
Solving the Minimum Convex Partition of Point Sets
with Integer Programming

Allan Sapucaiaa, Pedro J. de Rezendea,∗, Cid C. de Souzaa

aInstitute of Computing, University of Campinas, Brazil

Abstract

The partition of a problem into smaller sub-problems satisfying certain prop-
erties is often a key ingredient in the design of divide-and-conquer algorithms.
For questions related to location, the partition problem can be modeled, in ge-
ometric terms, as finding a subdivision of a planar map – which represents, say,
a geographical area – into regions subject to certain conditions while optimizing
some objective function. In this paper, we investigate one of these geometric
problems known as the Minimum Convex Partition Problem (mcpp). A convex
partition of a point set P in the plane is a subdivision of the convex hull of P
whose edges are segments with both endpoints in P and such that all internal
faces are empty convex polygons. The mcpp is an NP-hard problem where one
seeks to find a convex partition with the least number of faces.

We present a novel polygon-based integer programming formulation for the
mcpp, which leads to better dual bounds than the previously known edge-based
model. Moreover, we introduce a primal heuristic, a branching rule and a pricing
algorithm. The combination of these techniques leads to the ability to solve
instances with twice as many points as previously possible while constrained
to identical computational resources. A comprehensive experimental study is
presented to show the impact of our design choices.

Keywords: Computational Geometry, Combinatorial Optimization, Minimum
Convex Partition

1. Introduction

Partitioning problems constitute a fundamental topic in Computational Ge-
ometry. One of the best studied among them is the Triangulation Problem where
we are given a point set P in the plane, and the goal is to partition its con-
vex hull into triangles using line segments with endpoints in P . There are many
variations of this problem that optimize different metrics such as segment length

∗Corresponding author
Email addresses: allansapucaia@gmail.com (Allan Sapucaia), rezende@ic.unicamp.br

(Pedro J. de Rezende), cid@ic.unicamp.br (Cid C. de Souza)

Preprint submitted to Elsevier December 8, 2020

ar
X

iv
:2

01
2.

03
38

1v
1

 [
cs

.C
G

]
 6

 D
ec

 2
02

0

and minimum angle [7]. The widespread applicability of triangulations stems
from a core idea of the divide-and-conquer paradigm: if a problem is too com-
plex to be solved at once, break it into smaller, more tractable, sub-problems.
Geometric problems tend to benefit from spacial subdivisions generated from
their input where sub-problems can more easily be dealt with by considering
the faces of the resulting arrangement. In two dimensions, for instance, it is
desirable that these faces be regions satisfying properties that can be explored
to make the algorithms more efficient. Therefore, an often desired structure
for the faces is that they be convex polygons. The smallest convex polygons
being triangles, it is understandable why questions regarding triangulations are
so vastly investigated. For an in-depth discussion on triangulations, includ-
ing structural properties, algorithms and applications, we refer to the book of
de Loera et al. [9]. However, all triangulations of a given point set have the
same number of triangles and edges and they may be too much of a refinement
among the possible convex subdivisions. Hence, from the perspective of divide-
and-conquer algorithms, when it comes to the number of sub-problems to be
dealt with, which is strongly related to the overall complexity, a triangulation
might be just as good as another.

This is where the relevance of the Minimum Convex Partition Problem
(mcpp) stands out. The mcpp is a generalization of the triangulation prob-
lem in that one seeks a partition of the convex hull of a point set into the
minimum number of convex polygons – some of which might even be triangles.

1.1. Our Contribution

Besides our earlier work [5], there are only a few attempts to solve the
mcpp exactly, and, to date, no other comprehensive experimentation has been
reported in the literature. By casting the problem as an integer linear program
(ILP) and designing several algorithmic strategies, we were able, in [5], to solve
instances of up to 50 points.

In the present paper, we explore further the usage of ILP to compute optimal
solutions for the mcpp. Our main contribution is a new integer programming
formulation for the mcpp, whereby we solve to provable optimality instances of
up to 105 points, while using the same amount of computational resources as in
our previous work, thus more than doubling the size of the largest instances with
known optimum. To achieve this, we devise a primal heuristic and a branching
rule, and show their effectiveness through experimentation. Also, since the
number of variables in the new proposed model is exponential in the cardinality
of the input point set, we resort to the use of column generation, which leads
to the development of a branch-and-price algorithm. Since ILP is often applied
in Operations Research, but much less frequently in Computational Geometry,
this article can be seen as a further contribution towards bridging these two
communities [8, 16, 10, 12, 13, 26, 30].

1.2. Literature Review

The mcpp has been studied from different perspectives in the literature,
including the development of exact and approximation algorithms, heuristics

2

and theoretical bounds on the optimal value.
Fevens et al. [14] proposed a dynamic programming formulation for the prob-

lem. Let h be the depth of P , defined as the number nested convex hulls that
need to be removed from P before it becomes empty. Their algorithm has time
complexity of O(n3h+3), therefore exponential in h, which can be as large as
Θ(n). Spillner et al. [28] proposed another exact algorithm with complexity
O(2kk4n3 + n log n), where k is the number of points of P in the interior of
CH(P).

A compact ILP formulation for the mcpp based on the construction of a
planar subdivision representing a partition obtained by selecting edges from
E(P) was proposed by Barboza et al. [5]. The authors presented empirical
results showing that, when fed as input to a state-of-the-art ILP solver, it could
solve instances with up to 50 points in general position to provable optimality.
They also show how to use the linear relaxation of the formulation to find good
heuristic solutions for instances with up to 105 points. Those instances were
made publicly available[4].

The best approximation algorithm for the mcpp, with factor of 30
11 , was

proposed by Spillner et al. [21].
Bounds on the value of optimal solution as a function of n were also studied.

Let F (n) denote the maximum cardinality of the minimum convex partition
among all instances of size n in general position. The tightest known bounds
for F (n) are 12n

11 −2 ≤ F (n) ≤ 10n−18
7 , where the lower bound was shown in [18]

and the upper bound in [25].
The 2020 Computational Geometry Challenge (CGSHOP) [11] motivated

the advancement of the state-of-the-art for the mcpp from both theoretical and
heuristic points of view. When the challenge was announced in September 2019,
the complexity of the mcpp was still open and the only known empirical study
was by Barboza et al. [5]. The challenge consisted in finding good solutions for
346 instances, with sizes ranging from 10 to 1,000,000 points and with different
sets of instances, including sets with a large number of collinear points. Those
instances and the best solution found were made publicly available. Details
about the competition and the teams’ progresses are discussed in [11]. The top
three competitors proposed heuristic solutions based on local search.

In November 2019, Grelier [19] announced a proof of NP-hardness for the
case when the point set is not in general position. Their proof relies heavily on
the construction of instances with a large number of points lying on the same
straight line.

1.3. Organization of the text

This paper is organized as follows. Section 2 describes a polygon-based
formulation for the mcpp with an exponential number of variables. In Section 3,
we address the issue of the number of variables being exponential by describing
a column generation approach to solve its linear relaxation. Section 4 explains
how we incorporate column generation into a branch-and-pricing framework in
order to solve the problem to integrality, which includes a branching rule and

3

implementation details. Computational experiments and their corresponding
results are discussed in Section 5.

