
ar
X

iv
:1

60
3.

01
50

0v
1

 [
m

at
h.

M
G

]
 4

 M
ar

 2
01

6

AN ALGORITHM FOR THE CONSTRUCTION OF

THE TIGHT SPAN OF FINITE SUBSETS OF THE

MANHATTAN PLANE

Mehmet Kılıç ∗, Şahin Koçak †, and Yunus Özdemir ‡

Abstract

We give a simple algorithm for the construction of the tight span of a finite subset

of the Manhattan plane.

1 Introduction

The notion of tight span, which plays an important role in phylogenetic analysis, was in-
vented by Dress [2]. One of his motivations was to construct optimal realizations of finite
metric spaces in metric graphs (i.e. isometric embeddings into metric graphs with minimal
total weight). It turned out that the tight span was actually a rediscovering of the notion
of injective hull due to Isbell [5].

Tight span of subsets of the Manhattan plane is an especially interesting and important
special case, which is investigated in the elaborate work of Eppstein [3] (We note however
that the important Lemma 9 in [3] requires a slight correction. Eppstein remarks that it
can be fixed by taking the closure of his so called orthogonal hull [4]).

In a previous work we constructed the tight span of a path connected subset of the
Manhattan plane by a very simple device of hatching the subset successively in both axis-
directions. In the present note we give a simple algorithm for the construction of the tight
span of a finite subset of the Manhattan plane by embedding the given finite subset into a
suitable path connected subset and then applying the hatching operation.

In Section 2 we formulate the algorithm and prove that the resulting set is indeed the
tight span of the given finite set (Theorem 2). In Section 3 we give some examples and in
the appendix, we give the source-code of the program, whose input is a finite subset of the
Manhattan plane and whose output is its tight span.

2 An Algorithm for the Construction of the Tight Span

of Finite Subsets

We recall that the Manhattan plane is the metric space R
2
1 = (R2, d1) with

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

A geodesic between two points is a shortest path between these points parameterized by arc-
length and a shortest path between two points is a path with length realizing the distance
between these points (see [1], [8]). In the Manhattan plane a shortest path between two
points (x1, y1) and (x2, y2) with x1 ≤ x2 and y1 ≤ y2 is a path α = (α1, α2) : [a, b] → R

2

with α(a) = (x1, y1), α(b) = (x2, y2) and α1(t1) ≤ α1(t2) and α2(t1) ≤ α2(t2) for t1 ≤ t2

∗Anadolu University, Department of Mathematics, 26470, Eskişehir, Turkey, kompaktuzay@gmail.com
†Anadolu University, Department of Mathematics, 26470, Eskişehir, Turkey, skocak@anadolu.edu.tr
‡Anadolu University, Department of Mathematics, 26470, Eskişehir, Turkey, yunuso@anadolu.edu.tr

1

http://arxiv.org/abs/1603.01500v1

(see Figure 1a for a sample of geodesics). Likewise, for two points (x1, y1) and (x2, y2) with
x1 ≤ x2 and y1 ≥ y2 the component α1 of α must be non-decreasing and the component
α2 must be non-increasing c.f. [8]; see Figure 1b. If x1 = x2 or y1 = y2 for a pair of points
(x1, y1) and (x2, y2), then there exist a unique geodesic between these points which is the
linear segment connecting them (see Figure 1c).

x

y

xx

y y

b

b

(x1, y1)

(x2, y2)
b

b

(x1, y1)

(x2, y2)

b

b

bb

(a) (b) (c)

Figure 1: Geodesics in the Manhattan plane.

We will also need the hatching operations for subsets of the Manhattan plane. For a
subset A ⊆ R

2
1, let Ax0

denote the intersection of the set A with the vertical line x = x0

and Ay0 the intersection of A with the horizontal line y = y0. Given any subset X ⊆ R
2
1

lying on a horizontal or vertical line in R
2
1, denote the minimal segment (possibly infinite or

empty) containing the set X and contained in the same horizontal or vertical line by [X].
We can now define

Lx(A) =
⋃

y∈R

[Ay]

and
Ly(A) =

⋃

x∈R

[Ax].

