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Abstract

In secure group communications, a key server can deliver a “group-
oriented” rekey message [20] to a large number of users efficiently using
multicast. For reliable delivery, Keystone [21] proposed the use of
forward error correction (FEC) in an initial multicast, followed by the
use of unicast delivery for users that cannot recover their new keys
from the multicast. In this paper, we investigate how to limit unicast
recovery to a small fraction r of the user population. By specifying a
very small r, almost all users in the group will receive their new keys
within a single multicast round.

We present analytic models for deriving r as a function of the
amount of FEC redundant information (denoted by h) and the rekey-
ing interval duration (denoted by T ) for both Bernoulli and two-state
Markov Chain loss models. From our analyses, we conclude that r de-
creases roughly at an exponential rate as h increases. We then present
a protocol designed to adaptively adjust (h, T ) to achieve a specified r.
In particular, our protocol chooses from among all feasible (h, T ) pairs
one with h and T values close to their feasible minima. Our protocol
also adapts to an increase in network traffic. Simulation results using
ns-2 show that with network congestion our adaptive FEC protocol
can still achieve a specified r by adjusting values of h and T .

∗Research sponsored by NSF grant no. ANI-9977267. An abbreviated version of this
paper to appear in Proceedings of ICC 2003 Symposium on Next Generation Internet,
Anchorage, Alaska, May 2003.
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1 Introduction

Many emerging Internet applications, such as pay-per-view distribution of
digital media, restricted teleconferences, multi-party games, and virtual
private networks, will benefit from using a secure group communications
model [20]. In this model, members of a group share a symmetric key,
called group key, which is known only to group users and the key server.
The group key can be used for encrypting data traffic between group mem-
bers or restricting access to resources intended for group members only. The
group key is distributed by a group key management system, which changes
the group key from time to time (called group rekeying).

The design of a group key management system has had extensive research
in recent years [18, 20, 8, 4, 23, 6, 11, 24]. In particular, the key tree
approach [18, 20] reduces the server processing time complexity of group
rekeying from O(N) to O(logd (N)) where N is group size and d the key
tree degree. This approach was shown to be optimal in [17]. A key tree is a
rooted tree with the group key as root [20]. There are two types of nodes:
u-nodes containing users’ individual keys, and k-nodes containing the group
key and auxiliary keys. A user’s individual key is shared only between the
user and key server. Each user is given its individual key as well as keys
contained in k-nodes on the path from its u-node to the root node. When
a user joins or leaves the group, all keys on the path from the user’s u-
node to the root node should be changed. Rekeying after every join or
leave request, however, can incur a large server processing overhead. Thus
periodic batch rekeying was proposed to further reduce server processing
overhead [16, 23, 10].

The key tree approach requires reliable delivery of new keys to users for
group rekeying. This is because the key server uses keys for one rekeying
interval to encrypt new keys for the next rekeying interval. Each user how-
ever does not have to receive the entire rekey message because it needs only
those new keys that are located on the path from the user’s u-node to the
root node (a very small subset of all new keys).

For reliable delivery, [21, 23, 24] proposed the use of forward error cor-
rection (FEC) in an initial multicast [15], followed by the use of unicast
delivery for users that cannot receive or recover their new keys from the
multicast.

Each unicast packet contains encrypted keys for only one particular user.
Thus, the size of a unicast packet is much smaller than that of the rekey
message for the group. As a result, unicast recovery will not cause a problem
at the server if the number of users who need unicast recovery is small.
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In this paper we investigate how to limit unicast recovery to a small
fraction r of the user population. To achieve low delay, our protocol runs
only one multicast round.

With a very small r, we can achieve the following benefits. First we
can significantly reduce the unicast traffic. Second, a small r can achieve
low delivery latency for most users who receive or recover their new keys
in a single multicast round. Last, a small r can reduce the data buffering
overhead at the user side. This is because when a sending user (or the data
server) uses the newly received group key to encrypt outgoing data, the users
who have not yet received the new group key will have to buffer incoming
encrypted data before the arrival of the new group key. If r is small, we
expect that most users will receive the new group key at roughly the same
time, and thus they incur only a very small buffering overhead.

To achieve a small r, we may need to increase the rekeying interval
duration T . More specifically, to make r smaller, we need to increase h (the
amount of FEC redundant information) and thus the number of packets in
rekey traffic. To keep the sending rate of rekey traffic constant, we may have
to increase T ; otherwise, the sending rate of rekey traffic will increase and
it may hurt the performance of other flows in the Internet [2, 3].

On the other hand, as a measure of the granularity of group access
control, a small T is preferable. This is because all join and leave requests
issued in the same rekeying interval are processed in a batch. Thus a new
group key will not be generated and used until the end of each rekeying
interval. As a result, a departed user can still read future data for up to
T time units after it has left the group. Hence, a small T is desirable to
achieve tight access control.

In this paper, we investigate the tradeoffs between r, T , and h. We
present analytic models for deriving r as a function of T and h. We then de-
sign an adaptive FEC protocol to achieve a target value of r under dynamic
network conditions. Our protocol chooses from among all feasible (h, T )
pairs one with h and T values close to their feasible minima. Simulation
results from ns-2 show that our protocol can achieve fairly smooth traces
of r when group rekeying is subjected to statistical fluctuations of a fixed
set of competing flows. We also investigated the dynamic behavior of our
protocol when the set of competing flows is increased. We found that with
the onset of network congestion our adaptive FEC protocol can still achieve
the target r by adjusting values of h and T .

