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Abstract

Let S be a set of n points in general position in the plane. Suppose
that each point of S has been assigned one of k ≥ 3 possible colors and
that there is the same number, m, of points of each color class. A polygon
with vertices on S is empty if it does not contain points of S in its interior;
and it is rainbow if all its vertices have different colors. Let f(k,m) be the
minimum number of empty rainbow triangles determined by S. In this
paper we give tight asymptotic bounds for this function. Furthermore, we
show that S may not determine an empty rainbow quadrilateral for some
arbitrarily large values of k and m.

1 Introduction

A set of points in the plane is in general position if no three of its points are
collinear. In this paper all sets of points are in general position. The well known
Erdős-Szekeres theorem [13] states that for every positive integer r ≥ 3 there
exists a positive integer n(r) such that every set of n(r) (or more points) in the
plane contains the vertices of a convex polygon of r vertices.

Let S be a set of n points in the plane. A polygon with vertices on S is said
to be empty if it does not contain a point of S in its interior. An r-hole of S
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is an empty convex polygon of r sides with vertices on S. In 1978, Erdős [12]
asked if for every r, every sufficiently large set of points in the plane contains an
r-hole. Klein [13] had already noted that every set of 5 points contains a 4-hole.
Harboth [17] showed that every set of 10 points contains a 5-hole. Horton [18]
constructed arbitrarily large sets of points without 7-holes. The case for 6-holes
remained open until Nicolás [22] and Gerken [16], independently showed that
every sufficiently large point set contains a 6-hole.

Once the existence of r-holes for some given r in every sufficiently large point
set is established, it is natural to ask what is the minimum number of r-holes
in every set of n points in the plane. Katchalski and Meir [20] first considered
this question for triangles. They showed that every set of n points determines
Ω(n2) empty triangles and provided an example of a point set determining
O(n2) empty triangles. The lower and upper bounds on this number have been
improved throughout the years [5, 11, 24, 15, 9, 2]. The problem of determining
the minimum number of r-holes in every set of n points in the plane has also
been considered in these papers.

Colored variants of these problems where first studied by Devillers, Hurtado,
Károlyi and Seara [10]. A point set is k-colored if every one of its points is
assigned one of k available colors. We say that an r-hole on S is monochromatic
if all its vertices are of the same color, and that it is rainbow1 if all its vertices are
of different colors. Many chromatic variants on problems regarding r-holes in
colored points sets have been studied since; see [6, 23, 1, 3, 7, 21, 4, 19, 8, 14, 25].
In particular, Aichholzer, Fabila-Monroy, Flores-Peñaloza, Hackl, Huemer, and
Urrutia showed that every 2-colored set of n points in the plane determines
Ω(n5/4) empty monochromatic triangles [1]. This was later improved to Ω(n4/3)
by Pach and Tóth [23]. The current best upper bound on this number is O(n2)
and this is conjectured to be the right asymptotic value.

In this paper we consider the problem of counting the number of empty
rainbow triangles in k-colored point sets in which there are the same number,
m, of points of each color class. Let f(k,m) be the minimum number of empty
rainbow triangles in such a point set. We give the following tight asymptotic
bound for f(k,m).

Theorem 1.1.

f(k,m) =


Θ(k2m) if m < k,

Θ(k3) if m ≥ k.

Note that in contrast to the number of empty monochromatic triangles, the
number of empty rainbow triangles does not necessarily grow with the number
of points.

1In [10] rainbow r-holes are called heterochromatic. We prefer to use “rainbow”, because
this term is used, with this meaning, in the more general setting of anti-Ramsey problems.
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2 Lower Bound

Proof of the lower bound in Theorem 1.1. Let S be a k-colored set of points
with m points of each color class. Without loss of generality assume that no
two points of S have the same x-coordinate. Assume that the set of colors is
{1, . . . , k}. For each 1 ≤ i ≤ k, let pi be the leftmost point of color i. With-
out loss of generality assume that when sorted by x-coordinate these points are
p1, . . . , pk.

