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Abstract

Let {p1, . . . , pn} and {q1, . . . , qn} be two sets of n labeled points in general position in the
plane. We say that these two point sets have the same order type if for every triple of indices
(i, j, k), pk is above the directed line from pi to pj if and only if qk is above the directed line
from qi to qj . In this paper we give the first non-trivial lower bounds on the number of different
order types of n points that can be realized in integer grids of polynomial size.

1 Introduction

Let A and B be two arrays of n distinct numbers. We say that A and B have the same order type if
for every pair i, j of different indices we have that A[i] < A[j] if and only if B[i] < B[j]. Goodman
and Pollack [5] introduced a higher dimensional analogue of this idea. Let S := {p1, . . . , pn} be a set
of n labeled points in general position in the plane. The relationship that A[i] < A[j] is equivalent
to A[i] being the left of A[j] in the real line. This left-right relationship can be generalized to point
sets as follows. For a given triple (i, j, k) of distinct indices, pk may be above or below the directed
line from pi to pj . Two sets of n labeled points in the plane have the same order type if they have
these same above-below relationships.1 In dimension d > 2 this is generalized by considering all
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1In the literature, it is more common to consider two points sets as having the same order type if there is a
bijection between them that preserves these above-below relationships. In this paper we only consider labeled order
types; thus, a relabeling of S usually produces a different order type.
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(d+ 1) tuples of points of a given labeled point set in Rd. The first d points of the tuple define an
oriented hyperplane and the relationship is whether the last point is above or below this hyperplane.
The order type is defined also for point sets not in general position. In this case the last point can
be below, above or on the corresponding hyperplane.

Suppose that for each A[i] we are given the number of elements of A that are to the left of
A[i], from this information alone we can sort A and recover the left-right relationships mentioned
above. Remarkably, this also holds for higher dimensions. For every pair of indices i and j, let
λ(i, j) be the number of elements of S above the directed line from i to j. The λ-matrix of S is
the n× n matrix whose (i, j) entry is equal to λ(i, j). Goodman and Pollack [5] showed that from
the λ-matrix of a point set one can recover the above-below relationships of its triples. This also
holds in dimension d > 2: if for a given n-point set in Rd, one is given the number of points above
the oriented hyperplane defined by every d-tuple of points, one can recover which points are above
which oriented hyperplanes.

The λ-matrix of set of n points in the plane can be codified with O(n2 log n) bits. This implies
that if f(n) is the number of different possible order types of a set of n points in general position
in the plane then f(n) ≤ exp(O(n2 log n)). Goodman and Pollack [6] showed that this bound is far
away from the real value of f(n). They showed that

f(n) ≤ exp(4(1 +O(1/ log n))n log n).

To lower bound f(n), consider the following procedure (see [6]). Suppose that we want to extend S
to an (n+1) point configuration by adding a point pn+1 to S. Consider the line arrangement spanned
by all the straight lines passing through a pair of points in S. It was proved by Zaslavsky [10] that
this line arrangement has ((n
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)
2

)
+

((n
2

)
1

)
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(
n− 2

2

)
≥ 1

8
n4,

cells. Adding pn+1 in different cells of the arrangement produces point sets with different order
types. We may use this argument by starting from {p1, p2, p3} and iteratively adding the remaining
points; at each step we consider the number of different options that produce different order types.
This yields

f(n) ≥
n∏
i=1

1

8
i4 =

n!4

8n
= exp(4(1 +O(1/ log n))n log n),

were the last term is obtained by using Stirling’s formula.
The order type of a point configuration abstracts the convexity relationships between its subsets.

As a result, for various questions regarding point sets, two point sets having the same order type
are equivalent. However, an arbitrary assignment of “above” or “below” relationships to triples of
indices in {1, . . . , n} might not be realizable as the order type of a labeled set of n points.

Aichholzer, Aurenhammer and Krasser [1] have produced a database with a point set for each
realizable order type of at most 10 points. Although it is a relatively small value of n, this database
has proven to be very useful. Chazelle asked in 1987 (see [7]): what is the number of bits needed
to store a representative of any given realizable order type of n points? Equivalently, what is the
minimum size of an integer grid, so that it contains a representative of every realizable order type
of n points? Goodman, Pollack and Sturmfels [7, 8] showed that there are order types of n points
whose every realization with positive integer coordinates has a coordinate of size greater than 22

c1n ,
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Figure 1: Q13

for some positive constant c1; they also showed that every order type of n points can be realized
with positive integer coordinates of size at most 22

c2n , for some positive constant c2. In the book
“Research Problems in Discrete Geometry” [3] by Brass, Moser and Pach, we find the following
problem.