The balance of the paper is organized as follows. In Section 2, we present
the basic group rekeying protocol. In Section 3, we analyze the tradeoffs
between r, T , and h. In Section 4, we design and evaluate our adaptive
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FEC protocol. Our conclusions are in Section 5.

2 An overview of group rekeying protocol

In this section, we give an overview of our group rekeying protocol. The
key server protocol for one rekey message is as follows. (See [24] for a more
detailed description.)

• At the end of each rekeying interval, the key server uses group-oriented
rekeying strategy [20] to generate a rekey message. Each item in the
message is an encrypted new key, called encryption. In the key tree
approach, a user needs a particular encryption only if the encryption
contains a key that is on the path from the user’s u-node to the root
node.

• The key server divides the rekey message into rekey packets. Our
packet generation algorithm guarantees that all of the encryptions
needed by any user will be contained in a single packet. We refer
the interested readers to [24] for a detailed discussion of our packet
generation algorithm.

• The key server partitions the packets into multiple blocks. Each block
contains k packets.1 We call k the block size. The key server then gen-
erates h parity packets for each block using a Reed-Solomon Erasure
(RSE) coder [13].

• The key server multicasts k rekey packets and h parity packets for
each block within the next rekeying interval.

• The key server collects NACKs from users, and adjusts the values of h
and T for the next rekey message according to the number of NACKs
received.

• The key server switches to unicast recovery for users that sent NACKs.
For each such user, the key server sends a single unicast packet con-
taining encryptions needed by the user. Since it takes time for the key
server to receive NACKs, unicast recovery for a rekey message has to
be executed in later rekeying intervals, concurrently with the multicast
of subsequent rekey messages.

1The key server may need to duplicate some packets so that there are exactly k packets
for each block.

4



At the user side, following a timeout, a user checks whether it has re-
ceived or can recover its required encryptions. A user can recover its re-
quired encryptions in any one of the following three cases: 1) The user
receives the specific rekey packet that contains the user’s encryptions. 2)
The user receives at least k packets from the block that contains its specific
rekey packet, and thus the user can recover the k original rekey packets. 3)
The user receives a unicast packet during subsequent unicast recovery. The
unicast packet contains all of the encryptions needed by the user.

If the user cannot recover its required encryptions, it will report a NACK
to the key server. The NACK specifies the number of packets needed by
this user to recover its block. By the property of Reed-Solomon encoding,
this value equals to k minus the number of packets received in the block
containing its specific rekey packet. This information is needed by the key
server’s adaptive FEC scheme.

3 Analyses

In our group rekeying protocol, we care about two performance metrics: r
and T .

Metric r measures the fraction of users who cannot receive the new group
key on time. Our protocol uses an FEC scheme to send k + h packets for
each block within rekeying interval T , such that most users can receive or
recover their required encryptions within a single multicast round. We call
the (expected) fraction of users who cannot receive or recover their required
encryptions during multicast as residual error rate r. For these users, the key
server will use unicast to deliver their required encryptions to them. These
users, however, have to buffer incoming data packets that are encrypted by
the new group key until they receive the new keys. Hence, a small r is
preferable in terms of reducing the buffering overhead at the user side as
well as reducing the key server’s unicast traffic.

Metric T is a performance measure of the group access control granu-
larity. In periodic batch rekeying a new group key will not be generated
and used until the end of a rekeying interval. As a result, a departed user
can still read future data for up to T time units after it has left the group.
Hence, a small T is desirable to achieve tight access control.

Ideally we want to achieve both small r and small T ; however, these two
goals conflict with each other. More specifically, in order to achieve a smaller
r, the key server needs to increase h. To send all of the k + h packets for
each block within rekeying interval T , the key server may have to increase
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T . Otherwise, the increased rekey traffic may hurt the performance of other
flows in the Internet [2, 3].

In this section, we will investigate the tradeoffs between r, T , and h. To
do it, we will first analyze r as a function of h and T , and then investigate
the impact of rekeying bandwidth constraint on the relationships among h,
T , and r.

3.1 Analytic models

In this subsection, we will analyze r as a function of h and T , denoted
by r = f(h, T ). Both Bernoulli and Markov loss models are considered.
For simplicity of analyses, we assume that users experience independent
and homogeneous (same loss parameters) losses. Under this assumption, r
equals to the probability that a user cannot receive or recover its required
encryptions during multicast. For simplicity, we still call this probability
residual error rate.

3.1.1 Bernoulli model for independent loss

We now derive the expression of r = f(h, T ) for the case that T is large,
that is f(h,∞). In this case, packets sent consecutively can be spaced widely
enough such that they will likely experience independent losses. Temporally
independent losses can be simulated by the Bernoulli loss model. In partic-
ular, letting p denote the packet loss rate seen by each user, we have

r = f(h,∞) (1)

= p ·
k−1∑
i=0

(
k + h− 1

i

)
(1− p)ipk+h−1−i (2)

= pk+h ·
k−1∑
i=0

(
k + h− 1

i

)
(
1
p
− 1)i (3)

where k is the block size. Intuitively, r equals to the probability that the
user does not receive its specific rekey packet, and it receives less than k
packets from the block that contains its specific rekey packet.