Let 1 ≤ i ≤ k and let ri := min{i,m}. We show that there are at least
(r2i −3ri+2)/2 empty rainbow triangles having a point of color i as its rightmost
point. Let q1 := pi, q2, . . . , qri−2 be the first ri − 2 points of color i when sorted
by x-coordinate. For each 1 ≤ j ≤ ri − 2 do the following. Sort the points
of S to the left of qj counterclockwise by angle around qj . Note that any two
consecutive points in this order define an empty triangle with qj as its rightmost
point. Since the points p1, . . . , pi−1 are to the left of qj , there are at least i− 2
of these empty triangles such that the first point is of a color l distinct from
i, and the next point is of a color distinct from l. Furthermore, for at least
(i − 2) − (j − 1) = i − j − 1 of these triangles the next point is not of color i;
thus, they are rainbow. We have at least

ri−1∑
j=1

i− j − 1 =
(ri − 1)(2i− ri − 2)

2
(1)

empty rainbow triangles with a point of color i as its rightmost point. If i ≤ m
then the right hand side of (1) is equal to

i2 − 3i+ 2

2

Thus, if m ≥ k then S determines at least

k∑
i=3

i2 − 3i+ 2

2
=

1

6
k3 − 1

2
k2 +

1

3
k = Ω(k3)

empty rainbow triangles; and if m < k then S determines at least

k∑
i=3

(ri − 1)(2i− ri − 2)

2

=

m∑
i=3

i2 − 3i+ 2

2
+

k∑
i=m+1

(m− 1)(2i−m− 2)

2

=
1

2
k2m− 1

2
km2 +

1

6
m3 − 1

2
k2 +

1

2
k − 1

6
m

= Ω(k2m) + Ω(km2 +m3)

= Ω(k2m)

empty rainbow triangles

3



3 Upper Bound

In this section we construct a k-colored point set which provides our upper
bounds for f(k,m).

3.1 The Empty Triangles of the Horton Set

As a building block for our construction we use Horton sets [18]; in this section
we characterize the empty triangles of the Horton set. Let H be a set of n points
in the plane with no two points having the same x-coordinate; sort its points
by their x-coordinate so that H = {p0, p1, . . . , pn−1}. Let H0 be the subset of
the even-indexed points of H, and H1 be the subset of the odd-indexed points
of H. That is, H0 = {p0, p2, . . . } and H1 = {p1, p3, . . . }. Let X and Y be
two finite sets of points in the plane. We say that X is high above Y if: every
line determined by two points in X is above every point in Y ; and every line
determined by two points in Y is below every point in X.

Definition 1. H is a Horton set if

1. |H| = 1; or

2. |H| ≥ 2; H0 and H1 are Horton sets; and H1 is high above H0.

Assume that H is a Horton set. We say that an edge e := (pi, pj) is a visible
edge of H if one of the following two conditions are met.

• Both i and j are even and for every even i < l < j, the point pl is below
the line passing through e. In this case we say that e is visible from above.

• Both i and j are odd and for every odd i < l < j, the point pl is above
the line passing through e. In this case we say that e is visible from below.

Lemma 3.1. The number of visible edges of H is less than 2n.

Proof. Let s := 100 · · · 0 be a binary string starting with a 1 and followed by a
trail of 0’s of length at most dlog2(n)e. Every consecutive pair of points of Hs

defines a visible edge from below of H. Moreover, all visible edges from below of
H are of this form, for some s. Note that |Hs| ≤ n/2|s| + 1. A similar analysis
holds for the edges visible from above of H, using the binary strings starting
with a 0 and followed by a trail of 1’s of length at most dlog2(n)e. The number
of visible edges of H is at most

2

dlog2(n)e∑
i=1

n

2i
< 2n.