We call the set Lx(A) the hatching of A in the x-direction and Ly(A) the hatching of A in
the y-direction. For a path connected subset A ⊆ R

2
1, the operations Lx and Ly commute

and we define L(A) = Lx(Ly(A)) = Ly(Lx(A)) (see [7]).
For later use we want to fix the following notation:
For p = (x1, y1) ∈ R

2
1 and ε1, ε2 = ±, we call the set

Qε1ε2
p = {q = (x2, y2) ∈ R

2
1 | ε1(x2 − x1) ≥ 0 and ε2(y2 − y1) ≥ 0}

the ε1ε2−quadrant of p (see Figure 2).
Finally we want to remind the notion of tight span for a metric space. Let (X, d) be any

metric space and consider the set of pointwise minimal functions f : X → R
≥0 satisfying

the property:
f(p) + f(q) ≥ d(p, q)

for all p, q ∈ X . The tight span T (X) of X is then this set of functions with the supremum
metric:

d∞(f, g) = sup
p∈X

|f(p)− g(p)|.

The tight span of a metric space can be shown to be strictly intrinsic, i.e. between any two
points there exists a geodesic ([6]).

We have given in [7] the following construction for the tight span of a path connected
subset A ⊆ R

2
1:

2

y

x

b
p

Q++
pQ−+

p

Q+−
pQ−−

p

Figure 2: Quadrants of the point p.

Theorem 1 For a path connected subset A ⊆ R
2
1, L(A) is isometric to the tight span of A

(i.e. one can obtain the tight span by hatching the given subset successively in both axis-
directions and taking the closure of the resulting set).

We can now formulate our main result:

Theorem 2 Let A ⊆ R
2
1 be a nonempty, finite subset. Then, the tight span of A can be

constructed by the following procedure:

Step 1: Choose a point (a, b) ∈ A with the smallest ordinate (if there are several such
points, choose the one with the smallest abscissa). Define SPINE = {(a, b)}.

Step 2: If there are no points with higher ordinate than b, then go to Step 5.

Step 3:

i) If there is a point (x1, y1) ∈ A with y1 > b and x1 ≥ a; and there is a point
(x2, y2) ∈ A with y2 > b and x2 ≤ a, then let

t = min{max{y − b | (x, y) ∈ A, y > b, x ≥ a},

max{y − b | (x, y) ∈ A, y > b, x ≤ a}},

and define SPINE = SPINE ∪ [(a, b), (a, b+ t)], where [(a, b), (a, b+ t)] denotes
the segment between the points (a, b) and (a, b+ t), and set b := b+ t.

ii) If there is a point (x1, y1) ∈ A with y1 > b and x1 ≥ a; but there is no point
(x, y) ∈ A with y > b and x ≤ a, then let

t = min{x− a | (x, y) ∈ A, y > b, x ≥ a},

and define SPINE = SPINE ∪ [(a, b), (a+ t, b)], and set a := a+ t.

iii) If there is a point (x1, y1) ∈ A with y1 > b and x1 ≤ a; but there is no point
(x, y) ∈ A with y > b and x ≥ a, then let

t = min{a− x | (x, y) ∈ A, y > b, x ≤ a},

and define SPINE = SPINE ∪ [(a− t, b), (a, b)], and set a := a− t.

Step 4: Go to Step 2.

Step 5: Connect the points of A with horizontal segments to the SPINE. We call the
resulting set the SKELETON.

3

Step 6: Apply the vertical hatching operation to the SKELETON. The resulting set will
be isometric to the tight span T (A) of the given set A.

Proof. Let p1 be the first point constructed in Step 3 (it may be p1 = (a, b+t), p1 = (a+t, b)
or p1 = (a − t, b) for some t > 0). We will show that the subspace A ∪ {p1} ⊆ R

2
1 can be

isometrically embedded into T (A). To see this, it will be enough to show that the function

fp1
: A → R

≥0, fp1
(q) = d1(p1, q)

belongs to T (A), i.e.,

• for every q, r ∈ A fp1
(q) + fp1

(r) ≥ d1(q, r) and

• for every u ∈ A, there must exist a v ∈ A such that fp1
(u) + fp1

(v) = d1(u, v).