1.4. Basic Notation

A polygon p of size t can be defined as a cyclic sequence of t distinct points
in the plane p0, p1, · · · , pt−1, called the vertices of p. Two consecutive points pi
and pi+1 of p define a line segment pipi+1, called an edge of p, with addition
taken module t. We say that pi and pi+1 are the endpoints or extremes of the
edge pipi+1. Sometimes, for practicality, we consider polygons as given by their
cyclic sequence of edges (p0p1, p1p2,. . . , pt−2pt−1, pt−1p0).

A polygon is called simple if the intersection between two distinct edges is
empty unless they are consecutive, in which case they only share an endpoint.
This essentially means that no two edges have a proper crossing. We refer to
the sequence of edges of a simple polygon as its boundary.

Since the boundary of a simple polygon p constitutes a closed planar curve,
by the Jordan Curve Theorem, it divides the plane into an unbounded and a
bounded region. The latter is called the interior of p, denoted INT(p), while
the former is the exterior of p. Two polygons are said to be interior-disjoint if
their interiors do not overlap.

Given a sequence of three points (k, l,m) in the plane, we say that they are
colinear, positively oriented, or negatively oriented depending on the value of the

cross product
−→
kl ×

−→
lm being 0, positive or negative. To simplify notation we

write CVX(k, l,m) = true (or simply CVX(k, l,m)) when (k, l,m) is positively
oriented. A geometrical interpretation is that a sequence (k, l,m) is positively
(negatively) oriented when we make a left (right) turn at l as we traverse segment
kl followed by lm.

We say that a polygon p is given in counterclockwise (CCW) order if INT(p)
is always to the left as one traverses the edges of p in the order given. It can
be proved that this may be checked by verifying that CVX(pj−1, pj , pj+1) is
true when pj is the lowest vertex of smallest abscissa. We assume that all
simple polygons are given in CCW order. A simple polygon p is convex if
CVX(pi−1, pi, pi+1) for all 0 ≤ i < t. For convenience, given a simple polygon p,
we may often employ the term polygon to also refer to the union of the boundary
and the interior of p.

Given a set P of n points in the plane and a polygon p, we say that p is empty
with respect to (w.r.t.) P , if p contains no points of P in its interior. When P
is understood from the context, we simply say that p is empty. Denote by S(P)
the set of all convex polygons with vertices in P that are empty w.r.t. P , and by
CH(P) the convex hull of P . In this paper, we assume that the sets of points
are in general position, i.e., no three points lie on the same line. Moreover,
henceforth all polygons referred to will be convex, unless stated otherwise.

A set U ⊆ S(P) of interior-disjoints polygons is called a convex partition of
P if CH(P) =

⋃
p∈U

p.

Given a set P of n points, let L(P) denote the set of Θ(n2) line segments
whose endpoints belong to P . The complete (geometric) graph induced by P is

4

G(P) = (P,E(P)), where E(P) = {{i, j} : ij ∈ L}. In this text, we refer to a
segment ij ∈ L and the corresponding edge in {i, j} ∈ E(P) interchangeably.

Similarly, we denote the complete oriented graph induced by P as
−→
G(P) =

(P,A(P)), where the arcs in A(P) correspond to the two orientations of the
edges in E(P).

For each convex partition U of P , there is a unique planar graph GU =
(P,EU) ⊆ G, where EU denotes the set of edges whose line segments belong to
polygons in U .

The set of line segments L(P) determines a planar subdivision called the
arrangement of P . Assuming that P is in general position and n ≥ 3, this ar-
rangement contains an unbounded face, corresponding to the exterior of CH(P),
while all other faces are bounded. We denote the set of bounded faces of the
arrangement of P by A(P). It can be proved that each face f of the arrange-
ment A(P) is a convex polygon and that if f ∩ p 6= ∅ for some p ∈ S(P), then
f ⊆ p. In this sense, we say that every face of an arrangement A(P) is atomic.
Moreover, a polygon p ∈ S(P) is said to contain a face f ∈ A(P), denoted by
f ⊂ p, if the interior of p contains the interior of f . Lastly, a line or line segment
` supports a face f ∈ A(P) if ` contains one the edges of f .

2. A Set Partition Model for the MCPP

In this section, we present a new Integer Linear Programming (ILP) model
for the mcpp from a standard set partition point of view. Again, let P be a set
of n points in the plane.

In this model, we associate a binary variable up with each polygon p ∈ S(P)
such that polygon p is used in the partition of CH(P) if and only if up = 1.
This polygon-based approach is different from the edge-based model presented
in [5], which will be discussed in Section 4.1.

Recall that A(P) denotes the set of faces of the arrangement of segments
induced by the edges in E(P). We use f ⊂ p to indicate that polygon p ∈ S(P)
contains (or covers) face f ∈ A(P).

We now introduce the following Model M1:

min
∑

p∈S(P)

up (1a)

s.a.
∑

p∈S(P):f⊆p

up = 1 ∀f ∈ A(P) (1b)

up ∈ {0, 1} ∀p ∈ S(P) (1c)

This model is very straightforward as it has only one family of constraints,
namely (1b), which ensure that each face of the arrangement is covered by a
polygon in the solution exactly once. The objective function (1a) minimizes the
number of polygons forming the partition.

5

The main issue with this model, which will be addressed in the next section,
is that the number of polygons in S(P) is typically exponential in n = |P |,
making it impractical to enumerate all variables for large instances. Besides,
the number of constraints in the model, although polynomial in n, is also large
since an arrangement of Θ(n2) line segments can have O(n4) faces [2] and each
of them corresponds to a constraint in (1b).

However, we show next that only a small fraction, Θ(n2), of those faces are
necessary to ensure that the area within CH(P) is correctly partitioned.

We start by defining necessary concepts and notations. Let q be an arbitrary
point in the plane. We denote by CCW(i, q) the sequence of n − 1 points in

P \ {i} sorted angularly w.r.t. the ray
7→
iq that starts at i an passes through q.

Recall that we use CVX(k, l,m) to denote that a sequence of points (k, l,m)
is positively oriented.

Let
−→
iq denote the oriented line that passes through i and q in this order,

which divides the plane into two half-planes, called left and right. A point k on

the left (right) half-plane of
−→
iq satisfies CVX(i, q, k) (CVX(q, i, k)). The remain-

ing points are on
−→
iq itself. We define CCW+(i, q) as the prefix of CCW(i, q)

whose points are non-negatively oriented w.r.t. the oriented line
−→
iq . Simi-

larly, we use CCW−(i, q) to denote CCW(i, q) − CCW+(i, q); i.e., the suffix

of CCW(i, q) whose points are negatively oriented w.r.t.
−→
iq . We illustrate these

concepts in Figure 1.

Figure 1: P = {i, 0, 1, . . . , 8}, q 6∈ P , CCW(i, q) = (0, 1, . . . , 8), CCW+(i, q) = (0, 1, 2, 3, 4)
and CCW−(i, q) = (5, 6, 7, 8)

Let i ∈ P . A face f ∈ A(P) that has i as one of its vertices is called an
i-wedge. Let ix be the x-coordinate of i and ymax be the maximum y coordinate
among all points in P and consider the point q = (ix, ymax+1). Let CCW(i, q) =
(i0, i1, · · · , in−2). For each consecutive pair of points (ik, ik+1) for 0 ≤ k < n−1,
addition being taken mod n − 1, we have exactly one face of the arrangement
A(P) that is incident to i and is supported by the edges {i, ik} and {i, ik+1}.
We call this face the k-th i-wedge. We denote by P -wedges the set of all i-wedges

6

for i ∈ P . Figure 2 shows the arrangement of a point set P and highlights the
faces that are not i-wedges.

