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Abstract

Given a simple polygon P on n vertices, and a set D of m pairwise intersecting geodesic
disks in P , we show that five points in P are always sufficient to pierce all the disks in D. This
improves the previous bound of 14, obtained by Bose, Carmi, and Shermer [1].

1 Introduction

The problem of piercing geometric objects with as few points as possible has attracted the attention
of researchers for the past century. The research so far has been focused on convex objects and
disks in the plane. The most known result for piercing geometric objects with set of minimum
cardinality, is known as Helly’s theorem [5,6], and works for convex sets in the plane. This theorem
states the following: Given a set of m convex objects in Rd such that m > d+ 1, if every d+ 1 of
these objects have a point in common, then all of them have a point in common. This means that
one point is sufficient to pierce all the objects. This claim does not hold when the convex objects
are only pairwise intersecting. However, for a set of disks in the plane, where every pair of disks
intersects, it has proven by Danzer [3] and by Stacho [8, 9] that four points are sufficient to pierce
all the disks. These proofs are not amenable to design efficient (subquadratic-time) algorithms for
computing the piercing points. Recently, linear-time algorithms have been presented by Har-Peled
et al. [4] for computing five points that pierce m pairwise intersecting disks, and by Carmi et al. [2]
for computing four points.

Let P be a simple polygon. A geodesic disk D with radius r centered at a point c ∈ P is the
set of all points x ∈ P , such that the length of the shortest path from x to c is at most r. Bose et
al. [1] showed that for any set D of pairwise intersecting geodesic disks in P , 14 points are sufficient
to pierce all the disks in D and these points can be computed in linear time. In this paper, we
prove that five points are sufficient to pierce all the disks in D, which improve the result of Bose et
al. [1]. More precisely, we prove the following theorem.

Theorem 1. Given a simple polygon P on n vertices, and a set D of m pairwise intersecting
geodesic disks in P , five points in P are sufficient to pierce all the disks in D.
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2 The Setup and Preliminaries

For simplicity of presentation, we adapt some notation that appeared in [1]. Moreover, we use
the convention that all indices are taken modulo the size of the set involved. Let P be a simple
n-vertex polygon in the plane and let v1, v2, ..., vn be its vertices sorted in clockwise order. For two
points x, y ∈ P , the geodesic (shortest) path from x to y is denoted as Π(x, y) and its length is
the sum of the lengths of its edges, and is denoted as |Π(x, y)|. A geodesic disk with radius r ≥ 0
centered at a point c ∈ P is the set {y ∈ P : |Π(c, y)| ≤ r}. A geodesic triangle on three points
a, b, c ∈ P , denoted by 4(a, b, c), is a weekly-simple polygon whose boundary consists of the paths
Π(a, b), Π(b, c), and Π(a, c); see Figure 1. A pseudo triangle is a simple polygon with three convex
vertices.

A set X = {x1, ..., xk} of at least three points in P is geodesically collinear if there exist two
points xi, xj ∈ X, such that X ⊂ Π(xi, xj). Given three points a, b, c ∈ P that are not geodesically
collinear, the paths Π(a, b) and Π(a, c) have a common subpath until they diverge at a point a′.
Similarly, let b′ (resp., c′) be the point where the paths Π(b, a) and Π(b, c) (resp., the paths Π(c, a)
and Π(c, b)) diverge; see Figure 1. Pollack et al. [7] observed that 4(a′, b′, c′) is a pseudo triangle.
We refer to 4(a′, b′, c′) as the geodesic core of 4(a, b, c) and denote it by 5(a, b, c). Pollack et al. [7]
observed the following observation.

Observation 1. Let a, b and c be three points in P . Then the geodesic core 5(a, b, c) has only
reflex angles along its boundary and the interior of this triangle is fully contained in P .

a

a′

b
b′

c = c′

Figure 1: 4(a, b, c) is a geodesic triangle. 4(a′, b′, c) is a pseudo triangle. 5(a, b, c) = 4(a′, b′, c)
is the geodesic core of 4(a, b, c)

.

Moreover, Pollack et al. [7] proved the following lemma about distances between a point and a
geodesic path.

Lemma 1 ( [7]). Let a, b and c be three points in P . Let g be the function defined on Π(b, c), such
that g(x) = |Π(a, x)|, for every point x on Π(b, c). Then, g is a convex function with its maximum
occurring either at b or c. That is, g(x) ≤ max{g(b), g(c)}, for every point x on Π(b, c).
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The following observations follow from Lemma 1.

Observation 2. Let a and b be two points, such that the segment ab is entirely contained in P .
Then, any disk D ∈ D that contains both a and b must contain the segment ab.

Observation 3. Let D be a geodesic disk in D with center c ∈ P , and let a and b be two points in
D. Then, the pseudo-triangle 4(c, a, b) is contained in D.

Observation 4. Let D be geodesic disk with center c ∈ P and radius r. Let q and b be two points,
such that |Π(c, q)| + 1 ≤ r, |qb| ≤ 1, and the segment qb is entirely contained in P . Then, b is
contained in D.

Let D = {D1, D2, ..., Dm} be a set of m pairwise intersecting geodesic disks in P . For each
1 ≤ i ≤ m, let ci and ri denote the center and the radius of Di, respectively. The set D is called
Helly if there is a point that pierces all the disks in D. For a point x ∈ P , we define a function
f(x) = y to be the smallest radius of a geodesic disk centered at x that intersects all the disks in
D. A disk D with radius r centered at c is called minimal with respect to D if every point x in
the close neighborhood of c in P has f(x) > r. Let D∗ be the disk with center c∗ that minimizes
f(c∗), and let r∗ = f(c∗) be its radius. Bose et al. [1] proved the following lemma regarding the
properties of D∗.

Lemma 2 ( [1]). If D is not Helly, then D∗ satisfies the following properties:

• r∗ > 0;

• D∗ does not intersect the boundary of P ;

• D∗ is tangent to at least 3 geodesic disks D1, D2, D3 in D at 3 distinct points t1, t2, t3, respec-
tively;

• c∗ is contained in the interior of 4(t1, t2, t3); and

• D∗ does not intersect the boundary of the geodesic core 5(c1, c2, c3), where c1, c2, c3 are the
centers of D1, D2, D3, respectively.

Assume, w.l.o.g., that r∗ = 1 and that c∗ is located at the origin (0, 0). Let D1, D2, D3 be
the three geodesic disks from Lemma 2 that are tangent to D∗ at the points t1, t2, t3, respectively.
For each i ∈ {1, 2, 3}, let `i be the line that is tangent to Di and passes through ti; see Figure 2.
Let mi,j be the intersection point between the lines `i and `j , for every distinct i, j ∈ {1, 2, 3}.
Assume, w.l.o.g., that `1 is horizontal and the angle ∠(m1,2,m2,3,m3,1) is the largest in the triangle
4(m1,2,m2,3,m3,1); see Figure 2.

For two points p and q, let pq denote the line segment connecting them. For every distinct
i, j ∈ {1, 2, 3}, let `i,j be the line passing through mi,j perpendicular to c∗mi,j ; see Figure 2. Let
ti(j) be the intersection point between `i,j and the line passing through c∗ti. The following lemma
was proven in [1].

Lemma 3 ( [1]). The path Π(ci, cj) does not intersect 4(ti(j), c
∗, tj(i)), for any distinct i, j ∈

{1, 2, 3}.

Let g1, g2, g3 and g4 be the points located at the coordinates (2, 0), (0, 2), (−2, 0), and (0,−2),
respectively. The following corollary follows from Lemma 3 and the assumption that `1 is horizontal
and the angle ∠(m1,2,m2,3,m3,1) is the largest in the triangle 4(m1,2,m2,3,m3,1).
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`1

c∗

`3
`2

g1

g2

g3

g4

m3,1 m1,2

m2,3

t2
t3

t1

t2(3)
`2,3

`1,2`3,1

t2(1)

t3(2)

t3(1)

Figure 2: The smallest disk D∗ is located at the origin. `1, `2, and `3 are the tangent lines between
D∗ and the disksD1, D2, andD3, respectively. The path Π(ci, cj) does not intersect4(ti(j), c

∗, tj(i)),
for any distinct i, j ∈ {1, 2, 3}.

Corollary 1. The polygon P does not intersect the triangles 4(g1, c
∗, g4) and 4(g3, c

∗, g4).

For a point p ∈ P , let x(p) and y(p) denote the x-coordinate and the y-coordinate of p, respec-
tively. We divide the plane into 4 quadrants Q1, Q2, Q3, and Q4 as follows; see Figure 3.

• Q1 = {p ∈ R2 : x(p) ≥ 0 and y(p) ≥ 0};

• Q2 = {p ∈ R2 : x(p) ≤ 0 and y(p) ≥ 0};

• Q3 = {p ∈ R2 : x(p) ≤ 0 and y(p) ≤ 0}; and

• Q4 = {p ∈ R2 : x(p) ≥ 0 and y(p) ≤ 0}.