The first condition is obviously true by the triangle inequality and we will check the second
condition by considering the positions of p1 separately.

i) Let p1 = (a, b + t). In this case every quadrant of the point p1 contains a point of A.
Given any u ∈ A, choose a point v ∈ A lying in the opposite quadrant. Then it holds
fp1

(u) + fp1
(v) = d1(u, v), which shows that fp1

belongs to T (A).

ii) Let p1 = (a + t, b). In this case all points of A except the point (a, b), belong to the
quadrant Q++

p1
. Now if u ∈ A is given from this quadrant, one can choose v = (a, b)

and if u ∈ A is given as u = (a, b), then one can choose v ∈ A from Q++
p1

and it holds
fp1

(u) + fp1
(v) = d1(u, v), so that fp1

belongs to T (A).

iii) Let p1 = (a − t, b). In this case all points of A except the point (a, b), belong to the
quadrant Q−+

p1
. Now if u ∈ A is given from this quadrant, one can choose v = (a, b)

and if u ∈ A is given as u = (a, b), then one can choose v ∈ A from Q−+
p1

and it holds
fp1

(u) + fp1
(v) = d1(u, v), so that fp1

belongs to T (A).

Let us denote the auxiliary points emerging by application of Step 3 successively by
p1, p2, · · · , pn. Assuming that the subset A ∪ {p1, p2, · · · , pk} ⊆ R

2
1 can be embedded into

T (A), we will show that A ∪ {p1, p2, · · · , pk+1} can be embedded into T (A).
Note that our assumption implies A ∪ {p1, p2, · · · , pk} ∼= T (A).
Let us denote pk = (c, d). Let us define the map

fpk+1
: A ∪ {p1, p2, · · · , pk} → R

≥0, fpk+1
(q) = d1(pk+1, q).

We will show that this function belongs to T (A ∪ {p1, p2, · · · , pk}). We have obviously
fpk+1

(q) + fpk+1
(r) ≥ d1(q, r) for any q, r ∈ A ∪ {p1, p2, · · · , pk} and we want to show

that for any u ∈ A ∪ {p1, p2, · · · , pk}, there exists a v ∈ A ∪ {p1, p2, · · · , pk} such that
fpk+1

(u) + fpk+1
(v) = d1(u, v)

We consider again the three positions of pk+1 separately.

i) Let pk+1 = (c, d+ t). In this case every quadrant of the point pk+1 contains a point of
A∪{p1, p2, · · · , pk} and for any point u ∈ A∪{p1, p2, · · · , pk}, one can choose a point
v in the opposite quadrant as in the previous case.

ii) Let pk+1 = (c+ t, d). In this case there can not be any points of A∪{p1, p2, · · · , pk} in
the interior of Q−+

pk+1
. Now if u is given from Q++

pk+1
or Q+−

pk+1
, we can choose v = (c, d);

if u is given from Q−−
pk+1

, we can choose v ∈ Q++
pk+1

∩ (A∪ {p1, p2, · · · , pk}) and in both
cases fpk+1

(u) + fpk+1
(v) = d1(u, v) is satisfied.

iii) Let pk+1 = (c− t, d). In this case there can not be any points of A∪{p1, p2, · · · , pk} in
the interior of Q++

pk+1
. Now if u is given from Q−+

pk+1
or Q−−

pk+1
, we can choose v = (c, d);

if u is given from Q+−
pk+1

, we can choose v ∈ Q−+
pk+1

∩ (A∪ {p1, p2, · · · , pk}) and in both
cases fpk+1

(u) + fpk+1
(v) = d1(u, v) is satisfied.

4

The above consideration show that T (A ∪ {p1, p2, · · · , pn}) = T (A) and to determine
T (A), it will be enough to determine T (A∪{p1, p2, · · · , pn}). Since the tight span is strictly
intrinsic (see [6]), an embedded copy of T (A∪{p1, p2, · · · , pn}) must contain the SPINE and
by the same reason the SKELETON, so that we get

T (A) = T (A ∪ {p1, p2, · · · , pn})

= T (A ∪ SPINE)

= T (SKELETON).

As the SKELETON is a path connected subset and Lx−invariant, we get by [7]

T (A) = Ly(SKELETON) = Ly(SKELETON),

which is the conclusion of the theorem.

3 Some Examples

Example 1 Let A = {(−1, 0), (0,−2), (3
2
, 1)}. The SPINE and the SKELETON for this set

are shown in Figure 3b and Figure 3c. The SKELETON is at the same time the tight span
as the vertical hatching adds no points. We remind that the tight span is unique only up to
isometry and there can be different embeddings of a tight span into the Manhattan plane.
Two additional such embeddings are shown in Figures 3d–3e.

