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Abstract: A 3-prismatoid is the convex hull of two convex polygons A and B
which lie in parallel planes HA, HB ⊂ R

3. Let Ã be the orthogonal projection of A
onto HB. A 3-prismatoid is called nested if Ã is properly contained in B, or vice
versa. We show that every nested 3-prismatoid has an edge-unfolding to a non-
overlapping polygon in the plane.

1 Introduction

Throughout, a polytope is the boundary of a convex 3-dimensional polytope. If a
polytope is cut along a spanning tree of its edge-graph, the resulting (2-dimensional)
polyhedral surface can be unfolded flat into the plane, cf. [Gho14]. This unfolded
surface, or: unfolding, is called simple if it has no self-overlaps. If a polytope has
a simple unfolding, it is called unfoldable. The question whether every polytope is
unfoldable can be dated back to the “Painter’s Manual” by Albrecht Dürer [Dü25].
It is thus often referred to as Dürer’s Problem.

It was proved by Ghomi that every polytope is unfoldable after an affine stretch-
ing, which implies that every combinatorial type of polytope has an infinite number
of unfoldable realizations [Gho14]. O’Rourke established the unfoldability of nearly
flat, acutely triangulated convex caps [O’R18, O’R17]. A convex cap is a polytope
C which has a designated facet F so that the orthogonal projection of C \F onto F
is one-to-one. An acute triangulation of a 2-dimensional surface is a triangulation of
the latter so that every interior angle of every of its triangles is smaller than π/2. A
recent negative result, which Barvinok and Ghomi distilled from a highly original but
flawed preprint of Tarasov [BG17, Tar08], concerns the existence of counterexam-
ples to a more general form of Dürer’s problem which considers cuts along so-called
pseudo-edges, which are geodesics in the intrinsic metric of a polytope. Another
generalized form of Dürer’s problem concerns unfoldability of non-convex polytopes

1

http://arxiv.org/abs/2105.00555v3


Figure 1: Petal and band unfolding of a prism over a triangle.

which are combinatorially equivalent to a convex 3-polytope. There are several
ununfoldable families of such polytopes known, cf. [Gru02, Tar, DDE20].

1.1 Unfolding prismatoids

In the context of this work, a prismatoid P is boundary of the convex hull of two
convex polygons A and B that lie in parallel planes, say HA and HB. As such,
prismatoids are 3-polytopes. We will refer to A and B as the top and base of P ,
respectively. The set of lateral facets of a prismatoid is called its band. A prismatoid
whose lateral facets are trapezoids is called a prismoid. In this case, corresponding
top and base edges are parallel.

There are two natural ways to unfold prismatoids, the band unfolding, and the
petal unfolding [O’R12], cf. Figure 1. In a band unfolding the top and base are
removed, and one lateral edge is cut. Then the band is unrolled into the plane as
one connected patch, and A and B are reattached to the latter along one suitable
edge each. Every prismoid has a lateral edge e so that the band, if cut along e, can
be unfolded without self-intersections [Alo05, ADL+08]. But there exist prismoids,
and hence prismatoids, so that every placement of the prismoid top overlaps with
every one of its band unfoldings [O’R07].

In a petal unfolding either A or B is a designated facet to which all lateral facets
are left attached. Assume that the designated facet is B. Then for each vertex bi of
B exactly one lateral edge adjacent to it is cut. The so-called resulting petals are
unfolded into the plane while A is left attached to this unit along a single suitable
edge. O’Rourke proved that every prismoid has a non-overlapping petal unfolding
[O’R01]. Smooth prismatoids, which are the convex hull of two smooth convex
curves lying in parallel planes, have a petal unfolding as well [BCO04]. Further,
several subclasses of prismatoids are known to have a petal unfolding. A nonobtuse
triangle is a triangle so that all its interior angles are smaller than or equal to π/2.
A prismatoid has a petal unfolding if all its facets, except possibly its base B, are
nonobtuse triangles [O’R12], or if the base is a rectangle and all other facets are
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acute triangles, or if the top and base are sufficiently far from each other [?].

1.2 Main result

A prismatoid is called nested if the orthogonal projection of (the convex polygon)
A onto HB is properly contained in (the convex polygon) B, or vice versa. (Note
that nested prismatoids are a special class of convex caps.) Our main result is the
following:

Theorem 1.1. Let P be a nested prismatoid. Then P is unfoldable.