From Equation 3, we observe that for fixed k and p,
∑k−1

i=0

(
k + h− 1

i

)
(1

p−
1)i is a polynomial of h with a degree of k− 1. Letting Pk−1(h) denote this
polynomial, we have

r = pk+h · Pk−1(h) (4)
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From this expression, we see that the effect of h on r comes from the
product of two terms: pk+h and Pk−1(h). When h increases, the first term
pk+h decreases exponentially, while the second term Pk−1(h) increases as
a polynomial of h. Since the first term changes at a faster rate than the
second, we expect that increasing h will sharply reduce r.

3.1.2 Markov model for burst loss

In the subsection above, we consider the case that T is large, and thus derive
r = f(h,∞) based on the Bernoulli loss model. If T is small, however,
packets sent within interval T will likely experience temporally dependent
losses. To analyze r = f(h, T ) for a small T , we apply a Markov loss model
used in [12, 5] to investigate correlated losses between consecutive packets.

In the Markov loss model, a two-state continuous time Markov chain
{Xt} ∈ {0, 1} is used to describe the packet losses. In particular, a packet
transmitted at time t is lost if {Xt} = 1 and not lost if {Xt} = 0. The
generation matrix of this Markov chain is

Q =
[ −µ0 µ0

µ1 −µ1

]

Its rate transition diagram is shown in Figure 1.

u 0

u 1

(no loss)

0 1
(loss)

Figure 1: Transition diagram of the two state Markov chain

Let πi, i = 0, 1, be the stationary distribution of this Markov chain. Let
pi,j(τ) denote the probability that the process is in state j at time t + τ
given that it was in state i at time t. That is pi,j(τ) = P (Xt+τ = j|Xt = i).
Then we have π0 = µ1/(µ0 + µ1), π1 = µ0/(µ0 + µ1), and

p1,1(τ) = (µ0 + µ1 · exp(−(µ0 + µ1)τ))/(µ0 + µ1) (5)
= π1 + π0 · exp(−(µ0 + µ1)τ) (6)

Before analyzing r = f(h, T ), we first need to figure out how to space
packets when they are sent out within rekeying interval T . It is well known

7



that residual error rate is sensitive to the packet spacing under burst losses [12].
Therefore, we are concerned with how to space packets so as to minimize r
while they are sent out within interval T .2

To answer this question, we observe that in our group rekeying protocol,
a particular user needs packets only from the block to which its specific rekey
packet belongs. Therefore, we consider the case that the key server sends
only k + h packets within interval T to a particular user. We are concerned
with how to space the k+h packets so as to minimize the residual error rate
for this user.

Let τi denote the interval between the times at which the ith and (i+1)th

packets are sent, i = 1, ..., k +h− 1. Those packets tend to experience burst
losses when T is small. We assume that the probability of more than one
burst loss duration happening within a small interval T is low. Suppose
that the specific rekey packet that this user requires is at the mth position,
m = 1, ..., k. Given that the loss duration starts from the jth packet, where
j = 1, ...,m and j +h ≥ m, we can derive the conditioned residual error rate
for this user as

rm,j = π1 ·
j+h−1∏

i=j

p1,1(τi) (7)

= π1 ·
j+h−1∏

i=j

(π1 + π0 · exp(−(µ0 + µ1)τi)) (8)

where the right side expression represents the probability that the jth packet
and the following h packets are lost.

From Equation 8 we observe that condition probability rm,j is a decreas-
ing function of τi for j ≤ i ≤ j + h − 1. To minimize rm,j , we should have
τi = 0 for i < j or i > j + h − 1 since

∑k+h−1
i=1 τi = T . Then the desired

values of {τi | j ≤ i ≤ j + h − 1} should be the solution to the following
optimization problem:

minimize π1 ·
∏j+h−1

i=j (π1 + π0 · exp(−(µ0 + µ1)τi))
subject to

∑j+h−1
i=j τi = T

2Bolot, et al. investigated another case of this problem in a similar way [5]. The
optimization problem in [5] was presented for a unicast telephony application, and the
paper maximized the probability that at least one packet out of k packets is received.
In our multicast based group rekeying protocol, however, each user needs to receive its
specific rekey packet, or receive at least k packets out of the k + h packets from the block
to which its specific rekey packet belongs.
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Solving it using the standard Lagrange multipliers method, we get τj =
τj+1 = ... = τj+h−1. Therefore, to minimize rm,j for a particular user, the
packets should be equally spaced.

Our eventual goal is to minimize the residual error rate for each user
without conditioning on the start point of the loss duration. We observe
that different users may need different specific rekey packet, and the loss
duration may start from different packets. That is, m and j may vary from
user to user.3 To minimize the sum of residual error rates for all users, we
argue that we should have τi = τj,∀i, j = 1, ..., k + h− 1.

