}}. Vertex-disjoint s-t paths in G directly
correspond to vertex disjoint s-t paths in G′. Furthermore, in G′ we have that edge-disjoint and
vertex-disjoint s-t paths are equivalent, because every vertex (other than s and t) has in-degree or
out-degree 1. Thus, it suffices to find the maximum number of edge-disjoint s-t paths in G′.

Assume we have a family Π = {π1, . . . ,πk} of k edge-disjoint s-t paths in G′. Let E(Π) =
⋃

π∈Π E(π) denote the set of all the directed edges on the paths of Π. See Figure 2 for an illustration
of the following concepts and discussion. The residual graph R = R(G′,Π) is the directed graph

1Otherwise, we replace each undirected edge uv by two directed edges u�v and v�u. An optimal solution to the
directed instance directly gives an optimal solution to the undirected case.

2

π1

π2

π3

s t ts

ts

2

21

1

0

3

3

4

4

5

5

5

6

6

6

5 6

7

7

7

7

78

8

8
9

9

10

7

10

10

10

89

s t

Figure 2: Top left: a graph G′ with 3 vertex-disjoint s-t paths Π = {π1,π2,π3} in bold. Top right:
the residual graph R(G′,Π). Bottom left: the layered residual graph L(G′,Π). We keep all vertices
and each vertex has its distance from the vertex s annotated. An s-t path γ in L is marked in thick
red. Bottom right: the paths obtained from E(Π)⊕ E(γ).

with vertex set V (G′) and edge set

E(R) = {u�v | u�v ∈ E(G′) \ E(Π) or v�u ∈ E(Π)}.

The residual graph R is bipartite with the same bipartition as G′. As in G′, every vertex in V (R)\{s, t}
has in-degree or out-degree at most 1.

For a vertex v of G′, the level λ(v) (with respect to R) of v is the BFS-distance from s to v in
R, i.e., the minimum number of edges on a path from s to v in R.2 If v is not reachable from s in
R, we set λ(v) = +∞. For every integer i ≥ 0, the layer L[i] is the set of vertices at level i, i.e.,
L[i] = {v ∈ V (G′) | λ(v) = i}. The layered residual graph L(G′,Π) for G′ and Π is the subgraph of
the residual graph R(G′,Π) where only the directed edges from L[i−1] to L[i], for i = 1, . . . ,λ(t)−1,
and the directed edges from L[λ(t)− 1] to t are kept. More precisely, this means that L = L(G′,Π)
has vertex set V (G′) and directed edge set

Et ∪ {u�v ∈ E(R) | λ(u) + 1= λ(v)< λ(t)},

where
Et = {u�t ∈ E(R) | λ(u) + 1= λ(t)}.

Let Γ = {γ1, . . . ,γℓ} be a family of edge-disjoint s-t paths in the layered residual graph L =
L(G′,Π). By construction, all paths of Γ have exactly λ(t) edges. Using the k paths of Π in G′ and
the ℓ paths of Γ in L, we can obtain k+ ℓ edge-disjoint s-t paths in G′. For this, consider the edges

E(Π)⊕ E(Γ) = {u�v | u�v ∈ E(Π) and v�u /∈ E(Γ)} ∪ {u�v | u�v ∈ E(Γ) and v�u /∈ E(Π)}

that are obtained from E(Π)∪ E(Γ) by canceling out directed edges that appear in both directions.
The following observation is simple:

Lemma 1. The set E(Π)⊕ E(Γ) consists of k+ ℓ edge-disjoint s-t paths in G′. Given Π and Γ , we can
construct E(Π)⊕ E(Γ) and the corresponding k+ ℓ edge-disjoint s-t paths in G′ in O(|E(Π)|+ |E(Γ)|)
total time.

2Recall that R depends on both G′ and Π.

