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Abstract

Proposals to improve the performance of TCP in high speed networks have been
recently put forward. Examples of such proposals include High-Speed TCP, Scal-
able TCP, and FAST. In contrast to the additive increase multiplicative decrease
algorithm used in the standard TCP, Scalable TCP uses a multiplicative increase
multiplicative decrease (MIMD) algorithm for the window size evolution. In this pa-
per, we present a mathematical analysis of the MIMD congestion control algorithm
in the presence of random losses. Random losses are typical to wireless networks
but can also be used to model losses in wireline networks with a high bandwidth
delay product. Our approach is based on showing that the logarithm of the window
size evolution has the same behaviour as the workload process in a standard G/G/1
queue. The Laplace-Stieltjes transform of the equivalent queue is then shown to
directly provide the throughput of the congestion control algorithm and the higher
moments of the window size. Using ns-2 simulations, we validate our findings using
Scalable TCP.

Key words: MIMD congestion control, Scalable TCP, Laplace-Stieltjes transform,
discrete time queues, random losses.

1 Introduction

In high speed networks, the congestion avoidance phase of TCP takes a long
time to increase the window size and fully utilize the available bandwidth.
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S. Floyd writes in [1]: “for a Standard TCP connection with 1500-byte pack-
ets and a 100 ms round-trip time, achieving a steady-state throughput of 10
Gbps would require an average congestion window of 83,333 segments, and a
packet drop rate of at most one congestion event every 5,000,000,000 packets
(or equivalently, at most one congestion event every 1% hours).The average
packet drop rate of at most 2 x 1071% needed for full link utilization in this
environment corresponds to a bit error rate of at most 2 x 107!, and this
is an unrealistic requirement for current networks.” Thus, in the context of
high speed networks, it is essential to study the effect of random packet losses
on TCP, since they may limit the TCP throughput more than the congestion
losses do and may lead to a poor utilization of the large available capacity. The
modeling of random losses is also essential in the study of TCP performance
over wireless channels.

In order to improve the utilization of the available capacity in high speed
networks, modifications to the standard TCP have been proposed in [1]-[3]. In
[4], T. Kelly has proposed a variation of TCP, called Scalable TCP, wherein
upon each ACK it receives, the sender increases its congestion window (cwnd)
by 0.01 packets. When a loss event is detected, the sender decreases cuwnd by a
factor of 0.125. Hence, if the window size is W (t) at some time ¢ (meaning that
there are W () unacknowledged packets in the network) then, in the absence
of losses, the window size after an RTT (round-trip time), W (t+ RTT'), would
be 1.01 x W(t), whereas if there are losses during (¢,t + RTT), W(t + RTT)
will be around 0.875 x W (t) (here we assume that, as in New Reno and SACK,
the window is reduced only once during a round trip time even if there are
several losses). A feature of this algorithm is that, starting from a window size
of some fraction of the bandwidth-delay product (BDP), the number of RTT's
required to reach BDP is independent of the link speed.

Consider the class of Multiplicative Increase and Multiplicative Decrease (MIMD)
congestion control algorithms where each ACK results in a window increment
of « — 1 > 0 and a loss event is responded with a reduction of window size
by a fraction 1 — § < 1. Scalable TCP can then be viewed as an instance
from this class with a« = 1.01 and [ = 0.875. This motivates us to study the
window behaviour of MIMD congestion control algorithms for the purpose of
studying Scalable TCP. We focus on the analytical performance study of these
algorithms, and, hence, of Scalable TCP, in the presence of random as well as
congestion losses. In the rest of the paper, Scalable TCP and MIMD algorithm
will be used interchangeably.

Related Work: TCP is frequently modeled using window-dependent losses
where sessions with large window sizes typically create congestion so that the
loss probability increases with window size. Indeed, in the wireline environ-
ment, losses are frequently assumed to be caused by buffer overflow, see e.g.
[5] that studies Scalable TCP where losses are caused by buffer overflow which



occurs when the window is sufficiently large. In contrast, the main emphasis
of our study is on the performance of a single MIMD source in the presence
of random window-independent losses. The independence has been observed
in connections over wide area networks [6], but has also been studied and
advocated in other contexts, see e.g. [7], [8]. Another important research di-
rection related to congestion control protocols is fairness. Fairness issues arise
when multiple sources share a common link. Chiu and Jain [9] showed that the
MIMD algorithm is unfair in the presence of synchronous losses. However, in
[10] Altman et al show that fairness amongst MIMD sources can be achieved
by introducing some asynchronous losses. Furthermore, the authors also study
inter-protocol fairness (i.e., fairness among MIMD and AIMD sources) in the
presence of synchronous losses.