Figure 2: Example of a point set P and its arrangement. Red faces are the only ones that are
not in P -wedges.

Let U ⊂ S(P). We say that a face f of A(P) is exactly-covered by a polygon
p ∈ U , if p is the only polygon in U that covers f . A face that is not exactly-
covered by some (single) polygon in U is called non-exactly-covered. A set of
faces is exactly-covered if all of its faces are exactly-covered.

In the next lemma, we show that if u is a solution of Model M1 with con-
straint set (1b) limited to the equations associated to the faces of A(P) that are
i-wedges and U = {p ∈ S(P) : up = 1}, then U is a partition of CH(P). Our
goal is to show that there are no faces in A(P) that are non-exactly-covered by
polygons in U .

Lemma 2.1. Let u be a solution of Model M1 and U = {p ∈ S(P) : yp = 1} be
the corresponding set of polygons. Then, if p is a polygon in U , each one of its
edges that is not an edge of CH(P) supports exactly one other polygon in U .

Proof. Let {i, k} be an edge of p that is not an edge of CH(P), and k − 1
be the predecessor of k in CCW(i, (ix, ymax + 1))). Suppose, w.l.o.g., that the
(k − 1)-st i-wedge is exactly-covered by p. As u is a solution of Model M1,
there must be a polygon h in U that covers the k-th i-wedge. Since we have
assumed general position, there is no other edge in E(P) that is supported by
the straight line that supports {i, k}. Also, the interior of h cannot intersect the
segment {i, k}, since, otherwise, both p and h would be covering the (k − 1)-st
i-wedge, violating (1b). Therefore, h shares the edge {i, k} with p. The same
holds if we exchange the roles of the k-th and the (k − 1)-st i-wedges. Figure 3
illustrates the polygons in a solution and the i-wedges they cover.

This result helps us prove that constraints that do not correspond to i-wedges
are, in fact, redundant, and can be removed from the model, as follows.

7

Figure 3: Example of a convex partition superposed over the arrangement of Figure 2. Edges
that belong to the polygons in the partition are heavier.

Theorem 2.2. Let u be a solution of Model M1 without the Constraints (1b)
that do not correspond to i-wedges and U = {p ∈ S(P) : yp = 1} be the corre-
sponding set of polygons. Then, U covers each face of the arrangement A(P)
exactly once.

Proof. First, we show that given a solution u of Model M1 without the Con-
straints (1b) that do not correspond to P -wedges, there are no uncovered regions
in CH(P).

Notice that the i-wedges are exactly-covered. Also, observe that non-exactly-
covered regions are formed by unions and intersections of polygons in U . Thus,
the boundary of each maximal connected non-exactly-covered region is com-
prised of of line segments.

Let R be a maximal connected region of CH(P) comprised by the union of
uncovered faces of A(P). Let e be an edge of R that does not lie on the boundary
of CH(P). Such edge always exists since each i-wedge is exactly-covered. Thus,
R cannot be equal to CH(P). Since P is in general position, e is supported by
exactly one edge in E(P), say, {i, k}. Since R is maximal, there is a face b of
the arrangement A(P) that is adjacent to e on the other side of e relative to
R and is covered at least once. Let h ∈ U be one of the polygons covering b.
As h cannot cover any part of R, it must include edge {i, k} on its boundary.
By Lemma 2.1, there must be a polygon g ∈ U that shares {i, k} with h on the
same side of e as R. Thus, R ∩ g is covered, which is a contradiction with the
fact that R is entirely not covered.

Since U leaves no uncovered regions, we now focus on the proof that there
is no region of CH(P) that is covered by two or more polygons.

Let R be a maximal connected region of CH(P) comprised by the union
of faces of A(P) that are covered more than once by polygons in U . Let e be
an edge of R that does not lie on the boundary CH(P). Since R is maximal,
one side of e is covered at least twice and the other is covered exactly once,
as previously discussed, implying that there is a polygon g in U with an edge

8

{i, k} supported by e on the same side as R. Let us assume, w.l.o.g., that the
(k − 1)-st i-wedge and R are on the same side of the line supported by {i, k},
otherwise, we change the roles played by i and k. Let b be a face of A(P) in
R adjacent to e. Then, b is covered by g and there must be another polygon
h ∈ U that also covers b. Since we assumed general position, there is no edge
other than {i, k} in E(P) that is supported by e. However, h cannot have {i, k}
as one of its edges, since, otherwise, the (k− 1)-st i-wedge would be covered by
both g and h. Also, since h is empty (w.r.t. points in P), it cannot contain i or
k in its interior. This means that polygon h cannot have e on its boundary, and
must cover a face c adjacent to e on the opposite side of g relative to {i, k}. By
Lemma 2.1, there is a polygon p that shares {i, k} with g and covers c, implying
that c is covered at least twice. We conclude that R ∪ c is covered more than
once, contradicting our assumption that R is maximal.

3. Column Generation Algorithm for SPM

In this section, we address the issue of having an exponential number of vari-
ables in Model M1. We solved this difficulty by the use of Column Generation.

Instead of enumerating all the variables, we start by solving the model with
only a small subset of them and proceed by generating new ones when necessary.
This approach, known as Column Generation, guarantees that, if our procedure
for generating columns with negative reduced cost is polynomial, the linear
relaxation of Model M1 can be solved in polynomial time[20].

To solve the linear relaxation of an LP model using column generation, we
iterate between solving the restricted master problem (RMP) and the pricing
problem. The RMP is the original model restricted to a subset of variables. At
each iteration, an RMP is solved to optimality and the pricing problem is used
to find variables with negative (in the case of minimization problems) reduced
cost that should be added to the RMP. This process stops when no variable has
negative reduced cost. Preliminary studies with different set of initial polygons
based on the initial solution didn’t lead to a noticeable performance difference
compared to all triangles. Thus, we start the RMP with the variables corre-
sponding to all triangles.

Next, we show how to solve the pricing problem for Model M1.
By associating a vector of variables α with Constraints (1b), we obtain the

dual of the linear program corresponding to the relaxation of Model M1, shown
in Model M2 below.

max
∑
f∈A

αf (2a)

s.a.
∑

f∈A(P):f⊆p

αf ≤ 1 ∀p ∈ S (2b)

αf ∈ R ∀f ∈ A(P) (2c)

9

Let α be an optimal dual solution of the RMP in a given iteration of the
column generation procedure. We can express the reduced cost cp of the variable
corresponding to polygon p ∈ S(P) in Model M1 as:

cp = 1−
∑

f∈A(P):f⊆p

αf . (3)

In other words, to compute the reduced cost of a variable, we need to sum up
the values of the dual variables associated with face constraints covered by the
corresponding polygon.

To solve the pricing problem, we define a recurrence based on the idea of
constructing polygons by joining triangles that share an edge.

Let ∆(k, l,m) denote the reduced cost of a triangle (k, l,m) ∈ S(P), with
respect to the dual variables α, given by ∆(k, l,m) =

∑
f⊆(k,l,m) αf .

We now consider all polygons whose leftmost vertex k is preceded in CCW
order by vertices l and m. W.l.o.g., we say that k is the first vertex of such
polygons, while l and m are their second-to-last and last vertices, respectively.
Since each of these polygons has an associated variable, let B(k, l,m) denote
the minimum reduced cost among these variables. We say that (k, l,m) is the
last triangle of those polygons. See Figure 4.