3

Proof. The definition of R ensures that the edges E(Π)⊕E(Γ) all lie in G′, since for u�v ∈ E(Γ)\E(Π),
we must have v�u ∈ E(Π). Furthermore, every vertex v of V (G′)\{s, t} has in-degree and out-degree
both 0 or both 1 in E(Π)⊕ E(Γ). This is clear if v appears on at most one path in Π∪ Γ . If v appears
on both a path from Π and from Γ , then one incoming edge and one outgoing edge of v must
cancel, since v has at most one incoming or outgoing edge in L and the corresponding reverse edge
must have appeared on a path in Γ . The in-degree of s is 0 and the out-degree of t is 0. Moreover,
the out-degree of s is k+ ℓ, because the outgoing edges from s never cancel out. This means that
E(Π)⊕ E(Γ) defines k+ ℓ paths from s to t. These paths can be found in O(|E(Π)|+ |E(Γ)|) time by
constructing the graph (V (Π∪ Γ), E(Π)⊕ E(Γ)) explicitly.

A family Γ of s-t paths in the layered residual graph L is blocking if L − E(Γ) contains no s-t
path, i.e., every s-t path in L contains at least one edge from E(Γ). Even and Tarjan [ET75] describe
the following algorithm for finding a blocking family Γ of s-t paths in a layered residual graph L:
we start with Γ = ;, D0 = L, and j = 1. The algorithm proceeds in rounds. In round j, we perform
a DFS traversal from s in Dj−1. When we reach t, the DFS stack contains a path γ j from s to t in
Dj−1 ⊆ L. We add the path γ j to Γ , and we obtain Dj by removing from Dj−1 all the vertices (other
than s and t) that have been explored during the partial DFS traversal of Dj−1. We finish when the
graph Dj−1 of the current round j does not contain any s-t path. This is detected during the DFS
traversal of Dj−1. We refer to the paper of Even and Tarjan [ET75] for the running time analysis and
the proof of correctness. The following lemma summarizes the result.

Lemma 2 (Even and Tarjan [ET75]). Let L be a layered residual graph. In O(|E(L)|) time, we can find
a blocking family Γ of s-t paths in L.

The algorithm to find the maximum number of edge-disjoint s-t paths in G′ is the following:
we start with Π0 = ;. Then, for j = 1, . . . , we construct the residual graph R j = R(G,Π j−1), the
layered residual graph L j = L(G,Π j−1), a blocking family Γ j of s-t paths in L j , and we set Π j to the
set of (edge-disjoint) s-t paths defined by E(Π j−1)⊕ E(Γ j). We finish when L j contains no s-t path.
The work performed for a single value of j (constructing L j, R j, Γ j and Π j), is called a phase. Let
λ j(·) denote the level of a vertex in the residual graph R j . Even and Tarjan [ET75] show that λ j(t)
increases monotonically as a function of j. Thus, using that the paths Γ j are vertex-disjoint and have
length λ j(t) (whenever L j contains some s-t path), one obtains the following.

Theorem 3 (Even and Tarjan [ET75]). The algorithm performs at most O(
p

n) phases. When the
algorithm finishes, Π j−1 contains the maximum possible number of vertex-disjoint s-t paths in G′.

2.2 Adaptation for neighbor queries

We want to adapt the algorithm from Section 2.1 to our geometric setting. For this, we extend the
approach by Efrat, Itai, and Katz [EIK01] for finding maximum matchings in bipartite geometric
intersection graphs. The idea is to avoid the explicit construction of the layered residual graphs
L j = L(G,Π j−1), and to use instead an implicit representation that allows for an efficient DFS
traversal of the current L j . For this, we identify which vertices belong to each layer of the current L j ,
and we use dynamic nearest-neighbor data structures to find the directed edges between the layers.
In order to encapsulate the geometric primitives, we assume that we have a certain geometric data
structure to access the directed edges of G. Note that the assumption is on the original graph G, not
in the transformed graph G′. Later, we will describe how such a data structure can be derived from
known results about (semi-)dynamic nearest neighbor searching.