Thus we get our packet spacing strategy as follows. If the rekey message
consists of only one block of packets, all the packets should be equally spaced
in rekeying interval [t, t+T ] including both endpoints. If the key server has
multiple blocks to send, the packets belonging to the same block should be
equally spaced. The packets from different blocks, however, should be sent
in an interleaved fashion. That is, the ith packets from each blocks should be
sent together without spacing. Though these packets will likely experience
burst losses, it is harmless since each particular user needs packets only
from one specific block. Figure 2 illustrates how the key server should space
packets when a rekey message is divided into three blocks, and each block
contains k + h = 4 rekey and parity packets.
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T

one packet in block 3

one packet in block 2

time

one packet in block 1

Figure 2: Spacing between packets

With equal spacing between packets, we can derive a lower bound of r by
assuming that at most one loss duration happens during rekeying interval
T , as follows:

r = f(h, T ) (9)
≥ π1 · exp(−µ1 · h · τ) (10)

≈ π1 · exp(− µ1 · h · T
h + k − 1

) (11)

where exp(−µ1 · h · τ) is the probability that the loss duration last for at
3In our packet generation algorithm presented in [24], each rekey packet contains en-

cryptions for roughly equal number of users.
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0.0001

0.001

0.01

0 2 4 6 8 10

r

h

T=0.5 sec
T=1 sec
T=3 sec
T=5 sec

Bernoulli

Figure 3: r as a function of h

least h · τ time interval. Factor τ here is the spacing interval between two
consecutive packets of the same block. Roughly speaking, τ equals to T/(h+
k − 1) if we ignore packet transmission time.

3.1.3 Illustration

We now illustrate the function r = f(h, T ) with numerical and simulation
results. We set p = 0.06 for the Bernoulli loss model, and µ0 = 0.75 and
µ1 = 11.75 (thus π1 = 0.06) for the two-state Markov model. Figure 3 shows
the value of r as a function of h. The figure contains five curves. One is
based on the Bernoulli loss formula (Equation 3), and the remaining four are
based on the Markov loss model for different values of T , that is, T = 0.5,
1, 3, and 5 second(s). For the Markov loss model, we use simulations to
compute the value of r for various h and T values. Each point in the four
curves is the average value based on 100 trials. As can be seen from the
figure, as h increases, r decreases roughly linearly on a logarithmic scale.
We also observe that when T is small, packets sent consecutively will likely
experience burst losses, and thus the Markov model gives larger r than the
Bernoulli model. When T increases, the curve of r produced by the Markov
model will gradually approach that of the Bernoulli model.

From now on, given (h, T ), we use the larger value produced by Equa-
tion 3 and 11 to approximate the actual r. The value we choose is still a
lower bound. For the evaluation in this section, however, the conclusions we
draw based on the lower bound will usually hold for the actual r. Further-
more, we expect the value we choose will be close to the actual r if T is not
very small.
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3.2 Rekeying bandwidth constraint

In the previous subsections, we analyze r = f(h, T ) under the Bernoulli
and Markov loss models. In our derivations, we assume that h and T are
independent variables. The relationship between h and T , however, should
be constrained because the available rekeying bandwidth is usually limited.

Rekeying bandwidth constraint requires that rekey traffic should not
exceed a given sending rate at any time. This constraint arises from the
fact that rekey traffic has to share bandwidth with data traffic, while the
total available bandwidth is determined by network conditions and users’ re-
ceiving capacities. For example, in secure group communication applications
such as pay-per-view distribution of digital media, restricted teleconferences,
and multi-party games, there typically exists a considerable amount of data
traffic among group users. The data traffic competes for bandwidth with
rekey traffic. Therefore, usually only a small percentage of total available
bandwidth can be allocated for group rekeying. Let b(t) denote the allowed
sending rate for rekey messages at time t. In the literature, there are exten-
sive research results on how to determine the unicast or multicast sending
rate in dynamic network situation. We refer interested readers to related
papers such as [9, 22, 19, 14]. In this paper, we assume that b(t) is a given
system parameter.

We claim that b(t) will not sharply change with time t. The total avail-
able bandwidth shared by data and rekey traffic is a dynamic function of
time. But we can adjust the rate of data traffic to keep b(t) smooth. From
now on, we assume that b(t) is constant for the duration of a rekeying in-
terval.

Before formulating the rekeying bandwidth constraint, we introduce some
notation. Let n be the number of users in the system, sm be the length of a
multicast packet, su be the unicast packet length, nb be the number of blocks
in a rekey message,4 and w be the expected number of unicast transmissions
(or retransmissions) in order to deliver a unicast packet to a user.

Then at the key server side, the amount of multicast traffic (per rekey
message) is

BWm(h) = (k + h) · nb · sm (12)

After multicast, there are about n ·r users who cannot receive or recover
4nb is in fact a function of rekeying interval T ; however, it can be treated as a given

value while the rekeying bandwidth constraint is formulated. In particular, at the end of
one rekeying interval Ti, the key server generates a rekey message that has nb (a function
of Ti) blocks. This rekey message will be sent out within the next rekeying interval Ti+1.
As far as the rekeying interval Ti+1 is concerned, nb is a given value.
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their required encryptions. The key server sends unicast packets to them
to provide eventual reliability. The key server’s unicast traffic (per rekey
message) is

BWu(r) = n · r · w · su (13)

In summary, our rekeying bandwidth constraint can be formulated as 5

BWm(h) + BWu(r) ≤ T · b(t) (14)

We now evaluate how h and T affect the amount of rekey traffic, which
equals to BWm(h) + BWu(r). As a concrete example, suppose that at the
beginning of each rekeying interval the key tree (with degree 4) is balanced
with 768 users. During each rekeying interval, 192 join and 192 leave requests
are processed. We further assume that the leave requests are uniformly
distributed over the users. We set the length of a multicast packet as 1005
bytes (including UDP and IP header sizes). The length of a unicast packet
is 132 bytes. This is determined by the height of the key tree. We set block
size k = 14 and unicast retransmission factor w = 1.3. We refer interested
readers to [24] for a detailed discussion on how to determine packet length
and block size.