Figure 4: Example of a polygon whose last triangle is (k, l,m). Dashed lines show how it
can be decomposed into triangles with k as their leftmost vertex, emphasizing the edges of
(k, l,m).

Let us denote CCW−(k, (kx, ymax + 1)) simply by Pk, notice that those are
the points to the right of k sorted in CCW order. We use o ≤Pk

l to indicate
that o precedes l in the sequence Pk. Recall that CVX(o, l,m) denotes that the
sequence (o, l,m) is positively oriented.

Then, B(k, l,m) may be computed by following the recurrence formula:

B(k, l,m) =


∞, if m = l or kx > lx or m <Pk

l or (k, l,m) 6∈ S (4a)

min
o∈Pk:
o<Pk

l

CVX(o,l,m)

{0, B(k, o, l)}+ ∆(k, l,m), otherwise (4b)

To explain this formula, we define a polygon and a triangle to be compatible

10

if their union is a convex polygon that is empty w.r.t. P . Recurrence (4) has
two cases. Case (4a) deals with invalid triplets of points, while in case (4b) we
look for a minimum cost polygon that is compatible with triangle (k, l,m).

Now, we discuss how to solve this recurrence in polynomial time using dy-
namic programming. Recall that |P | = n.

There are O(n3) dynamic programming states, one for each B(k, l,m). The
total time complexity for processing each state is the O(n) time spent looking
for the best compatible polygon, or deciding that (k, l,m) is not empty, plus
the time spent calculating ∆(k, l,m). Naively, computing ∆(k, l,m) for a single
triangle would take, in the worst case, O(n4) time, as it would require processing
all the faces in the complete arrangement. The final complexity using this
approach would be O(n7).

However, we can take advantage of the structure of the set of P -wedges
to reduce the time to compute ∆(k, l,m) of a triangle to O(1), with O(n2)
preprocessing each time the dual variables change.

This is accomplished by observing that ∆(k, l,m) is the sum of a range of
consecutive i-wedges in each of its vertices i, as shown in Figure 5. For each
point i ∈ P , we can use a data structure capable of answering range sum queries
in O(1) time and which can be built in O(n) time for a given set of dual variable
values. Computing ∆(k, l,m) requires only three such queries. Now, for each
of the O(n3) states, it takes O(n) time to find the compatible polygon with the
smallest reduced cost, or decide that (k, l,m) is not empty, and O(1) time to
compute ∆(k, l,m), leading to a time complexity of O(n4).

Figure 5: An example of the circular order of i-faces around a given vertex i. Each pair of
consecutive points in a CCW ordering of P \ {i} defines an i-wedge, highlighted in red.

To reduce the complexity even further, we adapt the angular sweeping tech-
nique presented by Avis and Rappaport [3] to solve the Largest Empty Convex
Polygon Problem and we achieve the same time complexity of O(n3) as they did
for their problem. Notice that by setting ∆(k, l,m) to −1, finding the polygon
with minimum negative cost is the same as finding an empty convex polygon
with maximum number of vertices. As done in [3], we implement an algorithm

11

to check whether a triangle is empty in O(1) time per query and O(n3) pre-
processing time using visibility graphs. However, since we need to solve this
problem multiple times, we store all the empty triangles, increasing the space
complexity from O(n2) to O(n3).

Finally, we present the pricing algorithm, starting with the description of
the angular sweeping technique.

Given k and l, let P+
lk be the list CCW+(l, k) restricted to the points in Pk

and, similarly, P−lk be the list CCW−(l, k) restricted to the points in Pk. We
compute B(k, l,m) for all possible m’s in O(n) total time, using two pointers
as follows: m traverses P−lk and o goes over P+

lk . See Figure (6).
The procedure to compute the reduced cost B(k, l,m) is presented in Al-

gorithm 1. To simplify notation, if the triangle (k, l,m) is not empty, we set
∆(k, l,m) =∞.

Algorithm 1: Column Pricing Algorithm

Input: Point set P , lists of points Pk, P+
lk and P−lk

Output: Minimum reduced cost B(k, l,m)
1 for k ← 1 to n do
2 for l← 1 to |Pk| do
3 o← 1
4 bestV alueO ← 0

5 for m← 1 to |P−lk | do
6 while o ≤ |P+

lk | and CVX(P+
lk [o], Pk[l], P−lk [m]) do

7 bestV alueO ← min(bestV alueO,B(k, P+
lk [o], Pk[l]))

8 o← o+ 1

9 B(k, l,m)← bestV alueO + ∆(k, Pk[l], P−lk [m])

10 return B

Algorithm 1 works as follows. The loops defined by Lines 1 and 2 iterate
over the leftmost and second-to-last points of each state, respectively. Pointers
m and o are initialized to point to the beginning of their respective lists in
Lines 3 and 5, and the best compatible polygon is set in Line 4 to be the empty
polygon. The loop between Lines 5 and 9 moves pointer m, corresponding to
the last vertex of the polygons being constructed, one step at the time. The
other pointer o, corresponding to the third-to-last vertex, is handled by the loop
between Lines 6 and 8: o moves forward as far as possible, while the angle]oml
is convex and updates the best compatible polygon found so far. Finally, Line
9 computes the cost of B(k, l,m).

To conclude that the total complexity is indeed O(n3), we need to observe
that each one of the variables k, l and m always increases and at most O(n)
times. Also, each step is done in O(1) time, including computing ∆(k, l,m), as
previously stated.

Notice that reconstructing the polygon given by the dynamic programming
table B(k, l,m) takes linear time, since we actually need to find the set of faces

12

Figure 6: To illustrate the execution of the Column Pricing Algorithm 1. consider how Pk is

divided into the lists P−
lk and P+

lk by the oriented line
−→
lk , as well as the movement of pointers

l and o. Points in the gray region are candidates for second-to-last point for polygons whose
last triangle is (k, l,m).

that it covers. Doing that for each triplet k, l,m would increase the overall
complexity by a factor of n. To keep the complexity of the procedure at O(n3),
we only consider the best polygon for each pair k, l, limiting the output to O(n2)
polygons.

4. Branch-and-Price

In the previous section, we discussed how to solve the pricing problem in
polynomial time within a Column Generation framework, allowing for the linear
relaxation of Model M1 to be solved in polynomial time. In practice, the
standard way to solve ILP models is to use a Branch-and-Bound algorithm
based on linear relaxation. The combination of Branch-and-Bound and Column
Generation is known as Branch-and-Price (BNP) [6].

In this section, we describe some details and the design choices we made to
implement a Branch-and-Price algorithm for Model M1.

We also discuss how the addition of variables representing edges to the model
leads to a specialized branching rule. Moreover, we elucidate how to find an
initial viable solution, called an incumbent solution, and how to use this solution
to generate an initial set of columns for the RMP. A similar approach is used
to find viable solutions at each node of the BNP tree. We conclude the section
with additional implementation details that aim to improve the performance of
the BNP algorithm in practice.

4.1. Branch on Edges

One of the challenges we face when implementing Branch-and-Price algo-
rithms is that branching decisions are handled as additional constraints added

13

to the newly created sub-problems. These constraints have their own dual vari-
ables and might change the pricing problem, when the variables being priced
are involved.