For each i ∈ {1, 2, 3, 4}, let zi ∈ Qi be the point whose distance from gi, gi+1 and the boundary
of D∗ is equal; see Figure 3. The computation of the points zi is not involved. For example, we
compute z1 by solving the following equations system:

|z1g1| =
»

(x(z1)− 2)2 + y(z1)2 = d ,

|z1g2| =
»
x(z1)2 + (y(z1)− 2)2 = d ,

|z1c∗| =
»
x(z1)2 + y(z1)2 = d+ 1 .

This implies that z1 = (a, a), z2 = (−a, a), z3 = (−a,−a), and z4 = (a,−a), where a = 3
4−2
√
2
≈

2.56. For 1 ≤ i ≤ 4, let pri be the region bounded by the parabola that contains all the points that
are closer to gi than to D∗; see Figure 3. Moreover, let t+1 = (2, 1.5), t−1 = (2,−1.5), t+2 = (−1.5, 2),
t−2 = (1.5, 2), t+3 = (−2,−1.5), t−3 = (−2, 1.5), t+4 = (1.5,−2), and t−4 = (−1.5,−2). The following
observations follow from the definition of pri.
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c∗

D∗

g2
z2

pr4

Q2 Q1

Q3 Q4

g3

g4

g1

z1

z4z3

t+2 t−2

t+4t−4

pr2

pr1

pr3

t−1

t+1t−3

t+3

Figure 3: The quadrants Qi and the points zi, for each 1 ≤ i ≤ 4. The segments zigi and zi−1gi
are entirely contained in the region bounded by the parabola pri (depicted in purple).

Observation 5. Let p be a point on zigi or on zi−1gi, where i ∈ {1, 2, 3, 4}. Then, for any point
q on the boundary of D∗, we have |pgi| ≤ |pq|.

Observation 6. Let p be a point on t+i t
−
i , where i ∈ {1, 2, 3, 4}. Then, for any point q on the

boundary of D∗, we have |pgi| ≤ |pq|.

Let D ∈ D be a disk with center c and radius r. Throughout the rest of the paper, we use the
following notations. For each i ∈ {1, 2, 3}, let qi be the intersection point of the path Π(c, ci) with
the boundary of Di. Let q∗ be the intersection point of the path Π(c, c∗) with the boundary of D∗.
Thus, |Π(c, q∗)| ≤ r and |Π(c, qi)| ≤ r, for each i ∈ {1, 2, 3}. Let c′ be the point on Π(c, c∗), such
that the edge (c′, c∗) is the last edge in Π(c, c∗). That is, c′ is the first point on Π(c, c∗) that is
visible from c∗. Finally, let α2 (resp., α3) be the acute angle between `2 (resp., `3) and the x-axis;
see Figure 4.

Observation 7. If the polygon P intersects the segment z4g1 or z4g4, then α2 >
π
5 ; see Figure 4.

Similarly, if the polygon intersects the segment z3g3 or z3g4, then α3 >
π
5 .

Proof. By Lemma 3, the polygon does not intersect the triangle 4(t2(1), c
∗, t1(2)); see Figure 4.

Using a simple geometric calculation, for α2 = π
5 , the acute angle between `1,2 and the x-axis is

β = π−α2
2 = 2π

5 and the coordinates of m1,2 are ( cosα2+1
sinα2

,−1). Thus, for α2 = π
5 , `1,2 passes through

z4. Therefore, for 0 < α2 ≤ π
5 , the point z4 is contained in the triangle 4(t2(1), c

∗, t1(2)), and, the
polygon cannot intersect the segment z4g1.

In the following lemma, we show that, for each i ∈ {1, 2, 3, 4}, if the polygon does not intersect
the segments zigi and zigi+1, then every disk D ∈ D with c′ in Qi is pierced by at least one of the
points c∗, gi or gi+1.

Lemma 4. Let D ∈ D be a disk with c′ in Qi, where i ∈ {1, 2, 3, 4}. If the polygon does not
intersect the segments zigi nor zigi+1, then D contains at least one of the points c∗, gi or gi+1.
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c∗

g4
z4

`3

`1

α3 g1α2

`1,2

m1,2

β

`2

Figure 4: For 0 < α2 ≤ π
5 , the polygon cannot intersect the segment z4g1.

Proof. Let c and r be the center and the radius of D, respectively. We distinguish between two
cases:
Case 1: The path Π(c, c∗) intersects zigi or zigi+1 at a point p. Assume w.l.o.g., Π(c, c∗) intersects
zigi; see Figure 5 (for i = 1). By Observation 5, we have |pgi| ≤ |pq∗|. Moreover, since the polygon
does not intersect zigi, we have |Π(c, gi)| ≤ |Π(c, p)| + |pgi| ≤ |Π(c, p)| + |pq∗| = |Π(c, q∗)| ≤ r.
Therefore, D contains gi.

`1

g2

z1

p

c∗ g1

q∗
Π(c, c∗)

Figure 5: c′ ∈ Q1 and the path Π(c′, c∗) intersects z1g1.

Case 2: The path Π(c, c∗) does not intersect zigi nor zigi+1. We prove this case for i = 1; the proof
of the other cases are symmetric. Consider the path Π(c, c1) and notice that it intersects the x-axis
at a point q. Since |Π(q, q1)| ≥ 1, we have |Π(c, q)|+ 1 ≤ |Π(c, q)|+ |Π(q, q1)| = |Π(c, q1)| ≤ r. By
the case assumption, and by the fact that the polygon does not intersect z1g1 nor z1g2, Π(c, c1) has
a vertex p inside the quadrilateral defined by c∗, g1, z1, g2, such that the polygon does not intersect
the segment pq; see Figure 6. Hence, x(c∗) ≤ x(q) ≤ x(z1) and |Π(c, q)| = |Π(c, p)|+ |pq|. Moreover,
|c∗g1| = 2, and, by Corollary 1, the polygon does not intersect c∗g1.
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• If x(c∗) ≤ x(q) ≤ x(g1), then, since |c∗g1| = 2, we have |c∗q| ≤ 1 or |qg1| ≤ 1, and by
Observation 4, D contains at least one of the points c∗ or g1; see Figure 6(a).

• If x(g1) < x(q) ≤ x(z1), then, since x(g1) = 2 and x(z1) < 3, we have |qg1| ≤ 1, and thus
|Π(c, g1)| ≤ |Π(c, p)| + |pq| + |qg1| < |Π(c, p)| + |pq| + 1 = |Π(c, q)| + 1 ≤ r; see Figure 6(b).
Therefore, D contains g1.

Notice that, by Corollary 1, the polygon does not intersect c∗g1, c∗g3, nor c∗g4. Thus, for i = 3
and i = 4, in Case 2, we have p = c = c′ is D’s center.

`1

g2
z1

c∗ g1

p = c′

q

q1

Π(c, c1)

(a) (b)

`1

g2
z1

c∗ g1

p = c

q

q1

c′ Π(c, c1)

Figure 6: The path Π(c′, c∗) does not intersect z1g1 nor z1g2, (a) p = c. (b) p 6= c.

In the following, we define eight points g+i ∈ Qi and g−i ∈ Qi−1, for each i ∈ {1, 2, 3, 4}, and
we prove some lemmas regarding these points. For each i ∈ {1, 2, 3, 4}, let m+

i (resp., m−i ) be the
tangent line to D∗ that passes through gi and has a positive (resp., negative) slope; see Figure 7
(for an illustration of m+

1 and m−1 ).
The point g+1 is defined as follows. Let D′ be the disk of radius 1 centered at the point (1, 0).

We sweep with a line ` that is tangent to D∗ in counterclockwise order starting with ` = m+
1 and

we stop when ` intersects either D3 or the polygon inside the quadrilateral defined by c∗, g1, z1, g2;
see Figure 7(a). Let u be the intersection point of ` with D′ in Q1 when we stop the sweeping.
We also sweep upwards with a horizontal line `h that passes through the point c∗, and stop when
`h intersects the polygon inside D′, or when `h’s y-coordinate is 1; see Figure 7(b). Let w be the
intersection point of `h with D′ in Q1 when we stop the sweeping. We set g+1 as the lowest point
among u and w.

The point g−1 is defined as follows. We sweep with a line ` that is tangent to D∗ in clockwise
order starting with ` = m−1 and we stop when ` intersects either D1 or the polygon inside the
quadrilateral defined by c∗, g1, z4, g4; see Figure 7. Let u be the intersection point of m−1 with
D′ in Q4 when we stop the sweeping. We also sweep downwards with a horizontal line `h that
passes through the point c∗, and stop either when `h intersects the polygon inside D′, or when `h’s
y-coordinate is -1. Let w be the intersection point of `h with D′ in Q4 when we stop the sweeping.
We set g−1 as the highest point among u and w.