0 2 4 6 8 10
h 0

1
2

3
4

5

T

30000
35000
40000
45000
50000
55000
60000

rekey traffic

Figure 4: Rekey traffic (bytes per rekey message) as a function of h and T
(seconds)

Figure 4 illustrates the rekey traffic (in units of bytes per rekey message)
as a function of h and T (in units of seconds). As can be seen, as a function
of T , rekey traffic is large for small T , and then it decreases and keeps flat

5Since it takes time for the key server to receive NACKs, unicast recovery for one
rekey message has to be executed later. However, as long as Inequality 14 holds for each
rekeying interval, the rekey traffic will not exceed allocated bandwidth over a long term.
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as T increases. This is explained by the fact that burst losses produce large
r when T is small. Large r requires large unicast traffic. On the other hand,
as a function of h, rekey traffic first decreases and then increases linearly
when h increases. This is because when h is small, unicast traffic produced
by large r will dominate the overall rekey traffic. When h increases, unicast
traffic will sharply decrease and eventually diminish. And then multicast
traffic will begin to dominate and increase as a linear function of h.

0

1

2

3

4

5

0 5 10 15 20

T
 (

se
c)

h

Figure 5: Feasible (h, T ) pairs for b(t) = 100 Kbps

We next investigate the impact of the rekeying bandwidth constraint on
the relationship between h and T . As a concrete example, we set b(t) = 100
Kbps. Because of the rekeying bandwidth constraint, we expect that some
(h, T ) pairs will violate the constraint. Figure 5 shows (h, T ) pairs that
satisfy the rekeying bandwidth constraint. We observe that when T or h is
small, the bandwidth constraint will not be satisfied because of high unicast
traffic, as implied by Figure 4. Furthermore, large h is not allowed since
it produces high multicast traffic. From Figure 5 we can draw another
important conclusion. That is, T has to be in the order of seconds to satisfy
the rekeying bandwidth constraint given the configuration of this example.

Based on this observation, we predict that our FEC scheme will be very
effective for our group rekeying protocol because packets of the same block
tend to experience independent losses. To see it, we first notice that T can-
not be very small because of the rekeying bandwidth constraint, as implied
by Figure 5. Second, each particular user needs packets only from one spe-
cific block. Therefore, when k + h packets of the same block are equally
spaced within interval T , two consecutive packets have a low probability of
experiencing the same burst loss duration.
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Figure 6: Feasible (h, T ) pairs for r∗ = 5/768 and b(t) = 100 Kbps

3.3 Tradeoffs between r, T , and h

Up to now, we have analyzed r = f(h, T ) under the Bernoulli and Markov
loss models, and also quantified the impact of rekeying bandwidth constraint
on the relationship between h and T . We are now ready to investigate the
tradeoffs between r, T , and h.

Recall that r is the fraction of users who cannot receive its new keys
during the initial multicast, while T measures the group access control gran-
ularity. Small values of r and T are preferable. However, achieving a small
r and a small T are conflicting goals.

In practice, we would like to give higher priority to r than to T . This
is because r is directly related to the performance seen by each user. For
this purpose, we specify a target residual error rate (denoted by r∗) as a
system parameter. We aim to make sure that current (h, T ) values satisfy
f(h, T ) ≤ r∗ as well as the rekeying bandwidth constraint. As a concrete
example, we set b(t) = 100 Kbps and r∗ = 5/n, where n = 768. Figure 6
shows feasible (h, T ) pairs that satisfy f(h, T ) ≤ r∗ as well as the rekeying
bandwidth constraint.

Among all feasible (h, T ) pairs for a given r∗, the one with the smallest T
is preferred. Let (T ∗, h∗) be such a pair, that is, T ∗ = min{T | ∃h, s.t. f(h, T ) ≤
r∗, BWm(h)+BWu(f(h, T )) ≤ T ·b(t)}, h∗ = min{h | f(h, T ∗) ≤ r∗, BWm(h)+
BWu(f(h, T ∗)) ≤ T ∗ · b(t)}. Figures 7 and 8 illustrate the values of T ∗ and
h∗ for various r∗. (The curves for h′ and T ′ will be introduced later.) First
consider h∗. From Figure 7 we observe that when r∗ decreases from 0.1 to
0.0001 on a logarithmic scale, h∗ increases roughly at a linear rate. This
confirms that our FEC scheme is very effective in reducing r. We next ex-
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amine T ∗ as a function of r∗, as shown in Figure 8. Recall that when r∗

decreases from a large value, unicast traffic will decrease significantly. The
decrease of unicast traffic will balance the increase of multicast traffic. As
a result, the curve of T ∗ keeps flat when r∗ decreases from 0.1 to 0.001.
When r∗ further decreases, unicast traffic diminishes and multicast traffic
will dominate. Consequently, T ∗ will increase at a similar rate as h∗. A
direct conclusion from Figures 7 and 8 is that we can achieve a very small r
without significantly increasing h and T .