Graph Encoding A. Let G be a directed graph with n vertices. We assume that we have a data structure
DS= DS(U) that semi-dynamically maintains a subset U ⊆ V (G) with the following operations:

• construct the data structure DS(U) for an initial subset U ⊆ V (G) of vertices from G. The
construction time is denoted by Tc(m), where m is the number of vertices in U, and we require
that Tc(·) satisfies Tc(m) + Tc(m′)≤ Tc(m+m′), for all m, m′ ∈ N;

4

vin vout

G′

u vin voutu

R

vin vout

G′ = R

Figure 3: Case in the proof of Lemma 4: vin ∈ L[i−1], for i even. The left and center figure show G′

and R when vin belongs to some path of Π (bold). The right figure shows G′ = R when vin does not
belong to any path of Π.

vin

G′

vout vin

R

vout vin

G′ = R

vout

known level

perhaps
known level

known level
perhaps
known level

Figure 4: Case in the proof of Lemma 4: vout ∈ L[i − 1], for i odd. The left and center figure show
G′ and R when vout belongs to some path of Π (bold). The right figure shows G′ = R when vout does
not belong to any path of Π.

• delete of a vertex u ∈ U from DS(U). The deletion time is denoted by Td(n), where n refers to the
number of vertices in G; and

• given a query vertex v ∈ V (G) from G, find an outgoing edge v�u with u ∈ U, or report that no
such vertex exists in the current set U. The query time is denoted by Tq(n), where n refers to the
number of vertices in G.

Henceforth, we assume our n-vertex graph G can be accessed as in Graph Encoding A. As before,
we denote the corresponding transformed graph by G′. First, we show how to find the levels in the
layered residual graph.

Lemma 4. Let Π be a set of edge-disjoint paths in the transformed graph G′. In time O(Tc(n)+nTq(n)+
nTd(n)), we can find the level λ(v) of each vertex v ∈ V (G′) in the layered residual graph L = L(G′,Π).

Proof. Our goal is to perform a BFS in the residual graph R = R(G′,Π) without explicitly constructing
the edge set of R. In a preprocessing phase, for every vertex v in V (G′) \ {s, t} that appears in some
path of Π, we mark v and store the unique vertices prev(v) and next(v) such that prev(v)�v and
v�next(v) are directed edges in E(Π). This takes time O(|E(Π)|) = O(n).

Next, we set L[0] = {s}, construct the data structure DS of Graph Encoding A for V (G)\{s}. Thus,
the current vertex set U in DS is initially U = V (G) \ {s}. In our algorithm, we iteratively compute
the layers L[i], for i = 1, 2, In the process, we maintain the invariant that, after computing L[i],
the structure DS contains t and the vertices u in V (G) for which we do not yet know the level λ(uin)
in L(G′,Π).

To find L[1], we repeatedly query DS with s and remove from DS the reported item, until DS
contains no further out-neighbors of s. This gives the set

U ′ = {u ∈ V (G) \ {s} | s�u ∈ E(G)}

of all out-neighbors of s in G. Let U ′in = {uin | u ∈ U} be the set of corresponding out-neighbors of s
in G′. We filter U ′in and remove those vertices v that are in some path of Π and have prev(v) = s.
This gives a set U ′′in with L[1] = U ′′in. For each vertex uin ∈ U ′′in, we set λ(uin) = 1. For each vertex

5

uin ∈ U ′in \ U ′′in, the level of uin in L is not yet known. If DS supported insertions, we would insert the
vertices u with uin ∈ U ′in \U ′′in back into DS. Instead, we just construct the data structure DS anew for
V (G) \ ({s} ∪ {u | uin ∈ U ′′in}).

Then, for i = 2, . . . , while L[i−1] is not empty and L[i−1] does not contain t, we compute L[i].
If i is even, we iterate over the vertices vin of L[i − 1]; see Figure 3. The vertex vin has one outgoing
edge in L: if vin does not lie on some path of Π, then L contains only the outgoing edge vin�vout;
if vin lies on some path of Π, then L contains only the outgoing edge vin�prev(vin). If vin does not
belong to any path of Π, we set λ(vout) = i and add vout to L[i]. (In this case, the only incoming
edge to vout in the residual graph is from vin, so we know that λ(vout) was not yet determined.) If vin
belongs to some path of Π, we set u= prev(vin) and distinguish two cases. If u= s, we do not need
to do anything because λ(s) is already set. If u ̸= s, we set λ(u) = i and add u to L[i]. (In this case,
u = wout for some vertex w ∈ V (G) \ {s, t} and λ(u) was not yet determined because vin�wout is the
only incoming edge to wout in the residual graph.)

