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Abstract

We show that every polycube tree can be unfolded with a 4×4 refinement of the grid faces. This is the
first constant refinement unfolding result for polycube trees that are not required to be well-separated.

1 Introduction

An unfolding of a polyhedron is obtained by cutting its surface in such a way that it can be flattened in
the plane as a simple non-overlapping polygon called a net. An edge unfolding allows only cuts along the
polyhedron’s edges, while a general unfolding allows cuts anywhere on the surface. Edge cuts alone are not
sufficient to guarantee an unfolding for non-convex polyhedra [BDE+03, BDD+98], however it is unknown
whether all non-convex polyhedra have a general unfolding. In contrast, all convex polyhedra have a general
unfolding [DO07, Sec. 24.1.1], but it is unknown whether they all have an edge unfolding [DO07, Ch. 22].

Prior work on unfolding algorithms for non-convex objects has focused on orthogonal polyhedra. This
class consists of polyhedra whose edges and faces all meet at right angles. Because not all orthogonal
polyhedra have edge unfoldings [BDD+98], the unfolding algorithms typically use additional non-edge cuts
that follow one of two models. In the grid unfolding model, the surface is subdivided into rectangular grid
faces by adding edges where axis-perpendicular planes through each vertex intersect the surface, and cuts
along these added edges are also allowed. In the grid refinement model, each grid face under the grid unfolding
model is further subdivided by an (a × b) orthogonal grid, for some positive integers a, b ≥ 1, and cuts are
also allowed along any of these grid lines.

A series of algorithms have been developed for unfolding arbitrary genus-0 orthogonal polyhedra, with
each successive algorithm requiring less grid refinement. The first such algorithm [DFO07] required an
exponential amount of grid refinement. This was reduced to quadratic refinement in [DDF14], and then to
linear in [CY15]. These ideas were further extended in [DDFO17] to unfold arbitrary genus-2 orthogonal
polyhedra with linear refinement.

The only unfolding algorithms for orthogonal polyhedra that use sublinear refinement are for special-
ized orthogonal shape classes. For example, there exist algorithms for unfolding orthostacks using 1 × 2
refinement [BDD+98] and Manhattan Towers using 4× 5 refinement [DFO05]. There also exist unfolding al-
gorithms for several classes of polyhedra composed of rectangular boxes. For example, orthotubes [BDD+98]
and one layer block structures [LPW14] built of unit cubes with an arbitrary number of unit holes can both
be unfolded with cuts restricted to the box edges. Our focus here is on a class of orthogonal polyhedra
known as polycube trees. A polycube tree O is composed of axis-aligned unit cubes (boxes) glued face to
face, whose surface is a 2-manifold and whose dual graph T is a tree. (See Figure 1a for an example.) In the
grid unfolding model, cuts are allowed along any of the cube edges. Each node in T is a box in O and two
nodes are connected by an edge if the corresponding boxes are adjacent in O (i.e., if they share a face). In
this paper we will use the terms box and node interchangeably. The degree of a box b ∈ O is defined as the
degree of its corresponding node in the dual tree T . We select any node of degree one to be the root of T .

In a polycube tree, each box can be classified as either a leaf, a connector, or a junction. A leaf is a box
of degree one; a connector is a box of degree two whose two adjacent boxes are attached on opposite faces;
all other boxes are junctions.

∗Partial results for polycube trees (previously called orthotrees) of degree 3 or less have appeared in [DF18].
†Department of Computer Science, Villanova University, Villanova, PA, mirela.damian@villanova.edu
‡Department of Computer Science, Siena College, Loudonville, NY, flatland@siena.edu

1

ar
X

iv
:1

81
1.

01
84

2v
3 

 [
cs

.C
G

] 
 3

1 
M

ar
 2

02
1



b

(a) (b)

Tb

Fb

RbLb

Bb

Kb

Ib

Jb

Nb

Sb

Wb
Eb

b

(c)

Figure 1: (a) A simple polycube tree example. Notation for: (b) b’s faces (c) b’s neighbors.
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Figure 2: (a) Head-first and (b) Hand-first unfolding of leaf box; dark-shaded pieces can be removed without
disconnecting the nets.

Because polycube trees are orthogonal polyhedra, they can be unfolded using the general algorithm
in [CY15] with linear refinement. Algorithms for unfolding polycube trees using less than linear refinement
have been limited to polycube trees that are well-separated, meaning that no two junction boxes are adjacent.
In [DFMO05], the authors provide an algorithm for grid unfolding well-separated polycube trees. Recent
work in [HCY17] shows that the related class of well-separated orthographs (which allow arbitrary genus)
can be unfolded with a 2× 1 refinement.

In this paper we provide an algorithm for unfolding all polycube trees using a 4 × 4 refinement of the
cube faces. For each box b in T , the algorithm unfolds b and the boxes in the subtree rooted at b recursively.
Intuitively, the algorithm unfolds surface pieces of b along a carefully constructed path. When the path
reaches a child box of b, the child is recursively unfolded and then the path continues on b again to the next
child (if there is one). The unfolding of b and its subtree is contained within a rectangular region having two
staircase-like bites taken out of it. This is the first sublinear refinement unfolding result for the class of all
polycube trees, regardless of whether they are well-separated or not.

2 Terminology

For any box b ∈ O, Rb and Lb are the right and left faces of b (orthogonal to the x-axis); Fb and Kb are
the front and back faces of b (orthogonal to the z-axis); and Tb and Bb are the top and bottom faces of b
(orthogonal to the y-axis). See Figure 1b. We use a different notation for boxes adjacent to b, to clearly
distinguish them from faces: Eb and Wb are the east and west neighbors of b (adjacent to Rb and Lb, resp.);
Nb and Sb are the north and south neighbors of b (adjacent to Tb and Bb, resp.); and Ib and Jb are the front
and back neighbors of b (adjacent to Fb and Kb, resp.). See Figure 1c. We omit the subscript whenever the
box b is clear from the context. We use combined notations to refer to the east neighbor of N as NE, the
back neighbor of NE as NEJ , and so on.

If a face of a box b ∈ O is also a face of O, we call it an open face; otherwise, we call it a closed face.
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On the closed face shared by b with its parent box in T , we identify a pair of opposite edges, one called
the entry port and the other called the exit port (shown in red and labeled in Figure 2). The unfolding of
b is determined by an unfolding path that starts on b near b’s entry port, recursively visits all boxes in the
subtree Tb ⊆ T rooted at b, and ends on b near b’s exit port. We denote by Nb the unfolding net produced
by a recursive unfolding of b. For simplicity, we will sometimes omit the word “recursive” when referring to
a recursive unfolding of a box b and simply call it an unfolding of b, with the understanding that all boxes
in Tb get unfolded during the process.

To make it easier to visualize the unfolding path, we use an L-shaped guide (or simply L-guide) with
two orthogonal pointers, namely a Hand pointer and a Head pointer. (See Figure 2, where the Head and
the Hand pointers are represented by the circle and the arrow, respectively.) With very few exceptions, the
unfolding path extends in the direction of one of the two pointers. Whenever the unfolding path follows the
direction of the Hand, we say that it extends Hand-first ; otherwise, it extends Head-first. Surface pieces
traversed in the direction of the Hand (Head) will flatten out horizontally (vertically) in the plane.

As a simple example, consider the unfolding of a leaf box A from Figure 2a. The L-guide is shown
positioned on top of A’s parent box I at the entry port. The unfolding path extends Head-first across the
top, back, and bottom faces of A, and ends on the bottom of A at the exit port. The resulting unfolding
net NA consists of A’s open faces TA, KA, BA, LA, and RA. In all unfolding illustrations, the outer surface
of O is shown. When describing and illustrating the unfolding of a box A, we will assume without loss of
generality that the box is in standard position (as in Figure 2a), with its parent IA attached to its front face
FA and its entry (exit) port on the top (bottom) edge of FA.

(a)

b

Ib, be, bx

r
re, rx

→e

e

(b)

b

Ib

be

bx

re

rx

e

→e

←x
xx

←x

(c)

b

Ib, be, bx

→e

e

x

←x

Figure 3: Box b in standard position with parent Ib and ring r (a) entry and exit boxes be, bx coincide with

parent Ib; entry ring re coincides with exit ring rx; entry ring face e ∈ re is the top and its successor
e−→∈ re

is the right face of re; exit ring face x ∈ rx is the bottom and its predecessor
x←−∈ rx is the left face of rx (b)

entry box be with entry ring re and entry face e lies north of Ib; exit box bx with exit ring rx and exit face
x lie south of Ib;

e−→ is the successor of e on the entry ring re, and
x←− is the predecessor of x on the exit ring

rx (c)
e−→ and

x←− are closed (e and x are always open, by definition).

The ring r of a box b includes all the points on the surface of b (not necessarily on the surface of O) that
are within distance 1/4 of the closed face shared with b’s parent. Thus, r consists of four 1/4×1 rectangular
pieces (which we call ring faces) connected in a cycle. (See Figure 3a, where r is the shaded band on b’s
surface wrapping around b’s front face; box b is shown in standard position, so its parent Ib attaches to b’s
front face.) The entry box be of b is the box containing the open face in T \ Tb adjacent to b’s entry port.
Note that be may be b’s parent (as in Figure 3a), but this is not necessary (see Figure 3b, where be is the
box on top of b’s parent Ib).

The entry ring re of b includes all points of be that are within distance 1/4 of the closed face of be adjacent
to b’s entry port. (Refer to Figure 3.) The face e of re adjacent to b’s entry port is the entry ring face.
Similarly, the exit box bx of b is the box containing the open face in T \Tb adjacent to b’s exit port. Note that
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bx may be b’s parent (as in Figure 3a), but this is not necessary (see Figure 3b, where bx is the box south of
b’s parent Ib). The exit ring rx of b includes all points of bx that are within distance 1/4 of the closed face
of bx adjacent to b’s exit port. The face x of rx adjacent to b’s exit port is the exit ring face. Note that both
e and x are open ring faces (by definition). When unclear from context, we will use subscripts (i.e., eb and
xb) to specify the entry and exit faces of a particular box b.

In a Head-first unfolding of a box b, the L-guide begins on the entry ring face e with the Head pointing
toward the entry port, and it ends on the exit ring face x with the Head pointing away from the exit port;
the Hand has the same orientation at the start and end of the unfolding. (See Figures 2a, 3a.) Similarly,
in a Hand-first unfolding, the L-guide begins on the entry ring face e with the Hand pointing toward the
entry port, and it ends on the exit ring face x with the Hand pointing away from the exit port; the Head
has the same orientation at the start and end of the unfolding. (See Figures 2b, 3b.) In standard position,
the Hand in a Head-first unfolding will point either east or west. If it points east (west) we say that the
unfolding is a Hand-east (west), Head-first unfolding. Similarly, in a Hand-first unfolding, the Head will
either point east or west. If it points east (west), we say the unfolding is a Head-east (west), Hand-first
unfolding.

In a Head-first (Hand-first) unfolding of b with entry ring face e,
e−→ is the ring face of re encountered

immediately after e when cycling around re in the direction pointed to by the Hand (Head) of the L-guide
as positioned on e at the start of b’s unfolding. Similarly, in a Head-first (Hand-first) unfolding of b with

exit ring face x,
x←− is the ring face of rx encountered just before x when cycling around rx in the direction

pointed to by the Hand (Head) of the L-guide as positioned on x at the end of b’s unfolding path. Figure 3

shows
e−→ and

x←− labeled. Note that, although e and x are open ring faces by definition,
e−→ and

x←− may be
closed (see Figure 3c for an example).

3 Inductive Regions

Let b ∈ T be an box to be unfolded recursively.

Definition 1. A Head-first inductive region for b is a rectangle at least three units wide and three units
tall, with two staircase bites taken out of the lower left and upper right corners, as shown in Figure 4a. The
entry (exit) port of the inductive region is the lower left (upper right) horizontal segment that lies strictly
inside the bounding box of the region. If b is not a leaf, the unit cells labeled Eb and Xb in Figure 4a are
conditionally included in the inductive region as follows:

• If the successor
e−→ of the entry ring face e is closed, then Eb is included as part of the inductive region,

otherwise, Eb is not part of the inductive region. In the latter case, we refer to the unit segment right
of the entry port as the entry port extension.