The visible edges of H allows to characterize its empty triangles recursively
as follows.
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Lemma 3.2. Let pi, pj and pl be the vertices of a triangle τ of H such that
either

• (pi, pj) is an edge visible from below and pl ∈ H0; or

• (pi, pj) is an edge visible from above and pl ∈ H1.

Then τ is empty. Moreover, every empty triangle of H with at least one vertex
in each of H0 and H1 is of one these forms.

Proof. If τ is such a triangle then its emptiness follows from the definition of
the Horton set. Suppose now that τ := pipjpl is an empty triangle of H with
pi, pj ∈ H0 and pl ∈ H1, or pi, pj ∈ H1 and pl ∈ H0. Then, for τ to be empty,
pipj must be an edge visible from above (resp. below).

We can now get a good upper bound on the number of empty triangles of
H.

Corollary 3.3. The number of empty triangles of H is at most 2n2.

Proof. Let T (n) be the number of empty triangles in a Horton set of n points.
Then T (n) is equal to the number of empty triangles with at least one vertex in
each of H0 and H1, plus the number of empty triangles with all their vertices in
H0 or all their vertices in H1. By the definition of Horton sets and Lemma 3.2
we have that

T (n) < T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ n2 ≤ 2n2.

3.2 Blockers

Our strategy is to start with a Horton set H of k points and replace each point
pi of H with a cluster Ci of m points. All of the points of Ci are of the same
color and are at a distance of at most some ε from pi. We choose ε to be
arbitrarily small. Let S be the resulting set. Note that every rainbow triangle
of S must have all its vertices in different clusters. Moreover, since each Ci is
arbitrarily close to pi we have the following. If τ is an empty triangle of S with
vertices in different clusters Ci, Cj and Cl then pi,pj and pl are the vertices of
an empty triangle in H. In principle, this gives m3 empty rainbow triangles in S
per empty triangle of H. However, we can place the points within each cluster
in such a way so that only very few of these triangles are actually empty.

Let pi ∈ H, and r := min{dlog2(k)e + 2, dm/2e}. In what follows we itera-
tively define real numbers

ε = ε1 > ε2 > · · · > εr+1 > 0;

in the process we also place a subset Bi of points of Ci at some of these distances;
we refer to the points in Bi as blockers. For t = 1 . . . , r suppose that εt has been
defined and possibly some points of Bi have been placed. Consider every pair
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of points pj , pl ∈ H distinct from pi. Let q ∈ Bi be at distance εt or more from
pi and such that q is in the interior of every triangle with vertices pi, p

′
j and p′l,

where p′j and p′l are at a distance of at most ε of pj and pl, respectively. Let τ
be the triangle with vertices p′i, p

′
j and p′l, where p′i is any point at a distance of

at most εt+1 from pi. We define εt+1 < εt small enough so that every such q is
in the interior of every such τ . We say that q blocks the triangle with vertices
p′i, p

′
j and p′l.

We construct Bi iteratively as follows. We say that a blocker point at dis-
tance εt from pi is at layer t. Let s0, . . . , sr′ be the binary strings such that:

1) s0 = ∅;

2) for every 0 ≤ t < r′, st+1 = st0 or st+1 = st1; and

3) Hsr′ = {pi}.

By 2) and 3) we have that pi ∈ Hst for every 0 ≤ t ≤ r′. Note that r′ ≤
dlog2(k)e.

Sort the points of H \ {pi} counterclockwise by angle around pi. For every
t = 0, . . . , r′− 2 and as long as we have placed at most m− 2 blocker points, we
place two blocker points at a distance from εt+1 from pi as follows.

• Suppose that st+1 = st0. Place one blocker point just after the leftmost
point of Hst1 in order by angle around pi; place another blocker point just
before the rightmost point of Hst1 in order by angle around pi, as depicted
in Figure 1(a).

• Suppose that st+1 = st1. Place one blocker point just after the leftmost
point of Hst0 in order by angle around pi; place another blocker point just
before the rightmost point of Hst0 in order by angle around pi.