The idea to introduce edge variables to the Set Partition Model M1 comes
from the Compact Model introduced in [5]. Let SC denote the set of pairs
of segment of E(P) that cross and I(P) denote the set of points of P in the
interior of CH(P). In the Compact Model M3, shown below, we associate an
edge variable xe to each edge e ∈ E(P).

min
∑

{i,j}∈E(P)

xij (5a)

s.t. xij + xk` ≤ 1 ∀{{i, j}, {k, `}} ∈ Sc (5b)

xij = 1 ∀{i, j} ∈ CH(P) (5c)∑
k∈CCW+(i,j)

xik ≥ 1 ∀(i, j) ∈ A(P), i ∈ I(P) (5d)

∑
j∈P

xij ≥ 3 ∀i ∈ I(P) (5e)

0 ≤ xij ≤ 1 ∀{i, j} ∈ E(P) (5f)

xij ∈ Z ∀{i, j} ∈ E(P) (5g)

In the Compact Model M3, edge crossings are avoided by Constraints (5b).
Constraints (5c) ensure that the edges belonging to the convex hull of P are
part of the solution, while Constraints (5d) ensure that the angles incident to a
internal vertex are all convex. Constraints (5e) are added to force every internal
vertex to have degree at least three. Finally, Constraints (5f) and (5g) guarantee
that the variables are binary.

By including edges we can take advantage of the constraints and heuristic
presented in [5]. The edges are also natural candidates for branching.

A common drawback of Branch-and-Bound algorithms is the possibility of
unbalanced branching trees. When one of the branching choices is much more
restrictive than the other, the least restrictive node can have almost no impact
in the value of the optimal solution of the relaxation [15]. This happens, in par-
ticular, when branching on a single variable, which is the default for commercial
solvers.

For partitioning problems, one of the most well known balanced branching
approaches is the Ryan-Foster branching rule [15]. According to this rule, we
find a pair of constraints that are covered by distinct sets of variables but share
at least one (fractional) variable, and branch on two possibilities: forcing those
two constraints to be covered by the same variable or to be covered by two
different variables.

In this section, we show that for Model M1, when the solution is fractional,
there is always a pair of adjacent i-wedges that can be used for branching accord-
ing to the Ryan-Foster rule. This branching can be interpreted geometrically as
deciding whether a particular edge of E(P) is part of the solution or not.

14

Consider edge ik ∈ E(P) and assume that k is preceded by k − 1 and suc-
ceeded by k + 1 in the CCW ordering around i. This edge has two correspond-
ing arcs (i, k), (k, i) ∈ A(P), one for each possible orientation. The polygons in
S(P) can be split into four sets with respect to the arc (i, k): the set of poly-
gons S+ik(P) that are supported by {i, k} and cover the k-th i-wedge; the set of
polygons S−ik(P) that are supported by {i, k} and cover the (k − 1)-st i-wedge;
the polygons Soverik (P) that cover both (k−1)-st and the k-th i-wedges; and the

set of polygons Sdisjik (P) that cover neither the (k − 1)-st nor the k-th i-wedge.
To simplify notation, we omit the point set P from the notation of S and its
subsets when the context makes it clear. Figure 7 illustrates this notation. The
same reasoning can be used for the reverse arc (i, k), by exchanging the roles
played by i and k.

Figure 7: Example of an instance with four points inducing four triangles and one quadri-
lateral. Arc (1, 3) ∈ A(P) splits those polygons into four sets S+13 = {134}, S−13 = {123},
Sover13 = {124, 1234} and Sdisj13 = {234}

Recall that the i-wedge supported by the edges i(k − 1) and ik is the k-th
i-wedge, while the i-wedge between edges ik and i(k+1) is the (k+1)-st i-wedge.

By denoting
∑

b∈B ub as u(B) for a given set B ⊆ S(P), we can rewrite
equation (1b) for those i-wedges as:

u(S−ik) + u(Soverik) = 1 (6)

u(S+ik) + u(Soverik) = 1, (7)

respectively. Notice that equality u(S+ik) = u(S−ik) follows from (6) and (7).
With this in mind, we can extend Model M1 by adding the set of binary

variables xe for each edge e ∈ E(P). Denoting that an edge e is in the border
of a polygon p by e ∈ p, we also add constraints relating polygons and edges.

An edge ik is in the solution if and only if there are two polygons supported
by it, one on each side. Taking the orientation from i to k, we can express this
with the following equations:

xik = u(S−ik) (8)

15

xik = u(S+ik). (9)

However, since u(S−ik) = u(S+ik), we can drop one of the constraints or com-
bine both to simplify notation, leading to the following extended Model M4.

min
∑
p∈S

up (1a)

s.a.
∑

p∈S:f⊆p

up = 1 ∀f ∈ A (1b)

2xe =
∑

p∈S:e∈p
up ∀e ∈ E(P) (10a)

up ∈ {0, 1} ∀p ∈ S (1c)

xe ∈ {0, 1} ∀e ∈ E(p) (10b)

By branching on an edge variable xe, we are deciding whether the two con-
secutive i-wedges are going to be covered by the same polygon or by different
ones. This is analogous to the Ryan-Foster branch rule, as previously discussed.

Lastly, we now show that we can branch only on edge variables.

Lemma 4.1. Let (u∗, x∗) be an optimal solution of the linear relaxation of
Model M4. Then, there is an edge e ∈ E(P) such that x∗e is fractional if and
only if there is a polygon p ∈ S such that u∗p is fractional.

Proof. (counterpositive proof of ⇒): observe that if u∗p is integral for all
p, then, if e is any edge in E(P), we either have u∗(Sovere) = 0, which implies
xe = 1, or u∗(Sovere) = 1, which ascertains that xe = 0.
(direct proof of ⇐): Let p be a polygon such that u∗p is fractional and
e′ = {i′, k′} one of its edges. Assume w.l.o.g. that p covers the (k′ − 1)-st
i′-wedge, i.e., p ∈ S−e′ .

Case 1: If u∗(Sovere′) > 0 then, as u(S−e′) > 0, from Equations (6) and (7), we
have that u(S+e) and u(S−e) must both be fractional. Thus, from 0 < u(S+e) +
u(S−e) < 2 and (10a) we get that xe is fractional.

Case 2: If u∗(Sovere′) = 0, then there is a polygon h 6= p that also covers the
(k′ − 1)-st i′-wedge such that 0 < u∗h < 1. We can then traverse the edges of p
in clockwise order, starting at e′, until we find an edge e = {i, k} that belongs
to p but not to h. Assume w.l.o.g. that h covers both the (k − 1)-st and the
k-th i-wedge (see Figure 8), otherwise, just exchange the roles of p and h. By
construction, p ∈ S−e and h ∈ Sovere and the corresponding variables up and
uh are both positive. Therefore, by Equation (6), u(S−e) is fractional and, by
Equation (8), xe is also fractional.

Hence, the following Corollary is immediate.

16

Figure 8: Example of two distinct polygons p and h that share edges. Edge ik belongs only
to p, but point i belongs to both polygons. Polygon h covers both the (k− 1)-st and the k-th
i-wedge while p only covers the k-th i-wedge.

Corollary 4.1.1. If (u∗, x∗) is a fractional solution of Model M4, then there
is a pair of adjacent i-wedges that induce a Ryan-Foster Branching represented
by an edge.

Notice that adding variables is not a necessary step to implement the branch-
ing rule. We can simply add the corresponding constraints, replacing xe by zero
or one, to the respective child nodes. However, explicitly adding the variables
facilitates the implementation when using a commercial solver as it can take
advantage of complex single variable branching rules already in place such as
strong branching.

