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Abstract
An obstacle representation of a graph is a mapping of the vertices onto points in the plane and
a set of connected regions of the plane (called obstacles) such that the straight-line segment
connecting the points corresponding to two vertices does not intersect any obstacles if and only
if the vertices are adjacent in the graph. The obstacle representation and its plane variant (in
which the resulting representation is a plane straight-line embedding of the graph) have been
extensively studied with the main objective of minimizing the number of obstacles. Recently,
Biedl and Mehrabi [5] studied non-blocking grid obstacle representations of graphs in which
the vertices of the graph are mapped onto points in the plane while the straight-line segments
representing the adjacency between the vertices is replaced by the L1 (Manhattan) shortest paths
in the plane that avoid obstacles.

In this paper, we introduce the notion of geodesic obstacle representations of graphs with the
main goal of providing a generalized model, which comes naturally when viewing line segments
as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle repres-
entation by allowing some obstacles-avoiding shortest path between the corresponding points in
the underlying metric space whenever the vertices are adjacent in the graph. We consider both
general and plane variants of geodesic obstacle representations (in a similar sense to obstacle
representations) under any polyhedral distance function in Rd as well as shortest path distances
in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle
representations and grid obstacle representations, leading to a number of questions on such rep-
resentations.
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1 Introduction

An obstacle representation of an (undirected simple) graph G is pair (ϕ, S) where ϕ : V (G)→
R2 maps vertices of G to distinct points in R2 and S is a set of connected subsets of R2 with
the property that, for every u,w ∈ V (G), uw ∈ E(G) if and only if the line segment with
endpoints ϕ(u) and ϕ(w) is disjoint from ∪S. The elements of S are called obstacles. It is
easy to see that every graph G has an obstacle representation: obtain a straight-line drawing
of G by taking any ϕ that does not map three vertices of G onto a single line, and let S be
the set of the open faces in the resulting arrangement of line segments.

Since every graph has an obstacle representation, this defines a natural graph parameter
called the obstacle number, obs(G) = min{|S| : (ϕ, S) is an obstacle representation of G}.
Since their introduction by Alpert et al. [2], obstacle numbers have been studied extensively
with the main goal of bounding the obstacle numbers of various classes of graphs (see
e.g. [3, 8, 11, 12, 14, 16] and the references therein).

For planar graphs, there is also a natural notion of a plane obstacle representation (ϕ, S)
which is an obstacle representation in which ϕ defines a plane straight-line embedding of
G. This leads to plane obstacle number : plane-obs(G) = min{|S| : (ϕ, S) is a plane obstacle
representation of G}. Using Euler’s formula, it is not hard to see that the plane obstacle
number of any n-vertex planar graph is O(n): let ϕ define any plane drawing of G with
no three vertices collinear and take S to be the set of open faces in this drawing. Since an
n-vertex planar graph has at most 2n− 4 faces, this implies plane-obs(G) ≤ 2n− 4.

Recently, Biedl and Mehrabi [5] studied non-blocking grid obstacle representations of
graphs, consisting of the pair (ϕ, S) as before in which ϕ maps the vertices of the graph to
points in the plane and S is a set of obstacles, but the adjacency in the graph is represented
by replacing straight-line segments with L1 shortest paths in the plane. That is, for every
u,w ∈ V (G), uw ∈ E(G) if and only if some L1 shortest path from ϕ(u) to ϕ(w) is disjoint
from ∪S; see Figure 1 for an illustration of these obstacle representations.

Geodesic obstacle representation. In this paper, we generalize the notions of obstacle
representations [2], plane obstacle representations, and grid obstacle representations [5]
by introducing geodesic obstacle representations of graphs. This natural generalization of
obstacle representations comes from viewing line segments as shortest paths in the Euclidean
plane. An obstacle representation (ϕ, S) has the property that uw ∈ E(G) if and only if
the shortest path from ϕ(u) to ϕ(w) does not intersect ∪S. The Euclidean distance is a
very special case because the shortest path between any two points p and q is unique. To
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(a) (b) (c) (d)

Figure 1 Four different obstacle representations of the same graph G: (a) an obstacle representa-
tion, (b) a geodesic obstacle representation under L1 distance, (c) a plane obstacle representation,
and (d) a non-crossing geodesic obstacle representation under L1 distance.

accommodate other distance measures, we extend the definition of obstacle representation
by saying that uw ∈ E(G) if and only if some shortest path from ϕ(u) to ϕ(w) does not
intersect ∪S. In this way, we can obtain many generalizations of obstacle representations
by changing the underlying distance measure. For example, with the L1 distance measure,
every xy-monotone path is a shortest path. Therefore, if (ϕ, S) is an obstacle representation
under L1, then uw ∈ E(G) if and only if there is some xy-monotone path from u to w that
avoids ∪S. Analogous to plane obstacle representations, we can define non-crossing geodesic
obstacle representations in which ϕ defines a plane embedding of graph G. Under the L1
metric, this non-crossing version is equivalent to non-blocking grid obstacle representations
as defined by Biedl and Mehrabi [5].