• If the predecessor
x←− of the exit ring face x is closed, then Xb is included as part of the inductive region,

otherwise, Xb is not part of the inductive region. In the latter case, we refer to the unit segment left
of the exit port as the exit port extension.

See Figure 5 for a few examples. A Head-first unfolding of b produces a net Nb that fits within the
Head-first inductive region and whose entry (exit) port aligns to the left (right) with the entry (exit) port
of the inductive region.

A Hand-first inductive region for b is an orthogonally convex polygon shaped as in Figure 4b. Its shape is
isometric to that of a Head-first inductive region, and one can be obtained from the other through a clockwise
90◦-rotation, followed by a vertical reflection. The unit cells Eb and Xb in Figure 4b are conditionally included
in the inductive region according to the rules stated in Definition 1.

Lemma 2. Let b be an arbitrary box in O, and let d be the box corresponding to b in a horizontal reflection
of O. Let Nd be the unfolding net produced by a Head-first unfolding of d. If Nd is rotated counterclockwise
by 90◦ and then reflected horizontally, then the result is a Hand-first unfolding of b.

Proof. First note that, when applied to the L-guide, the combined (90◦-rotation, reflection) transformation

switches the Head and Hand positions. This implies that the successor
e−→ of d’s entry ring face is the same
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Figure 4: Inductive region for (a) Head-first unfolding (b) Hand-first unfolding.

before and after the combined (90◦-rotation, reflection) transformation, because it extends in the direction of

the Hand (Head) in a Head-first (Hand-first) unfolding. Similarly, the predecessor
x←− of d’s exit ring face

is the same before and after the transformation. Thus the rules from Definition 1 for including Ed and Xd in
the inductive region for d refer to the same ring faces before and after the transformation. These together
show that, when applied to the unfolding net, this transformation turns a Head-first recursive unfolding of
d into a Hand-first recursive unfolding of b.

Lemma 2 enables us to focus the rest of the paper on Head-first unfoldings only, with the understanding
that the results transfer to Hand-first unfoldings.

4 Net Connections

We now discuss the type of connections that each Head-first unfolding net Nb associated with a box b must
provide to ensure that it connects to the rest of T ’s unfolding. To do so, we need a few more definitions.

Let e′ (x′) be the open ring face of Tb that is adjacent to e (x) along the entry (exit) port. If
e−→ (

x←−)

is open, let
e′−→ (

x′

←−) be the open ring face adjacent to it along its side of unit length (see Figure 5). Note

that, although e and
e−→ are ring faces from the same box by definition, ring faces e′ and

e′−→ may be from

different boxes (as in Figure 5b,c), and similarly for x′ and
x′

←−. Although these definitions may seem a bit
intricate at this point, they will greatly simplify the description of our approach.

If b is not the root of T , to ensure that b’s net connects to the rest of T ’s unfolding, it must provide
type-1 or type-2 connection pieces placed along the boundary inside its inductive region. These connections
are defined as follows:

• A type-1 entry connection consists of the ring face e′ placed alongside the entry port. (See Figure 5(a,b)
for examples.)

• A type-1 exit connection consists of the ring face x′ placed alongside the exit port. (See Figure 5(b,c)
for examples.)

• A type-2 entry connection is used when the ring face
e−→ is open and adjacent to Tb, and consists of the

ring face
e′−→ placed alongside the entry port extension. (See Figure 5c for an example.)

• A type-2 exit connection is used when the ring face
x←− is open and adjacent to Tb, and consists of the

ring face
x′

←− placed alongside the exit port extension. (See Figure 5a for an example.)

The unfolding of b begins (ends) on the type-1 or type-2 entry (exit) connection of b’s net. As we will show,
the existence of these connections is enough to guarantee that b’s net connects to the rest of T ’s unfolding.
In most cases, the connection to the rest of T ’s unfolding will be made along the port or port extension side
of b’s type-1 or type-2 connection. In some cases though, the connection will be made along the left (right)
side of b’s type-1 entry (exit) connection.
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Figure 5: Net connections. (a) Type-1 entry connection, because
e−→ is closed (so Eb is part of the inductive

region); type-2 exit connection, because
x←− is open and adjacent to Tb (type-1 exit connection would also

be allowed here) (b) Type-1 entry and exit connections, because
e−→ and

x←− are non-adjacent to Tb; they are

both open, so Eb and Xb are not part of the inductive region (c) Type-2 entry connection, because
e−→ is open

and adjacent to Tb (type-1 entry connection would also be allowed here); type-1 exit connection, because
x←−

is closed (so Xb is part of the inductive region). Note that the strips e, x,
e−→ and

x←− highlighted along the
nets do not necessarily attach to Nb; they are included here for the purpose of illustrating the definitions.

5 Unfolding Invariants

We will make use of the following invariants tied to a recursive unfolding of a box b ∈ T other than the root
box:

(I1) The recursive unfolding of b produces an unfolding net Nb that fits within the inductive region
and includes all open faces of Tb, with cuts restricted to a 4× 4 refinement of the box faces.

(I2) The unfolding net Nb provides the following entry and exit connections (see Figure 5):

(a) If
e−→ is open and adjacent to a face in Tb, then Nb provides either a type-1 or type-2 entry

connection. Otherwise, Nb provides a type-1 entry connection.
(b) If

x←− is open and adjacent to a face in Tb, then Nb provides either a type-1 or type-2 exit
connection. Otherwise, Nb provides a type-1 exit connection.

(I3) Open faces of b’s ring that are not used in Nb’s entry and exit connections can be removed from
Nb without disconnecting Nb.

Invariant (I3) is sometimes employed in gluing two nets together, particularly in cases where the exit port
of a box b does not align with the entry port of the box b′ next visited by the unfolding path. In such cases,
the unfolding algorithm may use ring pieces of b and b′ identified by (I3) to form a bridge between their
corresponding nets. Referring forward to Figure 12 for example, the strips RN and TE are removed from
their respective nets NN and NE and used to connect the two nets. Similarly, the strips BW and LS are
removed from NW and NS and used to connect NW and NS .

The following proposition follows immediately from the definition of the invariants (I1)-(I3) above.

Proposition 3. If a net Nb satisfies invariants (I1)-(I3), then the net obtained after a 180◦-rotation of Nb

also satisfies invariants (I1)-(I3) (with entry and exit switching roles).
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Lemma 4. Let ξ be the unfolding path and Nb the unfolding net produced by a recursive unfolding of b. Let←−
ξ be the unfolding path traversed in reverse, starting at the exit port of Nb and ending at the entry port of
N , with the Head and Hand pointing in opposite direction. If Nb satisfies the invariants (I1)-(I3), then the

unfolding net induced by
←−
ξ also satisfies invariants (I1)-(I3).

Proof. The unfolding net
←−
Nb induced by

←−
ξ is a diagonal flip (180◦-rotation) of Nb. This along with Propo-

sition 3 implies that
←−
Nb satisfies invariants (I1)-(I3).

6 Main Result

This section introduces our main result, which uses Theorem 1 below. We note here that Theorem 1
makes references to upcoming lemmas, which are organized into separate sections for clarity and ease of
reference. So the main role of Theorem 1 is to organize all unfolding cases into a structure that outlines
the proof technique detailed in subsequent sections.

Theorem 1. Any box A ∈ T other than the root satisfies invariants (I1)-(I3) (listed in Section 5).

Proof. The proof is by strong induction on the height h of TA. The base case corresponds to h = 0 (i.e, A
is a leaf).

Consider the unfolding of leaf box A depicted in Figure 2a: starting at A’s entry port, the unfolding path
simply moves Head-first until it reaches A’s exit port. We now show that, when laid flat in the plane, the
open faces of A form a net NA that satisfies invariants (I1)-(I3). First note that the net NA from Figure 2a
fits within the inductive region and includes all open faces of A, therefore invariant (I1) is satisfied. To check
(I2), observe that NA provides type-1 entry and exit connections, since e′ ∈ TA and x′ ∈ BA are positioned
alongside the entry and exit ports. To check (I3), observe that the open ring faces of A not used in A’s entry
or exit connections are the dark-shaded pieces from Figure 2a, and their removal does not disconnect NA.
Thus NA also satisfies all three invariants.

The inductive hypothesis states that the theorem holds for any dual subtree of height h or less. To prove
the inductive step, we consider a dual subtree TA of height h+ 1, and prove that the theorem holds for the
root A of TA.

First note that, because A is not the root of T , A has a parent in T . Also, since the height of TA is
at least 1, A has at least one child in TA. By the inductive hypothesis, each child of A satisfies invariants
(I1)-(I3). We discuss five cases, depending on the degree of A.

1. A is of degree 2: this case is settled by Theorem 3.

2. A is of degree 3: this case is settled by Theorem 4.

3. A is of degree 4: this case is settled by Theorem 5.

4. A is of degree 5: this case is settled by Theorem 6.

5. A is of degree 6: this case is settled by Theorem 7.

Having exhausted all cases, we conclude the result of this theorem.

Theorem 2. [Main result.] Any polycube tree O can be unfolded into a net using a 4× 4 refinement.

Proof. Let T be the dual tree of O and let A ∈ T be the root of T (by definition, A is a node of degree one
in T ). Assume without loss of generality that A has a back child J (if this is not the case, reorient O to
make this assumption hold). A recursive unfolding of A is depicted in Figure 6a: starting Head-first on the
top face of A, the unfolding path recursively visits J and returns to the bottom face of A. The resulting net
takes the shape depicted in Figure 6b.

By Theorem 1, J satisfies invariants (I1)-(I3), so its net NJ takes the shape depicted in Figure 6b.

Notice that eJ ∈ TA and xJ ∈ BA. Since
eJ−→∈ RA and

xJ←−−∈ LA are both open, the unit squares EJ and XJ

(occupied in Figure 6b by RA and LA, respectively) do not belong to the inductive region for J . Furthermore,

since
eJ−→ and

xJ←−− are adjacent to TJ , invariant (I2) applied to J tells us that NJ provides either type-1 or

7



FA

TA

end

start

A

J

RA

BA

LANJ

(a) (b) NA

Figure 6: Unfolding of root A with back child J (a) unfolding path (b) unfolding net NA.

type-2 entry and exit connections. If of type-1, the entry (exit) connection attaches to TA (BA); otherwise,
it attaches to RA (LA). In either case, the surface piece NA depicted in Figure 6b is connected. Invariant
(I1) applied to J tells us that NJ is a net that includes all open faces in the subtree TJ rooted at J and uses
a 4 × 4 refinement. This along with the fact that the open faces of A attach to NJ without overlap settles
this theorem.

The need for a 4× 4 refinement will become clear later in Section 7.2, where we discuss a case that requires
a 4-refinement along one dimension (depicted in Figure 10a).

7 Unfolding Algorithm

Our unfolding algorithm uses an unfolding path that begins on the top face of the root box of T , recursively
visits all nodes in the subtree rooted at the (unique) child of the root box, and ends on the bottom face of
the root box (as depicted in Figure 6). The result is a net that includes all open faces of O (as established
by Theorem 2).

This section is dedicated to proving the five results referenced by Theorem 1. The unfolding algorithm
is implicit in the proofs of these results. Here we provide a complete discussion for boxes of degrees 1, 2 and
6. For boxes of degree 3, 4, and 5, we select only a few representative cases that exemplify our main ideas.
The reader can refer to the appendix for the remaining cases, which are very similar. (We do not include all
cases here in order to avoid repetitiveness and improve the flow and clarity of our techniques.)

7.1 Unfolding Degree-2 Nodes

In this section we describe the recursive unfolding of a box A ∈ T of degree 2, and show that it satisfies the
invariants (I1)-(I3) listed in Section 5.

Theorem 3. Let A ∈ T be a degree-2 box. If A’s child satisfies invariants (I1)-(I3), then A satisfies
invariants (I1)-(I3).