To this end we apply a combination of the petal and the band unfolding strategies
to nested prismatoids. More precisely, we cut the band into two pieces. Crucial in the
selection of the band-patches which are left intact is the notion of radially monotone
polygonal paths, which was introduced and exploited to great effect in [O’R18].

1.3 Content and Structure

In Section 2 we will introduce the necessary concepts for our investigation and some
preliminary results. Sections 3 and 4 contain the proof of our main result.

2 Preliminaries

We will follow notation and naming conventions established by Ghomi in [Gho14]
and O’Rourke in [O’R18, ADL+08] whenever possible. As noted above, by “poly-
tope” we mean the boundary of a convex 3-polytope which lives in R

3. A prismatoid
P is the boundary of the convex hull of two convex polygons A ⊂ HA and B ⊂ HB,
where HA and HB are parallel affine planes. We will assume without loss of gen-
erality that the projection of A, the top of P , to HB is properly contained in B,
the base of P . Further, we will assume that HB is the xy-plane embedded in R
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and HA, which is a parallel to HB, has a positive height. Vertices of A and B are
denoted ai and bj , respectively.

Vertices of an n-gon are enumerated counterclockwise from 1 to n with respect
to a viewpoint above the polygon. Let D be a convex polygon bounded by the
polygonal path [d1, . . . , dn]. A subpath [di, di+1, . . . , dj] of the boundary of D is
denoted (di, dj). We define the curvature at a vertex dk as the angle spanned by the
outward edge normals of D at dk. The total curvature of a subpath (di, dj) is the sum
of the curvatures at its interior vertices {di+1, di+2, . . . , dj−1}. In some sources these
quantities are also called the turn angle and the turn; see, for example, [Alo05]. For
brevity we will refer to the total curvature of a path simply as its curvature, if the
meaning is clear from the context.
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A band piece of a prismatoid is a connected set of its lateral facets. If a band
piece is bounded at the top by Γ := [ak, . . . , aℓ] and at the base by Ω := [bK , . . . , bL],
then we call Γ its top boundary and the curvature of Γ its top curvature. Base
boundary and curvature are defined analogously. We use the same letters in upper
and lower case to underline the facts that the end vertices of top and base boundary
a) correspond to each other, while b) they usually do not have the same index.

We define the flat prismatoid P 0 corresponding to P as follows: The lower facet
of P 0 coincides with the base B of P . The upper facets of P 0 are obtained as the
cells of a subdivision of B which is induced by the orthogonal projection of P \ B
onto B. This projection is one-to-one since nested prismatoids are polyhedral caps.

2.1 Projections and unfoldings

Let P be a nested prismatoid with top A and base B. Then we denote the orthogonal
projection of any subset C ⊂ P onto HB by C̃.

The edge graph of a polytope is the graph whose vertex set is the set of vertices
of the polytope, and whose edge set is the set of edges of the polytope. As mentioned
in the introduction, any spanning tree of the edge graph of a polytope P induces an
unfolding of P into the plane, cf. [Gho14]. This unfolding is an isometric immersion
which is unique up to rigid motions. The immersion is one-to-one, i.e., an embedding,
if and only if the unfolding is simple in the sense that it does not self-overlap. In
this case, and this case only, the image of the edge graph spanning tree, along which
the polytope has been cut, is a simple – usually non-convex – polygon.

Any subset C of a polytope P which has been cut along a spanning tree of its
edge graph can be isometrically immersed, i.e., unfolded into a plane, as well. We
denote the unfolded image of C by C̄ and assume the plane to be HB, the xy-plane
embedded in R

3. In particular, P̄ denotes the unfolded image of P . In some sources
P̄ is subscripted with a T , where T denotes the specific edge graph spanning tree
along which P has been cut. But we will construct only one such tree. Hence,
omitting the subscript introduces no ambiguities.