The addition of Constraint (10a) affects the pricing algorithm and it needs to
be handled explicitly. On the other hand, the actual branching decisions, which
add the constraints xe = 0 or xe = 1 to the child nodes, do not involve polygon
variables explicitly. This allows for a slightly modified pricing algorithm that
does not change as the branch-and-price progresses.

Let βe be the set of dual variables associated with Constraints (10a). The
new reduced costs for the polygon variables in Model M4 are:

cp = 1−
∑

f∈A:f⊆p

αf −
∑
e∈p

βe ∀p ∈ S. (11)

Now, we need to slightly modify the pricing algorithm to accommodate the
addition of these constraints. The reduced cost of a triangle (k, l,m) is set to:

∆(k, l,m) = βkl + βlm + βkm +
∑

f⊂(k,l,m)

αf . (12)

Considering that the x variables represent support edges for the polygons,

17

when building the polygon as the union of a triangle and a compatible polygon,
the cost of the shared edge needs to be subtracted twice.

Notice that by setting an edge variable xe to one, we implicitly forbid any
edge that crosses it to be part of the solution. Hence, when making this branch-
ing decision, we also explicitly set all crossing edges to zero in the corresponding
sub-problems. Besides, to prevent polygons with forbidden edges to be gener-
ated, we set the dual cost associated with the constraints corresponding to those
edges to an arbitrarily large number.

Instead of using the default branching rules, we implemented a simple one
based on the geometry of the problem. To that end, we say that a variable x in
a given solution is more fractional the closer the value of frac(x) = |0.5− x| is
to zero. Among all edge variables xe such that frac(xe) is within 0.1 of the most
fractional edge variable, we branch on the one whose corresponding edge has the
highest number of crossings with all other edges in E(P). This branching rule
turned out to be very fast when compared to the default Strong Branching [1]
implemented in SCIP.

4.2. Primal Heuristic

At the end of each BNP node, after pricing is finished, we use the edge
variables to construct a greedy triangulation and solve an instance of the MCPP
restricted to a small subset of edges, as described in [5].

To build the greedy triangulation ∆, the edges of E(P) are sorted by de-
scending value of their corresponding variables in the current LP solution of
the RMP and inserted, if possible, in ∆, following this ordering. An edge is not
inserted when it crosses one of the edges previously added to ∆. The result is an
inclusion maximal set of non-crossing edges, which characterizes a triangulation.

A viable integer solution is then obtained by solving the MCPP restricted
to the edges of this greedy triangulation and its flip edges. This heuristic runs
very fast, taking less than 2 seconds for instances of up to 100 points.

It is possible that the solution found by an edge based heuristic contains
polygons that have not yet been included in the RMP. This is addressed by
running a secondary pricing algorithm whose purpose is solely to add the vari-
ables corresponding to the polygons present in heuristic solutions to the RMP.

4.3. Initial Primal Solution

To find an initial primal solution solution, we use the same heuristic as in the
previous section. However, since no LP solution is available in the beginning,
we replace the greedy triangulation with the Delaunay Triangulation.

4.4. Lower Bound and Early Stopping

At iteration t, the optimal solution of the current RMP zt is not guaranteed
to be a lower bound for Model M4 unless no negative reduced cost variables
were found by the pricing algorithm.

When an upper bound on the sum of the variables being priced κ ≥
∑

p∈S up
is known, a lower bound for the Complete Model M4 can be computed before

18

pricing is finished. If ct denotes the most negative reduced cost obtained during
the t-th iteration of the pricing algorithm, a lower bound for Model M4 is given
by zt + κct. Since the objective function of Model M4 is

∑
p∈S up, the value of

any viable integer solution can be expressed as κ. However, this lower bound
is poor, possibly even negative, during the first iterations. According to [22],
a tighter bound zt for the particular case of unitary cost objective functions,
which does not depend on the quality of the incumbent solution, is given by:

zt =
zt

1− ctp
. (13)

Since all the coefficients in Model M4 are integers, knowing a lower bound
for zt allows for an early halt of the column generation procedure. If dzte = dzte,
the integer lower bound at the current node cannot be improved by solving the
RMP to optimality, and we can proceed directly to branching.

4.5. Stabilization

The lower bound given by (13) can oscillate between iterations and its con-
vergence to the optimal value of the relaxation might be slow. Improving this
convergence can significantly reduce total solving time of the ILP. This can be
accomplished by the use of Stabilization techniques.

We can employ the dual bound given by (13) to assess the quality of a
dual solution, where a higher lower bound indicates a better solution. One way
to stabilize the algorithm is to minimize drastic changes in the dual solution,
keeping it close to a known good solution, also called the stabilization center.
An in-depth discussion of the topic and different techniques to address the issue
can be found in [27].

The dual solution can be stabilized by applying the smoothing technique
proposed by Wentges [31]. Instead of using the current dual solution αt in the
pricing subroutine, the following convex combination can be considered

αt
STAB = αt + λ(αBEST − αt), (14)

where 0 ≤ λ < 1 is the smoothing factor and αBEST is the stabilization center
corresponding to the dual solution with best lower bound found so far. We
remark that tuning the parameter for this stabilization was very hard to ac-
complish, since instances would perform significantly better or worse as the
parameter changed, averaging out little change.

Another way to reduce oscillations is to solve the linear relaxations using
barrier methods instead of the commonly used Simplex algorithms. By changing
the LP algorithm, we can take advantage of the fact that barrier methods find
solutions that lie in the center of the optimal face, as opposed to the extreme
points encountered by Simplex. In highly degenerate problems, extreme points
can oscillate significantly between iterations with the addition of new columns
and/or rows, while subsequent central points are uniquely defined and close

19

together. Another advantage of this approach is that no parameter tuning is
necessary[24].

On the other hand, when replacing Simplex with barrier methods, we lose
the capability of fast re-optimization after branching, one of the most important
features of Dual Simplex algorithms explored when implementing branch and
cut procedures[32]. Also, due to the nature of the central solutions found by
barrier methods, it is very unlikely that they are integral, increasing the need
of a good primal heuristic.

In pure branch-and-cut algorithms, when branching is done or violated cut-
ting planes are found, the addition of new constraints makes the current primal
solution infeasible while maintaining its dual feasibility. In this case, the use
of Dual Simplex as the LP algorithm to optimize the linear relaxations in the
child nodes is recommended because, starting from the current dual feasible
basis, it usually requires far fewer iterations to reach a new optimal solution
than it would be necessary for a Simplex algorithm started from scratch.

Pricing works similarly, however, the addition of columns makes the current
dual solution infeasible while maintaining primal feasibility. So, when combin-
ing both row and column generation as in a Branch-and-Price algorithm, if a
single Simplex algorithm is used to compute relaxations, some re-optimization
is inevitable, reducing the negative impact of switching to barrier methods.

In Section 5 we show that, for this particular model, the more stable pricing
procedure obtained, by replacing Simplex with a Barrier Method, out-weights
the re-optimization cost.

4.6. Degree Constraints

The addition of edge variables allows for the inclusion of the following degree
constraints (5e) introduced in the Compact Model M3 for point sets in general
position: ∑

j∈P\{i}

xij ≥ 3,∀i ∈ I(P) (15)

Notice that these constraints do not involve polygon variables and, therefore,
do not require modifications to the pricing problem.