Proof. Our analysis is split into four different cases, depending on the position of A’s child (note that A’s
parent contributes one unit to A’s degree):

Case 2.1 E is a child of A. This case is settled by Lemma 5.
Case 2.2 W is a child of A. This case is settled by Lemma 6.
Case 2.3 J is a child of A. This case is settled by Lemma 7.
Case 2.4 N is a child of A. This case is settled by Lemma 8.

The case where S is a child of A is a vertical reflection of Case 2.4.

Lemma 5. Let A ∈ T be a degree-2 node with parent I and child E (Case 2.1). If E satisfies invariants
(I1)-(I3), then A satisfies invariants (I1)-(I3).
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Figure 7: Unfolding of degree-2 box A with parent I and child (a) E (b) W .

Proof. Lemma 2 allows us to restrict our attention to Head-first unfoldings of A. The unfolding for this
case is depicted in Figure 7a: starting at A’s entry port, the unfolding path moves Head-first to TA, then
proceeds Hand-first to recursively unfold E; from E’s exit ring face on BA, it proceeds Head-first up KA

to TA; from TA, it proceeds Hand-first down LA to BA, and then moves Head-first on BA to A’s exit port.
We now show that, when visited in this order and laid flat in the plane, the open faces in TA form a net NA

that satisfies invariants (I1)-(I3).
First note that the net NA in Figure 7a provides type-1 entry and exit connections, since e′A ∈ TA and

x′A ∈ BA are positioned alongside its entry and exit ports. This shows that NA satisfies invariant (I2). Also
note that (I3) is satisfied, because the only open ring face of A not used in NA’s entry or exit connections
is the piece of LA dark-shaded in Figure 7a (located below NA’s exit port extension), which can be removed
from NA without disconnecting NA.

It remains to show that NA satisfies invariant (I1). We begin with the following set of observations
showing that the net NE produced by the recursive unfolding of E connects to the pieces of TA, KA, and
BA placed alongside its boundary:

• Observe first that the entry (exit) port in the recursive unfolding of E is the top (bottom) edge of
RA. With this entry (exit) port, E’s entry (exit) ring face eE (xE) is on TA (BA) and its successor

(predecessor)
eE−−→ (

xE←−−) is on KA (FA).

• Since
eE−−→∈ KA is open, the unit square EE (occupied by

eE−−→ in Figure 7a) is not part of the inductive

region for E. Since
eE−−→ is also adjacent to TE , invariant (I2) applied to E tells us that NE provides

either a type-1 or type-2 entry connection. If NE provides a type-1 entry connection, then e′E is located
alongside its entry port, and it connects (by definition) to eE ∈ TA located on the other side of its

entry port (see Figure 7a); if NE provides a type-2 connection, then
e′E−−→ is located alongside its entry

port extension, and it connects (by definition) to
eE−−→∈ KA located on the other side of its entry port

extension.

• Since
xE←−−∈ FA is closed, XE is part of E’s inductive region and the invariant (I2) applied to E tells us

that NE provides a type-1 exit connection. This means that x′E is located alongside NE ’s exit port,
and it connects (by definition) to the piece of xE ∈ BA located on the other side of its exit port (see
Figure 7a).

Because invariant (I1) tells us that NE is connected and because the pieces of A placed alongside NE

connect to NE ’s entry and exit connections, we can conclude that NA is connected. By invariant (I1) applied
to E, the net NE includes all open faces in TE using a 4 × 4 refinement. This along with the fact that NA

includes TA, LA, BA, and KA (which are A’s open faces) using a 4 × 4 refinement shows that NA includes
all open faces of TA using a 4 × 4 refinement. Finally, NA fits within A’s inductive region as illustrated in
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Figure 7a, noting that no part of NA lies within the cells marked EA and XA (which renders a discussion
of whether or not these cells are part of its inductive region unnecessary). Thus we can conclude that NA

satisfies invariant (I1).

Lemma 6. Let A ∈ T be a degree-2 node with parent I and child W (Case 2.2). If W satisfies invariants
(I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. The unfolding for this case is depicted in Figure 7b. Note that this unfolding path can be obtained
by rotating the path from Figure 7a by 180◦. This along with Lemmas 4 and 5 implies that the net NA

from Figure 7b satisfies invariants (I1)-(I3).
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Figure 8: Unfolding of degree-2 box A with parent I and child (a) J (b) N .

Lemma 7. Let A ∈ T be a degree-2 node with parent I and child J (Case 2.3). If J satisfies invariants
(I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Consider the unfolding depicted in Figure 8a, and notice its similarity with the unfolding of the root
box from Figure 6. We show that the unfolding NA from Figure 8a satisfies invariants (I1)-(I3).

Note that NA provides a type-1 entry connection (e′A ∈ TA) and a type-1 exit connection (x′A ∈ BA), and

therefore it satisfies invariant (I2). Since
eJ−→∈ RA (

xJ←−−∈ LA) is open, EJ (XJ) is not part of J ’s inductive

region. Furthermore, since
eJ−→ (

xJ←−−) is adjacent to TJ , invariant (I2) applied to J tells us that NJ provides
a type-1 or type-2 entry (exit) connection, which attaches to TA or RA (BA or LA). Thus the net NA is
connected.

By invariant (I1), NJ covers all open faces in TJ using a 4 × 4 refinement. Since NA includes the open
faces of A without any refinement, we conclude that NA includes all open faces of TA. Noting that NA fits
within A’s inductive region (and doesn’t use the cells marked EA and XA), we conclude that NA satisfies
invariant (I1). Finally, the open ring faces of A not used in its entry and exit connections (dark-shaded
in Figure 8a) can be removed from NA without disconnecting NA, therefore NA satisfies invariant (I3).

Lemma 8. Let A ∈ T be a degree-2 node with parent I and child N (Case 2.4). If N satisfies invariants
(I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Consider the unfolding depicted in Figure 8b. Note that
eA−−→=

eN−−→∈ RI is not adjacent to TN , therefore
NN will provide a type-1 entry connection (by (I2) applied to N), which is also a type-1 entry connection
for A (because e′N = e′A ∈ FN ). Note that NA also provides a type-1 exit connection x′A ∈ BA, therefore NA

satisfies invariant (I2). Since
xN←−−∈ LA is open, the unit square XN (occupied by LA in Figure 8b) does not

belong to the inductive region for N . Furthermore, since
xN←−− is adjacent to TN , invariant (I2) applied to N

tells us that NN provides a type-1 or type-2 exit connection, which attaches to KA or LA (located along the
exit port and exit port extension). Thus the net NA is connected. Arguments similar to those in Lemma 7
complete the proof that NA satisfies (I1) and show that it satisfies invariant (I3).
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7.2 Unfolding Degree-3 Nodes

In this section we describe the recursive unfolding of a box A ∈ T of degree 3, and show that it satisfies the
invariants (I1)-(I3) listed in Section 5.

Theorem 4. Let A ∈ T be a degree-3 box. If A’s children satisfy invariants (I1)-(I3), then A satisfies
invariants (I1)-(I3).

Proof. Our analysis is split into five different cases, depending on the position of A’s children:

Case 3.1 E and J are children of A. The case where W and J are children of A is a horizontal reflection
of this case, with the unfolding path traversed in reverse.

Case 3.2 N and J are children of A. The case where S and J are children of A is a vertical reflection
of this case, with the unfolding path traversed in the reverse.

Case 3.3 E and W are children of A.
Case 3.4 N and S are children of A.
Case 3.5 N and E are children of A. This is the same as the case where S and W are children of A,

rotated by 180◦ about the z-axis (so the unfolding path is the same, but traversed in reverse).
Case 3.6 N and W are children of A. This is the same as the case where S and E are children of A,

rotated by 180◦ about the z-axis (so the unfolding path is the same, but traversed in reverse).

The rest of this section is devoted to a detailed analysis of Cases 3.1 and 3.2. Case 3.2 in particular is special
because it requires 4 × 4 refinement. Cases 3.3 through 3.5, while employing different unfolding paths,
use similar arguments in their correctness proofs and are detailed in Appendix A. Note that the ability to
”traverse in reverse” in some of the cases listed above follows from Lemma 4.
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Figure 9: Unfolding of degree-3 box A with children J and (a) E (b) W .

Lemma 9. Let A ∈ T be a degree-3 node with parent I and children E and J (Case 3.1). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Proof. The unfolding for this case is depicted in Figure 9a. Observe that it is a generalization of the degree-2
unfolding from Figure 7a, where the unfolded face KA is replaced by the recursive unfolding of child J . Since
the two unfoldings and the proofs of their correctness are very similar, we only point out the differences here:

• Because the ring face
eE−−→∈ KA is closed, EE is part of E’s inductive region. By invariant (I2) applied

to E, NE provides a type-1 entry connection, which connects to eE ∈ TA.

• Observe that the entry (exit) port for J is the bottom (top) edge of FJ and so the entry (exit) ring face

eJ (xJ) is part of BA (TA). Because
eJ−→∈ LA is open, the unit square EJ (occupied by

eJ−→ in Figure 9a)

is not part of J ’s inductive region. Furthermore, since
eJ−→ is adjacent to TJ , invariant (I2) applied to

J tells us that NJ provides a type-1 or type-2 entry connection: if type-1, then it connects to the piece
eJ ∈ BA; if type-2, then it connects to

eJ−→∈ LA.

• Because the ring face
xJ←−−∈ RA is closed, XJ is part of E’s inductive region. By invariant (I2) applied

to J , NJ provides a type-1 exit connection, which connects to xJ ∈ TA.

These differences combined with arguments similar to those in Lemma 5 show that NA satisfies invariants
(I1)-(I3).

The case where W and J are children of A shown in Figure 9b is the reverse of the case shown in Figure 9a.
This along with Lemma 4 implies that the net NA from Figure 9b also satisfies invariants (I1)-(I3).

EA

XA?

LA
BA

FN

RA

end

J

end

start

N
J

N

start
I

BA

LA

NJ

RA

LA

BA

KN
RN

FN

KN

BA RN

EJ

EN

XN

XA?

RA
ENN

ENW

XNW

NN

NNN

NNW

NJ

NA

NA

(a) (b)

x

y

z x

y

z

Figure 10: Unfolding of degree-3 box A with parent I and children N and J (a) RI open. Note that A
requires a 4-refinement along the z-dimension to be able to generate the strips of BA and LA shown here.

(b) RI closed (so RN open).

Lemma 10. Let A ∈ T be a degree-3 node with parent I and children N and J (Case 3.2). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. We discuss two situations, depending on whether RI is open or closed. Assume first that RI is open,
and consider the unfolding depicted in Figure 10a. Note that

eA−−→∈ RI is open and adjacent to TA, and NA

provides a type-2 entry connection
e′A−−→∈ RA. Also note that NA provides a type-1 exit connection x′A ∈ BA.
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These together show that NA satisfies invariant (I2). The following observations support our claim that NA

satisfies invariant (I1):

• The entry and exit ring faces for J are eJ ∈ LA and xJ ∈ RA. Since
eJ−→∈ TA is closed, NJ provides a

type-1 entry connection, which attaches to eJ ∈ LA. Since
xJ←−−∈ BA is open and adjacent to TJ , the

unit square XJ (occupied by
xJ←−− in Figure 10a) does not belong to the inductive region for J , and NJ

may provide a type-1 or type-2 exit connection: if type-1, it attaches to the ring face xJ ∈ RA placed
alongside its exit port; if type-2, it connects to the ring face

xJ−−→∈ BA placed alongside its exit port
extension.

• The entry and exit ring faces for N are eN ∈ RA and xN ∈ LA. Note that NN provides type-1 entry
and exit connections (since

eN−−→∈ FA and
xN←−−∈ KA are both closed), which attach to the pieces of the

entry and exit ring faces placed alongside its entry and exit ports.

Finally, note that the only open ring face of A not involved in A’s entry and exit connections is the dark-
shaded piece of LA from Figure 10a, whose removal does not disconnect NA. Thus NA satisfied (I3) as
well.

Assume now that RI is closed, and consider the unfolding depicted in Figure 10b. Note that NA provides
type-1 entry and exit connections e′A ∈ FN and x′A ∈ BA, therefore it satisfies invariant (I2). The following
observations support our claim that NA satisfies invariant (I1):

• The entry and exit ring faces for NN , NW and J are as follows: eNN ∈ KN and xNN ∈ FN ; eNW ∈ FN

and xNW ∈ KN ; and eJ ∈ KN and xJ ∈ BA.