We also want to remark that the assumption of Lemma 9 of Eppstein [3] is not satisfied
(i.e. the orthogonal hull is not connected), so that the orthogonal hull of the set A does not
give the tight span of A (see Figure 3f).

In the following examples, Examples 2-5, we show in each case the considered subset
of the Manhattan plane, its SPINE and SKELETON according to our algorithm and the
vertical hatching of the SKELETON, which is the tight span of the given finite subset (see
Figures 4 - 7).

5

a) The 3-point set A b) The SPINE of A

c) The SKELETON and the tight span
of A

d) Another embedding of the tight span
of A

e) Still another embedding of the tight
span of A

f) The orthogonal hull of A in the sense
of Eppstein, which is not connected and
therefore does not give the tight span of

A

Figure 3: Tight span of a 3-point set

6

Example 2

(a) The 4-point set A (b) The SPINE of A

(c) The SKELETON of A (d) The vertical hatching of the
SKELETON

(e) The tight span of the finite set A

Figure 4: Construction of the tight span of a 4-point set given in Figure 4a

7

Example 3

(a) The 4-point set A (b) The SPINE of A

(c) The SKELETON of A (d) The vertical hatching of the
SKELETON

(e) The tight span of the finite set A

Figure 5: Construction of the tight span of another 4-point set given in Figure 5a

8

Example 4

(a) The 5-point set A (b) The SPINE of A

(c) The SKELETON of A (d) The vertical hatching of the
SKELETON

(e) The tight span of the finite set A

Figure 6: Construction of the tight span of a 5-point set given in Figure 6a

9

Example 5

(a) The 15-point set A (b) The SPINE of A

(c) The SKELETON of A (d) The vertical hatching of the
SKELETON

(e) The tight span of the finite set A

Figure 7: Construction of the tight span of a 15-point set given in Figure 7a

10

Appendix

We give below the Maple 2015 source-code of the program which generates the tight span
of a given finite set step by step according to the algorithm given in Therem 2.

> restart: with(plots): with(plottools):
> # SET THE NUMBER OF POINTS OF YOUR FINITE SET AND INPUT THE POINTS OF YOUR
FINITE SET (AS (x[i,0],y[i,0])) AND RUN THE PROGRAM.
> numberofpoints:=5:
> x[1,0]:=0: y[1,0]:=-0.5:
> x[2,0]:=-1: y[2,0]:=3:
> x[3,0]:=1.5: y[3,0]:=2.5:
> x[4,0]:=2: y[4,0]:=0:
> x[5,0]:=-0.5: y[5,0]:=0.5:

> # DEFINING PROCEDURES
> MinOrdinatePoint:=proc(A)
> local t, minordinate, xmin, ymin, MinOrdSet;
> minordinate:=min(seq(A[i][2],i=1..nops(A))): MinOrdSet:={}:
> for t in A do
> if t[2]=minordinate then MinOrdSet:=MinOrdSet union {t}: fi;
> od;
> xmin:=min(seq(MinOrdSet[i][1],i=1..nops(MinOrdSet))): xmin,minordinate;
> end proc:

> MinApsisPoint:=proc(A)
> local t, minapsis, xmin, ymin;
> minapsis:=min(seq(A[i][1],i=1..nops(A))):
> for t in A do
> if t[1]=minapsis then xmin:=t[1]: ymin:=t[2]: break; fi;
> od; xmin,ymin;
> end proc:

> MaxApsisPoint:=proc(A)
> local t, maxapsis, xmax, ymax;
> maxapsis:=max(seq(A[i][1],i=1..nops(A))):
> for t in A do
> if t[1]=maxapsis then xmax:=t[1]: ymax:=t[2]: break; fi;
> od; xmax,ymax;
> end proc:

> PositionCode:=proc(x0,y0,A)
> local left, right, pc, t;
> left:=0: right:=0:
> for t in A minus {[x0,y0]} do
> if x0>=t[1] and y0<t[2] then left:=1; fi;
> od;
> for t in A minus {[x0,y0]} do
> if x0<=t[1] and y0<t[2] then right:=1; fi;
> od;
> if left=1 and right=1 then pc:=3:
> elif left=0 and right=1 then pc:=2:
> elif left=1 and right=0 then pc:=1:
> else pc:=0:
> fi:
> pc;
> end proc:

11

> ULeft:=proc(x0,y0,A)
> local a,s,i,t;
> i:=0:
> for t in A do
> if x0>=t[1] and y0<t[2] then i:=i+1: a[i]:=t: fi;
> od:
> {seq(a[s],s=1..i)};
> end proc:

> URight:=proc(x0,y0,A)
> local a,s,i,t;
> i:=0:
> for t in A do
> if x0<=t[1] and y0<t[2] then i:=i+1: a[i]:=t: fi;
> od:
> {seq(a[s],s=1..i)};
> end proc:

> IsUpperNonempty:=proc(x0,y0,A)
> local t;
> if max(seq(t[2]-y0,t in A))>0 then true; else false; fi;
> end proc:

> DrawSpine:=proc(x0,y0,A)
> global x,y; local go, go1, go2, t;
> if PositionCode(x0,y0,A)=0 then
> x:=x0; y:=y0;
> pointplot({(x0,y0)},color="DeepBlue",symbol=solidcircle,symbolsize=15):
> break:
> elif PositionCode(x0,y0,A)=1 then
> go:=min(seq(x0-t[1],t in A minus {[x0,y0]})): x:=x0-go; y:=y0;
> line([x0,y0],[x,y],color="DeepBlue",thickness=4);
> elif PositionCode(x0,y0,A)=2 then
> go:=min(seq(t[1]-x0,t in A minus {[x0,y0]})): x:=x0+go; y:=y0;
> line([x0,y0],[x,y],color="DeepBlue",thickness=4);
> elif PositionCode(x0,y0,A)=3 then
> go1:=max(seq(t[2]-y0,t in ULeft(x0,y0,A))):
> go2:=max(seq(t[2]-y0,t in URight(x0,y0,A))):
> go:=min(go1,go2): x:=x0; y:=y0+go;
> line([x0,y0],[x,y],color="DeepBlue",thickness=4);
> fi:
> end proc:

> DrawSpineNormal:=proc(x0,y0,A)
> global x,y; local go, go1, go2, t;
> if PositionCode(x0,y0,A)=0 then
> x:=x0; y:=y0;
> pointplot({(x0,y0)},color="SkyBlue",symbol=solidcircle,symbolsize=15):
> break:
> elif PositionCode(x0,y0,A)=1 then
> go:=min(seq(x0-t[1],t in A minus {[x0,y0]})): x:=x0-go; y:=y0;
> line([x0,y0],[x,y],color="SkyBlue",thickness=2);
> elif PositionCode(x0,y0,A)=2 then
> go:=min(seq(t[1]-x0,t in A minus {[x0,y0]})): x:=x0+go; y:=y0;
> line([x0,y0],[x,y],color="SkyBlue",thickness=2);
> elif PositionCode(x0,y0,A)=3 then
> go1:=max(seq(t[2]-y0,t in ULeft(x0,y0,A))):
> go2:=max(seq(t[2]-y0,t in URight(x0,y0,A))):
> go:=min(go1,go2): x:=x0; y:=y0+go;
> line([x0,y0],[x,y],color="SkyBlue",thickness=2);
> fi:
> end proc:

12

> # MAIN BODY OF THE ALGORITHM
> S[0]:={seq([x[i,0],y[i,0]],i=1..numberofpoints)}:
> A:=S[0]:
> procnum:=0:
> x0:=MinOrdinatePoint(A)[1]:
> y0:=MinOrdinatePoint(A)[2]:
> B:={[x0,y0]}: Pairs:={}: Newpoints:={}:

> # GENERATING THE SPINE
> while IsUpperNonempty(x0,y0,A) do
> procnum:=procnum+1:
> a[procnum]:=DrawSpine(x0,y0,A):
> anormal[procnum]:=DrawSpineNormal(x0,y0,A):
> Pairs:={[[x0,y0],[x,y]]} union Pairs:
> if not [x,y] in S[0] then Newpoints:={[x,y]} union Newpoints: fi:
> x0:=x; y0:=y:
> B:= {[x0,y0]} union B:
> TA:=ULeft(x0,y0,A) union URight(x0,y0,A):
> if PositionCode(x0,y0,TA)=1 then A:=ULeft(x0,y0,A);
> elif PositionCode(x0,y0,TA)=2 then A:=URight(x0,y0,A);
> elif PositionCode(x0,y0,TA)=3 then A:=ULeft(x0,y0,A) union URight(x0,y0,A);
> else A:={[x0,y0]}:
> fi:
> end:
> procnum0:=procnum:

> # CONNECTING THE POINTS TO THE SPINE TO OBTAIN SKELETON
> C:=S[0] minus B:
> for t in C do
> for i from 1 to nops(B) do
> for j from 1 to nops(B) do
> if t[2]>=B[i][2] and t[2]<=B[j][2] and B[i][1]=B[j][1] then
> procnum:=procnum+1:
> a[procnum]:=line(t,[B[i][1],t[2]],color="DeepBlue",thickness=2);
> anormal[procnum]:=line(t,[B[i][1],t[2]],color="SkyBlue",thickness=2);
> Pairs:={[t,[B[i][1],t[2]]]} union Pairs:
> fi:
> od:od:od:
> procnum1:=procnum:

> # HATCHING OPERATION TO THE SKELETON
> minapsis:=MinApsisPoint(S[0])[1]:
> maxapsis:=MaxApsisPoint(S[0])[1]:
> stepsize:=0.01:
> #You can decrease the stepsize for more dense hatching process
> for i from minapsis to maxapsis by stepsize do
> count:=0:
> for t in Pairs do
> if i<t[1][1] and i>t[2][1] then count:=count+1: ord[count]:=t[1][2]:
> elif i>t[1][1] and i<t[2][1] then count:=count+1: ord[count]:=t[1][2]:
> fi:
> od:
> if count>1 then
> ordmin:=min(seq(ord[z],z=1..count)):
> ordmax:=max(seq(ord[z],z=1..count)):
> procnum:=procnum+1:
> a[procnum]:=line([i,ordmin],[i,ordmax],color="SkyBlue",transparency=0.9);
> anormal[procnum]:=line([i,ordmin],[i,ordmax],color="SkyBlue");
> fi:
> od:

13

> # NOW IT IS DRAWING THE TIGHT SPAN STEP BY STEP
> a[0]:=pointplot({seq([S[0][n][1],S[0][n][2]],n=1..numberofpoints)},
> symbol=solidcircle,color="BlueGreen",symbolsize=20):
> anormal[0]:=pointplot({seq([S[0][n][1],S[0][n][2]],n=1..numberofpoints)},
> symbol=solidcircle,color="Red",symbolsize=10):
> newpoint:=pointplot({seq([Newpoints[n][1],Newpoints[n][2]],n=1..nops(Newpoints))},
> symbol=solidcircle,color="PaleRed",symbolsize=16):

> display(a[0],axes=normal,scaling=constrained);
> display(seq(a[i],i=1..procnum0),newpoint,a[0],axes=none,scaling=constrained);
> display(seq(a[i],i=procnum0+1..procnum1),seq(a[i],i=1..procnum0),newpoint,a[0],
> axes=none,scaling=constrained);
> display(seq(a[i],i=procnum0+1..procnum),seq(a[i],i=1..procnum0),newpoint,a[0],
> axes=none,scaling=constrained);
> display(seq(anormal[i],i=1..procnum),anormal[0],,axes=none,scaling=constrained);

References

[1] D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in
Mathematics, American Mathematical Society, USA, 2001.

[2] A. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension
of certain groups: A note on combinatorial properties of metric spaces, Advances in
Mathematics 53 (1984), 321–402.

[3] D. Eppstein, Optimally fast incremental Manhattan plane embedding and planar tight
span construction, Journal of Computational Geometry 2(1) (2011), 144–182.

[4] D. Eppstein, personal communication.

[5] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helvetici 39
(1964), 65–76.

[6] M. Kilic, S. Kocak, Tight Span of Subsets of The Plane With The Maximum Metric,
arXiv:1506.05982.

[7] M. Kilic, S. Kocak, Tight Span of Path Connected Subsets of the Manhattan Plane,
arXiv:1507.05041.

[8] A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature, Irma Lectures
in Mathematics and Theoretical Physics, European Mathematical Society, Germany,
2005.

14

http://arxiv.org/abs/1506.05982
http://arxiv.org/abs/1507.05041

	1 Introduction
	2 An Algorithm for the Construction of the Tight Span of Finite Subsets
	3 Some Examples