2.2 Radial monotonicity

A polygonal path Γ ⊂ R
2 is called radially monotone if when traversing it from an

endpoint the Euclidean distance to that endpoint increases monotonically. In other
words, for points pi, pj, pk ∈ Γ the Euclidean distance of pi and pj is greater than
that of pi and pk if and only if their distances within Γ have the same relation; cf.
[O’R18]. Let Γ := (di, dj) be a subpath of a convex n-gon D := conv(d1, . . . , dn)
in some plane H . Furhter, let Ω be another polygonal path in H that is obtained
from Γ by decreasing the curvature at all of its interior vertices, but not decreasing
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Γ

Ω

di di+1

Γ

Ω

di di+1

Figure 2: Stretching of paths with curvature > π
2
(left), resp. ≤ π

2
(right).

curvature to 0 or less at any vertex. We then say that Ω is obtained by stretching
Γ. In [O’R18] we find the following crucial observation.

Observation 2.1. Let Γ := (di, dj) be a subpath of a convex n-gon D in some plane
H. Further, let Ω be obtained by stretching Γ, keeping its first edge, (di, di+1), fixed.
If (di+1, dj) is radially monotone, then the intersection of Γ and Ω consists of the
fixed edge (di, di+1) and no other point of the two paths, cf. Figure 2.

Note that for a subpath of the boundary of a convex polygon a sufficient condition
for radial monotonicity is that its curvature does not exceed π/2. Proof: Assume
there are points p1, p2 with the same distance to the starting point p of a path Γ.
Then the equilateral triangle [p, p1, p2, p] has interior angles α1 = α2 < π/2 at p1 and
p2, respectively. But by construction π−α1 = π−α2—the curvature of the triangle
triangle [p, p1, p2, p] at p1 and p2, respectively—is a lower bound for the curvature
of Γ.

2.3 Flattening of the band

The observation below was stated for the special case of nested prismoids in both
[O’R07] and [ADL+08]. We will generalize it to nested prismatoids.

Observation 2.2. Let M be a connected piece of the band of some nested prismoid
P , which is bounded at the top and base by polygonal paths Γ and Ω, respectively.
Then Γ̄ and Ω̄ are stretchings of Γ̃ and Ω̃, respectively. The curvature at every
interior vertex of Γ̄ and Ω̄ must remain larger than 0.

First, recall some definitions from the literature. The total angle of a vertex of
a polytope is the sum of the incident face angles. For any polytope, the total angle
is ≤ 2π with equality if and only if the incident faces lie in a plane (which does not
occur in our situation). Let M be a connected piece of the band of some nested
prismatoid P which is bounded by the polygonal path [a1, . . . , ak, bK , . . . , b1, a1]. We
call the boundary subpaths [a1, . . . , ak] and [b1, . . . , bK ] the top and base boundary
of M , respectively.
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For i ∈ {2, . . . , k − 1} (the indices of the interior vertices of the top boundary)
let αA(ai) be the incident top angle at ai, and αM(ai) the sum of the incident band
angles. Similarly, for j ∈ {2, . . . , K − 1} (the indices of the interior vertices of the
base boundary), let βB(bj) be the incident base angle at bj , and βM(bj) the sum of
the incident band angles. Further, define αM̄(ai) and βM̄(bj) for the unfolded band
piece M̄ analogously to αM(ai) and βM(bj).

Now let M̄ be an unfolding of M into the plane. Due to the assumption that P
is nested, we have

βB(bj) < βM(bj) = βM̄(bj) < π .

Since the total angle at ai is smaller than 2π, we get

αA(ai) < 2π − αM̄(ai) = 2π − αM(ai) < π < αM(ai) .

That is, the unfolding of [b1, . . . , bK ], the base boundary of M , is a stretching of
its orthogonal projection to the plane. Likewise, [a1, . . . , ak] is stretched by its
unfolding. This establishes the first part of the observation.

The curvature at every interior vertex of Γ̄ and Ω̄ must remain larger than 0 since
P is properly nested in the sense that the boundary of Ã and B do not intersect.
Note that without proper nesting this would not necessarily be the case; see, for
example, the band unfolding of a prism in Figure 1 (right).

3 Cutting strategy and placing the top

In Section 3.1 we collect some observations about band unfoldings and then derive
our cutting strategy from these insights. In particular, we make observations about
band pieces whose top and base end edges are parallel. This is not the case in
general. However, in Section 3.2 we will show that there exists a cutting strategy
for arbitrary nested prismatoids so that the last facets of the band pieces can (if
they are triangles) be embedded into trapezoids in a way that the resulting strictly
larger polyhedral surface is unfoldable without self-overlap, implying (overlap-free)
unfoldability of the actual (unextended) nested prismatoid.