If i is odd, we iterate over the vertices vout of L[i − 1]; see Figure 4. If the vertex vout does not
lie on some path of Π, the outgoing edges of vout in L correspond to the outgoing edges of vout in
G′; if vout lies on some path of Π, then the outgoing edge vout�next(vout) in G′ is replaced with the
outgoing edge vout�vin in R. We proceed as follows: we query DS repeatedly with v and delete the
reported items. This gives the set U ′ of vertices u ∈ V (G) that are stored in DS and have v�u ∈ E(G).
Due to the invariant, the set U ′ contains exactly those out-neighbors u of v in G such that λ(uin) was
not known before processing vout. If vout lies on some path of Π, then we already know the level of
win = next(vout) (it is i − 2) because win�vout is the only incoming edge to vout in the residual graph,
and therefore w /∈ U ′. For each u ∈ U ′, we set λ(uin) = i and add uin to L[i]. If vout belongs to some
path of Π, we check if vin still has no level assigned, and if so, we set λ(vin) = i, add vin to L[i], and
delete v from DS.

We finish when t ∈ L[i] or when L[i] is empty. In the latter case, t cannot be reached from s in
R, and therefore Π already contains a maximum number of vertex-disjoint s-t paths. In the former
case, we remove all elements from L[λ(t)] except for t.

To bound the running time, we note first that it takes O(Tc(n)) time to construct the data structure
DS, and this is done twice. Next, we observe that every node u of G is deleted at most once from DS.
Additionally, each query with a vertex of G in DS leads either to a deletion in DS or does not yield an
out-neighbor of the vertex, but the latter happens at most once per vertex of G. Thus, in total we are
making O(n) queries and deletions in the data structure DS. The time bound follows.

The next lemma shows how to find an actual blocking family in L.

Lemma 5. Consider a set Π of edge-disjoint paths in G′. In O(Tc(n) + nTq(n) + nTd(n)) time, we can
find a blocking family of s-t paths in the layered residual graph L.

Proof. Using Lemma 4, we compute the level λ(v) of each vertex v of G′. Recall the notation prev(v)
and next(v) from the proof of Lemma 4 to denote the predecessor and successor of a vertex v on a
path of Π. We adapt the algorithm in the proof of Lemma 2, which is based on a DFS traversal of L.

For each odd i with 1≤ i ≤ λ(t), we build a data structure DS[i] as in Graph Encoding A for the
set V [i] = {v ∈ V (G) | vin ∈ L[i]}. This takes

∑

i Tc(|V [i]|) ≤ O(Tc(n)) time because the sets V [i]
are pairwise disjoint. During the algorithm, the data structure DS[i] will contain the vertices v ∈ V [i]
such that vin has not yet been explored by the DFS traversal. Thus, in contrast to the approach in
Lemma 2, we delete vertices as we explore them with the DFS traversal.

When we explore a vertex vin (at odd level i), there are two options; see Figure 3. If vin lies on
some path of Π, we look at u = prev(vin). If u has been explored already, we return3. Otherwise,
we continue the DFS traversal at u. If vin does not belong to any path of Π, then vout has not been

3This happens only if u = s, as in any other case u = wout for some vertex w ∈ V (G) \ {s, t} and vin�wout is the only
incoming edge to wout in the residual graph and thus in the layered residual graph.

6

explored yet, as vin�vout is the only incoming edge of vout, so we continue the DFS at vout. For each
such vertex, we spend O(1) time plus the time for the recursive calls, if they occur.

