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Abstract

A k-crossing family in a point set S in general position is a set of k segments
spanned by points of S such that all k segments mutually cross. In this short note
we present two statements on crossing families which are based on sets of small
cardinality: (1) Any set of at least 15 points contains a crossing family of size 4.
(2) There are sets of n points which do not contain a crossing family of size larger
than 8d n

41e. Both results improve the previously best known bounds.

1 Introduction

Let S be a set of n points in the Euclidean plane in general position, that is, no three
points in S are collinear. A segment of S is a line segment with its two endpoints (which
we will also call vertices) being points of S.

Definition 1. A k-crossing family in a point set S is a set of k segments spanned by
points of S such that all k segments mutually cross in their interior.

For a point set S, let cf(S) be the maximum size of a crossing family in S, and let
cf(n) be the minimum of cf(S) over all point sets S of cardinality n in general position.
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Figure 1: A set S of 9 points which does not contain a 3-crossing family, that is, cf(S) = 2.

It is easy to see that cf(n) is a monotone function. From the fact that the complete
graph with 5 vertices is not planar it follows that any set of n ≥ 5 points has a crossing
family of size at least 2. In [AK01] it is shown that every set with n ≥ 10 points admits
a crossing family of size 3. The result is based on analyzing the set of all order types of
size 10. The bound on n is tight, that is, there exist 12 order types of 9 points which do
have a maximal crossing family of size 2. One such set is shown in Figure 1.

Aronov et al. [AEG+94] proved in 1994 the existence of crossing families of size√
n/12 for every set of n points, which until recently was the best general lower bound.

Their proof relies on the existence of a pair of mutually avoiding sets of size
√
n/12; two

point sets are called mutually avoiding if every line determined by a pair of points from
one of the sets is disjoint from the convex hull of the other set. The lower bound on the
size of mutually avoiding sets is asymptotically tight.

Only in 2019 Pach, Rubin, and Tardos [PRT19] showed in a breakthrough result
that any set of n points in general position in the plane contains a crossing family of
size n1−o(1) (the full version of this paper appeared as [PRT21]). This almost shows the
generally accepted conjecture that cf(n) should be in Θ(n). Further evidence for this
conjecture comes from a result by Valtr [Val96, Theorem 14], that a set of points chosen
independently at random from a convex shape contains with high probability a linearly
sized crossing family. Also the currently best upper bounds supported this conjecture.
Recently, Evans and Saeedi [ES19] showed that cf(n) ≤ 5d n

24e on which we will improve.

1.1 Results and motivation

In Section 2, we use exhaustive abstract extension of order types and SAT solvers to
investigate crossing families in small point configurations. We verify some previous results
and determine the value cf(15) = 4. Based on our computational results, we conjecture
that every set of 21 or more points contains a crossing family of size 5.
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In Section 3, we present a set of 41 points without 9-crossing families. By utilizing
this set, we improve the upper bound to cf(n) ≤ 8d n

41e.
Our motivation to obtain these results comes, besides that we think that they are of

their own interest, from a possible application of crossing families to other combinatorial
enumeration problems. For example, the existence of crossing families of a fixed size can
be used to obtain results about the (asymptotic) number of geometric graphs of a certain
class. To obtain the first non-trivial lower bound for the number of triangulations of a
set of n points in the plane [AHN04] a recursive divide & conquer approach was used.
To avoid over-counting, it was essential that the edges used to subdivide the point set are
pairwise crossing, as no triangulation can contain two such edges at the same time. The
induction base (how many mutually crossing edges on how few points can we guarantee)
then determines the best possible base in the exponential bound. In [AHN04] this was
optimized over crossing families of constant size up to k = 4, resulting in a lower bound
for the number of triangulations of Ω(2.33n). Another example is related to the topic
of the Geometric Optimization Challenge 2022 [Cha22], which is part of the CG week,
namely the problem of partitioning a given geometric graph into the minimum possible
number of plane subgraphs. One of the reference papers there is [AHK+17]. In that
paper, a lower bound on the number of edge-disjoint plane spanning trees was shown by
using asymptotic results on the size of crossing-families.

Both mentioned results have meanwhile been improved by using other techniques, see
for example [AAH+16] and [BG20], respectively. But they testify that both, improved
asymptotic bounds on the size of crossing families as well as improvements for the size
of crossing families in small point sets, can be used to strengthen general (asymptotic)
bounds. We expect that our results might be useful in a similar manner and may stimulate
further results in that direction.