Considering the L1 metric in the plane, one can view a geodesic obstacle representation of
G as a partition of the neighbours of each vertex u ∈ V (G) into four sets based on which of
the four quadrants relative to u the neighbours of u are in the representation. Consequently,
if uv, vw ∈ E(G) in such a way that v is in the same quadrant of u as w is in the quadrant
of v in a representation, then we must have uw ∈ E(G) since there is an xy-monotone path
from u to w in the representation. Notice that it is now not clear whether every graph has a
geodesic obstacle representation. In fact, Pach [15] showed that there exists a bipartite graph
that does not admit a grid obstacle representation. Indeed, the focus of this paper is to
determine, for a class G of graphs, whether or not every member of G has a geodesic obstacle
representation (under some metric space). Clearly, the existence of such representations is
more likely if one extends the definition of monotonicity by considering 2k equal-angled cones
around each vertex (instead of 2k = 4 quadrants), where k > 2 is an integer. This leads us
to the general question of, informally speaking, what is the minimum integer k > 0 for which
every member of G has a geodesic obstacle representation when shortest paths are defined by
monotone paths relative to such 2k equal-angled cones around each vertex. In this paper,
with this “parameter k”, we study geodesic obstacle representations and its non-crossing
version under polyhedral distance functions in Rd as well as shortest path distances in graphs.
See Section 2 for a formal definition of this generalized notion of obstacle representations.

Related work. It is known that every n-vertex graph has obstacle number O(n logn) [3]
and some n-vertex graphs have obstacle number Ω(n/(log logn)2) [8]. For planar graphs,
there exist planar graphs with obstacle number 2 (the icosahedron is an example [4]), but
the best upper bound on the obstacle number of an n-vertex planar graph is O(n). Recall
the O(n) upper bound on the plane obstacle number of any n-vertex planar graph by Euler’s
formula. A lower bound of Ω(n) is also not difficult: any plane drawing of the

√
n×
√
n grid

G√n×
√
n has at least n− 2

√
n bounded faces. Each of these faces has at least four vertices

and therefore requires at least one obstacle, so plane-obs(G√n×√n) ≥ n − 2
√
n. Gimbel

et al. [11] have nailed the leading constant by showing that every planar graph has plane
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23:4 Geodesic Obstacle Representation of Graphs

obstacle number at most n − 3, the maximum being attained by planar bipartite graphs.
See [2, 3, 8, 11] and the references therein for more details of results on obstacle number and
its plane version.

While the obstacle numbers have been extensively studied under the Euclidean distance
as shortest path, not much is known about obstacle representations under other shortest path
metrics. In fact, we are only aware of the works of Bishnu et al. [6], and Biedl and Mehrabi [5]
both of which considered only a restricted version of obstacle representations. Bishnu et al. [6]
showed that any n-vertex planar graph G has an obstacle representation on an O(n4)×O(n4)
grid in the plane under L1 metric, with the additional restriction that, for any uw ∈ E(G),
the shortest path from ϕ(u) to ϕ(w) also avoids ϕ(v) for all v ∈ V (G) \ {u,w} (in addition
to avoiding ∪S). Biedl and Mehrabi [5] relaxed this “vertex blocking” constraint and were
able to show that every n-vertex planar bipartite graph has a non-blocking grid obstacle
representation on an O(n)×O(n) grid. They left open the problem of finding other classes
of graphs for which such non-blocking grid obstacle representations exist and, in particular,
whether every planar graph has such a representation.

Our results. In this paper, we prove the following results:
For any integer k > 1, there is a graph with O(k2) vertices that does not have a geodesic
obstacle representation with parameter k. On the other hand, every n-vertex graph has a
geodesic obstacle representation with every k ≥ n.
For any integer d > 1 and any integer k > 1, there exists a graph that does not have
a geodesic obstacle representation in Rd with parameter k. On the other hand, every
n-vertex graph has a geodesic obstacle representation in R3 with k = d(1/2) log2 n+ 2e.
Every planar graph of treewidth at most 2 (and hence every outerplanar graph) has a
non-crossing geodesic obstacle representation with k = 2; i.e., a non-blocking obstacle
representation.
Not every planar 3-tree has a non-crossing geodesic obstacle representation with k = 2,
answering the question asked by Biedl and Mehrabi [5] negatively. Moreover, not every
planar 4-connected triangulation has a non-crossing geodesic obstacle representation with
k = 2.
Every planar 3-tree has a non-crossing geodesic obstacle representation with k = 3.
Furthermore, every 3-connected cubic planar graph has a non-crossing geodesic obstacle
representation with k = 7.
Every n-vertex graph admits a non-crossing geodesic obstacle representation when taking
the D-cube graph as the underlying distance metric, where D = C logn for some constant
C > 0.