• NNN , NNW and NJ provide type-1 entry connections. This is because
eNN−−−→∈ LN is closed,

eNW−−−→∈ BN

is closed, and
eJ−→∈ RN is not adjacent to TJ .

• Since
xNN←−−−∈ RN is open, the unit square XNN (occupied by

xNN←−−− in Figure 10b) does not belong to

the inductive region for NN . Similarly, since
xJ←−−∈ LA is open, the unit square XJ (occupied by LA

in Figure 10b) does not belong to the inductive region for J .

• Since
xNW←−−−∈ TN is closed, NNW provides a type-1 exit connection.

• Since
eA−−→∈ RI is closed, the unit square EA (occupied by RA in Figure 10b) belongs to the inductive

region for A.

Finally, note that the removal of the open ring faces of A not involved in A’s entry and exit connections
(shown dark-shaded in Figure 10b) does not disconnect NA. Thus NA satisfies (I3) as well.

As a side note, the unfolding from Figure 10a is the first unfolding example that requires a 4-refinement
along one dimension of the grid: one 1/4× 1 strip of BA is needed to transition from RA to LA; one 1/4× 1
strip of BA is needed alongside NJ ’s exit port extension, to connect to the type-2 connection that NJ may
provide; and one 1/2× 1 strip of BA is needed alongside NA’s exit port, so that it remains connected to the
piece of LA to its left, once the dark-shaded ring face that lies on LA has been removed.

7.3 Unfolding Degree-4 Nodes

In this section we describe the recursive unfolding of a box A ∈ T of degree 4, and show that it the invariants
(I1)-(I3) listed in Section 5.

Theorem 5. Let A ∈ T be a degree-4 box. If A’s children satisfy invariants (I1)-(I3), then A satisfies
invariants (I1)-(I3).

Proof. Our analysis is split into seven different cases, depending on the position of A’s children:

Case 4.1 J , E and W are children of A.
Case 4.2 N , E and W are children of A. The case where S, E and W are children of A is a vertical

reflection of this case.
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Case 4.3 N , E and J are children of A. The case where S, W and J are children of A is a 180◦-rotation
about the z-axis of this case.

Case 4.4 N , W and J are children of A. The case where S, E and J are children of A is a 180◦-rotation
about the z-axis of this case.

Case 4.5 N , E and S are children of A.
Case 4.6 N , W and S are children of A.
Case 4.7 N , J and S are children of A.

It can be verified that this is an exhaustive list of all possible cases for a degree-4 node. Case 4.1 is settled
by Lemma 11. Cases 4.2 through 4.7, while employing different unfolding paths, use similar arguments in
their correctness proofs and are detailed in Appendix B.

Lemma 11. Let A ∈ T be a degree-4 node with parent I and children J , E and W (Case 4.1). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Figure 11: Unfolding of degree-4 box A with children J , E and W .

Proof. Consider the unfolding depicted in Figure 11, and note that it is a generalization of the degree-3
unfolding from Figure 9a, where the unfolded face LA is replaced by the recursive unfolding of child W .
Since the two unfoldings and their proofs are very similar, we only point out the differences here:

• Because
eJ−→∈ LA is closed, EJ is part of J ’s inductive region and NJ provides a type-1 entry connection

which connects to eJ ∈ BA.

• Observe that the entry (exit) port for W is the top (bottom) edge of RW and so the entry (exit) ring

face eW (xW ) is part of TA (BA). Because
eW−−→∈ FA (

xW←−−∈ KA) is closed, EW (XW ) is part of W ’s
inductive region, and NW provides a type-1 entry (exit) connection which connects to the piece of
eW ∈ TA (xW ∈ BA) placed along NW ’s entry (exit) port.

These differences combined with arguments similar to those in Lemma 9 show that NA satisfies invariants
(I1) and (I2). Finally note that (I3) is trivially satisfied, because all of A’s open ring faces are used in its
entry and exit connections. We therefore conclude that NA from Figure 11 satisfies invariants (I1)-(I3).

7.4 Unfolding Degree-5 Nodes

In this section we describe the recursive unfolding of a box A ∈ T of degree 5, and show that it satisfies the
invariants (I1)-(I3) listed in Section 5.

Theorem 6. Let A ∈ T be a degree-5 box. If A’s children satisfy invariants (I1)-(I3), then A satisfies
invariants (I1)-(I3).

Proof. Our analysis is split into four different cases, depending on the position of A’s children:

Case 5.1 J is not a child of A (so N , E, W and S are children of A).
Case 5.2 W is not a child of A (so N , E, J and S are children of A).
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Case 5.3 E is not a child of A (so N , W , J and S are children of A).
Case 5.4 N is not a child of A (so E, W , J and S are children of A). The case when S is not a child

of A is a vertical reflection of this case.

It can be verified that this is an exhaustive list of all possible cases for a degree-5 node. Case 5.1 is settled
by Lemma 13. Cases 5.2 through 5.4, while employing different unfolding paths, use similar arguments in
their correctness proofs and are detailed in Appendix C.

Before getting into details on Case 5.1, we introduce a preliminary lemma that will simplify our analysis.

Lemma 12. Let A ∈ T be a degree-5 node with parent I and children N , E, W and S. Then either N and
S are both non-junction boxes, or else E and W are both non-junction boxes.

Proof. Assume to the contrary that at least one box in each pair (N , S) and (E, W ) – say, N and E – is a
junction (the argument for any choice of junctions is the same). This implies that N has a back neighbor
(because any other neighbor position that would render N a junction would also render a loop in T ), and
similarly for E. Note however that NJ and EJ meet at an edge, therefore NJ must have either a south or
an east neighbor (because O is homeomorphic to a sphere). However, each of these cases renders a cycle in
T , a contradiction.

Lemma 13. Let A ∈ T be a degree-5 node with parent I and children N , E, W and S (Case 5.1). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Figure 12: Unfolding of degree-5 box A with children N , E, W and S (N and S are non-junctions).

Proof. By Lemma 12, either N and S are both non-junctions, or E and W are both non-junctions. Assume
first that N and S are both non-junctions and consider the unfolding depicted in Figure 12: starting at
A’s entry port, the unfolding path proceeds Head-first to recursively unfold N ; upon reaching N ’s exit
port on KN , it moves Hand-first to RN , Head-first to TE , Hand-first to FE , then proceeds Head-first to
recursively unfold E and W ; upon reaching W ’s exit port on FW , it moves Hand-first to SW , Head-first
to LS , Hand-first to KS , then proceeds Head-first to recursively unfold S, ending at A’s exit port. (Note
that both KN and KS are open, since N and S are non-junctions.) We now show that, when visited in this
order and laid flat in the plane, the open faces in TA form a net NA that satisfies invariants (I1)-(I3).

We start by showing that NA that satisfies invariant (I2). Note that
eA−−→=

eN−−→∈ RI is open but not
adjacent to TN , therefore NN will provide a type-1 entry connection (by (I2) applied to N), which is also a
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type-1 entry connection for A (because e′N = e′A ∈ FN ). Similarly,
xA←−−=

xS←−−∈ LI is open but not adjacent
to TS , therefore S will provide a type-1 exit connection (by (I2) applied to S), which is also a type-1 exit
connection for A (because x′S = x′A ∈ FS). This shows that NA satisfies invariant (I2). Also note that (I3)
is trivially satisfied, because A has no open ring faces.

It remains to show that NA satisfies invariant (I1). We begin by showing that NA is connected:

• Observe that the exit port for N is the top edge of KA, and so N ’s exit ring face xN is on KA. Its
successor

xN←−− is therefore on LA and is closed. Invariant (I2) a applied to N tells us that NN provides
a type-1 exit connection x′N ∈ KN alongside its exit port.

• When the unfolding path reaches N ’s exit port, it deviates from prior unfoldings in that it doesn’t move
onto xN ∈ KA. Instead it stays on N and moves Hand-first across KN to RN (which is open because,
if there were a box NE adjacent to it, then boxes NE,E,A,N would form a cycle). Therefore, a new
technique described here is used to connect NN to the rest of NA. Note that the ring face of N located
along the bottom of RN is adjacent to x′N ∈ KN . In addition, this ring face is not used as an entry or
exit connection in NN (because NN has type-1 entry/exit connections), so by invariant (I3) applied to
N , it can be relocated outside of NN without disconnecting NN . We relocate it to the right of NN ’s
exit port, where it connects to NN ’s type-1 exit connection x′N ∈ KN , as shown in Figure 12. This
relocated piece of RN serves as a bridge to the unfolding of the next box E.

• Next we turn to NE . The recursive unfolding applied to E uses the front edge of RA for its entry port
and the back edge of RA for its exit port. With this unfolding, e′E ∈ FE , eE ∈ RI , and while

eE−−→∈ BI

is open, it is not adjacent to TE . Therefore the invariant (I2) applied to E tells us that it provides a

type-1 entry connection. Similarly, xE ∈ KA and
xE←−−∈ TA is closed. Thus NE also provides a type-1

exit connection. The ring face of E located along the left edge of TE is not used as an entry or exit
connection for E and so by invariant (I3) (applied to E), it can be relocated outside of NE without
disconnecting it. In the unfolding in Figure 12, it is relocated to the left of NE ’s entry port. This
relocated piece of TE serves as a bridge to the unfolding of the previous box N . Thus the two relocated
ring faces (one a piece of RN taken from NN and the other a piece of TE taken from NE) form a bridge
between the exit connection x′N ∈ KN of NN and the entry connection e′E ∈ FE of NE . Finally, NE ’s
type-1 exit connection x′E connects to xE ∈ KA shown unfolded alongside NE ’s exit port.

• Similar arguments hold for NW . Note that the entry (exit) port for W is the back (front) edge of LA.

Also note that
eW−−→∈ BA is closed and

xW←−−∈ TI is open but not adjacent to TW , therefore NW provides
type-1 entry and exit connections. Its entry connection attaches to eW ∈ KA and its exit connection
attaches to the ring face of W located along the right edge of BW , which has been relocated right of
the exit port of NW .

• Similar arguments hold for NS . Note that the entry (exit) port for S is the back (front) edge of BA.

Also note that
eS−→∈ RA is closed, therefore NS provides a type-1 entry connection e′S ∈ KS . Its entry

connection attaches to the ring face of S located along the top edge of LS , which has been relocated
left of the entry port of NS .

We conclude that NA is connected. By invariant (I1), NN , NE , NW and NS include all open faces in TN ,
TE , TW and TS respectively, using a 4× 4 refinement. Observe that the net NA from Figure 12 also includes
the open face KA of A without any refinement. This shows that NA includes all open faces in TA using a
4 × 4 refinement. Finally, NA fits within A’s inductive region (as illustrated in Figure 12), noting that it
does not utilize EA or XA. We therefore conclude that NA satisfies invariant (I1).

The case where E are W are non-junctions can be reduced to the case where N are S are non-junctions
using the method depicted in Figure 13: from the entry port, the unfolding proceeds Hand-first to RI (note
that I is a non-junction in our context, so both TI and RI are open), then follows the path from Figure 12
(imagine the box from Figure 12 rotated clockwise by 90◦, so that its entry guide aligns with the guide on
RI from Figure 13). Then the net labeled N ′A in Figure 13 is identical to the net from Figure 12. From the
exit port of N ′A on LI , the unfolding proceeds Hand-first to the exit port of NA on BI .

We have already established that N ′A satisfies invariants (I1)-(I3). Now note that the net N ′A from Fig-
ure 12 provides type-1 entry and exit connections, which implies that the net NA from Figure 13 provides
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Figure 13: Unfolding of box A with non-junction parent I.

type-2 entry and exit connections. These together with the fact that
eA−−→∈ RI and

xA←−−∈ LI are open and
adjacent to TA, imply that NA satisfies invariants (I1)-(I3).

7.5 Unfolding Degree-6 Nodes

The following observation follows immediately from the tree structure of T .