3.4 Further discussions

In our previous analyses, we assume that loss parameters p, µ0, and µ1 are
independent of h and T . Then from Equations 3 and 11, we conclude that
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r can be made as small as possible by increasing h and T .
This conclusion seems to conflict with previous research results such as

[2, 3], which observed that large FEC traffic may increase residual error rate
at receivers. A further investigation, however, will resolve this discrepancy.
In the FEC schemes investigated in [2, 3], the sender sends k + h packets
for each block within fixed time interval T . Therefore, the traffic rate will
increase proportionally if h is increased. When h is too large, FEC traffic
will eventually overflow router buffers, and thus cause congestion. On the
other hand, in our group rekeying protocol, the rate of rekey traffic is con-
strained by b(t). In practice, the value of b(t) can be updated over time and
reflect up-to-date network conditions. However, since rekey traffic is usually
much smaller than data traffic, we expect that the rekey traffic will not hurt
network performance as long as b(t) is updated in a smooth manner.

4 Adaptive FEC Protocol

From our analyses in Section 3, we observe that our FEC scheme is very
effective in reducing r. As a result, we can achieve a very small r without
significantly increasing h and T . In this section, we will discuss how to
determine (h∗, T ∗) for any specified r∗ in a dynamic network environment.

4.1 Foundation

In practice, it seems hard to find the exact T ∗ and h∗ for a specified r∗. This
is because the general form of f(h, T ) is usually unknown. In particular, the
expression of f(h, T ) depends on network loss conditions as well as network
topology. Therefore, it is desirable to design a method to find a near-optimal
pair without knowledge of the mathematical expression for r = f(h, T ).

Theorem 1 shows how to find a feasible pair (h′, T ′) that is close to
(h∗, T ∗).

Theorem 1 Given that f(h, T ) is a non-increasing function of h and T ,
let (h′, T ′) be a solution to the following set of inequalities,

BWm(h) + BWu(r∗) = T · b(t) (15)

f(h, T ) ≤ r∗ (16)

f(h− 1, T ) > r∗ for h > 0 (17)

then we have h′ ≤ h∗ and T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t) .
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Proof: We first prove h′ ≤ h∗. Suppose h′ > h∗. Then we have h′−1 ≥ h∗,
and also T ′ ≥ T ∗ by the definition of T ∗. Thus we have f(h′ − 1, T ′) ≤
f(h∗, T ∗) since f(h, T ) is a non-increasing function of T and h. Therefore
we have f(h∗, T ∗) > r∗ by Inequality 17. This contradicts the definitions of
h∗ and T ∗.

We next prove T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t) . In our group rekeying

protocol, multicast traffic is an increasing function of h. Hence by Equa-
tion 15 we have

T ′ · b(t) = BWm(h′) + BWu(r∗)
≤ BWm(h∗) + BWu(r∗)
= (BWm(h∗) + BWu(f(h∗, T ∗))) +

(BWu(r∗)−BWu(f(h∗, T ∗)))
≤ T ∗ · b(t) + BWu(r∗)−BWu(f(h∗, T ∗))

Therefore, we have T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t) . 2

We expect that the difference between T ′ and T ∗ is very small in practice.
By Theorem 1, we know that it is bounded by BWu(r∗)−BWu(f(h∗,T ∗))

b(t) =
n·w·su·(r∗−f(h∗,T ∗))

b(t) . This bound will be close to 0 if r∗ is small enough. To
see it, we first notice that the length of a unicast packet (denoted by su) is
usually very small since each unicast packet contains encryptions only for
one particular user. Second, we expect that f(h∗, T ∗) will be close to r∗

when r∗ is small. Figures 7 and 8 compare the values of h′ with h∗ and T ′

with T ∗ for various values of r∗. The numerical results are based on the loss
models described in Section 3. From the figures, we observe that h′ is the
same as h∗ for a large range of r∗, and the difference between T ′ and T ∗ is
very small.

4.2 Adaptation scheme

4.2.1 Framework of our scheme

Based on Theorem 1, we design an iterative algorithm to find (h′, T ′) for any
specified r∗. Recall that r measures the fraction of users who send NACKs.
The number of users in the system changes with time. Therefore, instead
of specifying a fixed r∗, we define a target number of NACKs as our system
parameter. Let u∗ denote the target number of NACKs.

In fact, the number of NACKs directly reflects the residual error rate.
Given an (h, T ) pair, the number of NACKs returned to the key server
is a random variable. Let U denote this random variable, and E(U) be
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its expectation. Assuming that users have independent and homogeneous
losses, we have

P{U = u} =
(

n
u

)
ru(1− r)n−u (18)

E(U) = n · r (19)

Therefore, we have u∗ = n · r∗ if n is a constant.
The framework of our adaptation scheme is as follows:

• if E(U) > u∗

then h← h + ∆h

T ← BWm(h)+BWu(u∗/n)
b(t)

• if E(U) ≤ u∗

then h← max(h− 1, 0)
T ← BWm(h)+BWu(u∗/n)

b(t)

The beauty of this scheme lies in the fact that it does not require knowledge
of the mathematical expression for r = f(h, T ).

This scheme works as follows. If E(U) > u∗ (and thus r > r∗), the
key server increases h by a certain value, denoted by ∆h, so that hopefully
Inequality 16 will hold for future rekey messages. On the other hand, if
E(U) ≤ u∗ (and thus r ≤ r∗), the key server will reduce h by 1 to make sure
that current h satisfies Inequality 17. At any time, whenever h is updated,
T will be updated according to Equation 15. Finally the values of h and T
will be around h′ and T ′. Now the remaining issues are how to determine
∆h and how to tell whether E(U) > u∗ or E(U) ≤ u∗.