3.1 Observations about band unfoldings

Let M be a connected piece of the band of a nested prismatoid P , bounded at the
top by Γ := [a1, . . . , ak] and at the base by Ω := [b1, . . . , bK ]. Assume that the pairs
of edges (a1, a2), (b1, b2), and (ak−1, ak), (bK−1, bK) are each contained in a lateral
trapezoid and are thus parallel. Then by elementary geometry Γ and Ω both have
the same curvature. Assume that this curvature is ≤ π. Then, due to Observation
2.2, the curvature of Γ̄ and Ω̄ is smaller than π, while the curvature at every interior
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M̃ ẽ Ã

ã1

ãk

b̃1

b̃K

ēM̄ Ā

ā1

āk

b̄1

b̄K

Figure 3: Projection M̃ and unfolding M̄ of band piece M . First and last edges of
Ω̄ := [b̄1, . . . , b̄K ] and Γ̄ := [ā1, . . . , āK ] are parallel. Dotted lines through every edge
of Ω̄ induce halfspaces that contain N̄ , the surface consisting of M̄ and Ā.

vertex of Γ̄ and Ω̄ larger than 0. Together with the fact that their end edges must
be parallel, this implies that M̄ does not self-intersect and any line through an edge
of Ω̄ induces a closed half plane that contains M̄ .

Moreover, since the curvature of Γ̄ is smaller than π, by elementary arithmetic
there must exist an edge ē := (āi, āi+1) so that if its relative interior is removed
from Γ̄, each of the two remaining subpaths of Γ̄ either consists of a single vertex or
has a curvature ≤ π/2 and is thus radially monotone. Hence, Observations 2.1 and
2.2 imply that if we attach A (thereafter Ā) to M̄ along ē, it does not intersect M̄
anywhere else. Moreover, any line through an edge of Γ̄ induces a closed half plane
that contains Ā. In particular, Ā cannot properly intersect the affine rays emanating
from ā2 and āk−1 through the edges (ā1, ā2) and (āk−1, āk), respectively. Composing
the latter rays with the subpath [ā2, . . . , āk−1] yields an unbounded curve, say Γ̄′,
that intersects Ā only in the edge (āi, āi+1). Since Γ̄ and Ω̄ are parallel in their ends,
every line through an edge of Ω̄ induces a closed half plane whose interior contains Γ̄′

and thus also Ā, cf. Figure 3. We summarize the relevant aspects of these findings.

Observation 3.1. In the above constellation, where the first and last edges of Γ̄ and
Ω̄ are parallel, M̄ does not self-intersect. Moreover, there exists an edge e of Γ̄ so
that if we attach A (thereafter Ā) to M̄ along e, the resulting flat polyhedral surface,
say N̄ , does not self-intersect and every line through an edge of Ω̄ induces a closed
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b1bn

ã1

bK

ãk

M̃+M̃− Ã

L1

L2

L4

L3

b1bn

ã1

bK

ãk

g1

g2

g4

g3

Ñ

T̃1

T̃2

Figure 4: Left: Determining the lateral cut edges; the cut edges (bK , ak) and (a1, b1)
are printed fat. Right: Gluing trapezoids to one of the band pieces.

half plane that contains N̄ .

3.2 Cutting and placing the top

We will now devise a cutting-scheme that recreates the above ideal constellation
sufficiently well to harness all its advantages. Let P be a nested prismatoid with top
A, base B, and corresponding flat prismatoid P 0. We assume that A is an m-gon
with boundary [a1, . . . , am] and B an n-gon with boundary [b1, . . . , bn].

Now pick any vertex of B. By rotating the indices, if necessary, we can assume
that we picked b1. Let L1 be the line through the edge (bn, b1). We say a line L
supports a convex polygon C in a plane H if it lies in H , has a nonempty intersection
with C and C is contained in one of the two closed half planes induced by L. Let
L2 and L3 be the unique disjoint supporting lines of Ã which are parallel to L1, and
let L2 be the one closer to L1. Further, let L4 be the unique supporting line of B
which is parallel to L1 and disjoint from it, cf. Figure 4 (left).

We denote by K the smallest index so that bK is contained in L4. Further,
enumerate the indices of Ã so that ã1 is contained in L2, but ã2 is not and denote
by k the smallest index so that ãk is contained in L3. Again, cf. Figure 4 (left).