7



g1

z1

`1

c∗

g+1

g2

D3

`3

D′D∗

m+
1

g1

z1

`1

g+1

g2

D3

`3

D′D∗

m+
1

(a) (b)

m−1

z4

g4 g4

g−1

z4

m−1g−1

D1 D1

c∗

` `

` `

`h
u

Figure 7: Defining g+1 and g−1 . (a) g+1 is defined by the intersection of m+
1 with D3 and g−1 is defined

by the intersection of m−1 with D1. (b) g+1 is defined by the intersection of `h with the polygon
inside D′ and g−1 is defined by the intersection of m−1 with the polygon outside D′.

We define g+2 = (−1, 1) and g−2 = (1, 1), and we define g+3 , g−3 , g+4 , and g−4 similarly to g+1 and
g−1 , where the sweeping line ` starts with m+

3 , m−3 , m+
4 , and m−4 , respectively. For g+3 and g−3 , D′

is centered at (−1, 0) and, for g+4 and g−4 , D′ is centered at (0,−1).

Lemma 5. Let D ∈ D be a disk centered at c with radius r and let g′i ∈ {gi, g
+
i , g

−
i }, for each

i ∈ {1, 2, 3, 4}.

(i) If c′ ∈ Q1, and Π(c, c1) intersects the x-axis at a point q with x(c∗) ≤ x(q) ≤ x(g′1), then
|Π(c, c∗)| ≤ r or |Π(c, g′1)| ≤ r; see Figure 8(a).

(ii) If c′ ∈ Q2 and Π(c, c1) intersects the x-axis at a point q with x(g′3) ≤ x(q) ≤ x(c∗), then
|Π(c, c∗)| ≤ r or |Π(c, g′3)| ≤ r; see Figure 8(b).

(iii) If c′ ∈ Q3 and Π(c, c2) intersects the x-axis at a point q with x(g′3) ≤ x(q) ≤ x(c∗), then
|Π(c, c∗)| ≤ r or |Π(c, g′3)| ≤ r; see Figure 8(c).

(iv) If c′ ∈ Q3 and Π(c, c2) intersects the y-axis at a point q with y(g′4) ≤ y(q) ≤ y(c∗), then
|Π(c, c∗)| ≤ r or |Π(c, g′4)| ≤ r; see Figure 8(d).

(v) If c′ ∈ Q4 and Π(c, c3) intersects the x-axis at a point q with x(c∗) ≤ x(q) ≤ x(g′1), then
|Π(c, c∗)| ≤ r or |Π(c, g′1)| ≤ r; see Figure 8(e).

(vi) If c′ ∈ Q4 and Π(c, c3) intersects the y-axis at a point q with y(g′4) ≤ y(q) ≤ y(c∗), then
|Π(c, c∗)| ≤ r or |Π(c, g′4)| ≤ r; see Figure 8(f).
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(a) (b)

z1

c∗

g+1

g2

D∗

g1

q1

Π(c, c1)

`1

q

g−1

Π(c, c1)

`1 q1

z2
g2

c∗
qg3

D∗D′
g−3

g+3

D′

(c) (d)

c∗

z3

g−4Π(c, c2)

q

q2

`2

g3

g4

D∗

D′

g+4

c∗

z3

g−3

Π(c, c2)

q

q2

`2g3

g4

D∗D′

g+3

(e) (f)

z4

c∗
g+1

g4

D∗

g1

q3

q

g−1

`3

Π(c, c3)

c∗

z4

g−4
Π(c, c3)

q

q3

`3

g1

g4

D∗

D′

g+4

Figure 8: Illustration of Lemma 5: (a) Item (i), (b) Item (ii), (c) Item (iii), (d) Item (iv), (e) Item
(v), and (f) Item (vi).

Proof. We prove Item (i), the proofs of the other five items are symmetric.
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Notice that |Π(c, q)|+ 1 ≤ r. Moreover, by Corollary 1, the polygon does not intersect c∗g1; see
Figure 9.

• If x(c∗) ≤ x(q) ≤ 1, then, |c∗q| ≤ 1; see Figure 9(a). Thus, |Π(c, c∗)| ≤ |Π(c, q)| + |qc∗| ≤
|Π(c, q)|+ 1 ≤ r.

• If 1 < x(q) ≤ x(g′1), then |qg′1| ≤ 1; see Figure 9(b). Moreover, by the definition of g′1, the
polygon does not intersect qg′1. Thus, |Π(c, g′1)| ≤ |Π(c, q)|+ |qg′1| ≤ |Π(c, q)|+ 1 ≤ r.

(a) (b)

z1

c∗

g+1

g2

D∗

g1

q1

Π(c, c1)

`1

q

g−1

z1

c∗

g+1

g2

D∗

g1

q1

Π(c, c1)

`1

q

g−1

Figure 9: Illustration of the proof of Lemma 5, Item (i): (a) x(c∗) ≤ x(q) ≤ 1, and (b) 1 ≤ x(q) ≤
x(g′1).

Lemma 6. Let D ∈ D be a disk centered at c with radius r.

(i) If c′ ∈ Q1, Π(c, c1) intersects the x-axis at a point q with x(q) > x(g+1 ), Π(c, c∗) intersects
the segment z1g2 and the polygon intersects the segment z2g2, then |Π(c, g+1 )| ≤ r; see Fig-
ure 10(a).

(ii) If c′ ∈ Q1, Π(c, c1) intersects the x-axis at a point q with x(q) > x(g+1 ), Π(c, c∗) intersects
the segment z1g2 and the polygon does not intersect the segment z2g2, then |Π(c, g+1 )| ≤ r or
|Π(c, g2)| ≤ r; see Figure 10(b).

(iii) If c′ ∈ Q3, Π(c, c2) intersects the y-axis at a point q with y(q) < y(g−4 ), and Π(c, c∗) intersects
the segment z3g3, then, |Π(c, g−4 )| ≤ r or |Π(c, g3)| ≤ r; see Figure 10(c).

(iv) If c′ ∈ Q4, Π(c, c3) intersects the x-axis at a point q with x(q) > x(g−1 ), and Π(c, c∗) intersects
the segment z4g4, then, |Π(c, g−1 )| ≤ r or |Π(c, g4)| ≤ r; see Figure 10(d).

Proof. We prove Items (i) and (ii), the proofs of the other two items are symmetric to the proof of
Item (ii).

Let `v be the vertical line passing through g+1 . Since Π(c, c1) intersects the x-axis at a point q
with x(q) > x(g+1 ), Π(c, c∗) intersects `v at a point p and the polygon cannot intersect the segment
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z1

c∗

g+1

g2

`3

D′D∗

q∗

q

Π(c, c1)

Π(c, c∗)

z1

c∗
g+1

g2

D′D∗

q∗

`3

Π(c, c∗)

Π(c, c1)

q

z2

(a) (b)

(c)

z4

c∗

g−1

`3

D′

D∗
q∗

q

Π(c, c3)
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q
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Figure 10: Illustration of Lemma 6: (a) Item (i), (b) Item (ii), (c) Item (iii), and (d) Item (iv).

pg+1 . Let b = (bx, 2) be the point on Π(c, c∗); see Figure 12. We distinguish between two cases.
Case 1: bx ≤ 3

2 .
Proof of item (i): Since the polygon intersects the segment z2g2, we have y(q∗) ≤ y(g+1 ). Thus, the
angle ∠(p, g+1 , q

∗) is the largest in the triangle 4(p, g+1 , q
∗); see Figure 11. Thus, |pg+1 | ≤ |Π(p, q∗)|.

Therefore, |Π(c, g+1 )| ≤ |Π(c, p)|+ |pg+1 | ≤ |Π(c, p)|+ |Π(, q∗)| = |Π(c, q∗)| ≤ r.
Proof of item (ii):

• If the polygon does not intersect the segment g2b, then, by Observation 6, |bg2| ≤ |bq∗|, and
thus |Π(c, g2)| = |Π(c, b)|+ |bg2| ≤ |Π(c, b)|+ |bq∗| ≤ |Π(c, q∗)| ≤ r; see Figure 12(a).

• Otherwise, the polygon intersects the segment g2b.

– If the polygon intersects the disk D′, then g+1 is defined as the intersection of the sweeping
horizontal line `h with D′, and thus y(q∗) ≤ y(g+1 ); see Figure 12(b). Thus, |pg+1 | ≤ |pq∗|.
Therefore, since the polygon does not intersect the segment pg+1 , we have |Π(c, g+1 )| ≤
|Π(c, p)|+ |pg+1 | ≤ |Π(c, p)|+ |pq∗| ≤ |Π(c, p)|+ |Π(p, q∗)| = |Π(c, q∗)| ≤ r.
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b `3
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q
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p

z2

Figure 11: bx ≤ 3
2 and the polygon intersects the segment z2g2.
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b `3

Π(c, c∗)

(a) (b)

Π(c, c1)

q

`v

p

z1

c∗

g+1

g2

D′D∗

b

`h

Π(c, c∗)

`3

q∗

`v

Π(c, c1)

q

p

Figure 12: bx ≤ 3
2 : (a) The polygon does not intersect the segment g2b. (b) The polygon intersects

the disk D′.