Consider now the case that we explore a vertex vout, at even level i; see Figure 4. If i = λ(t)− 1,
we check whether the edge v�t belongs to G \ E(Π). If so, we have found an s-t path γ in L. We
add γ to the output, and restart the DFS traversal from s. If not, we return from the recursive call.

Consider the remaining case: we explore a vertex vout at even level i and i < λ(t)− 1. If vout
belongs to some path of Π, vin has not been explored yet, and λ(vin) = λ(vout) + 1,4 we recursively
explore vin and remove v from DS[i+1]. If vout does not belong to any path of Π or we have returned
from the exploration of vin, we explore the outgoing edges from vout to L[i + 1] by repeating the
following procedure. We query DS[i + 1] with v to obtain an edge v�u of G such that uin ∈ L[i + 1],
we remove u from DS[i + 1], and we continue the DFS traversal from uin. The recursive call is
correctly made along an edge of the layered residual graph because it cannot happen that vout�uin is
an edge of Π; indeed, if vout�uin were an edge in Π, then in the residual graph the edge uin�vout
would be the only edge incoming into vout, which would mean that in the DFS traversal we arrived
to vout from uin, and u would belong to V [i − 1] instead of V [i + 1]. When the query to DS[i + 1]
with v returns an empty answer, we return from the recursive call at vout.

Every vertex u of V [i], for i odd, is returned and removed from DS[i] at most once. Thus, each
vertex of V (G) is deleted exactly once from exactly one data structure DS[i]. Furthermore, for every
vertex v of V (G), we make at most one query to the corresponding data structure DS[·] that returns
an empty answer. Thus, the running time is O(n+ Tc(n) + nTq(n) + nTd(n)).

The following lemma discusses how to find a minimum cut from a maximum family of s-t vertex
disjoint paths.

Lemma 6. Let Π be a maximum family of s-t vertex disjoint paths (in G or in G′). Given Π, we can
obtain a minimum s-t cut in O(Tc(n) + nTq(n) + nTd(n)) time.

Proof. Consider the residual graph R = R(G′,Π). Let A be the set of vertices in V (G) that in the
residual graph R are reachable from s. A standard result from the theory of maximum flows tells that
the edges from A to V (G) \ A, denoted by δR(A), form a minimum edge s-t cut in G′ and there are
|Π| edges in such a cut δR(A).

Let U be the set of vertices u ∈ V (Π) such that uout /∈ A but uin ∈ A or such that uin /∈ A but
prev(uin) ∈ A. (Here, like in previous proofs, we use prev(u) to denote the vertex such that prev(u)�u
belongs to E(Π).) Each edge of the cut δR(A) contributes one vertex to U . Then U is a minimum s-t
cut in G.

If t is not reachable from s in R, then a vertex u is reachable from s in the residual graph R if and
only if u is reachable from s in layered residual graph L. Thus, to compute U , we apply Lemma 4 to
find the level λ(v) of every vertex v in L. Then, the set U is

{u ∈ V (G) | λ(uin)< +∞,λ(uout) = +∞}∪ {u ∈ V (G) | λ(prev(uin))< +∞,λ(uin) = +∞},

as desired.

Now, we put everything together. By Theorem 3, we have O(
p

n) phases, and each phase can be
implemented in O(Tc(n) + nTq(n) + nTd(n)) time because of Lemma 1 and Lemma 5.

Theorem 7. Let G be a directed graph with n vertices and assume that a representation of its edges
as given in Graph Encoding A exists. Then, we can find in O(n1/2(Tc(n) + nTq(n) + nTd(n))) time
the maximum number of vertex-disjoint s-t paths for any given s, t ∈ V (G). Similarly, we can find a
minimum s-t cut.

4In the journal version of this article, this third condition is missing. However, it is necessary for the algorithm to be
correct. We thank Matej Marinko for pointing this out.