Organization. We first give some definitions and notation in Section 2. Then, we show our
results for (general) geodesic obstacle representations in Section 3 and for its non-crossing
version in Section 4. Finally, we give our result for graph metrics in Section 5, and conclude
the paper with a discussion on open problems in Section 6.

Throughout this paper, the proofs of lemmas and theorems marked with (∗) are given in
the full version of the paper [7] due to space constraints.

2 Notation and Preliminaries

Let (X, δ) be a metric space. A curve over X is a function f : [0, 1]→ X. We call f(0) and
f(1) the endpoints of the curve f and define the image of f as I(f) = {f(t) : 0 ≤ t ≤ 1}. A
curve f is a geodesic if, for every 0 ≤ t ≤ 1, δ(f(0), f(t)) + δ(f(t), f(1)) = δ(f(0), f(1)). A
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path space is a triple (X, δ, C), where (X, δ) is a metric space and C is a set of curves over X
that has the following closure property: if the curve f is in C then, for every 0 ≤ t ≤ 1, C
also contains the curves g(x) = f(x · t) and h(x) = f(t+ x · (1− t)). A path space (X, δ, C)
is connected if, for every distinct pair u,w ∈ X, there is some path in C with endpoints
u and w. For a path space P = (X, δ, C) and a subset R ⊂ X, we denote the subspace
induced by R as P [R] = (R, δ, {f ∈ C : I(f) ⊆ R}). The subspace that avoids R is defined
as P \ R = P [X \ R]. Moreover, any curve in P \ R is called an R-avoiding curve. With
these definitions in hand, we are ready to define a generalization of obstacle representations.

I Definition 1. An (X, δ, C)-obstacle representation of a graph G is a pair (ϕ, S) where
ϕ : V (G)→ X is a one-to-one mapping and S is a set of connected subspaces of (X, δ, C) with
the property that, for every u,w ∈ V (G), uw ∈ E(G) if and only if C contains a ∪S-avoiding
geodesic with endpoints ϕ(u) and ϕ(w).

Notice that it is now not clear whether every graph has an (X, δ, C)-obstacle representation.
Indeed, the focus of this paper is to determine, for a class G of graphs and a particular path
space (X, δ, C), whether or not every member of G has an (X, δ, C)-obstacle representation.
This is closely related to certain types of embeddings of G into X. An embedding (ϕ, c) of
a graph G into (X, δ, C) consists of a one-to-one mapping ϕ : V (G) → X and a function
c : E(G) → C such that, for each uw ∈ E(G), the endpoints of c(uw) correspond to ϕ(u)
and ϕ(w). The embedding is geodesic if c(uw) is a geodesic for every uw ∈ E(G). Moreover,
the embedding (ϕ, c) is non-crossing if c(uw) is disjoint from c(xz), for every uw, xz ∈ E(G)
with {u,w} ∩ {x, z} = ∅. Observe that given an (X, δ, C)-obstacle representation (ϕ, S) of G,
for each uw ∈ E(G), we can choose some ∪S-avoiding geodesic c(uw) ∈ C with endpoints
ϕ(u) and ϕ(w). Then, the pair (ϕ, c) gives a geodesic embedding of G into X. If we can
choose c such that (ϕ, c) is also non-crossing, then we say that the representation (ϕ, S) is
non-crossing.

Distance functions. In this paper, we focus on the (X, δ, C)-obstacle representation using
polyhedral distance functions in Rd. For a set N = {v0, . . . , vt−1} of vectors in Rd, we define
the polyhedral distance function

δN (p, q) = min
{
t−1∑
i=0
|ai| : q − p =

t−1∑
i=0

aivi

}
.

Every such distance function defines a centrally symmetric polyhedron PN = {x ∈ Rd :
δN (0, x) ≤ 1}. The facets of PN determine the geodesics. For a (closed) facet F of PN , we
denote the cone CF as the union of all rays originating at the origin and containing a point
on F (this is the conical hull of F ). For a point x ∈ Rd, the F -sector of x is QNF (x) = CF +x.
For a facet of F of PN , we say that a curve f is δN -monotone in direction F if, for all
0 ≤ a ≤ b ≤ 1, f(b) ∈ QNF (f(a)). We say that a curve is δN -monotone if it is δN -monotone
in direction F for some facet F of PN . Observe that a curve f is a geodesic for δN if and
only if f is δN -monotone.

I Observation 2. If uw and xz are curves that are each δN -monotone in direction F and
uw ∩ xz contains at least one point p, then δk(u, z) = δk(u, p) + δk(p, z) and δk(x,w) =
δk(x, p) + δk(p, w).