In Section 2 we present three models based on different assumptions on the
window size. Then we present a general analysis of these models. Our approach
is based on showing that an invertible transformation applied to the window
size process results in a process that has the same evolution as the total
workload process in a standard G/G/1 queue. The Laplace-Stieltjes transform
of the equivalent queueing process thus obtained provides the throughput of
the connection as well as the higher moments of the window size of the given
MIMD algorithm (Section 3). We study a model with only random losses
(Section 4) as well as a model where, in addition to random losses, there are
either congestion losses or the window size is upper bounded (Section 5). We
also present an exact analysis of a model with upper and lower bound on
the window size (Section 6). In Section 7 we first present a model in which
losses in an RTT depend on the window size in that RT'T. Then, we propose
an approximation to this model, and relate this approximate model with the
model in Section 5. We validate our findings using ns-2 simulations (Section 8)
and end with a concluding section.

2 Discrete Time Models

We consider the scenario where a single FTP application transfers data using
an MIMD flow control protocol with parameters o and (3 as mentioned in the
Introduction. The transfer is done over a high speed path consisting of one or
more high speed links. We assume that the file is sufficiently large to ensure
the convergence to a stationary regime. In this section, we introduce different
models of MIMD schemes for different network conditions.

Let 7 denote the round-trip propagation delay of the high speed path (in
literature this is also referred to as the fixed part of the round-trip time). Let
¢ packets per second be the link capacity of the slowest link. Let {WW (¢),t > 0}

denote the window process evolving over time. Use Wy £ W(0) and let 7 =



T+ (% — )+ denote the first round-trip time. Let W; 2 W(r;) and define

To =T+ (% — 7')+. Proceeding in this manner, we get a sequence {7,,n > 1}
of round-trip times and a sequence {W,,,n > 0} of window sizes. Consider
a sequence of time instants {¢,,n > 0} where ¢, is the end of n'"* round-trip
time, i.e., o =0, ty = 7y and t,, = t,_1 + 7. Under our definition, W, is the
window size at time instant t,,. The window evolution can now be written as

aW,, if there was no loss in interval [t,, t,1],
WnJrl =
BW,, if there were one or more losses in [t,, tp41].

We shall consider the following models for the evolution of {W,, } under random
losses:

(i) There is no upper bound on the window size.

(ii) There is an upper bound B on the window size which corresponds to an
explicit limitation of the window size. When this value is reached then the
window stops growing.

(iii) There is an upper bound B on the window size. However, when this value is
reached, the connection suffers a congestion loss (this is in addition to the
random losses) and the multiplicative decrease of window is invoked.

The first model approximates the scenario where the link BDP is high and
there is a significant probability of loss in a round-trip time so that the prac-
tical upper bound of BDP is reached with negligible probability. The second
model corresponds to the case where the window is bounded by the receiver’s
advertised window. The last model corresponds to the case where the win-
dow reaches the value of round-trip pipe size (BDP+Buffer) and suffers a loss
owing to buffer overflow.

2.1 Window FEvolution for the Proposed Models

Let A,,n > 1, be a random variable such that A, = « if there was no loss
in the interval [t,,t,.1], and A, = [ otherwise. Throughout this section,
{A,,n > 1} will be assumed to be a general stationary ergodic sequence. Now
we describe the evolution of {W,} in terms of {A, } recursively for the models
described above.

Model (i): Taking into account the fact that the window size of TCP is
bounded below by a value of one packet?, the window size evolution for this

2 There is no loss of generality as one can consider any value of the minimal window
size and then rescale the model.



model can be written as
W1 = max(A,W,, 1). (1)

In practice, the sender’s window is either upper bounded by the receiver’s
advertised window or by the pipe size (BDP+Buffer). However, in large BDP
networks, when the losses are sufficiently frequent so that the upper bound of
the window, B, is rarely reached, this model can be used to approximate the
behaviour of the sender’s window.
Model (ii): On the contrary, if the losses are infrequent and B is often reached
and is sufficiently large, we can ignore the lower bound on the window size
(which would be rarely attained). Thus, the window evolution for this model
can be written as

W1 = min(A, W, B). (2)
Here B models the limitation due to the receiver’s advertised window.
Model (iii): The window evolution in this model is similar to that of model
(7). However, there is an instantaneous drop in the window upon reaching the
upper bound. In this case, B models the pipe size. The receiver’s advertised
window is assumed not to limit the performance.

In the next section we relate the window process under the different models
introduced in this section to the workload evolution in a discrete time G/G/1
queue.

3 Preliminary Analysis

Consider the following discrete time stochastic recursive equation
W1 = max(A,W,, 1). (3)

The process, {W, }, can be viewed as a sequence of observations of a continuous
time process sampled at certain, not necessarily equal, time intervals. The
sequence A,, € (0,00) is assumed to be stationary and ergodic.

Taking the logarithm of equation (3), we obtain
log[W,,+1] = max(log[A,] + log[W,],0).