In practice, we verified that the addition of degree constraints improved the
quality of the lower bound provided by the Set Partition Model, and the total
solving time. However, when using column generation, the simple addition of
those constraints resulted in a larger number of calls to the column generation
procedure, considerably increasing solving times.

To minimize this negative side effect, we separate the degree constraints af-
ter column generation rather than adding them all at once, despite the fact that
there are only O(n) of them. The embedding of a cutting plane procedure in the
Branch-and-Price algorithm leads to a Branch-Cut-and-Price algorithm. Also,
in our implementation, in an attempt to limit the number of pricing rounds,
we require that an inequality be violated by at least 0.1 units to be inserted in

20

the current linear relaxation. As shown in [5], the degree constraints can in-
crease the lower bound by 0.5 even in very simple instances that, after rounding,
may be just enough to assert a known primal solution as optimal, halting the
optimization sooner.

5. Experimental Results

In this section, we show the positive impact of some design choices and
compare Model M1 with Model M3, presented in [5].

All experiments were run on an Intel Xeon Silver 4114 at 2.2Ghz, and 32GB
of RAM running Ubuntu 16.04. Models and algorithms were implemented in
C++ v.11 and compiled with gcc 5.5. Geometric algorithms and data struc-
tures were implemented using CGAL 5.1[29], using Gmpq for exact number
representation. The compact model introduced in [5] was implemented using
CPLEX 12.10, while the set-partition Model M4 used SCIP 7.0[17] with CPLEX
as LP solver. A time limit of 3 hours was set for the ILP solver for each instance.

When running times are presented, we consider both the time to generate
and to solve the model. Most of the data are presented in a standard boxplot,
grouped by size. All data used to generate the figures is available at [4].

To compare the algorithms, we employ the instances from [5], available at [4].
Those instances had been generated by independently sampling x and y coor-
dinates from a uniform distribution, ensuring general position.

In this study, we only use the instances of 65 to 105 points, with 30 instances
per size, since smaller instances were too easy, while larger ones were too hard,
given our limit of 3 hours of (exclusive) solver time. As we were pushing our
models to their limit, we reached, for size 105, a large enough instance size
for which multiple failures began to appear. For instances of 105 points, when
more than one instance could not be solved by a given configuration, the solving
times for this size are omitted. Despite the fact that a few of the instances
could not be solved to optimality, we include them as clear outliers in some of
the forthcoming figures. Notice that the most basic configuration of Model M1
solved all instances of 65 points in at most 242 seconds, see Figure 10a, while
the compact Model M3 failed to solve any of them in 2400 seconds to provable
optimality.

The main reason for the difference in performance is the quality of the lower
bound provided by the relaxations of both models. See Figure 9.

In the first three experiments, we show the impact of improvements to the
Model M1 with all polygon variables, which we call FullSP, discussed in Sec-
tion 4: branching on edges, heuristic, and degree constraints. Our next ex-
periment focuses on Model M4 using column generation, which we call CGSP,
comparing the different types of stabilization methods and their impact. We
conclude the experiments by comparing the memory consumption of FullSP and
CGSP. Each experiment includes the features introduced in the previous ones.

Branch on Edge Variables. We now discuss the impact of introducing edge
variables and the branching rule described in Section 4.1 to the basic FullSP

21

Figure 9: Lower bound of the relaxations given by the Compact Model and the Full Set
Partition Model for instances of size 55 compared with the optimal solution.

model, leading to Model M4. Figures 10a and 10b show the solving times,
respectively, with and without the inclusion of edge variables, while Figures 11a
and 11b depict the number of nodes explored. Although there is an increase in
the number of nodes explored, our implementation is faster than the one based
on Strong Branch [1], the default branching rule for SCIP, leading to better
total running times.

Primal Heuristic. Next, we investigate the effect of introducing a custom primal
heuristic. The positive impact of the inclusion of the primal heuristic described
in Section 4.2 is evidenced by comparing Figures 10b and 10c. The lower bound
provided by the model is very strong. Thus, having good heuristic solutions soon
considerably reduces the number of nodes explored. See Figures 11b and 11c.

Degree Constraints. Finally, we discuss the impact of the introduction of con-
straints (15). The performance gain from this inclusion is shown in Figures 10c
and 10d. Degree constraints considerably increase the strength of the model,
even improving the lower bound of simple instances, as discussed in [5].This is
shown in Figure 12, where lower bounds of the FullSP, with and without Degree
Constraints, are compared with the optimal values. This stronger formulation
leads to fewer nodes being explored during search, as shown in Figure 11d.
Instances with 105 points were solved, on average ± std-dev, in 1356 ± 1102
seconds when using degree constraints.

Column Generation. All the previously discussed features lead to our best per-
forming FullSP. However, due to the exponential number of columns, the model
eventually becomes too large to fit in memory. In our initial testing, instances
with 190 points used more than 32GB of RAM during model creation. For in-
stances with 180 points, the solver started running with less than 2GB left, it is
very likely that there would not be enough memory available after branching.

With the memory issue in mind, we try to find the best configuration for
the CGSP. The RMP is initialized with the set of all triangles and the polygons
that belong to the initial heuristic solution.

22

(a) FullSP (b) FullSP +EdgeBranching

(c) FullSP +EdgeBranching+Heur (d) FullSP +EdgeBranching+Heur+Deg

Figure 10: Total solving time for the FullSP with different configurations.

As mentioned in Section 4.6, the simple inclusion of the degree constraints
significantly worsen the performance of the model. We overcame this issue by
implementing a cutting plane procedure to separate degree constraints. Since
the number of constraints is O(n), the separation is made by inspection, only
including cuts with a significant violation of at least 0.1.

Finally, we compare different approaches to stabilize the column generation.
As discussed in Section 4.5, we studied three options: no stabilization, Weingetz
Stabilization, and Barrier Methods. For the Weingetz Stabilization, using the
irace package[23], we found that the best stabilization parameter is α = 0.55.
The results are shown in Figure 13. As we can see, although no noticeable differ-
ence is observed when Weingetz method is used compared to not applying any
stabilization at all, by replacing Simplex with the Barrier Method, we achieve
a significant performance improvement. Instances with 105 points were solved,
on average ± std-dev, in 2666± 2711 seconds when using the Barrier Method.

As expected, when the entire model fits into memory, a better performance
is obtained compared to running a column generation algorithm. This is due not
only to the time spent solving the pricing problem many times per node, but also

23

(a) FullSP (b) FullSP +EdgeBranching

(c) FullSP +EdgeBranching+Heur (d) FullSP +EdgeBranching+Heur+Deg

Figure 11: Number of nodes of the search tree explored during for different configurations of
FullSP.

Figure 12: Lower bound of the relaxations given by the FullSP with and without Degree
Constraints for instances of size 90 compared with the optimal value.

24

(a) No Stab (b) Weingetz

(c) Barrier

Figure 13: Total solving time for the CGSP for different set stabilization methods.

to the fact that modern ILP solvers are equipped with extremely powerful pre-
processing routines that can reach their maximum potential when the models
are completely loaded into memory. However, the trade off between solution
time and memory consumption, illustrated in Figure 14, reveal that column
generation leads to significant savings in memory usage without drastic losses in
performance. Thus, the technique is a good alternative when memory becomes
the limiting factor to solving instances.