Proposition 14. Every neighbor of a degree-6 node in T is a connector or a leaf.

We now show that invariants (I1)-(I3) hold for any degree-6 box.
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Figure 14: Unfolding of degree-6 box A (a) unfolding path (b) unfolding net NA.

Theorem 7. Let A ∈ T be a degree-6 box. If A’s children satisfy invariants (I1)-(I3), then A satisfies
invariants (I1)-(I3).

Proof. Consider the unfolding depicted in Figure 14. Observe that it is a generalization of the degree-5
unfolding from Figure 12, where the unfolded face KA is replaced by the recursive unfolding of child J . This
generalization is possible because N and S are non-junctions by Proposition 14. Since the two unfoldings
and their proofs are very similar, we only point out the differences here.

We first note that all children of A provide type-1 entry and exit connectors, since they are all leaves or
connector boxes by Proposition 14, and the unfoldings for these types of boxes use only type-1 connectors. In
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particular, this means that the type-1 exit connector x′E ∈ KE of NE connects to the type-1 entry connector
e′J ∈ RJ of NJ , as shown in Figure 14. It also means that the type-1 exit connector x′J ∈ LJ of NJ connects
to the type-1 entry connector e′W ∈ KW of NW , also shown in Figure 14. Thus NA is connected.

Applying arguments similar to those in Lemma 13 and noting that NJ includes all open faces in TJ
with 4× 4 refinement (by invariant (I1) applied to J), we conclude that the net NA from Figure 11 satisfies
invariants (I1)-(I3).

8 Complete Unfolding Example
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Figure 15: Complete unfolding example of a polycube tree (with root I). Here C is the box that requires a
4-refinement along one grid dimension.
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Figure 15 illustrates a complete unfolding example for a polycube tree composed of ten boxes. The root
I of the the unfolding tree T is a degree-1 box with back child A, which is unfolded recursively. Observe
that A is a degree-5 box with non-junction children E and W , therefore its unfolding follows the pattern
from Figure 13 (which employs the unfolding from Figure 12 in constructing N ′A). In the following we classify
the nodes in T based on their degree and orientation, and map them to the unfolding patterns discussed in
earlier sections. To be able to do so, we view each node in T in standard position (with parent attached to
the front face and entry and exit ports on top and bottom edges of the front face, respectively):

• The east child E of A is a degree-2 box with back child C, so its unfolding follows the pattern
from Figure 8a.

• C is a degree-3 box with back child D and south child G, so its unfolding follows the pattern from Fig-
ure 10a, traversed in reverse.

• N is a degree-2 box with north child H, so its unfolding follows the pattern from Figure 8b.

• D, S, H and W are leaves that employ the Head-first unfolding pattern from Figure 2a.

• G is a leaf that uses the Hand-first unfolding pattern from Figure 2b.

The result is the net depicted in Figure 15, with the subnets marked and appropriately labeled.

9 Conclusion

We show that every polycube tree can be unfolded with a 4× 4 refinement of the grid faces. This is the first
result on unfolding arbitrary polycube trees using a constant refinement of the grid. It is open whether all
polycube trees can be grid-unfolded without any refinements.
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A Unfolding Degree-3 Nodes (Remaining Cases)

This and subsequent appendices discuss unfoldings for cases not included in the main body of the paper.
We illustrate the unfolding path and the resulting unfolding net for each case scenario, then present a digest
of the correctness proof that focuses on the specifics of each case. When combined with arguments similar
to the ones used in the main part of the paper, each proof digest yields a complete correctness proof. This
way we avoid repetition and improve the readability flow.

In this section we discuss the unfoldings for cases 3.3 through 3.6 listed in Section 7.2.
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Figure 16: Unfolding degree-3 box A with parent I (a) children E and W (b) children N and S.

Lemma 15. Let A ∈ T be a degree-3 node with parent I and children E and W (Case 3.3). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Consider the unfolding from Figure 16a, and notice that this unfolding is a degenerate case of the
unfolding from Figure 11, where the recursive unfolding of the child J is replaced by the face KA. Since the
two unfoldings and their proofs of correctness are very similar, we only point out the differences here:

• Since
eE−−→∈ KA is open and adjacent to TE , the unit square EE (occupied by

eE−−→ in Figure 16a) does
not belong to the inductive region for E and NE may provide a type-1 or a type-2 entry connection:
if type-1, it connects to the ring face eE ∈ TA placed alongside its entry port (as in the general

case from Figure 11); if type-2, it connects to the ring face
eE−−→∈ KA placed alongside its entry port

extension.

• Similarly, since
xW←−−∈ KA is open and adjacent to TW , the unit square XW (occupied by

xW←−− in Fig-
ure 16a) does not belong to the inductive region for W and NW may provide a type-1 or a type-2 exit
connection: if type-1, it connects to the ring face xW ∈ BA placed alongside its exit port (as in the

general case from Figure 11); if type-2, it connects to the ring face
xW←−−∈ KA placed alongside its exit

port extension.

These changes are reflected in Figure 16a. Arguments similar to the ones used in the proof of Lemma 11
show that the net NA from Figure 16a satisfies invariants (I1)-(I3).

Lemma 16. Let A ∈ T be a degree-3 node with parent I and children N and S (Case 3.4). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Proof. Consider the unfolding from Figure 16b, and notice that it is a generalization of the unfolding from Fig-
ure 8b, where the unfolded face BA is replaced by the recursive unfolding of S. Since the two unfoldings and
their proofs of correctness are very similar, we only point out the differences here:

• The entry and exit ring faces for S are eS ∈ KA and xS ∈ BI , respectively.

• Since
eS−→∈ RA is open and adjacent to TS , the unit square ES (occupied by RA in Figure 16b) does

not belong to the inductive region for S and NS may provide a type-1 or a type-2 entry connection:
if type-1, it connects to the ring face eS ∈ KA placed alongside its entry port; if type-2, it connects to
the ring face

eS−→∈ RA placed alongside its entry port extension.

• Since
xS←−−∈ LI is not adjacent to TS , NS will provide a type-1 exit connection, which is also a type-1

exit connection for NA (because xS = xA).

These observations, along with the arguments used in the proof of Lemma 8, show that the unfolding NA

from Figure 16b satisfies invariants (I1)-(I3).

Lemma 17. Let A ∈ T be a degree-3 node with parent I and children N and E (Case 3.5). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Figure 17: Hand-east unfolding of degree-3 box A with parent I and children N and E (a) KN open (b)
KN closed (so KE open); unfolding shown for case when ES and EE exist.

Proof. We discuss two different scenarios, depending on whether KN is open or closed. Assume first that
KN is open, and consider the Hand-east unfolding depicted in Figure 17a. Notice that this unfolding
follows a path very similar to the one from Figure 12 (which depicts the case where A has two additional
children W and S), so in a way this case can be viewed as a degenerate case of the one from Figure 12.
The only difference is that, in Figure 17a, once the unfolding path reaches the back face KA, it continues
Head-first to LA and then Hand-first to the exit port of A. Note that the resulting net NA provides a

type-1 exit connection x′A ∈ BA, and the ring face
x′
A←−−∈ LA (dark-shaded in Figure 17a) can be removed

from NA without disconnecting NA. These observations, combined with the arguments used in the proof
of Lemma 13, show that NA satisfies invariants (I1)-(I3).
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Assume now that KN is closed (note that in this case KE is open), and consider the Hand-east unfolding
depicted in Figure 17b, which handles the more general case where ES and EE exist (handling cases when

one or both of these boxes are missing requires only minor modifications). Note that
eA−−→∈ RI is open and

adjacent to TA, and NA provides a type-2 entry connection
e′A−−→∈ FE . Also note that NA provides a type-1

exit connection
x′
A−−→∈ BE . These together show that NA satisfies invariant (I2). The following observations

support our claim that NA satisfies invariant (I1):

• The entry and exit ring faces for ES, EE and N are as follows: eES ∈ FE and xES ∈ KE ; eEE ∈ KE

and xEE ∈ FE ; and eN ∈ TE and xN ∈ LA.

• NES and NN provide type-1 entry connections. This is because
eES−−→∈ RE is closed, and

eN−−→∈ KE is
not adjacent to TE .

• Since
eEE−−−→∈ TE is open, the unit square EEE (occupied by

eEE−−−→ in Figure 17b) does not belong to the
inductive region for EE.

• NES , NEE and NN provide type-1 exit connections. This is because
xES←−−−∈ LE ,

xEE←−−−∈ BE and
xN←−−∈ FA are all closed.

Regarding invariant (I3), note that the open ring face of A located on LA (dark-shaded in Figure 17b) can
be removed from NA without disconnecting NA, therefore NA satisfies (I3).

Lemma 18. Let A ∈ T be a degree-3 node with parent I and children N and W (Case 3.6). If A’s children
satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. This case is slightly more complex and spans four different case scenarios:

1. BI open

2. TN open

3. BI closed, TN closed and KN open

4. BI closed, TN closed and KN closed

Case 1: BI open. Consider the unfolding depicted in Figure 18a, and identify the following entry and
exit ring faces for N and W : eN ∈ TI and xN ∈ KA; and eW ∈ BA and xW ∈ LN . Note that

eN−−→∈ RI

is not adjacent to TN , therefore NN provides a type-1 entry connection
e′N−−→∈ FN , which is also a type-1

entry connection for NA (since eA = eN ). Also note that
xA←−−∈ LI is open and adjacent to TA, and NA

provides a type-2 exit connection
x′
A←−−∈ FW . These together show that NA satisfies invariant (I2). Turning

to (I1), note that NN and NW provide type-1 entry and exit connections. This is because
xN←−−∈ LA is closed,

eW−−→∈ FA is closed, and
xW←−−∈ KN is not adjacent to TW . These together imply that NA satisfies invariant

(I1). Finally, note that the ring face of A located on RA (dark-shaded in Figure 18a) can be removed without
disconnecting NA, so NA satisfies invariant (I3) as well.

Case 2: TN open. Consider the unfolding depicted in Figure 18b, which handles the more general case
where NE and NJ exist (handling cases when one or both of these boxes are missing requires only minor
modifications). Note that NA provides type-1 entry and exit connections e′A ∈ FN and x′A ∈ BA, therefore
NA satisfies invariant (I2). The following observations support our claim that NA satisfies invariant (I1):

• The entry and exit ring faces for NE, NJ and W are as follows: eNE ∈ TN and xNE ∈ RA; eNJ ∈ KA

and xNJ ∈ TN ; and eW ∈ LN and xW ∈ BA.

• NNE , NNJ and NW provide type-1 entry connections. This is because
eNE−−−→∈ KN and

eNJ−−→∈ LA are
closed, and

eW−−→∈ FN is not adjacent to TW .

• NNE and NNJ provide type-1 exit connections, since
xNE←−−−∈ FA and

xNJ←−−−∈ RN are closed.
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Figure 18: Unfolding of degree-3 box A with parent I and children N and W (a) BI open (b) TN open;
unfolding shown for the case when NE and NJ exist.

• Since
xW←−−∈ KA is open, the unit square XW (occupied by

xW←−− in Figure 18b) does not belong to the
inductive region for W .

Arguments similar to the ones above show that NA satisfies invariant (I3) as well.

Case 3: BI , TN closed and KN open. Note that in this case BW is open. Consider the unfolding depicted
in Figure 19, which handles the more general case where NE, WW and WJ exist (handling cases when
one or more of these boxes do not exist requires only minor modifications). Arguments similar to the ones
above show that NA satisfies invariants (I2) and (I3). The following observations support our claim that NA

satisfies invariant (I1):

• The entry and exit ring faces for NE, NN , WW and WJ are as follows: eNE ∈ FN and xNE ∈ KN ;
eNN ∈ KN and xNN ∈ FN ; eWW ∈ BW and xWW ∈ TW ; and eWJ ∈ TW and xWJ ∈ BW .

• NNE , NWW and NWJ provide type-1 entry connections, since
eNE−−−→∈ TN ,

eWW−−−→∈ KW and
eWJ−−−→∈ RW

are closed. Since
eNN−−−→∈ LN is open, the unit square ENN (occupied by

eNN−−−→ in Figure 19) does not
belong to the inductive region for NN .