When X = Rd, we let Cd denote the set of curves over Rd. For the sake of compactness,
when X = Rd, we denote the (Rd, δN , Cd)-obstacle representation by δN -obstacle representa-
tion. For the plane case d = 2, we define, for each integer k ≥ 2 ∈ N, the regular distance
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23:6 Geodesic Obstacle Representation of Graphs

function δk = δNk
, where Nk = {(cos(iπ/k), sin(iπ/k)) : i ∈ {0, . . . , 2k − 1}}. In this case,

the associated polygon PN is a regular 2k-gon. Moreover, we use δk-obstacle representation
as shorthand for (R2, δk, C2)-obstacle representation. Moreover, for a point in R2, we denote
the i-sector of x by Qki (x), for i ∈ {0, . . . , 2k − 1}.

In addition to polyhedral distance functions, we consider obstacle representations under
graph distance. For a graph H, we denote the set of neighbours of a vertex u in H by NH(u)
and the degree of u by degH(u). Moreover, let δH denote the graph distance and let CH be
the set of curves that define paths in H. Then, we call a (H, δH , CH)-obstacle representation
an H-obstacle representation. If we consider the infinite square grid H4 (resp., the infinite
triangular grid H6), for instance, then it is not difficult to argue that a graph G has a
non-crossing δ2-obstacle representation (resp., non-crossing δ3-obstacle representation) if
and only if G has a non-crossing H4-obstacle representation (resp., non-crossing H6-obstacle
representation). In general, for any integer D > 1, define the D-cube graph QD to be the
graph with vertex set V (QD) = {0, 1}D and that contains the edge uw if and only if u and
w differ in exactly one coordinate.

3 General Representations

In this section, we show our results for the general representations. We first consider the
special case of R2 and will then discuss our results for higher dimensions. We start by the
following result.

I Theorem 3. For any ε > 0, there exists a graph G with n = n(ε) vertices such that G has
no δk-obstacle representation for any k < n1−ε.

Proof. For some constant c > 0 and all sufficiently large n, there exists a graph G with
n vertices and cn2−2/r edges and that contains no Kr,r as subgraph [1]. Let (ϕ, S) be a
δk-obstacle representation of G and let (ϕ, c) be an embedding of G obtained by taking, for
each uw ∈ E(G), c(uw) to be some shortest ∪S-avoiding path from ϕ(u) to ϕ(w). From this
point on we identify the vertices of G with the points they are embedded to and the edges of
G with the curves they are embedded to.

By definition each edge uw ∈ E(G) is k-monotone. Since PN has at most 2k facets and
each edge is monotone in at least two of these directions, this means that it has some facet F
such that G contains E(G)/k edges that are monotone in direction F . Consider the graph G′
consisting of only these edges and the embedding ϕ of G′. Observe that if two edges uw and
xy of G′ intersect at some point p, then (after appropriate relabelling), this implies that there
is a ∪S-avoiding geodesic from u to x as well as from w to y. Therefore, ux, uw ∈ E(G′).

Therefore, if G′ contains an r-tuple of pairwise crossing edges, then G′ contains a Kr,r

subgraph. Now, observe that the edges of G′ are monotone in some direction and (after an
appropriate rotation) we can assume that they are x-monotone. We call this an x-monotone
embedding. Valtr [17] has shown that for every fixed r, there exists a constant C = C(r)
such that any x-monotone embedding of any n-vertex graph with more than Cn logn edges
contains a set of r pairwise crossing edges. In our case, this means that G contains a Kr,r

subgraph if (cn2−2/r)/k ≥ Cn logn, which gives a contradiction when k ≤ cn1−2/r/C logn.
The result then follows by choosing any r > 2/ε. J

As k →∞, δk becomes the usual Euclidean distance function and δk-obstacle represent-
ations are just the usual obstacle representations, which we know every graph has. Thus,
for every n ∈ N, there is a threshold value k(n) such that every n-vertex graph has a δk(n)-
obstacle representation. Theorem 3 shows that k(n) ∈ Ω(n1−ε) and the following theorem
shows that k(n) ∈ O(n).
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I Theorem 4 (∗). Every n-vertex graph G has a δk-obstacle representation for k = dn/2e.

Higher dimensions. The proof of Theorem 3 makes critical use of the fact that obstacle
representations live in the plane so that any sufficiently dense (sub)graph has a k-tuple
of pairwise crossing edges. An obvious question, then, is whether every graph has a δN -
obstacle representation in R3 (i.e., an (R3, δN , C3)-obstacle representation), where δN is some
polyhedral distance function. The following theorem shows that the answer to this question
is no.

I Theorem 5. Let δN be a polyhedral distance function over Rd whose corresponding poly-
hedron PN has 2k facets, for k ∈ o(logn). Then, there exists an n-vertex graph G that has
no δN -obstacle representation.