Observation 3.2. The vertices a1 and b1, as well as ak and bK are adjacent. More-
over, the edge (a1, b1) lies in a lateral facet which contains the edge (bn, b1).

How do we see this? Pick an arbitrary vertex of the base, say bi, and let H−

and H+ be two planes which contain the lateral facets with base edges (bi−1, bi)
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and (bi, bi+1), respectively. Then the intersections of H− and H+ with HA project
orthogonally into lines L− and L+ in HB which are parallel to (bi−1, bi) and (bi, bi+1),
respectively. Relabel A so that ã1 is contained in L−, but ã2 is not, and let k be the
smallest index so that ãk is contained in L+. Then by construction every lateral edge
incident to bi must contain a vertex of the path [a1, . . . , ak], and the first and the
last vertices of this path are contained in the lateral facets with base edges (bi−1, bi)
and (bi, bi+1), respectively. This establishes the claim.

Now cut the lateral edges (a1, b1) and (ak, bK), as well as all top and base edges.
This dissects P into four pieces, the top A, the base B and two band pieces. We
denote the band piece in counterclockwise direction from (a1, b1) by M+ and the
one in clockwise direction by M−, cf. Figure 4 (left).

Next, we recreate our ideal constellation outlined above by embedding M+ in a
strictly larger polyhedral surface that satisfies all conditions which lead to Observa-
tion 3.1. To this end, let g1, g̃2, g̃3, and g4 be four parallel line segments of nonzero
but otherwise arbitrary length with the following properties, cf. Figure 4 (right).

• They lie in L1, L2, L3, and L4, respectively.

• They originate in b1, ã1, ãk, and bK , respectively.

• They all extend into the same direction, the one where neither g̃2, nor g̃3
intersect the interior of M̃+.

Let g2 and g3 be the orthogonal projections of g̃2 and g̃3 to HA and glue the two
trapezoids, say T1 and T2, which arise as the convex hulls of g1 and g2, resp., g3 and
g4, to M+ along their common edges (a1, b1) and (ak, bK), respectively. Again, cf.
Figure 4 (right). This constructed polyhedral surface has a top and base curvature
of exactly π and both its end facets are trapezoids. Hence, Observation 3.1 applies
to it – and thus to its subset M+. Applying the analogous construction to M−, we
get:

Observation 3.3. M̄+ does not self-intersect. Moreover, there exists an edge e of
its top boundary so that if we attach A (thereafter Ā) to M̄+ along e, the resulting flat
polyhedral surface does not self-intersect and every line through an edge of the base
boundary of M̄+ induces a closed half plane that contains it. Analogous statements
hold for M̄−.

4 Gluing the band pieces to the base

The cutting strategy presented above dissects a nested prismatoid into four pieces,
A, B, M+, and M−. Moving on, we attach the top A to M+ along the edge e from
Observation 3.3. We will denote the polyhedral surface consisting of A glued to M+
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along e by N . There are technical reasons we will explain below to choose M+ and
not M− for the attachment of the top.

We will now single out two edges along which the three pieces B, M− and N
can be reattached so that the resulting polyhedral surface whose unfolding does not
self-intersect. We will denote by e− the edge that connects M− to B and by e+ the
edge that connects B to M+. To this end, we distinguish two cases.

• Case 1: There exists a vertex of the base B with a curvature ≥ π
2
.

• Case 2: No such vertex exists.

We will treat the first case in detail and then show how to reduce the second case
to the first.

Case 1: Label B so that the vertex with curvature ≥ π
2
is b1 and apply our

cutting strategy, cf. Figure 5 (top). Then set e− := (bn, b1) and e+ := (b1, b2), cf.
Figure 5 (bottom left and right). By Observation 3.3 we can establish unfoldability
in the first case by proving that M̄− intersects the line through e+ nowhere except
in b1. Let g be the outward normal ray of e− at b1. Since the curvature at b1 is
≥ π/2, we are done if we can prove that M̄− intersects g in b1 and nowhere else.
For this it suffices to prove that the base boundary of M̄− intersects g only in b1
and its top boundary does not intersect g at all.