2 Sets of 15 points always contain a 4-crossing family

From the mentioned result cf(10) = 3 [AK01] we also know that any set of 11 points
contains a 3-crossing family, and no such set can contain a crossing family of size more
than 5 (as at least 2k points are needed for a k-crossing family). The following table
shows how the maximal size of a crossing family is distributed among all combinatorially
different point sets of size 11. It was computed with the help of the database of all order
types of size 11 obtained in [AK07].

To obtain the largest point set containing no crossing family of size 4, we made a
complete abstract order type extension from n = 11 to n = 15. The database of all
realizable order types of cardinality 11 contains 2 334 512 907 sets [AK07], of which
63 978 178 (about 2.7 %) contain no 4-crossing family; see Table 1. Since adding points
to an existing set can never decrease the size of the maximal crossing family, we need
to consider only those sets in order to iteratively find the largest set that contains no
crossing family of size 4.

The approach of extending order types in an abstract way as described in [AK07]
has the advantage that there is no need to realize the obtained sets, as we actually are
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k number of order types percentage

3 63 978 178 2.7 %
4 1 783 117 647 76.4 %
5 487 417 082 20.9 %

total 2 334 512 907 100.0 %

Table 1: The number of realizable order types of size 11 with a maximum crossing family of
size k.

interested in the smallest cardinality where no such sets exist. This avoids dealing with
the notoriously hard problem of realizing abstract order types, which is known to be
∃R-hard [Mnë85]. The extension is done iteratively by adding one more (abstract) point
in each step. Afterwards each obtained abstract order type is checked for the maximum
size of a crossing family, and if this is at least 4 the abstract order type is discarded.

After the first three rounds we obtained 2 727 858 abstract order types of cardinality
14 which do not contain a 4-crossing family. All these sets were extended by one further
point (in the abstract setting), but all resulting sets contained a 4-crossing family. Thus,
the largest possible set with no 4-crossing family has size at most 14. The whole process
of abstract extension took about 100 hours, computed in parallel on 40 standard CPUs.

To show that the obtained bound is best possible it is sufficient to realize at least
one generated abstract order type of size 14, and such an example is given in Figure 2.
Together with the set of 20 points with no 5-crossing family depicted in Figure 5, we
conclude the following.

Theorem 1. Every set of at least 15 points in the plane in general position contains a
4-crossing family. Moreover, we have

cf(n) = 3 for 10 ≤ n ≤ 14 and cf(n) = 4 for 15 ≤ n ≤ 20.

Besides the above described computer proof, we have also developed a SAT framework
which allowed us to verify cf(15) > 3 within less than 2 CPU days using the SAT solver
CaDiCaL [Bie19]. While the instance is about 33 MB, the proof generated by CaDiCaL
is 21 GB. The correctness of the proof can be verified using DRAT-trim [WHH14] within
4 additional CPU days.

We have also used this framework to verify cf(10) > 2 [AK01]. The python program
creating the instance is available on our supplemental website [Sch]. The instance to
decide whether or not cf(21) = 5 is about 26 GB, but the solver did not terminate so far.

The idea behind the SAT model is very similar as in [Sch20]: We assume towards a
contradiction that cf(15) ≤ 3, that is, there is a set of 15 points with no 4-crossing family.
We have Boolean variables Xabc to indicate whether three points a, b, c are positively or
negatively oriented. As outlined in [Sch20], these variables have to fulfill the signotope
axioms [FW01, BFK15]. Based on the variables for triple orientations, we then assign
auxiliary variables Yab,cd to indicate whether the two segments ab, cd cross. Finally we
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coordinates:

61 66
61 0
57 5
54 9
47 40
41 37
37 44
30 53
46 61
18 55
55 65
11 60
9 61
0 66

Figure 2: A set S of 14 points containing a 3-crossing family but no 4-crossing family, that is,
cf(S) = 3.

assert that for any set of four segments with pairwise distinct endpoints, at least one pair
of them does not cross. As the SAT solver CaDiCaL terminates with “unsatisfiable”, no
such point set exists, and hence cf(15) > 3.

3 Small sets and an upper bound

The following theorem was already implicitly used by Aronov et al. [AEG+94, Section 6]
in their discussion, where they stated the upper bound cf(n) ≤ n

4 . It can also be found
as Lemma 3 in [ES19]. Since in [AEG+94] no proof is given and the proof from [ES19]
appears to be incomplete1, we include a full proof here.

Theorem 2. Let S ⊂ R2 be a set of n points in general position with cf(S) = k. Then for
any N ≥ n there exists a set S′ ⊂ R2 of N points in general position with cf(S′) ≤ kdNn e.