Proof. Let G be an n-vertex graph with no clique and no independent set of size larger
than 2 logn. The existence of such graphs was shown by Erdős and Renyi [10]. Suppose, for
the sake of contradiction, that G has some δN -obstacle representation (ϕ, S). Let ≺ denote
lexicographic order over points in Rd.

We will k-colour the
(
n
2
)
pairs of vertices of G where the colours are facets of PN . A pair

(u,w) with u ≺ w is coloured with a facet F of PN such that w ∈ QNF (u). If more than one
such facet exists, we choose one arbitrarily. For each i ∈ {1, . . . , k}, let ≺i denote the partial
order obtained by restricting the total order ≺ to the pairs of vertices in G with colour i.
We claim that for at least one i, ≺i contains a chain v1 ≺i · · · ≺i vr of size r ≥ n1/k. To
see why this is so, observe that, by Dilworth’s Theorem, if ≺k does not contain a chain of
length n1/k, then it contains an antichain Ak of size n1−1/k. Now, proceed inductively on
≺1, . . . ,≺k−1 and Ak, observing that every pair in Ak is coloured with {1, . . . , k − 1}.

Next, consider the relation ≺′i over v1, . . . , vr in which va ≺i vb if and only if 1 ≤ a < b ≤ r
and vavb ∈ E(G). Observe that ≺′i is a partial order over {v1, . . . , vr}. Therefore, by
Dilworth’s Theorem, it contains a chain of size at least

√
r or it contains an antichain of

size at least
√
r. A chain corresponds to a clique in G and an antichain corresponds to an

independent set in G. This contradicts our choice of G when
√
r > 2 logn, which is true for

all k ∈ o(logn) and all sufficiently large n. J

Theorem 5 shows that, for some n-vertex graphs G, any δN -obstacle representation of G
must use a distance function δN with k = Ω(logn) facets. Our next result shows that, even
in R3, a polyhedral distance function with k = O(logn) facets is indeed sufficient.

I Theorem 6 (∗). Let δN be any polyhedral distance function in Rd, where d ≥ 3, for which
the polyhedron PN has at least 2 log2 n facets. Then, every n-vertex graph G has a δN -obstacle
representation.

If we take t generic unit vectors in R3, then the polyhedral distance function determined
by these vectors defines a polyhedron having 2t vertices and 4t−8 triangular faces. Theorem 6
therefore implies that a polyhedral distance function determined by t ≥ (1/2) log2 n+ 2 unit
vectors is sufficient to allow a obstacle representation of any n-vertex graph.

In constant dimensions d > 3, there exists sets of t vectors in Rd defining polytopes with
Θ(tbd/2c) facets. Therefore, in Rd, every n-vertex graph has a δN -obstacle representation
with |N | ∈ O( bd/2c

√
logn) vectors.

4 Non-Crossing Representations

In this section, we consider non-crossing δk-obstacle representations. The following lemma
shows that these representations are equivalent to plane δk-obstacle embeddings.

ICALP 2018



23:8 Geodesic Obstacle Representation of Graphs

I Lemma 7 (∗). A graph G has a non-crossing δk-obstacle representation if and only if G
has a non-crossing δk-obstacle embedding.

Lemma 7 allows us to focus our effort on studying the existence (or not) of plane δk-
obstacle embeddings. We begin with non-crossing δk-obstacle embeddings of small treewidth
graphs.

Treewidth. A k-tree is any graph that can be obtained in the following manner: we begin
with a clique on k + 1 vertices and then we repeatedly select a subset of the vertices that
form a k-clique K and add a new vertex adjacent to every element in K. The class of k-trees
is exactly the set of edge-maximal graphs of treewidth k. A graph G is called a partial k-tree
if it is a subgraph of some k-tree. The class of partial k-trees is exactly the class of graphs
of treewidth at most k. We will make use of the following lemma, due to Dujmović and
Wood [9] in some recursive embeddings.

I Lemma 8 (Dujmović and Wood [9]). Every k-tree is either a clique on k + 1 vertices or it
contains a non-empty independent set S and a vertex u 6∈ S, such that (i) G \ S is a k-tree,
(ii) degG\S(u) = k, and (iii) every element in S is adjacent to u and k − 1 elements of
NG\S(u).

4.1 δ2-Obstacle Representations
In this section, we focus on plane δ2-obstacle embeddings. Recall that these are equivalent
to the non-blocking planar grid obstacle representation studied by Biedl and Mehrabi [5].
We begin with the positive result that all graphs of treewidth at most 2 (i.e., partial 2-trees)
have plane δ2-obstacle embeddings.

I Theorem 9. Every partial 2-tree has a plane straight-line δ2-obstacle embedding.

Proof. Let G be a partial 2-tree. We can, without loss of generality, assume that G is
connected. If |V (G)| < 4, then the result is trivial, so we can assume |V (G)| ≥ 4. We now
proceed by induction on |V (G)|.