By Observation 3.2 our cutting strategy ensures the following: If there is more
than one lateral edge incident to b1, then (a1, b1) is the first one of them counted
in counterclockwise direction and there must exist a lateral facet that contains the
edges e− = (bn, b1) and (a1, b1). (This is not the case for M+. Hence, our choice
above.) This facet is either a trapezoid or a triangle. If it is not a trapezoid, embed
the facet in a trapezoid by taking its convex hull with a point, say v, that lies on L2

and projects into the interior of B, but not into M̃−, cf. Figure 5 (all subfigures).
By construction, this does not increase the top curvature of M̃− beyond π. We
will thus assume without loss of generality that the lateral facet containing e− is a
trapezoid.

Since P is properly nested, i.e., Ã is contained in the interior of B, and due to
the curvature at b1, the reflection of M̃− at e− can intersect g in at most two points.
These are the endpoints of its base boundary, b1 and the reflection of b̃ℓ at e−. Let p
be a point in either the top or the base boundary of M−, and p′ the reflection of p̃ at
e−. We will show that the distance of p̄ to g is larger than or equal to the distance
of p′ to g, with equality if and only if p is contained in e− = (bn, b1) or (am, a1), that
is, if it lies in the top or base edge of the lateral trapezoid that contains e−.

If p lies in e−, this is clear, because e− = ẽ− = ē−. By elementary geometry,
the edges (ãn, ã1), its reflection at e−, and (ān, ā1) are parallel. Moreover, ã1, its
reflection at e−, and ā1 lie on a line which is perpendicular to e−, cf. Figure 6.
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b1bn

ã1 ṽ

bK

ãk

M̃+M̃−

Ã

L1

L2

L4

L3

b1

g

bn e−

e+

ã′1 ṽ′

bK

b′K

ã′k

(M̃+)′

(M̃−)′

B
Ã′

b1

g

bn e−

e+

āk

b̄K

bK

v̄ā1

M̄+

M̄−

B
Ā

Figure 5: Case 1: Projecting and cutting (top), reflecting (bottom left) and un-
folding (bottom right).
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e+g

ã1

a1

bn

e−

b1

ā1

Figure 6: Projection, reflection of projection, and unfolding of lateral trapezoid
incident to e− := (bn, b1) in Case 1.

Hence, (ãn, ã1), its reflection at e−, and (ān, ā1) can be translated into each other
by translating them parallel to g. This proves the claim for p ∈ (an, a1).

Now denote by Ω the base boundary of M−. We can transform the reflection of
Ω̃ at e−, which we denote by Ω̃′, into Ω̄ as follows. First, decrease the curvature at
b̃′K+1

so that it matches the curvature at b̄K+1 in Ω̄. This rotates the edge (b̃′K , b̃
′

K+1
)

about b̄K+1 in clockwise direction (seen from a vantage point above HB). Since the
curvature of Ω̃′ is ≤ π and e− is perpendicular to g, this rotation must increase
the distance to g for all points in (b̃′K , b̃

′

K+1
), except b̃′K+1

. Successively applying

this procedure to b̃′K+2,. . . ,b̃
′

n yields the claim. A similar argument can be made for
the image of the top boundary with one extra step: First perform the rotations, as
above. This yields a curve congruent to Γ̄. Then shift this curve parallel to g into Γ̄,
which does not change the distance to g for any point in the translated curve. This
completes our proof for the first case that there exists a base vertex with curvature
≥ π/2.

Case 2: In this case B has no vertex with a curvature ≥ π/2. Then by elemen-
tary arithmetic there must exist an index i so that the path (b1, bi) has a curvature
in [π

2
, π). We set e+ := (bi−1, bi). Further, set e− := (bn, b1), as in the first case. Let

L− be the line through e−, L+ the line through e+, and p their intersection. Then
the curvature of the polygonal path [b1, p, bi−1] at p is ≥ π/2, and we can prove the
claim that M̄− does not intersect the outward normal ray g of (b1, p) emanating
from p in full analogy to the above claim that M̄− intersects g only in b1, where b1
is a base vertex with curvature ≥ π/2. This completes our proof for the second case
that there exists no base vertex with curvature ≥ π/2, and thus completes the proof
of Theorem 1.1.
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b1
bn e−

e+

(M̃+)′

(M̃−)′

B

Ã′

g

p
b1

bn e−

e+

M̄+

M̄−

B

Ā

Figure 7: Left: Unfolding of P 0 according to Case 2. Ã′, the reflection of Ã, is
attached at the fat edge of the reflection of M̃+. Right: Unfolding of P
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