– Otherwise, let `′3 be the horizontal line that is tangent to D∗ at the point (0, 1) and let
Db be the disk centered at b and is tangent to `′3. Let `b be a tangent line of Db and D∗

as depicted in Figure 13(b). Let g be the intersection point of `b with D′ in Q1. Since
g is below g+1 on the boundary of D′, we have |Π(c, g+1 )| ≤ |Π(c, g)|. Therefore, to prove
that |Π(c, g+1 )| ≤ r, it is sufficient to prove that |Π(c, g)| ≤ r.
Let `′v be the vertical line passing through g. Since Π(c, c1) intersects the x-axis at a
point q with x(q) > x(z1), Π(c, c∗) intersects `′v at a point p′ and the polygon cannot
intersect the segment p′g. Let bx denote the x-coordinate of b, and notice that the
coordinates of g = (gx, gy) depend on bx. To compute the coordinates of g, we compute
the intersection point between the tangent line `b with D′ in Q1. The equation of `b is
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(a) (b)

z1
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g+1

g2

D′D∗

q∗

b `3

Π(c, c∗)

Π(c, c1)

q

`v

p z1

c∗
g
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D′D∗

q∗

b

Π(c, c∗)

Π(c, c1)

q

`′v

p′

`′3

`b

Db

g′

Figure 13: bx ≤ 3
2 and the polygon intersects the segment g2b but not D′.

y = 2
bx
x−
√

4+b2x
bx

, and the equation of D′ is (x− 1)2 + y2 = 1. Hence, we have

gx =
b2x + 2

√
4 + b2x + 2bx

»√
4 + b2x − 1

4 + b2x
and gy =

2bx − bx
√

4 + b2x + 4
»√

4 + b2x − 1

4 + b2x
.

Since
b2x+2
√

4+b2x+2bx
»√

4+b2x−1
4+b2x

− bx > 0, for every 0 < bx ≤ 3
2 , we have bx ≤ gx, for every

0 < bx ≤ 3
2 .

Let g′ = (gx, 2) and notice that the polygon does not intersect the segment g′g; see
Figure 13(b). Moreover, since the polygon does not intersect the segment p′g, we have
|Π(c, g′)| ≤ |Π(c, b)|. We now claim that

|g′g| = 2− gy <
»

4 + b2x − 1 = |bq∗|, for every 0 < bx ≤ gx.

That is, 3−
√

4 + b2x < gy =
2bx−bx

√
4+b2x+4

»√
4+b2x−1

4+b2x
. To see the correctness of this in-

equality, we need to show that (3−
√

4 + b2x)(4+b2x) < 2bx−bx
√

4 + b2x+4
»√

4 + b2x − 1.
This is true since the left side of this inequality has maximum value equals 4, when
bx = 0, and the right side of this inequality has minimum value equals 4, when bx = 0,
for each 0 < bx ≤ 3

2 . Therefore, we have |Π(c, g)| ≤ |Π(c, g′)|+ |g′g| ≤ |Π(c, b)|+ |bq∗| ≤
|Π(c, q∗)| ≤ r.

Case 2: bx >
3
2 . We show that in this case we have |Π(c, g+1 )| ≤ r, which proves both Items

(i) and (ii). Let a = (ax, ay) be the intersection point of Π(c, c∗) with the segment z1g2. Since

Π(p, c∗) intersects `v, we have ax ≥ bx > 3
2 . Since the polygon does not intersect the segment ag+1 ,

we have |Π(c, g+1 )| ≤ |Π(c, a)| + |ag+1 |. Thus, it is sufficient to prove that |ag+1 | ≤ |aq∗|, for each
3
2 ≤ ax ≤ x(z1).
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Let `′3 be the horizontal line passing through point (0, 1) and let Da be the disk centered at a
and is tangent to `′3. Let `a be a tangent line to Da and D∗ as depicted in Figure 14(b). Let g be
the intersection point of `a with D′ in Q1. We distinguish between two cases.

z1

c∗

g

g2

`′3

D′D∗

q∗

a

`a

(a) (b)

z1

c∗

g+1

g2

`3

D′D∗

q∗

a

Da

b

q

Π(c, c1)

Π(c, c∗) Π(c, c∗)

q

Π(c, c1)

Figure 14: bx >
3
2 and y(g) ≤ y(g+1 ).

Case 2.1: y(g) ≤ y(g+1 ) (i.e., g is below g+1 on the boundary of D′). Since 1 ≤ x(g+1 ) ≤ 2, we have
|ag+1 | ≤ |ag|. Therefore, to prove the lemma, it is sufficient to prove that |ag| ≤ |aq∗|, for each
3
2 ≤ ax ≤ x(z1).

Since a is on the segment z1g2 and the equation of the line passing through z1 and g2 is

y = 4
√
2−5
3 x + 2, we have ay = (4

√
2−5)ax
3 + 2. Notice that x(g) and y(g) (the coordinates of

g) depend on ax. To compute these coordinates, we compute the intersection point between the

tangent line `a with D′ in Q1. The equation of `a is y =
Ä
x+ 3

4
√
2−5

ä
m− 6

(4
√
2−5)ax

− 1, where

m =
1

8
(
5
√

2− 6
)
ax

Å(
12
√

2− 15
)
ax + 18−…

−3
((

120
√

2− 171
)
a2x −

(
1712
√

2− 2420
)
ax + 480

√
2− 684

) ã
.

Let t be the point on the segment z1g2, where x(t) = 3
2 . We prove that |ag| ≤ |aq∗|, for each

3
2 ≤ ax ≤ x(z1) by dividing the segment tz1 into 7 intervals defined by the points t0, t1, . . . , t7,
where x(t0) = x(t) = 3

2 , x(t1) = 1.52, x(t2) = 1.56, x(t3) = 1.63, x(t4) = 1.74, x(t5) = 1.9,

x(t6) = 2.15, and x(t7) = x(z1) = 3(2+
√
2)

4 . For each 1 ≤ i ≤ 7, we compute the intersection point

g′i of la with the disk D′, where a = ti, and we show that |ag′i| =
√

(ax − x(g′i))
2 + (ay − y(g′i))

2 ≤»
a2x + a2y − 1 = |aq∗|, for each x(ti−1) ≤ ax ≤ x(ti).

• For i = 1, we have g′1 = (1.8033, 0.5955), and thus»
(ax − 1.8033)2 + (ay − 0.5955)2 ≤

»
a2x + a2y − 1, for each 1.5 ≤ ax ≤ 1.52.

• For i = 2, we have g′2 = (1.8152, 0.5792), and thus»
(ax − 1.8152)2 + (ay − 0.5792)2 ≤

»
a2x + a2y − 1, for each 1.52 ≤ ax ≤ 1.56.
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• For i = 3, we have g′3 = (1.8347, 0.5507), and thus»
(ax − 1.8347)2 + (ay − 0.5507)2 ≤

»
a2x + a2y − 1, for each 1.56 ≤ ax ≤ 1.63.

• For i = 4, we have g′4 = (1.8623, 0.5063), and thus»
(ax − 1.8623)2 + (ay − 0.5063)2 ≤

»
a2x + a2y − 1, for each 1.63 ≤ ax ≤ 1.74.

• For i = 5, we have g′5 = (1.8966, 0.4429), and thus»
(ax − 1.8966)2 + (ay − 0.4429)2 ≤

»
a2x + a2y − 1, for each 1.174 ≤ ax ≤ 1.9.

• For i = 6, we have g′6 = (1.9376, 0.3478), and thus»
(ax − 1.9376)2 + (ay − 0.3478)2 ≤

»
a2x + a2y − 1, for each 1.9 ≤ ax ≤ 2.15.

• For i = 7, we have g′7 = (1.9787, 0.2053), and thus»
(ax − 1.9787)2 + (ay − 0.2053)2 ≤

»
a2x + a2y − 1, for each 2.15 ≤ ax ≤

3(2 +
√

2)

4
.

These inequalities hold since the function
»
a2x + a2y − 1−

√
(ax − x(g′i))

2 + (ay − y(g′i))
2 is mono-

tonic in the interval x(ti−1) ≤ ax ≤ x(ti), and has minimum value when ax = x(ti−1), for each
1 ≤ i ≤ 7. Thus, for each ax ≤ x(ti), where 1 ≤ i ≤ 7, we have |ag| ≤ |ag′i|. This proves that
|ag| ≤ |aq∗|.
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g

g2

`′3

D′D∗

q∗

a

`v
`a

(a)

Da
Π(c, c∗)

g+1

p

`h

(b)

q

Π(c, c1)

z1

c∗

g

g2

`′3

D′
D∗

q∗

a

`v

`a

Da Π(c, c∗)

g+1
`h

q

Π(c, c1)

Figure 15: bx >
3
2 and y(g′) > y(g+1 ).