Let T = T (G) be a 2-tree with vertex set V (G) and that contains G. Apply Lemma 8 to
find the vertex set S and the vertex u. Let x and y be the neighbours of u in T \ S. Now,
apply induction to find a plane straight-line δ2-obstacle embedding of the graph G′ whose
vertex set is V (G′) = V (G) \ S and whose edge set is E(G′) = E(G \ S) ∪ {ux, uy}. Denote
by Sx (resp., Sy) the neighbours of x (resp., y) that belong to S.

Now, observe that, since u has degree 2 in G′ and the edges ux and uy are in G′,
this embedding does not contain any monotone path of the form uxw or uyw for any
w ∈ V (G)\{u, x, y}. Therefore, if we place the vertices in S sufficiently close to u, we will not
create any monotone path of the form ayw or axw for any a ∈ S and any w ∈ V (G)\{u, x, y}.
What remains is to show how to place the elements of S in order to avoid unwanted monotone
paths of the form uay, uax, or aub for any a, b ∈ S. There are three cases to consider:
1. x ∈ Q2

i (u) and y ∈ Q2
i+2(u) for some i ∈ {0, . . . , 3}. W.l.o.g., assume that Q2

i+3(u) does
not intersect the segment xy. Then, we can embed the elements of S in Q2

i+3(u) without
creating any new monotone paths; see Figure 2(a).

2. x, y ∈ Q2
i (u) for some i ∈ {0, . . . , 3}. There are two subcases:

(i) At least one of ux or uy is in E(G). Suppose ux ∈ E(G). Then we embed Sx in
Q2
i (u) and embed Sy in Q2

i+3(u); see Figure 2(b). The only monotone paths this
creates are of the form uax with a ∈ Sx, which is acceptable since ux ∈ E(G).
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Figure 2 An illustration in supporting the proof of Theorem 9.

(ii) Neither ux nor uy is in E(G). In this case, we embed all of S in Q2
i+2(u) (see

Figure 2(c)). This does not create any new monotone paths.
3. x ∈ Q2

i (u) and y ∈ Q2
i+3(u) for some i ∈ {0, . . . , 3}. We have three subcases to consider:

(i) |{ux, uy} ∩ E(G)| = 1. In this case, assume ux ∈ E(G). Then, we embed the
vertices of Sx in Q2

i (u) and we embed the vertices of Sy in Q2
i+1(u). See Figure 2(d).

The only monotone paths this creates are of the form uax with a ∈ Sx, which is
acceptable since ux ∈ E(G).

(ii) |{ux, uy} ∩E(G)| = 2. In this case, we embed the vertices of Sx in Q2
i (u) and we

embed the vertices of Sy in Q2
i+3(u) (see Figure 2(e)). The only monotone paths this

creates are of the form uax with a ∈ Sx and uby with b ∈ Sy, which is acceptable
since ux, uy ∈ E(G).

(iii) |{ux, uy} ∩ E(G)| = 0. In this case, we embed all of S into Q2
i+1 (see Figure 2(f)).

This does not create any new monotone paths.
This completes the proof of the theorem. J

In the full version of the paper [7], we show that not every planar 3-tree admits a
non-crossing δ2-obstacle embedding.

I Theorem 10 (∗). There exists a planar 3-tree that does not have a non-crossing δ2-obstacle
embedding.

We further prove that even 4-connectivity does not help to guarantee the existence of
non-crossing δ2-obstacle embeddings. To this end, we show that a 4-connected triangulation
having a plane δ2-obstacle representation must have a constrained 4-colouring in the sense
that, for the neighbours of a vertex, which colours and in what order are they allowed to be
assigned to them. The following theorem then follows by finding a 4-connected triangulation
that does not admit such a constrained 4-colouring (see the full version of the paper [7]).
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I Theorem 11 (∗). There exists a 4-connected triangulation G with maximum degree 7 that
has no plane δ2-obstacle embedding.

4.2 Higher-k δk-Obstacle Representations
In this section, we consider the non-crossing embeddings for k > 2. We show that planar
3-trees have plane δ3-obstacles embeddings and that all 3-connected cubic planar graphs
have plane δ7-obstacles embeddings. We start by planar 3-trees.

I Theorem 12. Every planar 3-tree has a plane δ3-obstacle embedding.

Proof Sketch. Here, we sketch the proof; see the full version of the paper [7] for the complete
proof. The proof is by induction on n = |V (G)| in which our inductive hypothesis is that
every n vertex planar 3-tree has a plane δ3-obstacle embedding in which the neighbours of
each vertex u occupy at least 3 of the sectors Q3

0(u), . . . , Q3
5(u). The key to our proof is the

result of Dujmovic and Wood [9] when specialized to planar 3-trees, which says that every
planar 3-tree is either K4 or has a vertex u and an independent set S (|S| ≤ 3) such that
G \ S is a 3-tree, u has degree 3 in G \ S with neighbours x, y and z, and every vertex r in S
forms a clique with exactly one of uxy, uyz or uzx.