7

Proof. We use the algorithm described in Section 2.1, before Theorem 3. Because of Theorem 3,
we have O(

p
n) phases. At phase j, we have a set Π j−1 of vertex-disjoint paths in G′, and we use

Lemma 5 to find a blocking family Γ j of s-t paths in the layered residual graph L j = L(G′,Π j−1). This
takes O(Tc(n) + nTd(n) + nTq(n)) time per phase. Because of Lemma 1, we can then obtain the new
family of s-t paths Π j in O(n) time per phase. The result for maximum number of vertex-disjoint s-t
paths follows. For the minimum s-t cut, we use Lemma 6.

3 Geometric Applications

Theorem 7 leads to several consequences for geometrically defined graphs, as we can use geometric
data structures to realize Graph Encoding A efficiently. For unit disk graphs, there is the semi-dynamic
data structure of Efrat, Itai, and Katz [EIK01]. The construction takes O(n log n) time, while each
deletion and neighbor query takes O(log n) amortized time. For arbitrary disks, we can use the
structure of Kaplan et al. [KMR+20].

Corollary 8. Let U be a set of n unit disks in the plane and let s and t be two of the disks. We can
find in O(n3/2 log n) time the minimum s-t cut in the intersection graph GU . For arbitrary disks, the
running time becomes O(n3/2 log11 n) in expectation.

We can easily adapt the algorithm to the case where s and t are arbitrary shapes (and the other
vertices are still represented as disks), by precomputing the disks that intersect s and the disks that
intersect t. We get the following consequence.

Corollary 9. The barrier resilience problem with n unit disks can be solved in O(n3/2 log n) time. For
arbitrary disks, the running time becomes O(n3/2 log11 n).

For directed transmission graphs, we can use the data structure of Chan [Cha19] to report a
disk center contained in a query disk. It takes O(log4 n) amortized time per edition and query.
(See [AM95,Cha10,CT16,KMR+20,Liu20] for related bounds and for an alternative presentation of
Chan’s data structure.)

Corollary 10. LetU be a set of n disks of arbitrary radii in the plane and let s and t be two of the disks.
We can find in O(n3/2 log4 n) time the minimum s-t cut in the directed transmission graph G→U .

Similar results can be obtained for squares and rectangles using data structures for orthogonal
range searching. We next provide concrete running times for future reference. For intersection
graphs of unit squares, we can again use the semi-dynamic data structure of Efrat, Itai, and Katz,
that also applies for the L1-metric [EIK01, Remark 5.5]. As before, the construction takes O(n log n)
time, while each deletion and neighbor query takes O(log n) amortized time.

Corollary 11. Let U be a set of n unit axis-parallel squares in the plane, and let s and t be two of the
squares. We can find in O(n3/2 log n) time the minimum s-t cut in the intersection graph GU .

The following corollary covers also the case of squares of different sizes.

Corollary 12. Let U be a set of n axis-parallel rectangles in the plane and let s and t be two of the
rectangles. We can find in O(n3/2 log2 n) time the minimum s-t cut in the intersection graph GU .

Proof. To apply Theorem 7, we need a data structure that maintains a set U of n axis-parallel
rectangles under deletions and answers the following type of queries: given an axis-parallel rectangle
R, report some rectangle U that intersects R.

For this task, Edelsbrunner [Ede80] provides a data structure with Tc(n) = O(n log2 n), Tq(n) =
O(log2 n) amortized, and Td(n) = O(log2 n) amortized.

An alternative approach to get the desired data structure is the following. Two rectangles R and
R′ intersect if and only if some edge of R intersects some edge of R′, or some vertex of R is contained

8

in R′, or some vertex of R′ is contained in R. Each one of this conditions can be checked using
orthogonal range searching techniques, namely using range trees [dBCvKO08, Section 5.3], interval
trees [dBCvKO08, Section 10.1] and segment trees [dBCvKO08, Section 10.3, Exercise 10.8]. In the
static setting, this readily gives a data structure with construction time O(n log2 n) and worst-case
query time O(log2 n). These data structures can handle deletions by marking certain information as
deleted and updating the pointers locally, without rebalancing. Together, this gives a data structure
with Tc(n) = O(n log2 n), Tq(n) = O(log2 n) in the worst case, and Td(n) = O(log2 n) in the worst
case; here n denoted the original number of rectangles.