Case 2.2: y(g) > y(g+1 ) (i.e., g is above g+1 on the boundary of D′). Observe that this case
can happen only if the polygon intersects the line `′3. Recall that `v is the vertical line passing
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through g+1 , p is the intersection point of Π(c, c∗) with `v, and the polygon does not intersect the

segment pg+1 . Let `h be the horizontal line passing through g+1 . Since the polygon intersects `′3,
we have y(q∗) ≤ y(g+1 ), i.e., q∗ is below `h; see Figure 15. Thus, the angle ∠(p, g+1 , q

∗) ≥ π
2 ,

and, since the polygon does not intersect pg+1 , we have |pg+1 | ≤ |Π(p, q∗)|. Therefore, |Π(c, g+1 )| ≤
|Π(c, p)|+ |pg+1 | ≤ |Π(c, p)|+ |Π(p, q∗)| = |Π(c, q∗)| ≤ r.

Lemma 7. Let D ∈ D be a disk centered at c with radius r.

(i) If c′ ∈ Q1, Π(c, c1) intersects the x-axis at a point q with x(q) > x(g+1 ), and Π(c, c∗) intersects
the segment z1g1, then |Π(c, g+1 )| ≤ r; see Figure 16(a).

(ii) if c′ ∈ Q3, Π(c, c2) intersects the y-axis at a point q with y(q) < x(g−4 ), and Π(c, c∗) intersects
the segment z3g4, then |Π(c, g−4 )| ≤ r; see Figure 16(b).

(iii) If c′ ∈ Q4, Π(c, c3) intersects the x-axis at a point q with x(q) > x(g−1 ), and Π(c, c∗) intersects
the segment z4g1, then |Π(c, g−1 )| ≤ r; see Figure 16(c).
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(c)
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D′

D∗

g3

q∗

q

Π(c, c2)

Π(c, c∗)

`2

z4

c∗

g−1

`3

D′

D∗
q∗

q

Π(c, c3)

Π(c, c∗)
g4

`1

Figure 16: Illustration of Lemma 7: Item (i), (b) Item (ii), and (c) Item (iii).
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Proof. We prove Item (i), the proofs of the other items are symmetric.
Let `v be the vertical line passing through g+1 , and let p be the intersection point of Π(c, c∗)

with `v; see Figure 17. We distinguish between two cases.
Case 1: y(p) ≥ y(g+1 ); see Figure 17(a). Let a be the intersection point of Π(c, c∗) with z1g1. By
the definition of z1, we have |ag1| ≤ |aq∗|, and thus |Π(c, g1)| ≤ r. Moreover, since p is above g+1 ,
g+1 is inside the pseudo-triangle 4(c, q∗, g1); see Figure 17(a). Thus, by Observation 3, D contains
g+1 , and therefore |Π(c, g+1 )| ≤ r.

(a) (b)
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g2

D′D∗
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Π(c, c1)

`1

q

`v

Π(c, c∗)

p
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g+1

g2 `3

D′D∗

q1

Π(c, c1)

`1

q

`v

Π(c, c∗)

pq∗
q∗

Π(c, c3)

q3
a

`t

(c)

z1

c∗

g+1

g2 `3

D′D∗

q1

Π(c, c1)

`1

q

`v

Π(c, c∗)

pq∗

Π(c, c3)
q3

`t

`h
ab

D3

Figure 17: Illustration of the proof of Lemma 7, Item (i): (a) y(p) ≥ y(g+1 ), (b) y(p) < y(g+1 ) and
Π(c, c3) intersects `t above g+1 , and (c) y(p) < y(g+1 ) and Π(c, c3) intersects `t below g+1 .

Case 2: y(p) < y(g+1 ); see Figure 17(b). Let `t be the line that is tangent to D∗ and passes through
g+1 , and observe that Π(c, c3) intersects this line.

• If Π(c, c3) intersects `t above g+1 , then g+1 is inside the pseudo-triangle 4(c, q∗, q3); see Fig-
ure 17(b). Thus, by Observation 3, D contains jg+1 , and therefore |Π(c, g+1 )| ≤ r.
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• If Π(c, c3) intersects `t below g+1 , then let `h be the horizontal line passing through g+1 ; see
Figure 17(c). Let a be the intersection point of Π(c, c3) with the boundary of D′, and let b
be the intersection point of Π(c, c3) with `h. Observe that x(b) ≤ x(g+1 ) ≤ x(a) and y(b) =
y(g+1 ) ≥ y(a). Hence, the angle ∠(a, g+1 , b) is the largest in the triangle 4(a, g+1 , b). Thus,
|ag+1 | ≤ |ab| ≤ |Π(a, q3)|. Therefore, |Π(c, g+1 )| ≤ |Π(c, a)| + |ag+1 | ≤ |Π(c, a)| + |Π(a, q3)| =
|Π(c, q3)| ≤ r.

Lemma 8. Let D ∈ D be a disk centered at c with radius r.

(i) If c′ ∈ Q1 and Π(c, c∗) does not intersect the segments z1g1 nor z1g2, then |Π(c, c∗)| ≤ r or
|Π(c, g+1 )| ≤ r; see Figure 18(a).

(ii) If c′ ∈ Q3, Π(c, c∗) does not intersect the segments z3g4 nor z3g3, and Π(c, c2) intersects the
negative y-axis, then |Π(c, c∗)| ≤ r or |Π(c, g−4 )| ≤ r; see Figure 18(b).

(iii) If c′ ∈ Q4, Π(c, c∗) does not intersect the segments z4g4 nor z4g1, and Π(c, c3) intersects the
positive x-axis, then |Π(c, c∗)| ≤ r or |Π(c, g−1 )| ≤ r; see Figure 18(c).
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Figure 18: Illustration of Lemma 8: (a) Item (i), (b) Item (ii), and (c) Item (iii).
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Proof. We prove Item (i), the proofs of the other two items are symmetric.
Since c′ ∈ Q1, the path Π(c, c1) intersects the positive x-axis at a point q. If x(c∗) ≤ x(q) ≤

x(g+1 ), then by Lemma 5, |Π(c, c∗)| ≤ r or |Π(c, g−1 )| ≤ r. Otherwise, x(g+1 ) < x(q) ≤ x(z1). Let `h
be the horizontal line passing through g+1 .

• If Π(c, c1) intersects `h, then let p be this intersection point; see Figure 19(a). Thus, x(g+1 ) ≤
x(p) ≤ x(z1) and the polygon does not intersect the segment g+1 p. Let q1 be the intersection
point of Π(c, c1) with `1. Since, |pg+1 | = |pq| + (x(p) − 2), x(p) < 3, and |pq1| = |pq| + 1,
we have |pg+1 | < |pq1| ≤ |Π(p, q1)|. Therefore, since |Π(c, q1)| ≤ r, we have |Π(c, g+1 )| ≤
|Π(c, p)|+ |pg+1 | ≤ |Π(c, p)|+ |Π(p, q1)| = |Π(c, q1)| ≤ r.

• If Π(c, c1) does not intersect `h, then let `t be the tangent to D∗ with positive slope that
passes through g+1 ; see Figure 19(b).

– If Π(c, c3) intersects `t above g+1 , then g+1 is inside the pseudo-triangle 4(c, q∗, q3).
Thus, by Observation 3, D contains g+1 , and therefore |Π(c, g+1 )| ≤ r.

– If Π(c, c3) intersects `t below g+1 , then let `h be the horizontal line passing through g+1 .
Let a be the intersection point of Π(c, c3) with the boundary of D′, and let b be the
intersection point of Π(c, c3) with `h. Observe that x(b) ≤ x(g+1 ) ≤ x(a) and y(b) =
y(g+1 ) ≥ y(a). Hence, the angle ∠(a, g+1 , b) is the largest in the triangle4(a, g+1 , b). Thus,
|ag+1 | ≤ |ab| ≤ |Π(a, q3)|. Therefore, Π(c, g+1 ) ≤ |Π(c, a)|+ |ag+1 | ≤ |Π(c, a)|+ |Π(a, q3)| =
|Π(c, q3)| ≤ r.
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Π(c, c3)

q3

`t
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Figure 19: Illustration of the proof of Lemma 8, Item (i): (a) Π(c, c1) intersects `h, and (b) Π(c, c1)
does not intersect `h.

Lemma 9. Let D ∈ D be a disk centered at c with radius r.

(i) If c′ ∈ Q1 and g−1 6= g1, then |Π(c, c∗)| ≤ r or |Π(c, g−1 )| ≤ r; see Figure 20(a).

(ii) If c′ ∈ Q4, g+1 6= g1 and Π(c, c3) intersects the positive x-axis, then |Π(c, c∗)| ≤ r or
|Π(c, g+1 )| ≤ r; see Figure 20(b)
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(iii) If c′ ∈ Q4, g−4 6= g4 and Π(c, c3) intersects the negative y-axis, then |Π(c, c∗)| ≤ r or
|Π(c, g−4 )| ≤ r; see Figure 20(c).
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Figure 20: Illustration of Lemma 9: (a) Item (i), (b) Item (ii), and (c) Item (iii).

Proof. We prove Item (i), the proofs of the other two items are symmetric.
Since c′ ∈ Q1, Π(c, c1) intersects the positive x-axis at a point q. If x(c∗) ≤ x(q) ≤ x(g−1 ),

then, by Lemma 5, |Π(c, c∗)| ≤ r or |Π(c, g−1 )| ≤ r. Otherwise, x(q) > x(g−1 ). Let `t be the line
of negative slope that is tangent to D∗ and passes through g−1 , and observe that if g−1 6= g1, then
Π(c, c1) intersects this line; see Figure 21.