By applying this result and recursing on G\S (when n > 4), we obtain a plane δ3-obstacle
embedding of G \ S. By our induction hypothesis, there are two cases depending on the
locations of x, y and z with respect to u. In both cases, the elements of S are placed close
enough to u that we do not create any new δ3-monotone paths involving vertices other
than those in {u, x, y, z} ∪ S. Since {u, x, y, z} form a clique, we only need to worry about
(possibly) creating a new δ3-monotone path involving at least one vertex of S. J

We next show that every 3-connected cubic planar graph has a plane δ7-obstacle embedding.
The algorithm contrustructs a δ7-obstacle embedding by adding one vertex per time according
to a canonical ordering of the graph [13], and at each step it maintains a set of geometric
invariants which guarantee its correctness. The key ingredients are the fact that each new
vertex v to be inserted has exactly two neighbors in the already constructed representation,
together with the existence of a set of edges whose removal disconnects the representation in
two parts, each containing one of the two neighbors of v. A sufficient stretching of these edges
allows for a suitable placement for vertex v. See the full version of the paper for details [7].

I Theorem 13 (∗). Every 3-connected cubic plane graph has a plane δ7-obstacle embedding.

5 Graph Metrics

In this section, we consider the problem under graph distances. Recall the graph D-cube,
QD whose vertex set is V (QD) = {0, 1}D and that contains the edge uw if and only u and
w differ in exactly one coordinate. It is not hard to see that every n vertex graph has a
Qn-obstacle representation: Each vertex of G is assigned a coordinate with a single 1 bit.
Then, for any two vertices u and w there are exactly two shortest paths in Qn joining them
and they each have length 2. One path goes through the intermediate vertex 0 = (0, . . . , 0)
and the other goes through u+ w. Therefore, by placing an obstacle at 0 and at each u+ w

for which uw 6∈ E(G), we obtain a QD-obstacle representation of G. The following theorem
shows we can do this with much fewer coordinates.

I Theorem 14. There exists a constant C > 0 such that, for D = C logn, every n-vertex
graph has a non-crossing QD-obstacle representation.
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Proof. Consider the following embedding (ϕ, c) of G into QD: For each u ∈ V (G), ϕ(u) is a
random element of {0, 1}D. We use the notation ui to denote the ith coordinate of u. Let ≺
denote lexicographic order on D-tuples. For each edge uw ∈ E(G) with u ≺ w, we take c(uw)
to be the greedy path that visits, for i = 0, . . . , D, the vertex uwi = (w1, . . . , wi, ui+1, . . . , uD).
Thus uw0, . . . , uwD is a sequence of vertices that—after removing duplicates—is a shortest
path, in QD, from u to w. Note that there is an asymmetry here that we should be careful
of, so for u ≺ w, we define wui = (w1, . . . , wD−i, uD−i+1, . . . , uD) = uwD−i. Here are some
observations about the embedding (ϕ, c):
1. All vertex distances are close to D/2: The distance between any two vertices is a

binomial(D, 1/2) random variable. Therefore, by Chernoff’s bounds, for any constant
ε > 0 and for any vertex pair u 6= w, Pr{|δQD

(u,w) − D/2| > ε(D/2)} ≤ n−Ω(C). By
the union bound, the probability that there exists any pair of vertices u 6= w with
|δQD

(u,w)−D/2| > ε(D/2) is also n−Ω(C).
2. The embedding is non-crossing: For any four distinct vertices u ≺ w and x ≺ y,

and any i, j ∈ {0, . . . , D}, the vertices uwi and xyj are independent random D-bit
strings. Therefore, Pr{δQD

(uwi, xyj) ≤ 1} = (D + 1)/2D. By the union bound, the
probability that there exists any four vertices u,w, x, y and any pair of indices i, j for
which δQD

(uwi, xyj) ≤ 1 is at most n4(D + 1)3/2D = n−Ω(C).
3. No geodesic passes close to a vertex except its endpoints: Let u, w, and x be distinct

vertices and r ∈ {0, . . . , D} be an integer. Then, the probability that there exists any
geodesic with endpoints u and w that contains a vertex z with δQD

(z, x) ≤ r is at most
n−Ω(C). To see why this is so, suppose that such a geodesic, C, contains a vertex z such
that δQD

(z, x) ≤ r. Then, at least one of the following events occurs:
(a) δQD

(u,w) ≥ (1 + ε)D/2;
(b) δQd

(u, x) ≤ (1 + ε)D/4 + r; or
(c) δQd

(w, x) ≤ (1 + ε)D/4 + r.
Point 1 above establishes that the probability of the first event is n−Ω(C) and that, for
r ≤ (1− 3ε)D/4, the probability of each of the other two events is n−Ω(C). Applying the
union bound over all 3 events, and over all

(
n
3
)
choices of u, w, and x then shows that

the probability that there is any triple u, w, x such that any geodesic from u to w passes
within distance (1− 3ε)D/4 of x is n−Ω(C).