4.2.2 When to update h

We first consider when the key server should increase h in our adaptive FEC
scheme. From the framework above, we know that the key server should in-
crease h if E(U) > u∗. To estimate E(U), it seems that the key server
should collect a large number of sample values of U from consecutive rekey
messages. This however will significantly slow down the system’s responsive-
ness to sudden network congestion, and thus may cause poor performance
in terms of r metric. On the other hand, a hasty estimation of E(U) may
let the key server increase h unnecessarily, and thus hurt the system per-
formance in terms of T metric. (Recall that T will increase proportionally
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with h in our framework above.) As a tradeoff, we argue that r metric may
be more important than T metric. Therefore, it is desired for our protocol
to have quick responsiveness to network congestion.

To achieve quick responsiveness to network congestion, the key server will
decide whether to increase h by checking the number of NACKs (denoted
by u) for the last rekey message. In particular, the key server will increase
h whenever u > uα, where uα is defined as P{U > uα} ≤ 1−α by assuming
E(U) = u∗. Confidence level α can be specified by the owner of the key
server. In this way, whenever event u > uα happens, we have a confidence
level of α to tell that E(U) 6= u∗ (and thus E(U) < u∗ possibly). To derive
uα, we notice that random variable U follows the binomial distribution with
parameters (n, r), as shown in Equation 18. The binomial distribution can
be approximated as the normal distribution when n is large. In particular,

U−nr√
nr(1−r)

can be approximated as a standard normal random variable. Then

for any specified α, we can derive uα by solving P{ U−nr√
nr(1−r)

≤ uα−nr√
nr(1−r)

} =

α and n · r = u∗ For example, letting α = 99.9% and n = 768, we have
uα = 11.9, 19.7, and 33.6 for u∗ = 5, 10, and 20 respectively.

We next consider when the key server should decrease h. An inap-
propriate decrease of h may significantly increase the number of NACKs.
Therefore, it is desired to measure E(U) based on several rekey messages
before the key server decides to reduce h. We use exponentially weighted
average of u to approximate E(U). Let ū be the estimate value of E(U).
The key server executes ū← v · ū + (1 − v)u whenever a new sample value
u is available for current (h, T ) pair. In our simulations, we use v = 0.8 and
the average value should be based on at least three sample values for each
updated (h, T ) pair.

We further specify a lower bound (denoted by hl) on h. That is, the value
of h should be larger than or equal to hl at any time. This prevents the key
server from reducing h to a very small value due to inaccurate estimation of
E(U). In fact, as can be seen from Figure 7, it is possible for h′ to reach 0
while h∗ is 2. Given u∗, the value of hl can be determined by

hl = min{h | p ·
k−1∑
i=0

(
k + h− 1

i

)
(1− p)ipk+h−1−i ≤ u∗/n}

where the value of p can be chosen based on experience. Intuitively, hl is
the minimum h that makes the value of r computed by the Bernoulli loss
formula in Equation 3 no less than r∗ = u∗/n. Here we consider only the
Bernoulli loss model since packets of the same block will likely experience
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independent losses, as observed in Section 3. The Markov loss model can
also be considered if T is very small.

In our simulations, we set p = 6%, and then get hl = 3, 3, and 2 for
u∗ = 5, 10, and 20 respectively.

4.2.3 Determining ∆h

From our previous discussions, we know that the key server should increase
h by ∆h whenever u > uα. We now investigate how to determine the value
of ∆h.

We use a heuristic to determine ∆h as follows. After multicast, the
key server collects NACKs from users. Each NACK specifies the number of
parity packets needed by a user in order to recover its required encryptions.
Let ai be the ith (i starting from 1) largest one among collected NACKs.
Then we let ∆h = au∗+1.

To explain why we choose ∆h = au∗+1, let us consider a simple example.
Assume that u∗ = 2. Suppose there are 10 users {u1, u2, ..., u10} who send
NACKs for the current rekey message. Assume user ui sends NACK ai,
i = 1, 2, ..., 10. For illustration purposes, we also assume a1 ≥ a2 ≥ ... ≥ a10.
According to our protocol, for the next rekey message, the key server will
multicast au∗+1 = a3 additional packets for each block. As a result, users
{u3, u4, ..., u10} will have high probabilities to receive a3 more packets. Then
those users can receive or recover their required encryptions within a single
multicast round.

4.2.4 Proposed A-FEC scheme

We propose our adaptation scheme named A-FEC as follows:

• u← the number of NACKs received

• au∗+1 ← the (u∗ + 1)th largest NACK

• counter ← counter + 1

• if counter = 1

then ū← u
else ū← v · ū + (1− v)u

• if (u > uα) or (counter ≥ 3 and ū > u∗)
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then h← h + au∗+1

T ← BWm(h)+BWu(u∗/n)
b(t)

counter ← 0

• if counter ≥ 3 and ū ≤ u∗ and h > hl

then h← h− 1
T ← BWm(h)+BWu(u∗/n)

b(t)

counter ← 0

Initially counter is 0. The key server runs the procedure after it collects
NACKs from users.