• If Π(c, c1) intersects `t below g−1 , then g−1 is inside the pseudo-triangle 4(c, q∗, q1); see Fig-
ure 21(a). Thus, by Observation 3, D contains g−1 , and therefore |Π(c, g−1 )| ≤ r.

• If Π(c, c1) intersects `t above g−1 , then let `h be the horizontal line passing through g−1 ; see
Figure 21(b). Let a be the intersection point of Π(c, c1) with the boundary of D′, and let b
be the intersection point of Π(c, c1) with `h. Observe that x(b) ≤ x(g−1 ) ≤ x(a) and y(b) =
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y(g−1 ) ≤ y(a). Hence, the angle ∠(a, g−1 , b) is the largest in the triangle 4(a, g−1 , b). Thus,
|ag−1 | ≤ |ab| ≤ |Π(a, q1)|. Therefore, |Π(c, g−1 )| ≤ |Π(c, a)| + |ag−1 | ≤ |Π(c, a)| + |Π(a, q1)| =
|Π(c, q1)| ≤ r.
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Figure 21: Illustration of the proof of Lemma 9, Item (i): (a) Π(c, c1) intersects `t below g−1 , and
(b) Π(c, c1) intersects `t above g−1 .

Lemma 10. Let D ∈ D be a disk centered at c with radius r and c′ ∈ Q2, such that Π(c, c1)
intersects the x-axis at a point q with x(q) < x(z2), and Π(c, c∗) intersects the segment z2g2. If
α2 >

π
3 , then |Π(c, g+2 )| ≤ r.

Proof. Let `v be the vertical line passing through g+2 and let p be the intersection point of Π(c, c∗)
with `v; see Figure 22.

• If y(p) ≥ y(g+2 ) = 1, then, since y(q∗) ≤ 1, the angle ∠(p, g+2 , q
∗) is the largest in the triangle

4(p, g+2 , q
∗); see Figure 22(a). Since the polygon does not intersect pg+2 , we have |pg+2 | ≤

|Π(p, q∗)|. Therefore, |Π(c, g+2 )| ≤ |Π(c, p)|+ |pg+2 | ≤ |Π(c, p)|+ |Π(p, q∗)| = |Π(c, q∗)| ≤ r.

• If y(p) < y(g+2 ), then consider the path Π(c, c2) and notice that, since α2 >
π
3 , this path

intersects `v at a point a; see Figure 22(b). If y(a) ≥ y(g+2 ), then g+2 is inside the pseudo
triangle 4(c, q∗, q2), and by Observation 3, D contains g+2 . Otherwise, 0 ≤ y(a) < y(g+2 ). In
this case, |ag+2 | ≤ 1, and, since α2 >

π
3 , we have |Π(a, q2)| > 1. Moreover, since the polygon

does not intersect ag+2 , we have |ag+2 | < |Π(a, q2)|. Therefore, |Π(c, g+2 )| ≤ |Π(c, a)|+ |ag+2 | <
|Π(c, a)|+ |Π(a, q2)| = |Π(c, q2)| ≤ r.

Lemma 11. Let D ∈ D be a disk centered at c with radius r and c′ ∈ Q4, such that Π(c, c3)
intersects the x-axis at a point q where x(q) > x(g1). If α3 >

π
6 , then

• if Π(c, c∗) intersects z4g1, then |Π(c, g1)| ≤ r; and
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Figure 22: Illustration of the proof of Lemma 10: (a) Π(c, c∗) intersects `v above g+2 , and (b)
Π(c, c∗) intersects `v below g+2 .

• if Π(c, c∗) intersects z4g4, then |Π(c, g1)| ≤ r and |Π(c, g−1 )| ≤ r.

Proof. Let `t be the line tangent to D∗ with a positive slope that passes through g1, and notice that
the acute angle between `t and the x-axis is π

3 . Since α3 >
π
6 , Π(c, c3) intersects `t. Moreover, since

x(q) > x(g1), g1 is inside the pseudo-triangle 4(c, q∗, q3); see Figure 23(a). Thus, by Observation 3,
D contains g1, and therefore |Π(c, g1)| ≤ r. Let g = (−1,−1), and notice that g−1 is on the small

arc
_
g1g of D′ between g1 and g; see Figure 23(b). If Π(c, c∗) intersects z4g4, then

_
g1g is contained

in the pseudo-triangle 4(c, q∗, q3). Thus, by Observation 3, D contains both g1 and g−1 . Therefore,
|Π(c, g1)| ≤ r and |Π(c, g−1 )| ≤ r.
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Figure 23: Illustration of the proof of Lemma 11: (a) Π(c, c∗) intersects z4g1, and (b) Π(c, c∗)
intersects z4g4.
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The following lemma and its proof is symmetric to Lemma 11.

Lemma 12. Let D ∈ D be a disk centered at c with radius r and c′ ∈ Q4, such that Π(c, c3)
intersects the y-axis at a point q where y(q) < y(g4). If α3 ≤ π

3 , then

• if Π(c, c∗) intersects z4g4, then |Π(c, g4)| ≤ r; see Figure 24(a); and

• if Π(c, c∗) intersects z4g1, then |Π(c, g4)| ≤ r and |Π(c, g+4 )| ≤ r; see Figure 24(b).
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`t q
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q∗

D∗
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g4 g+4

Figure 24: Illustration of Lemma 12: (a) Π(c, c∗) intersects z4g4, and (b) Π(c, c∗) intersects z4g1.

3 The Algorithm

In this section, we show how to compute a set S of five points that pierce all the disks of D. The
algorithm, in a high-level description, works as follows. It first initializes S by {c∗}. Then, it goes
over the segments zigi, zigi+1, for each i = 1, 2, 3, 4 (in a fixed order), and, for each segment, it
checks whether the polygon intersects the segment, and adds to S a point g′i ∈ {gi, g

+
i , g

−
i }.

Recall that α2 (resp., α3) is the acute angle between `2 (resp., `3) and the x-axis, and notice
that at most one of them is greater than π

3 . We distinguish between three cases:

(i) α2 >
π
3 ;

(ii) α3 >
π
3 ;

(iii) α2 ≤ π
3 and α3 ≤ π

3 .

Notice that Case (i) and Case (ii) are symmetric. In Algorithm 1, we describe how to compute S
in Case (i), and, in Algorithm 2, we describe how to compute S in Case (iii).
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Algorithm 1 Compute S when α2 >
π
3

1: g′1 ← g1, g
′
2 ← g2, g

′
3 ← g3, g

′
4 ← g4

2: if P does not intersect z1g1 then
3: if P intersects z1g2 or z2g2 then
4: g′1 ← g+1
5: if P intersects z2g2 then
6: g′2 ← g+2
7: else
8: if P intersects z4g4 then
9: g′1 ← g−1

10: if P does not intersect z2g3 then
11: if P intersects z2g2 then
12: g′2 ← g+2
13: if P does not intersect z3g4 then
14: if P intersects z3g3 then
15: g′4 ← g−4
16: return S = {c∗, g′1, g′2, g′3, g′4}

Algorithm 2 Compute S when α2 ≤ π
3 and α3 ≤ π

3

1: g′1 ← g1, g
′
2 ← g2, g

′
3 ← g3, g

′
4 ← g4

2: if P does not intersect z1g1 then
3: if P intersects z1g2 then
4: g′1 ← g+1
5: if P does not intersect z2g3 then
6: if P intersects z2g2 then
7: g′3 ← g−3
8: if P does not intersect z1g1, z1g2, z2g2 nor z2g3 then
9: if P intersects z3g4 then

10: g′3 ← g+3
11: if P intersects z4g4 then
12: g′1 ← g−1
13: return S = {c∗, g′1, g′2, g′3, g′4}

4 Correctness

Let D ∈ D be a disk with center c and radius r. For each i ∈ {1, 2, 3}, let qi be the intersection
point of the path Π(c, ci) with the line `i. Let q∗ be the intersection point of the path Π(c, c∗) with
the boundary of D∗, and let c′ be the point on Π(c, c∗), such that the edge (c′, c∗) is the last edge
in Π(c, c∗). That is, c′ is the first point on Π(c, c∗) that is visible from c∗. We prove that the set
S = {c∗, g′1, g′2, g′3, g′4} (that is computed by the algorithm) pierces all the disks of D. In the proof,
we distinguish between three cases: (i) α2 >

π
3 ; (ii) α3 >

π
3 ; and (iii) α2 ≤ π

3 and α3 ≤ π
3 . Following

the algorithm, we show in Section 4.1 the proof for Case (i) and in Section 4.2 the proof for Case
(iii) (since Case (i) and Case (ii) are symmetric).
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4.1 Case (i): α2 >
π
3

Let D ∈ D be a disk with center c and radius r. We show that D is pierced by at least one of the
points of S. We distinguish between four cases according to which quadrant c′ belongs to.