4. Paths diverge quickly: Let xu, xw ∈ E(G), be two edges of G with the common endpoint
x and let r ∈ {0, . . . , D}. We want to show that the directed paths xu and xw diverge
quickly. There are three cases to consider:
a. x ≺ u and x ≺ w. In this case xur = xwr if and only if u1, . . . , ur = w1, . . . , wr, so

Pr{xur = xwr} = 2−r.
b. x ≺ u and w ≺ x. In this case, we consider xur = u1, . . . , ur, xr+1, . . . , xD and

xwr = wxD−r = x1, . . . , xD−r, wD−r+1, . . . , wD. For any choice of i, these two strings
have independent bits in at least r locations, so Pr{xur = xwr} ≤ 2−r.

c. u ≺ x and w ≺ x. In this case xur = uxD−r = x1, . . . , xD−r, uD−r+1, . . . , uD and
xwr = wxD−r = x1, . . . , xD−r, wD−i+1, . . . , wD. So Pr{xur = xwr} = 2−r.

If we choose r = α logn, then this probability is at most n−Ω(α). Again, the union bound
shows that the probability that there is any u, w, or x such that xur = xwr is at most
n−Ω(α).

In the following, we choose C sufficiently large and α < (1/4 − ε)C also sufficiently large
so that with probability greater than 0, we obtain an embedding for which all four of
preceding properties hold. Therefore, there exists some embedding (ϕ, c) such that 1. for all
u,w ∈ V (G), |δQD

(u,w)−D/2| ≤ εD/2; 2. for all uw, xy ∈ E(G) with {u,w} ∩ {x, y} = ∅,
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δQD
(c(uw), c(xy)) > 1; 3. for all uw ∈ E(G) and x ∈ V (G) \ {u,w}, δQD

(c(uw), x) ≥
(1− ε)D/4; and 4. for all xu, xw ∈ E(G) and all r ≥ α logn, xur 6= xwr.

To obtain a QD-obstacle representation (ϕ, S) we take S to contain all the vertices not
used in any path of the embedding (ϕ, c). To verify that this is indeed a non-crossing
QD-obstacle representation, we need only verify that, for any u,w ∈ V (G) with uw 6∈ E(G),
δQD\S(u,w) > δQD

(u,w). This is implied by the following inequality, which relates distances
in G to those in QD \ S:

δQD\S(u,w) ≥ δG(u,w)(1− ε)D/2− (δG(u,w)− 1)2α logn . (1)

Note (1) is sufficient since, if uw 6∈ E(G), then δG(u,w) ≥ 2 and (1) implies δQD\S(u,w) ≥
(1− ε)D− 2α logn = ((1− ε)C− 2α) logn > (1 + ε)D/2, which contradicts Property 1. Thus,
all that remains is to establish (1). To do this, consider any path P from u to w in QD \ S.
Since the only vertices in QD \ S are those that are used by some embedded edge of G, the
path P consists of a sequence of subpaths P0, . . . , Pk where each Pi is a subpath of c(xiyi)
for some edge xiyi ∈ E(G). Note that Property 3 implies that x0 = u and that xk = w.
Furthermore, Properties 2 and 3 imply that xi = yi−1 for each i ∈ {1, . . . , k}. Therefore,
x0, . . . , xk is a path in G from u to w, so k ≥ δG(u,w). Finally, Property 4 implies that, for
each i ∈ {1, . . . , k − 1}, the portion of c(xi, xi+1) not used by Pi has length at most 2α logn.
Thus, the length of P is at least k(1− ε)D/2− 2(k − 1)α logn, as required. J

It is worth noting that Theorem 14 is closely related to Theorem 6. Indeed, before
perturbing it, the point set X used in the proof of Theorem 6 is a projection of the vertices
of QD with D = dlog2 ne onto R3. In Theorem 6 we then perturb X to obtain a non-crossing
embedding. In the proof of Theorem 14 we have to be more careful to avoid crossings.

6 Conclusion

In this paper, we introduced the geodesic obstacle representation of graphs, providing a
unified generalization of obstacle representations and grid obstacle representations. Our work
leaves several problems open. As perhaps the main question, does every planar graph admit
a non-crossing δk-obstacle representation for some constant k? It would be also interesting
to extend the classes of graphs for which non-crossing δk-obstacle representations exist for
small values of k. For graph metrics, given two graphs G and H, is it NP-hard to decide if
G has an H-obstacle representation?
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