• NNE , NNN and NWJ provide type-1 exit connections, since
xNE←−−−∈ BN ,

xNN←−−−∈ RN and
xWJ←−−−∈ LW

are closed. Since
xWW←−−−∈ FW is open, the unit square XWW (occupied by

xWW←−−− in Figure 19) does
not belong to the inductive region for WW .

Case 4: BI , TN and KN closed. Note that in this case NJ exists, and TNJ and LNJ are open. Consider
the unfolding depicted in Figure 20, which handles the more general case where NE exists (handling the
case when NE does not exist requires only minor modifications). Arguments similar to the ones above show
that NA satisfies invariants (I2) and (I3). The following observations support our claim that NA satisfies
invariant (I1):

• The entry and exit ring faces for NE, NJ , NN and W are as follows: eNE ∈ FN and xNE ∈ RNJ ;
eNJ ∈ KNE and xNJ ∈ LN ; eNN ∈ TNJ and xNN ∈ FN ; and eW ∈ LN and xW ∈ BA.

• NNE , NNJ , NNN and NW provide type-1 entry connections. This is because
eNE−−−→∈ TN is closed,

eNJ−−→∈ TNE is not adjacent to TNJ ,
eNN−−−→∈ RNJ is not adjacent to TNN , and

eW−−→∈ FN is not adjacent
to TW .
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• NNE and NNJ provide type-1 exit connections. This is because
xNE←−−−∈ BNJ is not adjacent to TNE ,

and
xNJ←−−−∈ BN is closed. Note that the type-1 exit connection of NNE connects to the type-1 entry

connection of NNJ .

• Since
xNN←−−−∈ LN is open, the unit square XNN (occupied by LN in Figure 20) does not belong to the

inductive region for NN .

• Similarly, since
xW←−−∈ KA is open, the unit square XW (occupied by KA in Figure 20) does not belong

to the inductive region for W .

• By invariant (I3) applied to NJ , the ring face that lies on TNJ (not used in the entry or exit connections
for NJ) can be relocated outside of NNJ . In Figure 20, we use a piece of TNJ to connect NNJ and
NNN together.

Having exhausted all possible cases, we conclude that this lemma holds.

B Unfolding Degree-4 Nodes (Remaining Cases)

In this section we discuss the unfoldings for cases 4.2 through 4.7 listed in Section 7.3.

Lemma 19. Let A ∈ T be a degree-4 node with parent I and children N , E, and W (Case 4.2). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. We discuss the following three exhaustive scenarios:

1. KN closed

2. KN open and BI closed

3. KN open and BI open
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Figure 21: Unfolding of degree-4 box A with N , E and W children, case KN closed (so KE , KW open);
unfolding shown for the case when EE, ES, WW and WS exist.

Case 1: KN closed. It can be easily verified that in this case KE and KW are open. Consider the
unfolding depicted in Figure 21, which handles the more general case where EE, ES, WW and WS exist
(handling cases when one or more of these boxes do not exist requires only minor modifications). Note that
NA provides a type-1 entry connection (by arguments similar to the ones used in the proof of Lemma 13)
and a type-1 exit connection x′A ∈ BA, therefore NA that satisfies invariant (I2). Also note that the only
open ring face of A is the exit ring face, so NA trivially satisfies (I3). The following observations support
our claim that NA is connected and satisfies invariant (I1):

26



• The entry and exit ring faces for N , EE, ES, WW and WS are as follows: eN ∈ TI and xN ∈ KA;
eEE ∈ KE and xEE ∈ FE ; eES ∈ FE and xES ∈ KE ; eWW ∈ TW and xWW ∈ LWS ; and eWS ∈ BWW

and xWS ∈ BA.

• NN , NES , NWW and NWS provide type-1 exit connections. This is because
xN←−−∈ LA is closed,

xES←−−−∈ RE is closed,
xWW←−−−∈ KWS is not adjacent to TWW , and

xWS←−−−∈ KA is open but not adjacent
to TWS .

• NEE , NES and NWS provide type-1 entry connections. This is because
eEE−−−→∈ BE is closed (since

ES exists),
eES−−→∈ LE is closed, and

eWS−−−→∈ FWW is not adjacent to TWS . Note that the type-1 entry
connection of NWS connects to the type-1 exit connection of NWW .

• Since
xEE←−−−∈ TE is open, the unit square XEE (occupied by TE in Figure 21) does not belong to the

inductive region for EE.

• Since
eWW−−−→∈ FW is open, the unit square EWW (occupied by FW in Figure 21) does not belong to the

inductive region for WW .

Note that we split the unfolding of W into two subnets (NWW and NWS) so as to avoid sharing the ring face
on KW between its current position in NA and the type-2 exit connection that NW would have provided
(had it not been split). A similar intuition was used to split the unfolding of E into NEE and NES .
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Figure 22: Unfolding of degree-4 box A with N , E and W children, case KN open and BI closed (so BE ,
BW open); unfolding shown for the case when EJ , EE, WJ and WW exist.

Case 2: KN open and BI closed. In this case BE and BW are open (refer to Figure 22, which shows the
unfolding for the case when EJ , EE, WJ and WW exist). Arguments similar to ones used in the previous
case show that NA satisfies invariants (I2) and (I3). The following observations support our claim that NA

is connected and satisfies invariant (I1):

• Same arguments as in Case 1 apply to the entry and exit ports of NN .

• The entry and exit ring faces for EJ , EE, WJ and WW are as follows: eEJ ∈ KA and xEJ ∈ KEE ;
eEE ∈ REJ and xEE ∈ FE ; eWJ ∈ BW and xWJ ∈ TW ; and eWW ∈ TW and xWW ∈ BW .

• NEJ provides a type-1 entry connection, since
eEJ−−→∈ BA is not adjacent to TEJ . Also note that

xEJ←−−∈ TEE is not adjacent to TEJ , therefore NEJ provides a type-1 exit connection.

• Since
eEE−−−→∈ BEJ is not adjacent to TEE , NEE provides a type-1 entry connection (which attaches to

the type-1 exit connection of NEJ). Also, since
xEE←−−−∈ TE is open, the unit square XEE (occupied by

TE in Figure 22) does not belong to the inductive region for EE.
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• NWJ provides type-1 entry and exit connections, since
eWJ−−−→∈ LW is closed (by our assumption that

WW exists) and
xWJ←−−−∈ RW is also closed.

• Since
eWW−−−→∈ FW is open, the unit square EWW (occupied by FW in Figure 22) does not belong to the

inductive region for WW .

• Since
xWW←−−−∈ KW is closed, NWW provides a type-1 exit connection.

As in the previous case, we split the unfolding of E into two subnets, NEJ and NEE , so as to avoid sharing
part of A’s exit ring face with the type-2 entry connection that NE would have provided (had it not been
split).
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Figure 23: Unfolding of degree-4 box A with N , E and W children, case KN open and BI open.

Case 3: KN open and BI open. The unfolding for this case is depicted in Figure 23. Note that this
unfolding follows a path similar to the one depicted in Figure 17a up to the point where it reaches KA, where
it deviates and proceeds with the recursive unfolding of W . Note that the entry and exit ring faces for W
are eW ∈ KA and xW ∈ LI .

Observe that
xW←−−∈ TI is open but not adjacent to TW , therefore NW provides a type-1 exit connection

x′W ∈ FW , which is a type-2 exit connection for NA. This along with the fact that
xA←−−∈ LI is adjacent to

TA, shows that the exit port of NA satisfies invariant (I2). Arguments similar to the ones used in Case 1
above show that the entry port of NA also satisfies (I2), and that NA satisfies (I3) as well.

Turning to (I1), notice that
eW−−→∈ BA is open, therefore the unit square EW (occupied by BA in Figure 23)

does not belong to the inductive region got W . Furthermore, since
eW−−→ is adjacent to TW , NW may provide

a type-1 or type-2 entry connection, which attaches to KA or BA placed alongside its entry port and entry
port extension, respectively. This, along with the arguments used in the proof of Lemma 17 showing that
NN and NE connect together, shows that NA is connected and satisfies invariant (I1).

Lemma 20. Let A ∈ T be a degree-4 node with parent I and children N , E, and J (Case 4.3). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Consider the Hand-east unfolding depicted in Figure 24, and notice that this unfolding is a general-
ization of the degree-3 unfolding from Figure 17a, where the unfolded face KA is replaced by the recursive
unfolding of child J . Arguments similar to the ones used in the proof of Lemma 17 show that the unfolding
NA from Figure 24 satisfies invariants (I2) and (I3). The following observations support our claim that NA

is connected and satisfies invariant (I1):

• NN and NE are connected (by the proof of Lemma 17).

• NE provides a type-1 exit connection, since
xE←−−∈ TJ is not adjacent to TE . This connection attaches to

the type-1 entry connection provided by NJ (since
eJ−→∈ BE is not adjacent to TJ). Also, NJ provides

type-1 exit connection (since
xJ←−−∈ TA is closed), which attaches to the exit ring face xJ ∈ LA placed

alongside its exit port.
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Figure 24: Hand-east unfolding of degree-4 box A with N , E and J children.

This concludes the proof.

Lemma 21. Let A ∈ T be a degree-4 node with parent I and children N , W , and J (Case 4.4). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. The unfolding for this case is slightly more complex and involves four exhaustive scenarios:

1. RJ open

2. RJ closed and RI closed

3. RJ closed, RI open and BJ open

4. RJ closed, RI open and BJ closed

Case 1: RJ open. An unfolding for this case is depicted in Figure 25, which handles the more general case
where NE, NN , WW and WS exist (handling cases where one or more of these boxes do not exist requires
only minor modifications). First note that NA provides a type-1 entry connection e′A ∈ FN and a type-1
exit connection x′A ∈ BA, therefore it satisfies invariant (I2). The following observations support our claim
that NA satisfies invariant (I1):

• The entry and exit ring faces for NE, NN , WW , WS and JJ are as follows: eNE ∈ FN and xNE ∈ KN ;
eNN ∈ KN and xNN ∈ FN ; eWW ∈ KW and xWW ∈ FW ; eWS ∈ FW and xWS ∈ KW ; and eJJ ∈ TJ
and xJJ ∈ BJ (which is open, since we assume that BW is closed).

• NNE , NWW and NWS provide type-1 entry connections. This is because
eNE−−−→∈ TN is closed (since

NN exists),
eWW−−−→∈ BW is closed, and

eWS−−−→∈ RW is closed.

• Since
eNN−−−→∈ LN is open, the unit square ENN (occupied by

eNN−−−→ in Figure 25) does not belong to the
inductive region for NN .

• Since
eJJ−−→∈ RJ is open, the unit square EJJ (occupied by RJ in Figure 25) does not belong to the

inductive region for JJ . Notice that we place RA right underneath it.

• NNE , NNN and NWS provide type-1 exit connections. This is because
xNE←−−−∈ BN is closed,

xNN←−−−∈ RN

is closed (since NE exists), and
xWS←−−−∈ LW is closed (since WW exists).

• Since
xWW←−−−∈ TW is open, the unit square XWW (occupied by

xWW←−−− in Figure 25) does not belong to
the inductive region for WW .
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Figure 25: Unfolding for box A of degree 4 with N , W and J children, case RJ open; unfolding shown for
general case when NE, NN , WW and WS exist.

• Since
xJJ←−−∈ LJ is open, the unit square XJJ (occupied by

xJJ←−− in Figure 25) does not belong to the
inductive region for JJ .

Turning to invariant (I3), observe that the ring face
x′
A−−→∈ RA (dark-shaded in Figure 25) can be removed

from NA without disconnecting NA, so (I3) is met.

Case 2: RJ and RI closed. An unfolding for this case is depicted in Figure 26. Note that this unfolding
is very similar to the one shown in Figure 25, with only a few minor modifications:

• RN is open, so NNE reduces to a single face RN . Since RI is closed, EA belongs to the inductive region
for A, therefore we can place RA underneath RN .