Problem 1. For a given constant α > 0, what is the number of order types of n points that can be
represented by integer coordinates smaller than nα?

In this paper we show the first non trivial lower bounds for Problem 1. Let g(n, α) be the
number of different order types realizable in an integer grid of size nα.

For starters one may ask what is the smallest integer grid in which at least one order type is
realizable. This is equivalent to ask what is the size of the minimum integer grid so that it contains
a set of n points such that no three of them are collinear. This is known as the no-three-in-a-line
problem and was introduced by Dudeny [4] in 1917.

Erdős showed (see [9]) that if p is a prime then the set

Qp := {(i, i2 mod p) : 0 ≤ i < p}

is in general position. This point set is shown in Figure 1 for p = 13. Therefore, at least one order
type can be realized in integer grids of linear size.

Suppose that nα is such that at least one order type of n points can be realized in an nα × nα
integer grid. Any permutation of the labels of a point set that preserves the order type must preserve
the clockwise cyclic order of the points in the convex hull. Moreover, for every point p ∈ S, the
clockwise cyclic order by angle of the points of S \ {p} around p, must be also be preserved. These
two observations together imply that at least (n − 1)! other different order types are realizable in
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this grid. By Stirling’s approximation, this at least

exp(n log n− n+O(log n)).

As a result we consider a meaningful lower bound for g(n, α) to be of

exp(c · n log n)

for some c > 1. In this paper, in Section 2, we prove the following lower bounds.

Theorem 1. If α > 2 then

g(n, α) ≥ exp (2n log n−O(n log logn)) .

Theorem 2. If α ≥ 2.5 then

g(n, α) ≥ exp(3n log n−O(n log logn)).

We have the following upper bounds. Note that there are at most n2n = exp(2n log n) different
sets of n points in an n× n integer grid. Thus

g(n, 1) ≤ exp(2n log n).

By using the point sets found in [7], one can produce many point sets whose order types cannot be
realized in an integer grid of size nα. Let P be a point set of log (α log n) points whose order type
cannot be realized with integer coordinates smaller than nα. Consider P ∪Q, where Q is any point
set of n − log (α log n) points such that P ∪ Q is in general position; note that P ∪ Q cannot be
realized with integer coordinates smaller than nα. Therefore, for every α > 0, there are at least

f

(
n− log (α log n)

c1

)
realizable order types of n points but not realizable in integer grids of size nα.

2 Lower Bound Constructions

In this section we prove Theorems 1 and 2; we present two constructions that produce many point
sets with different order types in integer grids of size nα for α > 2 and α ≥ 2.5, respectively. Our
approach is similar to the one used to lower bound f(n): we iteratively place points and lower
bound the number of different available choices that produce different order types. With the caveat
that if we now consider the line arrangement spanned by the straight lines passing through pairs of
already placed points, a given cell might not contain a grid point.

To work around this problem, we do the following. We place a portion of our points in a special
configuration C; and choose a set of straight lines passing through pairs of points in C. Then, we
define a set T of isothethic squares of side length equal to ` such that any two squares are separated
by one of our chosen lines. Afterwards, we place the remaining points. This is done as follows. At
each step we first choose a square from T that

(1) has not been chosen before; and
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(2) contains a point p of integer coordinates that does not produce a triple of collinear points with
the previously placed points.

We then choose p as our next point.
Our strategy is to lower bound, at each step, the number of squares in T that satisfy (1) and

(2). We say that these squares are alive; otherwise, we say that they are dead. Suppose that a
square of T that has not been chosen yet. If less than ` lines passing through a pair of previously
placed points intersect this square, then it is still alive. In what follows, we use this observation
extensively.