4.1.1 c′ ∈ Q1

We prove that D is pierced by at least one of the points g′1, g
′
2, or c∗. We distinguish between four

cases.
Case 1: The polygon does not intersect z1g1, z1g2, z2g2, nor z4g4. In this case, g′1 = g1 and g′2 = g2,
and by Lemma 4, D is pierced by at least one of the points g′1, g

′
2, and c∗.

Case 2: The polygon intersects z1g1; see Figure 25. In this case, g′1 = g1. Consider the path
Π(c, c1) and notice that this path intersects the positive x-axis. Let q be this intersection point.
Thus, |Π(c, q)|+ 1 ≤ r.

(i) If x(c∗) ≤ x(q) ≤ x(g1), then by Lemma 5, Item (i), D contains at least one of the points c∗

or g1; see Figure 25(a).

(ii) If x(g1) < x(q) ≤ x(z1), then, since x(g1) = 2 and x(z1) < 3, we have |qg1| < 1. Since q is
the intersection point of Π(c, c1) with the x-axis, the polygon does not intersect qg1. Thus,
|Π(c, g1)| ≤ |Π(c, q)|+ |qg1| ≤ |Π(c, q)|+ 1 ≤ r. Therefore, D contains g1.

(iii) If x(q) > x(z1), then consider the path Π(c, c∗) and let p be the intersection point of Π(c, c∗)
with z1g1; see Figure 25(b). Thus, the polygon does not intersect pg1, and, by Observation 5,
we have |pg1| ≤ |pq∗| ≤ |Π(p, q∗)|. Thus, |Π(c, g1)| ≤ |Π(c, p)| + |pg1| ≤ |Π(c, p)| + |pq∗| ≤
|Π(c, p)|+ |Π(p, q∗)| = |Π(c, q∗)| ≤ r. Therefore, D contains g1.

g1

q

(a) (b)

Π(c, c1)
z1

`1 q1

g1
q

Π(c, c∗)

z1

`1 q1

q∗
Π(c, c1)p

g2

c∗

g2

c∗

D∗ D∗

Figure 25: Illustration of the proof of Case 2. (a) x(c∗) ≤ x(q) ≤ x(z1), and (b) x(q) > x(z1).

Case 3: The polygon does not intersect z1g1 but intersects z1g2 or z2g2. In this case, g′1 = g+1 .
Consider the path Π(c, c1) and notice that this path intersects the positive x-axis at a point q.

(i) If x(c∗) ≤ x(q) ≤ x(g+1 ), then, by Lemma 5, Item (i), |Π(c, c∗)| ≤ r or |Π(c, g+1 )| ≤ r, and
therefore D contains c∗ or g+1 .

(ii) If x(q) > x(g+1 ) and Π(c, c∗) intersects the segment z1g2, then,
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– if the polygon intersects the segment z2g2, then, by Lemma 6, Item (i), |Π(c, g+1 )| ≤ r,
and therefore D contains g+1 ; and

– if the polygon does not intersect the segment z2g2, then, in this case, g′2 = g2, and, by
Lemma 6, Item (ii), |Π(c, g+1 )| ≤ r or |Π(c, g2)| ≤ r, and therefore D contains g+1 or g2.

(iii) If x(q) > x(g+1 ) and Π(c, c∗) intersects the segment z1g1, then, by Lemma 7, Item (i),
|Π(c, g+1 )| ≤ r, and therefore D contains g+1 .

(iv) If x(q) > x(g+1 ) and Π(c, c∗) does not intersect the segments z1g1 nor z1g2, then, by Lemma 8,
Item (i), |Π(c, c∗)| ≤ r or |Π(c, g+1 )| ≤ r, and therefore D contains c∗ or g+1 .

Case 4: The polygon does not intersect z1g1, z1g2 nor z2g2 but intersects z4g4. In this case,
g′1 = g−1 , and thus, by Lemma 9, Item (i), |Π(c, g−1 )| ≤ r or |Π(c, c∗)| ≤ r, and therefore D contains
g−1 or c∗.

4.1.2 c′ ∈ Q2

We prove that D is pierced by at least one of the points g′2 , g′3, or c∗. We distinguish between
three cases.
Case 1: The polygon does not intersect z2g2 nor z2g3. In this case, g′2 = g2 and g′3 = g3, and by
Lemma 4, D is pierced by at least one of the points g′2 , g′3, or c∗.
Case 2: The polygon intersects z2g3. In this case, g′3 = g3 and D contains at least one of the
points c∗ or g3 (the proof is symmetric to Case 2 in Section 4.1.1); see Figure 26.
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c∗q
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`1 q1

q∗Π(c, c1) p

g2

g3

z2

g2

c∗q
g3

D∗ D∗

Figure 26: Case 2: (a) x(g3) ≤ x(q) ≤ x(c∗), and (b) x(q) < x(z2).

Case 3: The polygon does not intersect z2g3 but intersects z2g2. In this case, g′2 = g+2 = (−1, 1)
and g′3 = g3. Consider the path Π(c, c1) and notice that it intersects the negative x-axis at a point
q. Thus, |Π(c, q)|+ 1 ≤ r.

(i) If x(g3) ≤ x(q) ≤ x(c∗), then, by Lemma 5, Item (ii), we have |Π(c, c∗)| ≤ r or |Π(c, g3)| ≤ r,
and therefore D contains c∗ or g3.
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(ii) If x(z2) ≤ x(q) ≤ x(g3), then, since x(z2) > −3 and x(g3) = −2, we have |qg3| < 1. Since the
polygon does intersect qg3, we have |Π(c, g3)| ≤ |Π(c, q)|+ |qg3| < |Π(c, q)|+1 ≤ r. Therefore,
D contains g3.

(iii) If x(q) < x(z2), then consider the path Π(c, c∗), and notice that this path intersects either
z2g2 or z2g3.

– If Π(c, c∗) intersects z2g2, then, since α2 >
π
3 , by Lemma 10, we have |Π(c, g+2 )| ≤ r, and

therefore D contains g+2 .

– If Π(c, c∗) intersects z2g3, then let p be this intersection point. Since the polygon does
not intersect pg3, by Observation 5, we have |pg3| ≤ |pq∗| ≤ |Π(p, q∗)|. Thus, |Π(c, g3)| ≤
|Π(c, p)|+ |pg3| ≤ |Π(c, p)|+ |Π(p, q∗)| = |Π(c, q∗)| ≤ r. Therefore, D contains g3.

4.1.3 c′ ∈ Q3

We prove that D is pierced by at least one of the points g′3 , g′4, or c∗.
Case 1: The polygon does not intersect z3g3 nor z3g4. In this case, g′3 = g3 and g′4 = g4, and by
Lemma 4, D is pierced by at least one of the points g′3 , g′4, and c∗.
Case 2: The polygon intersects z3g4. In this case g′3 = g3 and g′4 = g4. Consider the path
Π(c, c2), and notice that it intersects either the negative y-axis or the negative x-axis. Let q be this
intersection point. Thus, |Π(c, q)|+ 1 ≤ r.

(i) If Π(c, c2) intersects the negative y-axis, then D contains at least one of the points c∗ or g4
(the proof is symmetric to Case 2 in Section 4.1.1); see Figure 27.
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Figure 27: Π(c, c2) intersects the y-axis (a) y(g4) ≤ y(q) ≤ y(c∗), and (b) y(q) < y(g4).

(ii) If Π(c, c2) intersects the negative x-axis and x(g3) ≤ x(q) ≤ x(c∗), then, by Lemma 5, Item
(iii), D contains at least one of the points c∗ or g3; see Figure 28(a).

(iii) If Π(c, c2) intersects the negative x-axis and x(q) < x(g3), then consider the path Π(c, c∗)
and notice that, since α2 >

π
3 and x(q) < x(g3), this path intersects z3g3 at a point p and the
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polygon does not intersect pg3; see Figure 28(b). Hence, by Observation 5, we have |pg3| ≤
|pq∗| ≤ |Π(p, q∗)|. Thus, |Π(c, g3)| ≤ |Π(c, p)| + |pg3| ≤ |Π(c, p)| + |Π(p, q∗)| = |Π(c, q∗)| ≤ r.
Therefore, D contains g3.
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Figure 28: Case 2: (a) Π(c, c2) intersects the x-axis and x(g3) ≤ x(q) ≤ x(c∗), and (b) Π(c, c2)
intersects the x-axis and x(q) < x(g3).

Case 3: The polygon does not intersect z3g4 but intersects z3g3. In this case g′3 = g3 and g′4 = g−4 .
Consider the path Π(c, c2) and notice that it intersects either the negative y-axis or the negative
x-axis. Let q be this intersection point. Thus, |Π(c, q)|+ 1 ≤ r.