6. Conclusions

In this paper, we discussed a new model for the mcpp featuring variables
assigned also to the convex polygons having vertices on the input point set,
in contrast to the previous known formulation that only contained variables
associated to edges with endpoints in that set. To cope with the exponential
number of variables, we proposed a column generation based algorithm and
discussed implementation aspects that made it more efficient. The aspects in-
vestigated include the deployment of stabilization methods, which led to the
use of the Barrier Method for solving linear relaxations, the development of a
primal heuristic and of a simple yet effective branching rule. Also, a family of

25

(a) FullSP (b) CGSP Barrier

Figure 14: Peak memory consumption for the two variations of the Set Partition Model: full
and column generation using the barrier method.

cuts inspired by a previously known ILP model was incorporated to the algo-
rithm which, because of the dynamic and simultaneous inclusion of variables
and constraints to the model, is characterized as a branch-and-cut-and-price
algorithm. All those different aspects were assessed through a series of experi-
ments to show their individual contribution to the algorithm’s performance. As
a result, constrained to identical computational resources, the new algorithm
was able to solve instances with more than twice the size of what was possible
in previous works. Directions for future research include investigating a different
stabilization model, and finding facet defining cuts.

Acknowledgments. This work was supported in part by grants from: Brazilian Nation-

al Council for Scientific and Technological Development (CNPq), #313329/2020-6,

#309627/2017-6, #304727/2014-8; São Paulo Research Foundation (Fapesp), #2020

/09691-0, #2018/26434-0, #2018/14883-5. #2014/12236-1; and Fund for Support

to Teaching, Research and Outreach Activities (FAEPEX).

References

[1] T. Achterberg. Constraint Integer Programming. Doctoral thesis, Technische
Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Berlin,
2007.

[2] B. Aronov, H. Edelsbrunner, L. J. Guibas, and M. Sharir. The number of edges of
many faces in a line segment arrangement. Combinatorica, 12(3):261–274, 1992.

[3] D. Avis and D. Rappaport. Computing the largest empty convex subset of a
set of points. In Proceedings of the First Annual Symposium on Computational
Geometry, SCG ’85, pages 161–167, New York, 1985. ACM.

[4] A. S. Barboza, C. C. de Souza, and P. J. de Rezende. Minimum Convex Partition
of Point Sets – Benchmark Instances and Solutions, 2018. www.ic.unicamp.br/
∼cid/Problem-instances/Convex-Partition.

26

www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition
www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition

[5] A. S. Barboza, C. C. de Souza, and P. J. de Rezende. Minimum convex par-
tition of point sets. In P. Heggernes, editor, Algorithms and Complexity - 11th
International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceed-
ings, volume 11485 of Lecture Notes in Computer Science, pages 25–37. Springer,
2019.

[6] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

[7] M. W. Bern, H. Edelsbrunner, D. Eppstein, S. A. Mitchell, and T. S. Tan. Edge in-
sertion for optimal triangulations. Discrete and Computational Geometry, 10:47–
65, 1993.

[8] R. G. Cano, C. C. de Souza, P. J. de Rezende, and T. Yunes. Arc-based inte-
ger programming formulations for three variants of proportional symbol maps.
Discrete Optimization, 18(C):87–110, November 2015.

[9] J. A. De Loera, J. Rambau, and F. Santos. Triangulations: Structures for Algo-
rithms and Applications. Springer, 1st edition, 2010.

[10] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller, and
D. C. Tozoni. Engineering Art Galleries, pages 379–417. Springer, 2016.

[11] E. D. Demaine, S. P. Fekete, P. Keldenich, D. Krupke, and J. S. B. Mitchell.
Computing convex partitions for point sets in the plane: The CG: SHOP challenge
2020. CoRR, abs/2004.04207, 2020.

[12] S. P. Fekete, A. Haas, M. Hemmer, M. Hoffmann, I. Kostitsyna, D. Krupke,
F. Maurer, J. S. B. Mitchell, A. Schmidt, C. Schmidt, and J. Troegel. Computing
nonsimple polygons of minimum perimeter. Journal on Computational Geometry,
8(1):340–365, 2017.

[13] S. P. Fekete, W. Hellmann, M. Hemmer, A. Schmidt, and J. Troegel. Computing
maxmin edge length triangulations. Journal on Computational Geometry, 9(1):1–
26, 2018.

[14] T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a con-
strained point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001.

[15] B. A. Foster and D. M. Ryan. An integer programming approach to the vehicle
scheduling problem. Journal of the Operational Research Society, 27(2):367–384,
June 1976.

[16] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. The continuous 1.5d ter-
rain guarding problem: Discretization, optimal solutions, and PTAS. Journal on
Computational Geometry, 7(1):256–284, 2016.

[17] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse,
P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,
P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller,
M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske,
F. Wegscheider, D. Weninger, and J. Witzig. The SCIP Optimization Suite 7.0.
Technical report, Optimization Online, March 2020.

27

[18] J. Garćıa-López and M. Nicolás. Planar point sets with large minimum convex
partitions. In Abstracts 22nd European Workshop on Computational Geometry,
pages 51–54, 2006.

[19] N. Grelier. Minimum Convex Partition of Point Sets is NP-Hard. CoRR,
abs/1911.07697, 2019.

[20] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[21] C. Knauer and A. Spillner. Approximation algorithms for the minimum convex
partition problem. In Proceedings of the 10th SWAT, volume 4059 of Lecture
Notes in Computer Science, pages 232–241. Springer, 2006.

[22] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Opera-
tions Research, 53(6):1007–1023, 2005.

[23] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birat-
tari. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

[24] P. A. Munari and J. Gondzio. Using the primal-dual interior point algorithm
within the branch-price-and-cut method. Computers & Operations Research,
40(8):2026–2036, 2013.

[25] V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia. A note on convex decom-
positions of a set of points in the plane. Graphs & Combinatorics, 20(2):223–231,
2004.

[26] M. J. O. Zambon, P. J. de Rezende, and C. C. de Souza. Solving the geomet-
ric firefighter routing problem via integer programming. European Journal of
Operational Research, 274(3):1090–1101, 2019.

[27] A. A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation
and column generation stabilization by dual price smoothing. In V. Bonifaci
et al., editor, 12th International Symposium on Experimental Algorithms, SEA,
Proceedings, volume 7933 of Lecture Notes in Computer Science, pages 354–365.
Springer, 2013.

[28] A. Spillner. A fixed parameter algorithm for optimal convex partitions. Journal
of Discrete Algorithms, 6(4):561–569, 2008.

[29] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.1 edition, 2020.

[30] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. Algorithm 966: A practical
iterative algorithm for the art gallery problem using integer linear programming.
ACM Trans. on Mathematical Software, 43:16:1–16:27, 2016.

[31] P. Wentges. Weighted dantzig-wolfe decomposition for linear mixed-integer pro-
gramming. International Transactions in Operational Research, 4(2):151–162,
1997.

[32] L. A. Wolsey. Integer Programming. John Wiley and Sons, Inc., 1998.

28

	1 Introduction
	1.1 Our Contribution
	1.2 Literature Review
	1.3 Organization of the text
	1.4 Basic Notation

	2 A Set Partition Model for the MCPP
	3 Column Generation Algorithm for SPM
	4 Branch-and-Price
	4.1 Branch on Edges
	4.2 Primal Heuristic
	4.3 Initial Primal Solution
	4.4 Lower Bound and Early Stopping
	4.5 Stabilization
	4.6 Degree Constraints

	5 Experimental Results
	6 Conclusions