For our proof of Theorem 2, we will use a simple property of geometric thrackles.
A geometric thrackle is a geometric graph such that each pair of edges (drawn as line
segments) either meets at a common vertex or crosses properly. Woodall proved that a
graph can be drawn as a geometric thrackle if and only if it is a a subgraph of a graph
obtained by attaching leaves (vertices of degree 1) to the vertices of an odd cycle [Woo71,
Theorem 2]. We will need only the following weaker characterization.

Lemma 3. A geometric thrackle T contains no even cycles.

A strenghtening to monotone thrackles was proved by Pach and Sterling [PS11]. Since
the proof for geometric thrackles is substantially simpler, we include it here to keep this
note self-contained.

1In the proof in [ES19], each point is repalced by “imperceptibly perturbed copies” with no prescribed
structure. However, this does not guarantee that odd cycles as illustrated in Figure 3 are avoided.
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replacing each point
by two imperceptibly
perturbed copies

S S ′

Figure 3: Five points in convex position have crossing family of size at most 2 (left). Replacing
each point by two imperceptibly perturbed copies with no prescribed structure as in [ES19] may
result in a set of 10 points with a crossing family of size larger than 4 (right). The process needs
to avoid generating odd cycles of pairwise crossing edges; see the proof of Theorem 2 for details.

Proof of Lemma 3. Assume there exists an even cycle C = p0, p1, . . . , pn for some even
n ≥ 4 with p0 = pn and pi−1pi ∈ T for i = 1, . . . , n. We set pi = pj for i = j (mod n).
Consider a line segment ` = pipi+1 in C. The supporting line through ` divides the plane
into two half-planes. Since T is a thrackle, the previous segment pi−1pi and the next
segment pi+1pi+2 cross, and thus pi−1 and pi+2 lie in the same half-plane. Moreover,
since all segments in the path P = pi+2, pi+3, . . . , pi−1 cross the segment pipi+1, P is an
alternating path with respect to the side of the half-plane, and hence P has even length
|P |, that is, an even number of edges. Since the cycle C has length |C| = |P |+ 3 this is
a contradiction, because C was assumed to have even length.

Proof of Theorem 2. Let S be a set of n points in general position in the plane and let
m = dNn e. Without loss of generality we may assume that N = mn; in case N < mn we
may later remove some points from the constructed point set. We can also assume that
all points of S have distinct x- and y-coordinates; otherwise we slightly rotate S. Our
aim is to construct a set S′ of mn points by creating m copies of each point from S, such
that the following two properties hold:

(S1) a line segment between two copies of p ∈ S only intersects line segments incident to
another copy of p,

(S2) all copies of a point are almost on a horizontal line; that is, if p ∈ S is above (below)
q ∈ S then any line through two different copies of p is above (below) any copy of q.

To this end, we place the m copies of a point p = (x, y) at pi = (x + iε, y + (iε)2) for
i = 0, . . . ,m − 1. For sufficiently small ε > 0, all points from S′ have distinct x- and
y-coordinates and the above conditions are fulfilled.

Let F ′ be a maximum crossing family in S′. We will show how to find a crossing
family F in S of size at least |F ′|/m. If |F ′| ≤ m, we are clearly done since any segment
in S is a crossing family of size 1. Hence assume that F ′ contains more than m segments.
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Then no segment f ′ ∈ F ′ can be incident to two copies of the same point of S due to
property (S1). Thus every segment f ′ ∈ F ′ connects (copies of) two distinct points of S.

Let F be the set of segments (without multiplicity) on S induced by F ′ and by
contracting the m copies of pi to p, for each p ∈ S. Formally, F = {pq | ∃i, j : piqj ∈ F ′};
Figure 4 gives an illustration. Let GF be the geometric graph induced by F , which
has the set of end points of F as (drawn) vertices and F as (drawn) edges. More
formally, GF = (V,E, φ, ψ) with V = {p ∈ S | ∃q : pq ∈ F}, E = {{p, q} | pq ∈ F},
φ : V → R2, p 7→ p, and ψ : {p, q} 7→ pq for any {p, q} ∈ E. By construction GF is a
geometric thrackle, and due to Lemma 3, GF contains no even cycles. Observe that
according to property (S2), the neighbors of a vertex p in GF can either be all above p or
all below p, as no segment of F ′ connected from above to a copy pi can cross a segment
of F ′ connected from below to a copy pj . As a consequence, GF is bipartite and thus
contains no odd cycles. Hence, GF is acyclic; equivalently, a forest.