(i) Π(c, c2) intersects the negative x-axis, then D contains at least one of the points c∗ and g3
(the proof is symmetric to the proof of Items (ii) and (iii) in the previous case); see Figure 29.
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Figure 29: Π(c, c2) intersects the x-axis. (a) x(g3) ≤ x(q) ≤ x(c∗), and (b) x(q) < x(g3).
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(ii) Π(c, c2) intersects the negative y-axis and y(g−4 ) ≤ y(q) ≤ y(c∗), then, by Lemma 5, Item
(iv), we have |Π(c, c∗)| ≤ r or |Π(c, g−4 )| ≤ r, and therefore D contains c∗ or g−4 .

(iii) If y(q) < y(g−4 ) and Π(c, c∗) intersects the segment z3g3, then, by Lemma 6, Item (iii),
|Π(c, g−4 )| ≤ r or |Π(c, g3)| ≤ r, and therefore D contains g−4 or g3.

(iv) If y(q) < y(g−4 ) and Π(c, c∗) intersects the segment z3g4, then, by Lemma 7, Item (ii),
|Π(c, g−4 )| ≤ r, and therefore D contains g−4 .

(v) If y(q) < y(g−4 ) and Π(c, c∗) does not intersect the segments z3g4 nor z3g3, then, by Lemma 8,
Item (ii), |Π(c, g−4 )| ≤ r, and therefore D contains g−4 .

4.1.4 c′ ∈ Q4

We prove that D is pierced by at least one of the points g′1, g
′
4, or c∗. Consider the path Π(c, c3),

and notice that it intersects either the positive x-axis or the negative y-axis at a point q.
The point q is on the positive x-axis.
Case 1: x(c∗) ≤ x(q) ≤ x(g′1). By Lemma 5, Item (v), |Π(c, c∗)| ≤ r or |Π(c, g′1)| ≤ r, and therefore
D contains c∗ or g′1.
Case 2: x(q) > x(g′1). We distinguish between three cases.
Case 2.1: g′1 = g1.

(i) If the polygon intersects z1g1, then Π(c, c3) intersects z1g1 at a point p. Thus, g1 is inside the
pseudo-triangle 4(c, q∗, p), and, by Observation 3, D contains g1.

(ii) If the polygon intersects z4g1, then D contains at least one of the points c∗ or g1 (the proof
is symmetric to the proof of Case 2 in Section 4.1.1).

(iii) If the polygon does not intersect z1g1 nor z4g1, then, since g′1 = g1, the polygon does not
intersect z4g4. If g′4 = g4, then, by Lemma 4, D is pierced by at least one of the points g′1, g

′
4,

and c∗. Otherwise, g′4 = g−4 . In this case, the polygon intersects z3g3, and, by Observation 7,
we have α3 >

π
5 . Thus, by Lemma 11, |Π(c, g1)| ≤ r, and therefore D contains g1.

Case 2.2: g′1 = g+1 6= g1. By Lemma 9, Item (ii), |Π(c, c∗)| ≤ r or |Π(c, g+1 )| ≤ r, and therefore D
contains c∗ or g+1 .
Case 2.3: g′1 = g−1 .

(i) If Π(c, c∗) intersects z4g4, then, if g′4 = g4, then, by Lemma 6, Item (iv), |Π(c, g−1 )| ≤ r
or |Π(c, g4)| ≤ r, and therefore D contains g−1 or g4. Otherwise, g′4 = g−4 . In this case,
the polygon intersects z3g3, and, by Observation 7, we have α3 >

π
5 . Thus, by Lemma 11,

|Π(c, g1)| ≤ r, and therefore D contains g1.

(ii) If Π(c, c∗) intersects z4g1, then by Lemma 7, Item (iii), |Π(c, g−1 )| ≤ r, and therefore D
contains g−1 .

(iii) If Π(c, c∗) does not intersect z4g1 nor z4g4, then, by Lemma 8, Item (iii), |Π(c, c∗)| ≤ r or
|Π(c, g−1 )| ≤ r, and therefore D contains c∗ or g−1 .
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The point q is on the negative y-axis.
Case 1: y(g′4) ≤ y(q) ≤ y(c∗). By Lemma 5, Item (vi), |Π(c, c∗)| ≤ r or |Π(c, g′4)| ≤ r, and
therefore D contains c∗ or g′4.
Case 2: y(q) < y(g′4). We distinguish between two cases.
Case 2.1: g′4 = g−4 6= g4. By Lemma 9, Item (iii), |Π(c, c∗)| ≤ r or |Π(c, g−4 )| ≤ r, and therefore D
contains c∗ or g−4 .
Case 2.2: g′4 = g4. Then, since α3 ≤ π

3 , by Lemma 12, |Π(c, g4)| ≤ r, and therefore D contains g4.

4.2 Case (iii): α2 ≤ π
3
and α3 ≤ π

3

Let D ∈ D be a disk with center c and radius r. We show that D is pierced by at least one of
the points of S. Notice that in Algorithm 2, Q1 is symmetric to Q2 and Q3 is symmetric to Q4.
Therefore, we show the correctness for the cases where c′ ∈ Q1 and c′ ∈ Q4.

4.2.1 c′ ∈ Q1

We prove that D is pierced by at least one of the points g′1, g
′
2, or c∗. We distinguish between four

cases.

Case 1: The polygon does not intersect z1g1, z1g2, nor z4g4. In this case, g′1 = g1 and g′2 = g2,
and by Lemma 4, D contains at least one of the points g′1, g

′
2, and c∗.

Case 2: The polygon intersects z1g1; see Figure 25. In this case, g′1 = g1, and D contains at least
one of the points c∗ or g1. The proof is the same as in Case 2 of Section 4.1.1.
Case 3: The polygon does not intersect z1g1, but intersects z1g2. In this case, g′1 = g+1 and g′2 = g2,
and D contains at least one of the points g2, g

+
1 and c∗. The proof is the same as in Case 3 of

Section 4.1.1.
Case 4: The polygon does not intersect z1g1 nor z1g2 but intersects z4g4. In this case g′1 = g−1 and
g′2 = g2, and D contains at least one of the points c∗ or g−1 . The proof is the same as in Case 4 of
Section 4.1.1.

4.2.2 c′ ∈ Q4

We prove that D is pierced by at least one of the points g′1, g
′
4, and c∗. Notice that in this case where

both α2 and α3 are less or equal to π
3 , Algorithm 2 does not change g4, thus g′4 = g4. Consider

the path Π(c, c3), and notice that it intersects either the positive x-axis or the negative y-axis at a
point q.
The point q is on the positive x-axis.
Case 1: x(c∗) ≤ x(q) ≤ x(g′1). By Lemma 5, Item (v), |Π(c, c∗)| ≤ r or |Π(c, g′1)| ≤ r, and therefore
D contains c∗ or g′1.
Case 2: x(q) > x(g′1). We distinguish between three cases.
Case 2.1: g′1 = g1.

(i) If the polygon intersects z1g1, then Π(c, c3) intersects z1g1 at a point p. Thus, g1 is inside the
pseudo-triangle 4(c, q∗, p), and, by Observation 3, D contains g1.

(ii) If the polygon intersects z4g1, then D contains at least one of the points c∗ or g1 (the proof
is symmetric to the proof of Case 2 in Section 4.1.1).
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(iii) If the polygon does not intersect z1g1 nor z4g1, then, since g′1 = g1, the polygon does not
intersect z4g4. Since g′4 = g4, by Lemma 4, D is pierced by at least one of the points g′1, g

′
4,

and c∗.

Case 2.2: g′1 = g+1 6= g1. By Lemma 9, Item (ii), |Π(c, c∗)| ≤ r or |Π(c, g+1 )| ≤ r, and therefore D
contains c∗ or g+1 .
Case 2.3: g′1 = g−1 .

(i) If Π(c, c∗) intersects z4g4, then, since g′4 = g4, by Lemma 6, Item (iv), we have |Π(c, g−1 )| ≤ r
or |Π(c, g4)| ≤ r, and therefore D contains g−1 or g4.

(ii) If Π(c, c∗) intersects z4g1, then by Lemma 7, Item (iii), |Π(c, g−1 )| ≤ r, and therefore D
contains g−1 .

(iii) If Π(c, c∗) does not intersect z4g1 nor z4g4, then, by Lemma 8, Item (iii), |Π(c, c∗)| ≤ r or
|Π(c, g−1 )| ≤ r, and therefore D contains c∗ or g−1 .

The point q is on the negative y-axis.
Case 1: y(g′4) ≤ y(q) ≤ y(c∗). By Lemma 5, Item (vi), |Π(c, c∗)| ≤ r or |Π(c, g′4)| ≤ r, and
therefore D contains c∗ or g′4.
Case 2: y(q) < y(g′4). Since, g′4 = g4 and α3 ≤ π

3 , by Lemma 12, we have |Π(c, g4)| ≤ r, and
therefore D contains g4.

5 Conclusion

We have shown that five points are sufficient to pierce a set of pairwise intersecting geodesic disks
inside a polygon P . This improves the upper bound of 14, which was provided by Bose et al. [1].
This upper bound is very close to the lower bound for stabbing pairwise intersecting disks in the
plane, which was proven to be four.
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