4.3 Performance evaluation

We use simulations to evaluate the performance of our A-FEC scheme. We
run our simulations using network simulator ns-2 [1]. To simulate the In-
ternet topology, we use Georgia Tech Internetwork Topology Models (GT-
ITM) [7] to generate a Transit-Stub graph with 10 Mbps of link bandwidth.
The graph contains 592 stub domains. We let the key server reside in one
stub domain, and then create 591 edge networks in each of the remaining
stub domains. Each edge network has an access link connected to the in-
ternetwork. For simplicity, we did not simulate data traffic for our group
communication application. Instead, we set the bandwidth of each access
link to a relatively small value. More specifically, the bandwidth of each ac-
cess link is uniformly distributed between 0.1 and 1 Mbps. To simulate the
background traffic, we let each of 514 edge networks have 30 outgoing and
30 incoming FTP flows, and each of the remaining 77 edge networks have 40
outgoing and 40 incoming FTP flows. For simplicity, we assume that when
the key server updates h during one rekeying interval, the updated h will
be applied for the next rekey message. We assume that at the beginning
of each rekeying interval the key tree (with degree 4) is balanced with 768
users. During each rekeying interval, 192 join and 192 leave requests are
processed. We set block size as k = 14. Our simulations show that the
average packet loss rate observed by each user is about 6%. Therefore, we
set uα = 11.9, 19.7, and 33.6, and hl = 3, 3, and 2 for u∗ = 5, 10, and 20
respectively, as calculated earlier.

For comparison, we define two additional heuristics to compare with our
A-FEC scheme:
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Figure 9: Traces of the number of NACKs for u∗ = 5
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Figure 10: Traces of the number of NACKs for u∗ = 10

• Heuristic 1: The key server increases h by au∗+1 whenever u > u∗, and
decrease h whenever u ≤ u∗. No lower bound is specified for h.

• Heuristic 2: It is the same as Heuristic 1 except that h should be larger
than or equal to hl at any time.

Figures 9 to 11 demonstrate traces of the number of NACKs for Heuristic
1, 2, and our A-FEC scheme. For Heuristic 1, the system starts with h = 0.
For Heuristic 2 and A-FEC scheme, the initial value of h is hl. From the
figures, we have the following observations:

• An increase of h by au∗+1 upon u > uα (or u > u∗) can effectively
control the number of NACKs. In particular, whenever the number
of NACKs is larger than uα (or u∗), it usually takes only one rekey
message for the key server to make u ≤ uα (or u ≤ u∗).
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Figure 11: Traces of the number of NACKs for u∗ = 20
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Figure 12: Traces of h when background traffic is doubled

• With lower bound hl specified, we can effectively prevent h being re-
duced to a very small value. As a result, specifying hl can significantly
reduce the peak point values on the curves of the number of NACKs.

• A-FEC scheme can further reduce the fluctuations of the number of
NACKs by making the conditions to update h more strict. This is
achieved by trading our protocol’s responsiveness to network traffic
change.

• When u∗ is large, it is hard to control the fluctuations of the number
of NACKs, as seen in Figure 11. Therefore, it is desired to specify a
small u∗ in practice.

We further evaluate the responsiveness of our A-FEC scheme to network
traffic change. To simulate a changing network, we increase the number
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Figure 13: Traces of the number of NACKs when background traffic is
doubled
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Figure 14: Traces of h when background traffic is reduced

of background FTP flows until the total number is doubled. Each added
FTP flow starts randomly during the rekeying intervals of rekey messages
13 to 23. Figures 12 and 13 demonstrate the traces of h and the number
of NACKs. As can be seen, when the network becomes loaded, shared loss
will cause a lot of users to send NACKs. Our A-FEC scheme can quickly
increase h upon network congestion, thus significantly reducing the number
of NACKs for the next rekey message.

To simulate a network with decreasing traffic, we let each added FTP
flow stop randomly during the rekeying intervals of rekey messages 38 to
48. As seen from Figures 14 and 15, our A-FEC scheme gradually reduces
h (and T ) to adapt to the improved network situation.
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5 Conclusion

In our group rekeying protocol, we study two performance metrics: r and T .
Metric r measures the fraction of users who cannot receive the new group
key during the initial multicast, while T is a measure of group access control
granularity. Ideally, we want to achieve both small r and T . To achieve a
smaller r, however, the key server has to increase h, and thus increase T to
send more traffic. Therefore, there are tradeoffs between r, T , and h.

To investigate the tradeoffs between r, T , and h, we analyzed r = f(h, T )
under the Bernoulli and Markov loss models. We also examined the impact
of rekeying bandwidth constraint on the relationship between h and T . The
rekeying bandwidth constraint arises since we do not want rekey traffic to
impact the performance of other flows in the Internet. We observed that
with a rekeying bandwidth constraint of b(t) = 100 Kbps, the value of T
needs to be in the order of seconds. Then with our packet spacing strategy,
packets of the same block will likely experience independent loss. As a result,
an increase of h can effectively reduce r; decreasing r will not significantly
increase h and T . In conclusion, we can achieve both small r and T .

We designed an adaptive FEC scheme to determine (h′, T ′) for any spec-
ified u∗. We proved and also demonstrated that (h′, T ′) is close to the
optimal (h∗, T ∗). Our scheme does not require knowledge of the mathemat-
ical expression for r = f(h, T ). Simulation results from ns-2 show that our
protocol can achieve fairly smooth traces of the number of NACKs when
group rekeying is subjected to statistical fluctuations of a fixed set of com-
peting flows. We also found that with the onset of network congestion our
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adaptive FEC protocol can still achieve the target u∗ by adjusting values of
h and T .
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