Using any of the two data structures and Theorem 7, the result follows.

The barrier problem with axis-parallel squares or rectangles can now be solved similarly. For the
case of unit squares, it pays off to precompute the squares intersected by each boundary of the strip.
For arbitrary squares or rectangles, we could treat each boundary as a rectangle.

Corollary 13. The barrier resilience problem with n axis-parallel squares of unit side length can be solved
in O(n3/2 log n) time. For arbitrary squares or rectangles, the running time becomes O(n3/2 log2 n).

The reachability graph G→U can be defined also for sets U of axis-parallel squares: there is a
directed edge from square S to square S′ if S contains the center of S′.

Corollary 14. Let U be a set of n axis-parallel squares in the plane and let s and t be two of the squres.
We can find in O(n3/2 log2 n) time the minimum s-t cut in the directed transmission graph G→U .

Proof. Use the semi-dynamic data structure to report a point contained in a query square that is
based on range trees [dBCvKO08, Section 5.3], as sketched in the proof of Corollary 12.

4 Conclusion

We have shown how to combine the classic maximum-flow algorithm of Even and Tarjan [ET75]
with recent geometric data structures in order to find a minimum s-t cut in geometric intersection
graphs. Even though we follow along the lines of the classic algorithms, the details for an efficient
implementation in the geometric setting are quite subtle and show an interesting interplay between
geometric and combinatorial algorithms.

Our work raises the question whether similar “geometric” versions are possible for other, more
advanced, network flow algorithms such as the one by Goldberg and Rao [GR99]. Similarly, it is
an interesting challenge to adapt algorithms for other combinatorial graph optimization problems
to the geometric setting. For a recent example that considers the maximum matching problem,
see [BCM20].

Finally, we cannot resist mentioning the tantalizing open problem of settling the complexity
status of the general barrier resilience problem [KLA07]. Unlike for the strip version, we do not
know any polynomial time algorithm for it. On the other hand, up to now, all attempts at a proof of
NP-hardness have failed. An answer to this question would be most welcome.

References

[ACGK17] Helmut Alt, Sergio Cabello, Panos Giannopoulos, and Christian Knauer. Minimum cell
connection in line segment arrangements. Int. J. Comput. Geom. Appl., 27(3):159–176,
2017.

[AM95] Pankaj K. Agarwal and Jǐrí Matoušek. Dynamic half-space range reporting and its
applications. Algorithmica, 13(4):325–345, 1995.

9

[BCM20] Édouard Bonnet, Sergio Cabello, and Wolfgang Mulzer. Maximum matchings in
geometric intersection graphs. In 37th International Symposium on Theoretical Aspects
of Computer Science (STACS), volume 154 of LIPIcs, pages 31:1–31:17, 2020.

[BK09] Sergey Bereg and David G. Kirkpatrick. Approximating barrier resilience in wireless
sensor networks. In 5th Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks
Workshop, (ALGOSENSORS), pages 29–40, 2009.

[CC20] Sergio Cabello and Éric Colin de Verdière. Hardness of minimum barrier shrinkage
and minimum installation path. Theor. Comput. Sci., 835:120–133, 2020.

[Cha10] Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest
neighbor queries. J. ACM, 57(3):16:1–16:15, 2010.

[Cha19] Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In 35th
International Symposium on Computational Geometry (SoCG), volume 129 of LIPIcs,
pages 24:1–24:13, 2019.

[CJLM20] Sergio Cabello, Kshitij Jain, Anna Lubiw, and Debajyoti Mondal. Minimum shared-
power edge cut. Networks, 75(3):321–333, 2020.

[CK14] David Yu Cheng Chan and David G. Kirkpatrick. Multi-path algorithms for minimum-
colour path problems with applications to approximating barrier resilience. Theor.
Comput. Sci., 553:74–90, 2014.

[CT16] Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for
2-d and 3-d shallow cuttings. Discrete & Computational Geometry, 56(4):866–881,
2016.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computa-
tional geometry: algorithms and applications, 3rd Edition. Springer, 2008.