Let B′i ⊂ Bi the set of these blocker points. If |B′i| < m then we proceed to
place the remaining points of Ci. If m − |B′i| < k then place the remaining
points of Ci in any way at a distance of at most εr of pi; in this case we have
that Bi = B′i. Suppose that m− |B′i| ≥ k. For every t = 0, . . . , r′ − 1 we place
additional blocker points as follows.

• If st+1 = st0 then place a blocker point, at a distance of εr from pi,
between any two consecutive points of Hst1 in order by angle around pi;
see Figure 1(b).

• If st+1 = st1 then place a blocker point, at a distance of εr from pi,
between any two consecutive points of Hst0 in order by angle around pi.

Let B′′i ⊂ Bi the set of these blocker points. No more blocker points are added
and Bi = B′i ∪B′′i . If m > |Bi| = |B′i|+ |B′′i | then place the remaining points of
Ci in any way at a distance of at most εr+1 from pi.

We are now ready to prove our upper bounds on f(k,m).
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Hs1

Hs0

Hs1

Hs0

(a) (b)

v v

Figure 1: (a) Blocking triangles with one point in Hs0 and one point in Hs1 (b)
Blocking triangles with two vertices in Hs1.

Proof of the upper bound in Theorem 1.1. We count the number of empty rain-
bow triangles determined by S as constructed above. To every empty triangle
τ ′ of S with vertices p′i ∈ Ci, p′j ∈ Cj and p′l ∈ Cl, we assign the empty triangle
τ of H with vertices pi, pj and pl. Let s be the binary string such that the
vertices of τ are contained in Hs but not in Hs0 and Hs1. We say that τ is
in layer |s| + 1. Without loss of generality suppose that pj and pl are both
contained in Hs0 or are both contained in Hs1.

If τ ′ contains a blocker point of each of B′j and B′l then these blocker points
are at layer |s| + 1. In this case there at most 2(|s| + 1) possible choices for
each of p′i and p′j . Otherwise, m < 2(|s|+ 1) and there are at most m possible
choices for each of p′j and p′l. If m ≥ k + 2 dlog2(k)e then τ ′ contains a point
from B′′i ; and there at most k + 2 dlog2(k)e possible choices for p′i. Otherwise,
m < k + 2 dlog2(k)e and there at most m possible choices for p′i. Summarizing,
τ is assigned to at most the following number of empty rainbow triangles of S:

m3 if m ≤ 2|s|+ 1;

4(|s|+ 1)2m if 2|s|+ 1 < m < k + 2 dlog2(k)e ; and

4(|s|+ 1)2 (k + 2 dlog2(k)e) if m ≥ k + 2 dlog2(k)e .

By Lemma 3.2, (pj , pl) is a visible edge of Hs. Since |Hs| ≤
⌈
k/2|s|

⌉
, by

Lemma 3.1 there are at most 2
⌈
k/2|s|

⌉ ⌈
k/2|s|+1

⌉
≤ 8

(
k2/22|s|

)
empty triangles

in Hs. Thus, for every 1 ≤ t ≤ dlog2(k)e there at most 2t−18
(
k2/22(t−1)

)
=

8k2/2t−1 empty triangles in H at layer t. Let m′ := min{m, k + 2 dlog2(k)e}.
Therefore, the number of empty rainbow triangles determined by S is at most

bm′/2c∑
t=1

4t2m′
(

8k2

2t−1

)
+

dlog2(k)e∑
t=bm/2c+1

m3

(
8k2

2t−1

)
, (2)

7



where the second term is set to 0 if bm/2c > dlog2(k)e.
If m′ = m then (2) is at most

bm/2c∑
t=1

4t2m

(
8k2

2t−1

)
+

dlog2(k)e∑
t=bm/2c+1

4t2m

(
8k2

2t−1

)
,

=

dlog2(k)e∑
t=1

4t2m

(
8k2

2t−1

)

= 32k2m

dlog2(k)e∑
t=1

(
t2

2t−1

)
≤ 384k2m

= O(k2m).