2.1 Cross Configuration

Let n be an arbitrarily large positive integer and let p be the smallest prime greater than n/4 log n.
In this case the configuration C consists of four sets U , L, R and D; each set is an affine copy of Qp.
L and R are rotated by 90◦ and stretched vertically. U and D are stretched horizontally. L and R
are placed at the same height, with L to the left of R; U and D are placed at the same x-coordinate
and between L and R; U is above L∪R∪D and D is below L∪R∪U . Every point in U is joined
with a straight line with the point in D with the same x-coordinate; every point in L is joined with
a straight line with the point in R with the same y-coordinate. These are our chosen set of lines.
See Figure 2. Let k := dlog ne. The precise definitions are

U := {(i · 34p · k2, (34 · (i2 mod p)) · k2) : 0 ≤ i < p},
L := {((34 · (i2 mod p)− 136p2) · k2, (i · 68p− 238p2) · k2) : 0 ≤ i < p},
R := {((34 · (i2 mod p) + 153p2) · k2, (i · 68p− 238p2) · k2) : 0 ≤ i < p},
D := {(i · 34p · k2, (34 · (i2 mod p)− 408p2) · k2) : 1 ≤ 0 < p} and
C := U ∪ L ∪R ∪ D.

Simple (but tedious) arithmetic shows that C is in general position. The set of chosen straight
lines form a rectangular grid. In the interior of each of these rectangles place an isothethic square
with 32pk2×32pk2 integer grid points. Let T be the set of these squares. Baker, Harman and Pintz
[2] showed that the interval [x, x+ x21/40] contains a prime number, for x sufficiently large. Thus,
p = n/4 log n + O(n21/40). Therefore |C| = n/ log n + O(n21/40), |T | = (p − 1)2 and ` = 32pk2 for
this construction.

We now iteratively place the remaining n−4p points. At each stage the number of lines passing
through a pair of the so far placed points is less than n2/2; each of these lines intersects less than 2p
squares of T ; each square must touched by at least 32pk2 straight lines before being dead. Therefore,
the number of alive squares at every stage is at least

(p− 1)2 − n2p

32pk2
=

1

2
p2 −O(p) ≥ n2

32 log2 n
.

where the last inequality holds for sufficiently large n.
Therefore, we obtain at least

n−4p∏
i=1

n2

32 log2 n
=

n2(n−4p)

(32 log2 n)n−4p
= exp (2n log n−O(n log logn))

different order types with this procedure. Since C is contained in an integer grid of side length equal
to Θ(p2k2) = Θ(n2), this proves Theorem 1.
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Figure 2: Cross configuration for p = 5
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2.2 Regular Polygon Configuration

Let n be an arbitrarily large positive integer; let m be the smallest multiple of 16 larger than
n/ log n and let L := d64n2/m1/2e. Let C := {v0, . . . , vm−1} be the vertices, in clockwise order, of a
regular polygon P of side length equal to L. These points may not have integer coordinates; their
coordinates will be rounded up to the nearest integer later on. Let q∗ be the center of this polygon.
For 1 ≤ i ≤ m, let 4i be the triangle with vertices vi−1, vi, and q∗. In what follows we define a set
Ti of squares inside 4i.

Figure 3: The regular polygon construction with m = 32

Starting at the line segment joining vi−1 and vi, let e1, . . . , em−1 be the line segments joining vi−1
and every other vertex of P , sorted clockwise by angle around vi−1. Starting at the line segment
joining vi and vi−1, let f1, . . . , fm−1 be the line segments joining vi and every other vertex of P ,
sorted counterclockwise by angle around vi. Let C1 be the the circumcircle of P . Since every pair
of consecutive vertices of P defines a chord of C1, and these chords have the same length, the angle
between any two consecutive ej and ej+1 is the same. Let γ be this angle. Moreover, the angle
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between any two consecutive fj and fj+1 is also equal to γ; note that

γ =
1

m
π.

For indices 2 ≤ j ≤ m/2 and 2 ≤ k ≤ m/2, let pj,k be the intersection of ej and fk; note that pj,k
is contained in ∆i. Let

Q :=
{
pj,k : j, k even and

m

8
≤ j, k < m

4

}
.

Note that

|Q| = m2

256
.

See Figure 3. For each pj,k in Q, place an isothethic square of side length equal to

` :=
L

m

centered at pj,k. Let Ti be the set of these squares. The next lemma shows that the squares in Ti
are well separated by the ej ’s and fk’s

p

vi−1

vi

q∗

Figure 4: The proof of Lemma 3

Lemma 3. Let pj,k be a point in Q. Then the distances from pj,k to ej−1, ej+1, fk−1 and fk+1 are
greater than (√

2− 1
)
π`+O

(
`

m2

)
.