[Din70] Yefim A. Dinitz. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Mathematics Doklady, 11:1277–1280, 1970.

[Din06] Yefim A. Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
Computer Science, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in
Computer Science, pages 218–240. Springer, 2006.

[Ede80] Herbert Edelsbrunner. Dynamic data structures for orthogonal intersection queries.
Technical Report F59, Graz Univ. Technology, Austria, 1980. Available at http://pub.
ist.ac.at/~edels/Papers/1980-01-R-OrthogonalIntersectionQueries.pdf.

[EIK01] Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31(1):1–28, 2001.

[EL20] Eduard Eiben and Daniel Lokshtanov. Removing connected obstacles in the plane is
FPT. In 36th International Symposium on Computational Geometry (SoCG), volume
164 of LIPIcs, pages 39:1–39:14, 2020.

[ET75] Shimon Even and Robert E. Tarjan. Network flow and testing graph connectivity. SIAM
J. Comput., 4(4):507–518, 1975.

[Eve79] Shimon Even. Graph Algorithms. W. H. Freeman & Co., New York, NY, USA, 1979.

[GG11] Jie Gao and Leonidas Guibas. Geometric algorithms for sensor networks. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 370(1958):27–51, 2011.

10

http://pub.ist.ac.at/~edels/Papers/1980-01-R-OrthogonalIntersectionQueries.pdf
http://pub.ist.ac.at/~edels/Papers/1980-01-R-OrthogonalIntersectionQueries.pdf

[GR99] Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks. SIAM
J. Discret. Math., 12(1):1–5, 1999.

[HS95] Mark L. Huson and Arunabha Sen. Broadcast scheduling algorithms for radio networks.
In IEEE MILCOM ’95, volume 2, pages 647–651 vol.2, 1995.

[Kar73] Alexander V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo
vida i nekotorykh prilozheniyakh. Matematicheskie Voprosy Upravleniya Proizvodstvom
(Mathematical Issues of Production Control), pages 81–94, 1973. A translation by
the author with the title “On finding a maximum flow in a network with special
structure and some applications” is available at http://alexander-karzanov.net/
ScannedOld/73_spec-net-flow_transl.pdf.

[KLA07] Santosh Kumar, Ten H. Lai, and Anish Arora. Barrier coverage with wireless sensors.
Wireless Networks, 13(6):817–834, 2007.

[KLSS18] Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the
complexity of barrier resilience for fat regions and bounded ply. Comput. Geom.,
72:34–51, 2018.

[KMR+20] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dy-
namic planar Voronoi diagrams for general distance functions and their algorithmic
applications. Discrete Comput. Geom., 64(3):838–904, 2020.

[KV10] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms,
volume 21 of Algorithms and Combinatorics. Springer, 4th edition, 2010.

[Liu20] Chih-Hung Liu. Nearly optimal planar k-nearest neighbors queries under general
distance functions. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2842–2859, 2020.

[Mąd13] Aleksander Mądry. Navigating central path with electrical flows: From flows to match-
ings, and back. In 54th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 253–262. IEEE Computer Society, 2013.

[PR10] David Peleg and Liam Roditty. Localized spanner construction for ad hoc networks
with variable transmission range. ACM Trans. Sen. Netw., 7(3):25:1–25:14, 2010.

[TK11] Kuan-Chieh Robert Tseng and David G. Kirkpatrick. On barrier resilience of sensor
networks. In 7th Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks
Workshop, (ALGOSENSORS), pages 130–144, 2011.

[ZG04] Feng Zhao and Leonidas Guibas. Wireless Sensor Networks: An Information Processing
Approach. Elsevier/Morgan-Kaufmann, 2004.

11

http://alexander-karzanov.net/ScannedOld/73_spec-net-flow_transl.pdf
http://alexander-karzanov.net/ScannedOld/73_spec-net-flow_transl.pdf

	Introduction
	Minimum s-t Cut in Disk Graphs
	Generic algorithm
	Adaptation for neighbor queries

	Geometric Applications
	Conclusion