As long as GF contains vertices of degree larger than 1, we continue as follows: Let
p ∈ V (GF ) be a leaf incident to a vertex q ∈ V (GF ) of degree larger than 1. We construct
F ′′ by removing all segments in F ′ incident to copies of q, and by inserting segments
connecting all copies of q to copies of p in the way such that all those segments cross;
Figure 4 gives an illustration of this modification. By construction, |F ′′| ≥ |F ′| holds and
thus F ′′ is another maximal crossing family in S′. We can replace F ′ by F ′′.

We can iteratively repeat this process, and in every step the number of vertices of
degree larger than 1 strictly decreases. Therefore we can assume that GF contains no
vertices of degree greater than 1. As a consequence, F is a (not necessarily maximal)
crossing family in S with |F | ≥ |F ′|/m. Therefore, cf(S′) ≤ |F ′| ≤ m · |F | ≤ m · cf(S) =
mk.

From the point set depicted in Figure 1, it follows by Theorem 2 that there are
sets of n points with no crossing family larger than 2dn9 e. This already improves the
upper bound cf(n) ≤ n

4 by Aronov et al. [AEG+94, Section 6]. Evans and Saeedi [ES19]
constructed a set of 24 points with no crossing family of size 6 or more, which yields the
upper bound cf(n) ≤ 5d n

24e presented there.

k 1 2 3 4 5 6 7 8 9 10

Currently largest sets Sk 4 9 14 20 25 29 34 41 45 50

Table 2: The sizes of the largest known point sets Sk with a maximum crossing family of size k,
that is, with cf(Sk) = k. For k ≤ 3 the sizes are best possible.

To further improve this bound we searched for sets with small crossing families. For
k ≥ 5 we partially extended several smaller sets (for example by doubling the number of
points similarly to the process described in the proof of Theorem 2) and used heuristics
such as simulated annealing and Brownian motion to optimize them. To be more precise,
for our computations we used, among others, the python framework networkx and its
number_of_cliques implementation to count and minimize the number of k-crossing
families.
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S S′

S S′

modify F ′ to F ′′

q

p

q

p

contract F ′

contract F ′′

Figure 4: An illustration of the contracting process to attain F from F ′, and an illustration of
the modification of F ′ in which all copies of p and q are “connected” to each other.

Table 2 summarizes the sizes of the currently known largest sets with maximum
crossing family of size k ≤ 10.

Using Theorem 2 together with the sets of 20 points containing no 5-crossing family
(see Figure 5) we get the bound cf(n) ≤ 4d n

20e. Also we have a set of 25 points containing
no 6-crossing family (see Figure 6), which implies cf(n) ≤ 5d n

25e and therefore gives a
slightly better upper bound for certain values of n.

By doubling the 20-point configuration without 5-crossing families from Figure 5, we
obtained a 40-point configuration without 9-crossing families. Using heavy computer
assistance, we managed to extend this configuration to a 41-point configuration without
9-crossing families which is shown in Figure 7. By Theorem 2 this witnesses cf(n) ≤ 8d n

41e,
where 8

41 ≈ 0.195.

Corollary 4. It holds that cf(n) ≤ 8d n
41e.

8



coordinates:

595 113
0 0
2 7
8 21

49 179
473 131
465 139
96 225

198 205
115 280
235 242
103 321
242 266
584 118
135 339
150 393
104 531
105 537
56 595
55 598

Figure 5: A set S of 20 points with no 5-crossing family.

coordinates:

209 744
670 181
651 180
623 177
597 176
574 176
231 699
244 673
213 734
383 321
333 404
391 244
301 488
365 232
211 737
287 417
229 278
219 370
178 191
151 203
31 58
18 33
16 28
6 10
0 0

Figure 6: A set S of 25 points with no 6-crossing family.
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We remark that even though finding the 41-point configuration without 9-crossing
families took hundreds of CPU days on a cluster, it can be verified within a few minutes.
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0 0

7304 38530
7545 38066
8274 36484
8302 36458

10655 34228
10691 34391
10528 33497
10556 33588
8258 20319
8533 20186
4139 8748
5417 13389

10911 25180
10855 25659
7366 16484
7348 16387

13099 28954
13294 28632
12196 26876
12735 26620
11565 24122
11659 24037
10835 22540
10840 22180
15773 25151
16106 24769
15522 21847
15566 21869
17009 22875
16974 22938
28133 19374
28398 19171
28665 18969
28950 18792
37654 17997
37079 18180
38254 17739
37758 17959
2401 48451

Figure 7: A set S of 41 points with no 9-crossing family.
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