• From RN we proceed directly to recursively unfold NN , and in this case eNN ∈ RN and xNN ∈ LN .
Since

eNN−−−→∈ KN is open, the unit square ENN (occupied by KN in Figure 26) does not belong to the

inductive region for NN . Similarly, since
xNN←−−−∈ FN is open, the unit square XNN (occupied by

xNN←−−−
in Figure 26) does not belong to the inductive region for NN .

• The entry and exit ring faces for J are eJ ∈ KN and xJ ∈ BA. Since
eJ−→∈ RN is not adjacent to TJ ,

and since
xJ←−−∈ LA is closed, NJ provides type-1 entry and exit connections. By invarient (I3), ring

face LJ can be removed from NJ and used as bridge to connect to KW .

Case 3: RJ closed, RI and BJ open. An unfolding for this case is depicted in Figure 27, which handles
the case where JJ exists (handling the case where JJ does not exist requires only minor modifications).

First note that
eA−−→∈ RI is open and adjacent to TA, and NA provides a type-2 entry connection

e′A−−→∈ RA.

Also note that
x′
A←−−∈ LA is closed and NA provides a type-1 exit connection x′A ∈ BA. These together show

that NA satisfies invariant (I2). Since all open ring faces of A are used in entry and exit connections, NA

trivially satisfies invariant (I3). The following observations support our claim that NA satisfies invariant
(I1):
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Figure 26: Unfolding of degree-4 box A with N , W and J children (case RJ , RI closed).
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Figure 27: Unfolding of degree-4 box A with N , W and J children (case RJ closed, RI and BJ open).
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• The entry and exit ring faces for JJ , JE, N and W are as follows: eJJ ∈ LJ and xJJ ∈ KJE ;
eJE ∈ RJJ and xJE ∈ RA; eN ∈ RA and xN ∈ TW ; and eW ∈ LN (which connects to TW ) and
xW ∈ BA.

• Since
eJJ−−→∈ TJ is open, the unit square EJJ (occupied by TJ in Figure 27) does not belong to the

inductive region for JJ .

• NJE , NN and NW provide type-1 entry connections. This is because
eJE−−→∈ TJJ is not adjacent to

TJE ,
eN−−→∈ FA is closed, and

eW−−→∈ FN is not adjacent to TW .

• NJJ , NJE , NN and NW provide type-1 exit connections. This is because
xJJ←−−∈ BJE is not adjacent

to TJJ ,
xJE←−−∈ BA is not adjacent to TJE ,

xN←−−∈ KW is not adjacent to TN , and
xW←−−∈ KA is closed.

Note that the type-1 exit connection of NJJ attaches to the type-1 entry connection of NJE , and the
type-1 exit connection of NN attaches to the type-1 entry connection of NW .

Note that we split the unfolding of J into two subnets (NJJ and NJE) so as to avoid sharing the ring

face
x′
J←−−∈ BJ between its current position in NA (where it serves as a bridge between BA and LJ) and the

type-2 exit connection that NJ would have provided (had it not been split).
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Figure 28: Unfolding of degree-4 box A with N , W and J children (case RJ closed, RI open and BJ closed
– so BJE and BW open); unfolding shown for the case when JEJ and JEE exist (so KJ open).

Case 4: RJ closed, RI open and BJ closed. An unfolding for this case is depicted in Figure 28, which
handles the more general case when JEJ and JEE exist. Arguments similar to the ones used in the proof
of Case 1 of Lemma 19 show that the unfolding NA from Figure 28 satisfies invariants (I2) and (I3). The
following observations support our claim that NA satisfies invariant (I1):

• The entry and exit ring faces for N , JEE, JEJ , WW and JS are as follows: eN ∈ TI and xN ∈ TJ ;
eJEE ∈ TJE and xJEE ∈ BJE (which is open, since BJ is closed); eJEJ ∈ BJE and xJEJ ∈ TJE ;
eWW ∈ KW and xWW ∈ FW ; and eJS ∈ KJ (which is open, by our assumption that KJE is closed)
and xJS ∈ BA.
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• NN , NJEJ and NJS provide type-1 exit connections. This is because
xN←−−∈ LJ is not adjacent to TN ,

xJEJ←−−−∈ RJE is closed (since JEE exists), and
xJS←−−∈ LA is closed.

• Since
xJEE←−−−∈ FJE is open, the unit square XJEE (occupied by FJE in Figure 28) does not belong to

the inductive region for JEE.

• Since
eWW−−−→∈ BW and

xWW←−−−∈ TW are open, the unit squares EWW and XWW (occupied in Figure 28

by
eWW−−−→ and TW , respectively) do not belong to the inductive region for WW .

• NJEE , NJEJ and NJS provide type-1 entry connections. This is because
eJEE−−−→∈ KJE is closed (since

JEJ exists),
eJEJ−−−→∈ LJE is closed, and

eJS−−→∈ RJ is closed. (Observe that the existence of JEJ implies
that KJ is open.)

Lemma 22. Let A ∈ T be a degree-4 node with parent I and children N , E, and S (Case 4.5). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. The unfolding for this case involves three different case scenarios:

1. KE open

2. KE closed and LI closed

3. KE closed and LI open
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Figure 29: Hand-east unfolding of degree-4 box A with N , E and S children (case KE open).

Case 1: KE open. Note that in this case E is either a leaf or a connector. Consider the Hand-east
unfolding depicted in Figure 29. Note that

eA−−→∈ RI is open and adjacent to TA, and NA provides a type-2

entry connection
e′A−−→∈ FE . Also, since

xS←−−∈ LI is not adjacent to TS , invariant (I2) applied to S tells us
that NS provides a type-1 exit connection, which is also a type-1 exit connection for A (since e′A = e′S ∈ FS).
These together show that NA satisfies invariant (I2). The following observations support our claim that NA

satisfies invariant (I1):

• The entry and exit ring faces for EE, N and S are as follows: eEE ∈ BE and xEE ∈ TE ; eN ∈ TE and
xN ∈ LA; and eS ∈ KA and xS ∈ BI .

• Since
eEE−−−→∈ KE and

xEE←−−−∈ FE are open, the unit squares EEE and XEE (occupied in Figure 29 by

KE and
xEE←−−−, respectively) do not belong to the inductive region for EE.
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• NN provides type-1 entry and exit connections. This is because
eN−−→∈ KE is not adjacent to TN (note

however that it is open, so EN does not belong to the N ’s inductive region), and
xN←−−∈ FA is closed.

Also NS provides a type-1 entry connection, since
eS−→∈ RA is closed.

Finally, observe that the ring face
x′
A−−→∈ LA (dark-shaded in Figure 29) can be removed from NA without

disconnecting NA, so NA satisfies invariant (I3).
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Figure 30: Hand-east unfolding of degree-4 box A with N , E and S children, case KE closed (so KN , KS

open) and LI closed (so LN , LS open).

Case 2: KE closed and LI closed. Note that in this case KN and KS are open (since KE is closed)
and LN and LS are also open (since LI is closed). Consider the Hand-east unfolding from Figure 30, and
note that NA provides a type-1 entry connection e′A ∈ FN and a type-1 exit connection x′A ∈ FS . Thus NA

satisfies invariant (I2). The following observations support our claim that NA satisfies invariant (I1):

• The entry and exit ring faces for NN , E and SS are as follows: eNN ∈ FN and xNN ∈ KN ; eE ∈ RN

and xE ∈ RS ; and eSS ∈ RS and xSS ∈ LS .

• Since
eNN−−−→∈ RN and

xNN←−−−∈ LN are open, the unit squares ENN and XNN (occupied in Figure 30 by
eNN−−−→ and LN , respectively) do not belong to the inductive region for NN .

• Similarly, since
eSS−−→∈ FS and

xSS←−−∈ KS are open, the unit squares ESS and XSS (occupied in Figure 30

by
eSS−−→ and KS , respectively) do not belong to the inductive region for SS.

• NE provides type-1 entry and exit connections, since
eE−−→∈ FN and

xE←−−∈ KS are not adjacent to TE .

Arguments similar to the ones above show that NA satisfies invariant (I3).

Case 3: KE closed and LI open. In this case we use
eA−−→∈ RI and

xA←−−∈ LI as entry and exit ring
faces for the unfolding case when A has N , E and W children and KE is closed. This approach is depicted
in Figure 13, with the understanding that N ′A is the net from Figure 21. Because

eA−−→∈ RI and
xA←−−∈ LI

are both open and adjacent to TA, A may provide type-1 or type-2 entry and exit connections. Note that
the unfolding net from Figure 21 provides a type-1 entry/exit connection, which is a type-2 entry/exit
connection for NA. Since N ′A satisfies invariants (I1)-(I3) (by Lemma 19), we conclude that NA satisfies
invariants (I1)-(I3).
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Figure 31: Unfolding of degree-4 box A with N , W and S children.

Lemma 23. Let A ∈ T be a degree-4 node with parent I and children N , W , and S (Case 4.6). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Consider the unfolding from Figure 31, and notice that this is a general case of the degree-3 unfolding
from Figure 18, where the unfolded face BA is replaced by the recursive unfolding of child S. Arguments
similar to the ones used in the proof of Case 1 of Lemma 17 show that the unfolding NA from Figure 31
satisfies invariants (I2) and (I3). Turning to (I1), note that NN , NS and NW all provide type-1 entry and exit

connections. This is because
eN−−→∈ RI is not adjacent to TN ,

xN←−−∈ LA and
eS−→∈ FA are closed,

xS←−−∈ KW

is not adjacent to TS , and
eW−−→∈ FS and

xW←−−∈ KN are not adjacent to TW . These together show that NA

satisfies invariant (I1).
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Figure 32: Unfolding of degree-4 box A with children N , J and S, case LI closed (so LN , LS open); unfolding
shown for the case when NN and NE exist.

Lemma 24. Let A ∈ T be a degree-4 node with parent I and children N , J , and S (Case 4.7). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).
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Proof. We discuss the following four exhaustive scenarios:

1. LI and RI open

2. LI closed

3. RI closed and LJ closed

4. RI closed and LJ open

Case 1: LI and RI open. In this case I is a non-junction and we can use the unfolding from Figure 13,
where we substitute N ′A with the net from Figure 11. Because

eA−−→∈ RI and
xA←−−∈ LI are both open and

adjacent to TA, NA may provide type-1 or type-2 entry and exit connections. Note that the unfolding net
from Figure 11 provides a type-1 entry/exit connection, which is a type-2 entry/exit connection for NA.
Since N ′A satisfies invariants (I1)-(I3) (by Lemma 11), we conclude that NA satisfies invariants (I1)-(I3).

Case 2: LI closed. Note that in this case LN and LS are open. Consider the unfolding from Figure 32,
which handles the more general case when NN and NE exist (handling cases where one or both are missing
requires only minor modifications). Note that NA provides a type-1 entry connection e′A ∈ FN and a type-1
exit connection x′A ∈ FS , therefore NA satisfies invariant (I2). The following observations support our claim
that NA satisfies invariant (I1):

• The entry and exit ring faces for NE, NN , J and S are as follows: eNE ∈ FN and xNE ∈ KN ;
eNN ∈ KN and xNN ∈ FN ; eJ ∈ LA and xJ ∈ RA; and eS ∈ RA and xS ∈ LA.

• NNE , NJ and NS provide type-1 entry and exit connections. This is because
eNE−−−→∈ TN and

xNE←−−−∈ BN

are closed (recall our assumption that NN exists),
eJ−→∈ BA and

xJ←−−∈ TA are closed, and
eS−→∈ FA

and
xS←−−∈ KA are also closed.

• Since
eNN−−−→∈ LN is open, the unit square ENN (occupied by

eNN−−−→ in Figure 32) does not belong to the

inductive region for NN . Since
xNN←−−−∈ RN is closed, NNN provides a type-1 exit connection.

The two open ring faces of A not used in entry and exit connections are on LA and RA (dark-shaded
in Figure 32), and they can be removed without disconnecting NA. It follows that NA satisfies invariant
(I3).

Case 3: RI and LJ closed. Note that in this case LN and LS are open, and the unfolding for this case is
identical to the one shown in Figure 32.