If m′ = k + 2 dlog2(k)e then (2) is at most

dlog2(k)e∑
t=1

4t2 (k + 2 dlog2(k)e)
(

8k2

2t−1

)

= 32k2 (k + 2 dlog2(k)e)
dlog2(k)e∑
t=1

(
t2

2t−1

)
≤ 384k2 (k + 2 dlog2(k)e)
= O(k3).

Therefore,

f(k,m) =


O(k2m) if m ≤ k,

O(k3) if m > k

4 Empty Rainbow Quadrilaterals

A natural generalization is to consider empty rainbow polygons; we construct
a k-colored point set with the same number of points in each color class and
that does not determine an empty rainbow quadrilateral. First, we observe the
following.

Lemma 4.1. The point set depicted in Figure 2 does not determine an empty
rainbow quadrilateral.

Proof. Let τ be a rainbow quadrilateral of the point set depicted in Figure 2.
Note that τ must have A,B and C as vertices. Thus, at least two of AB, AC
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and BC are sides of τ . Assume without loss of generality that AB and AC are
sides of τ . If the fourth vertex of τ is not one of the red points near A then
these points are inside τ ; and τ is not empty. If the fourth vertex of τ is one of
the red points near A then by construction the other red point near A is inside
τ ; and again τ is not empty.

A

B

C

Figure 2: A colored point set without an empty rainbow quadrilateral

We use Lemma 4.1 to construct our point set. First we take a regular (k−1)-
gon, P , with vertices p1, . . . , pk−1; we replace every point pi with a cluster Ci of
m points of color i. Let P ′ be a copy of P with vertices p′1, . . . , p

′
k−1, which is

rotated by 2π
2(k−1) = π

k−1 . So p1, p
′
1, p2, . . . , pk−1, p

′
k−1 form a regular 2(k − 1)-

gon. Let ε be sufficiently small. For every 1 ≤ i ≤ k − 1, we place the points of
Ci at a distance of at most ε from pi. For 1 ≤ i ≤ k − 1 (p′0 = p′k−1) we place
at least 2(k − 3) points of color k arbitrarily close to the line segment p′i−1p

′
i

and so that the following holds. Let q1 and q2 be any two consecutive points of
P distinct from pi. In the triangle with vertices pi, q1 and q2 there are at least
two points on p′i−1p

′
i of color k. Furthermore, these points are at a distance of

at least ε to the lines piq1 and piq2. Note that m ≥ 2k2 − 8k + 6. Let Ck be
the set of points of color k in this construction. The construction for k = 6 is
depicted in Figure 3.

C1

C3

C2

C4

C5

p′2

p′3

p′4

p′5

p′1

Figure 3: A construction of a 6-colored point set without empty rainbow 4-gons;
the clusters Ci are drawn enlarged.
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Theorem 4.2. The set
⋃k
i=1 Ci is a k-colored point set, with the same num-

ber of points of each color class, that does not determine an empty rainbow
quadrilateral.

Proof. Let τ be a rainbow triangle with vertices qi ∈ Ci, qj ∈ Cj and ql ∈ Cl.
We show that τ has a structure like the point set depicted in Figure 2. Consider
the points with color k near the line segment p′i−1p

′
i and that are between the

line segments qiqj and qiql. By construction, there are at least two points of
color k near p′i−1p

′
i between pipj and pipl. Since these points are at a distance

of at most ε to either of these lines, they are also between qiqj and qiql. By
the same argument there are points of color k on p′j−1p

′
j and p′l−1p

′
l inside τ .

Therefore, by Lemma 4.1, the point set
⋃k
i=1 Ci does not determine an empty

rainbow quadrilateral.

The construction described above determines many monochromatic quadri-
laterals. This leads us to the following question.

Problem 1. Does every sufficiently large k-colored (k ≥ 4) point set with the
same number of points in each color class determines an empty rainbow quadri-
lateral or an empty monochromatic quadrilateral?
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