Proof. We show that the distances from pj,k to ej−1 and ej+1 are at least the required value. The
proof for fk−1 and fk+1 is similar. Note that among the pj,k’s in Q,

p := pm/8,m/4−1
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is the point closest to vi. Consider the triangle with vertices vi, vi−1 and p (see Figure 4). By the
law of sines the distance from p to vi is equal to

sin(π/8)

sin(5π/8 + π/m)
L >

sin(π/8)

sin(5π/8)
L =

(√
2− 1

)
L.

Therefore, the distances from pj,k to ej−1 and ej+1 are at least tan(γ) ·(
√

2−1)L. The result follows
from the facts that Maclaurin series of tan(x) is equal to x+O(x3) and that γ = π/m.

We are ready to define the set of squares, let

T :=

m⋃
i=1

Ti.

Let C2 be the circle with center q∗ and passing through pm/4,m/4. Note that T is contained in the
annulus A bounded by C1 and C2. The following lemma upper bounds the number of squares in T
that a given straight line can intersect.

γ

s
vi

vi−1

q∗

L
2

R

r

L
2

Figure 5: The proof of Lemma 4

Lemma 4. Every straight line intersects at most

m3/2

4

squares of T .

Proof. Let ϕ be a straight line. Note that ϕ intersects A in at most two straight line segments. We
upper bound the number of squares in T that a straight line segment s can intersect. Each time
s intersects a square in Ti, it must intersect and edge ej or fk; moreover, only half of these edges
define a square in Ti. Therefore, s intersects at most m

8 squares in Ti. We upper bound the number
of the triangles 4i’s that s can intersect. For this we upper bound the length of s.
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Let R and r be the radius of the circles C1 and C2, respectively. Note that s has maximum
length when it is tangent to C2 and its endpoints are in C1. Therefore,

||s|| ≤ 2
√
R2 − r2.

Since C2 passes through pm/4,m/4, the distance from C2 to the edge vi, vi−1 is equal to L/2. Since
P is a regular polygon R = 1

2L csc(π/m) and its apotheme is equal to R cos(π/m) (see Figure 5).
This implies that r = 1

2L(cot(π/m)− 1). Therefore,

||s|| ≤ 2
√
R2 − r2 ≤

√
2 · L

√
cot
( π
m

)
≤
√

2m

π
L−O

(
L

m3/2

)
;

the last term comes from the fact that the Maclaurin series of
√

cot(x) is equal to
√

1
x −O(x3/2).

Now we lower bound the length of s ∩ 4i. Note that s ∩ 4i has minimum length when s is
tangent to C2 and parallel to the edge vi−1, vi. Thus,

||s ∩4i|| ≥ 2 tan
( π
m

)
r =

(
1− tan

( π
m

))
L >

√
2

π
L,

where the last term holds for sufficiently large n. Therefore, s intersects a most
√
m of the triangles

4i. The result follows.

To end the construction we round the coordinates of the vi’s to their nearest integer. Redefine
the ej ’s and fk’s accordingly. By Lemma 3, a square in Ti centered at pj,k is separated from edges
ej′ and fk′ different ej and fk by a distance of at least

(√
2− 1

)
π`. The endpoints of the new ej ’s

and fk’s are at a distance of at most one of their original positions. Since
(√

2− 1
)
π > 1, the

squares in Ti are still separated by the straight lines containing the ej ’s and fk’s.
We now iteratively place the remaining n−m points. At every stage the number of lines passing

through every pair of the so far placed points is less than n2/2; each of these lines intersects at most
m3/2/4 squares of T ; each square must be touched by at least ` = L/m straight lines before being
dead. Thus, the number of squares alive at every stage is at least

m3

256
− n2m5/2

8L
≥ m3

512
≥ n3

512 log3 n
.

Therefore, we obtain at least

n−m∏
i=1

n3

512 log3 n
=

n3(n−m)

(512 log n)3(n−m)
= exp(3n log n−O(n log log n))

different order types with this procedure. Recall that m ≤ n/ log n + 16 and L ≤ 64n2/m1/2 + 1.
Therefore, these point sets lie in an integer grid of side length equal to L ·m = Θ

(
n2.5/

√
log n

)
.

This proves Theorem 2.
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