Case 4: RI closed and LJ open. Note that in this case RN and RS are open. Consider the unfolding
from Figure 33, which handles the more general case when NN , NW , JE and JJ exist (handling cases when
one or more of these boxes do not exist requires only minor modifications). Note that NA provides a type-1

entry connection e′A ∈ FN . Also note that
xS←−−∈ LI is not adjacent to TS , therefore NS provides a type-1

exit connection, which is also a type-1 exit connection for NA (since xA = xS). These together show that
NA satisfies invariant (I2). The following observations support our claim that NA satisfies invariant (I1):

• Since
eA−−→∈ RI is closed, the unit square EA belongs to the inductive region of A.

• The entry and exit ring faces for NN , NW , JE, JJ and S are as follows: eNN ∈ KN and xNN ∈ FN ;
eNW ∈ FN and xNW ∈ KN ; eJE ∈ TJ and xJE ∈ BJ ; eJJ ∈ BJ and xJJ ∈ TJ ; and eS ∈ BJ and
xS ∈ BI .

• NNN , NNW , NJE and NS provide type-1 entry connections. This is because
eNN−−−→∈ LN is closed (since

NW exists),
eNW−−−→∈ BN is closed,

eJE−−→∈ KJ is closed (since JJ exists), and
eS−→∈ RJ is closed (since

JE exists).

• Since
eJJ−−→∈ LJ is open, the unit square EJJ (occupied by

eJJ−−→ in Figure 33) does not belong to the
inductive region for JJ .

36



FS

RA

XA?

end

A

startI

S

N

J

FN KN
RN

FNNNN

NNW

XNW

ENW

ENN

RN

KN

TJ

NJE

EJE

XJE

BJ

NJJ

LJ

XJJ
TJ

LJ

BJ

NS

ES

LA

NAx

y

z

Figure 33: Unfolding of degree-4 box A with children N , J and S, case RI closed (so RN , RS open) and LJ

open; unfolding shown for the case when NN , NW , JE and JJ exist.

• Since
xNN←−−−∈ RN is open, the unit square XNN (occupied by

xNN←−−− in Figure 33) does not belong to
the inductive region for NN .

• NNW , NJE and NJJ provide type-1 exit connections. This is because
xNW←−−−∈ TN is closed (since NN

exists),
xJE←−−∈ FJ is closed, and

xJJ←−−∈ RJ is closed (since JE exists).

Arguments similar to the ones used in the previous case show that NA satisfies invariant (I3) as well.

C Unfolding Degree-5 Nodes (Remaining Cases)

In this section we discuss the unfoldings for cases 5.2 through 5.4 listed in Section 7.4.

Lemma 25. Let A ∈ T be a degree-5 node with parent I and children N , E, J and S (Case 5.2). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Arguments similar to the ones used in the proof of Lemma 12 show that either I and J are both
non-junctions, or else N and S are both non-junctions.

The unfolding when I and J are both non-junctions is depicted in Figure 34. Note that this unfolding
follows the same path as the one for the degree-4 case depicted in Figure 24, up to the point where it reaches
LJ , where it slides to BJ to begin the recursive unfolding of S. Since these unfoldings and their correctness
proofs are very similar, we only point out the differences here:

• Since
xS←−−∈ LI is not adjacent to TS , NS provides a type-1 exit connection x′S ∈ FS , which is also a

type-1 exit connection for A.

• The ring face of J that lies on BJ is not used in NJ ’s entry and exit connection, therefore it can be
relocated outside of NJ (by invariant (I3) applied to J). We place it to the right of x′J ∈ LJ to serve
as entry ring face for NS .

• Since
eS−→∈ RJ is not adjacent to TS , NS provides a type-1 entry connection e′S ∈ KS .

Assume now that N and S are both non-junctions. The unfolding for this case is depicted in Figure 35.
Because

eA−−→∈ RI is open and adjacent to TA, NA has the option of providing a type-2 entry connection,
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Figure 34: Hand-east unfolding of degree-5 box A with N , E, J and S children, case when I and J are
both non-junctions.
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which it does by placing
e′A−−→∈ FE adjacent to the entry port extension. It also provides a type-1 exit

connection x′A = x′S ∈ FS , and therefore NA satisfies invariant (I2). Also note that (I3) is satisfied, since
A’s ring face on LA (darkened in Figure 35) is not used in entry or exit connections and can be removed
without disconnecting NA. The following observations support our claim that NA is connected and satisfies
invariant (I1):

• The entry and exit ring faces for E, N , J and S are as follows: eE ∈ RS and xE ∈ RN ; eN ∈ TE and
xN ∈ LA; eJ ∈ KN and xJ ∈ KS ; and eS ∈ BJ and xS ∈ BI .

• All children nets provide type-1 entry connections (by invariant (I2)). This is because
eE−−→∈ KS is

not adjacent to TE ,
eN−−→∈ KE is not adjacent to TN ,

eJ−→∈ RN is not adjacent to TJ , and
eS−→∈ RJ is

not adjacent to TS . In addition, all children provide type-1 exit connections because
xE←−−∈ FN is not

adjacent to TE ,
xN←−−∈ FA is closed,

xJ←−−∈ LS is not adjacent to TJ , and
xS←−−∈ LI is not adjacent to TS .

• Ring faces that lie on FE and KN can be relocated anywhere outside of NE and NN respectively, by
invariant (I3), noting that none of these ring faces are used in any entry or exit connections.

• The exit connection x′N ∈ LN , because N is a non-junction and LN is open. Thus LA is attached to
x′N ∈ LN in the unfolding.

This concludes the proof.

Lemma 26. Let A ∈ T be a degree-5 node with parent I and children N , W , J and S (Case 5.3). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

Proof. Arguments similar to the ones used in the proof of Lemma 12 show that either I and J are both
non-junctions, or else N and S are both non-junctions.
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Figure 36: Unfolding of degree-5 box A with N , W , J and S children, case when I and J are both non-
junctions.

The unfolding for the case when I and J are both non-junctions can be reduced to the case from Figure 34
using the method depicted in Figure 36. In this case, I’s unfolding is handled specially, so we describe the
recursive unfolding of I assuming I is in standard position (with A in the back). The unfolding path starts
at the top front edge of I and cycles clockwise to I’s bottom back edge, which is A’s entry port. By using
this bottom entry port, A’s unfolding is a horizontal reflection of that in Figure 34. After unfolding A, the
unfolding path cycles counter-clockwise from the top back edge of I (which is A’s exit port) to I’s bottom
front edge.
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Observe in the unfolding shown in Figure 36 that NI provides type-1 entry and exit connections, I’s
ring faces not used in entry or exit connections (shown darkened) can be removed without disconnecting NI ,
and all open faces of I are unfolded. We have already established that NA satisfies invariants (I1)-(I3) and
provides type-1 entry and exit connections, which connect to the pieces BI and TI placed adjacent to them.
Thus NI satisfies invariants (I1)-(I3).
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Figure 37: Unfolding of degree-5 box A with N , W , J and S children, case when N and S are both
non-junctions and I has an east neighbor.

Consider now the case when N and S are both non-junctions. If I has a neighbor to its east, then the
unfolding is as depicted in Figure 37. The net NA provides a type-1 entry connection e′A ∈ FN and a type-1
exit connection x′A = x′S ∈ FS . Therefore NA satisfies invariant (I2). Also note that (I3) is satisfied, since
A’s ring face on RA (darkened in Figure 37) is not used in entry or exit connections and can be removed
without disconnecting NA. Because RI is closed, EA is part of NA’s inductive region and therefore the face
RA can be placed there. The following observations support our claim that NA is connected and satisfies
invariant (I1):

• The entry and exit ring faces for N , W , J and S are as follows: eN ∈ RA and xN ∈ TW ; eW ∈ LN

and xW ∈ LS ; eJ ∈ KN and xJ ∈ KS ; and eS ∈ BJ and xS ∈ BI .

• All children nets provide type-1 entry connections (by invariant (I2)). This is because
eN−−→∈ KA is

closed,
eW−−→∈ KN is not adjacent to TW ,

eJ−→∈ RN is not adjacent to TJ , and
eS−→∈ RJ is not adjacent

to TS . In addition, all children provide type-1 exit connections because
xN←−−∈ FW is not adjacent to

TN ,
xW←−−∈ FS is not adjacent to TW ,

xJ←−−∈ LS is not adjacent to TJ , and
xS←−−∈ LI is not adjacent to

TS .

• Ring faces that lie on FN , LJ and KW can be relocated anywhere outside of NN , NJ and NW

respectively, by invariant (I3), noting that none of these ring faces are used in any entry or exit
connections.

If I does not have a neighbor to its west, then I is a non-junction and the unfolding can be reduced to
the case depicted in Figure 35 using the technique outlined in Figure 36: the path cycles around I to BI

and A is unfolded using a horizontal reflection of Figure 35. The proof that this satisfies invariants (I1)-(I3)
is similar to the one used for the unfolding in Figure 36, noting that here NA has a type-2 entry connection
that attaches to LI in Figure 36.

Lemma 27. Let A ∈ T be a degree-5 node with parent I and children E, W , J and S (Case 5.4). If A’s
children satisfy invariants (I1)-(I3), then A satisfies invariants (I1)-(I3).

40



Proof. Arguments similar to the ones used in the proof of Lemma 12 show that either E and W are both
non-junctions, or else I and J are both non-junctions.
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Figure 38: Unfolding for box A of degree 5 with E, W , J and S children, case when E and W are both
non-junctions.

The unfolding for the case when E and W are both non-junctions is depicted in Figure 38. Note that
NA provides a type-1 entry connection e′A ∈ TA and a type-1 exit connection x′A ∈ FS , therefore NA satisfies
invariant (I2). Also note that (I3) is trivially satisfied, since A has a single open ring face e′A ∈ TA that is an
entry connection. The following observations support our claim that NA is connected and satisfies invariant
(I1):

• The entry and exit ring faces for EE, WW , J and S are as follows: eEE ∈ TE and xEE ∈ BE ;
eWW ∈ BW and xWW ∈ TW ; eJ ∈ TA and xJ ∈ KS ; and eS ∈ BJ and xS ∈ BI .

• NJ and NS provide type-1 entry and exit connections. This is because
eJ−→∈ RA is closed,

xJ←−−∈ LS is
not adjacent to TJ , and

eS−→∈ RJ and
xS←−−∈ LI are open but not adjacent to TS .

• Since
eEE−−−→∈ KE and

xEE←−−−∈ FE are open, the unit squares EEE and XEE (occupied in Figure 38 by
eEE−−−→ and FE , respectively) do not belong to the inductive region for EE.

• Since
eWW−−−→∈ KW and

xWW←−−−∈ FW are open, the unit squares EWW and XWW (occupied in Figure 38

by KW and
xWW←−−−, respectively) do not belong to the inductive region for WW .

If I are J are non-junctions, then we use the unfolding from Figure 13, with the understanding that N ′A is
the net from Figure 34. Note that N ′A provides type-1 entry and exit connections, which implies that the net

NA from Figure 13 provides type-2 entry and exit connections. Since
eA−−→∈ RI and

xA←−−∈ LI are open and
adjacent to TA, and N ′A satisfies invariants (I1)-(I3), we conclude that NA satisfies invariants (I1)-(I3).

D Another Complete Unfolding Example

We conclude this paper with another complete unfolding example that incorporates some of the cases pre-
sented in the appendices (which could not be included in the first example from Section 8). We use as running
example a polycube tree composed of nine boxes, depicted in Figure 39. The root A of the the unfolding tree
is a degree-1 box with back child J , which is unfolded recursively. The unfolding of J follows the pattern
depicted in Figure 17b, slightly adjusted to accommodate for the fact that J does not have a south-east child.
The east-east child of J (labeled C in Figure 39) follows the unfolding pattern depicted in Figure 7a. The
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Figure 39: Unfolding of polycube tree with root A (back child of A is J).

north child of J (labeled F in Figure 39) follows the unfolding pattern from Figure 18b, traversed on reverse
(note that the subtree rooted at F is a horizontal mirror plane reflection of the case depicted in Figure 18b,
after a clockwise 90◦-rotation about a vertical axis followed by a clockwise 90◦-rotation about a horizontal
axis, to bring it in standard position). Finally, the leaves are unfolded as in Figure 2.
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