Using the substitutions Y;, = log[W, ], and U,, = log|A,,] in the above equation,
we obtain

Y41 = max(Y, + U,,0). (4)
We now make the following observation: The recursive equation (4) has the
same form as the equation describing the workload process in a G/G/1 queue
observed at, say, just after an arrival (see, for example, [11]). U,, denotes the



difference between the service time of the n'® customer and the interarrival
time between the n'* and the (n + 1) customer. Since the introduced trans-
formation, log(-), is invertible, there is a one to one correspondence between
the processes {Y,,n > 0} and {W,,n > 0}. This observation allows us to
study the stability of the window process {W,,,n > 0} via that of {Y,,,n > 0}.
Furthermore, the analogy with queueing theory of the process {Y,,n > 0}
allows us to obtain the steady state moments of W,,.

Theorem 3.1 Assume that Ellog Ag] < 0. Then there exists a unique sta-
tionary ergodic process {W}}, defined on the same probability space as {W,},
that satisfies the recursion (3). Moreover, for any initial value Wy = w, there
15 a random time T, which is finite with probability 1, such that W,, = W}
for alln > T,,. If Ellog Ag] > 0 then W, tends to infinity w.p.1 for any initial
value Wy = w.

PROOF. According to Theorem 2A [12], if Eflog Ag] < 0 then the stochastic
process {Y,,} converges to a stationary ergodic process {Y,*} which is defined
on the same probability space as {Y,,} and is the unique stationary regime
that satisfies (4). This implies the statement for W,, = exp(Y,,). The last part
of theorem similarly follows from [13, p. 36]. O

Remark 1 Due to Jensen’s inequality and the concavity of the logarithmic
function, Ellog Ag] < log E[Ao]. Hence, log E[Ao] < 0, or equivalently E[Ay] <
1, is a sufficient condition for the stability of the window process {W,} (for
the existence of a unique stationary ergodic regime and the convergence to this
regime). However this condition is in general not a necessary one.

Remark 2 We stress the importance of the maximum operator in equation
(8). Indeed, if we eliminate it and write simply W, = A, W, then on taking
the log, instead of (4) we get Y, 11 = log|A,] +Y,,. Its solution is

n—1

Y, = Yo+ > log[Aj].

1=0

Since { Ay} is stationary ergodic, the strong law of large numbers implies that
if E'log[A;] < 0 then'Y,, converges to —oo, and, therefore, W, converges to 0
which is clearly a bad estimate for the window size process. (If Elog[A;] > 0
then Y, and, therefore, W,, converge to co which was also predicted by the
model that took the minimum window into account.) Note that in the limiting
case of Ellog A;] = 0, if A;’s are independent and identically distributed (i.i.d.)
then Y, 1s a null recurrent Markov chain and thus unstable.

The log transformation allows us to obtain the moments of W,, in the station-
ary regime (i.e., moments of W¥) from the Laplace-Steiltjes Transform (LST)



of Y,, in the stationary regime (i.e., LST of Y*). The LST of Y,* is given by
G(s) = Ele™"],

which is defined for s € S, where S is the region of convergence of G(s). For
a given integer k > 0, the k'™ moment of W* is obtained as follows

E[(W:)"] = Elexp(kY;)] = G(~k), ()

where —k is assumed to belong to S. If —k & S then the corresponding moment
is 0o. Thus, all finite moments of W}’ can be obtained from the LST of Y.

A similar analysis can be done for the stochastic recursive equation
W1 = min(A, W, B) (6)

by making the transformation Y;, = log[B] —log[W,,]. The moments of W}¥ can
then be obtained from the LST of Y© using the relation

E((W)"] = E[B* exp(—kY,")] = B*G(k). (7)
All the moments of W} are finite since G(s) is finite for s > 0.

The recursive equation for model (i), as given by (1), is similar to equation
(3). Therefore, the analysis of this model can be done along the lines of the
analysis of (3). Similarly, the analysis of models (i) and (7ii) can be done
along the lines of the analysis of (6). We note that the analysis of model (ii7)
is similar to that of model (i7). The equivalent queueing system of model (ii7)
can be obtained by deleting the idle periods of the equivalent queueing system
of model (i7). The throughput of the MIMD algorithm, or the first moment of
the window size, under different models, can be obtained from equations (5)
and (7).

In the rest of the paper, we make the following assumption.

Assumption 3.1 : In each RTT, the probability of one or more loss events
occurring s p. The loss probability is independent of the window size and
independent from one RTT to another.

We note that the z-transform, which is defined for integer valued random
variables, is a discrete analog of the LST. In the following sections, under the
above assumption, we derive the LST of the window size, W,,, for the three
models.



4 Model (i): Lower Bound on Window and Random Losses

In this section, we analyse model (i) in which the window size is given by
Wn+1 = maX(Aan, Bl);

where B, is a lower bound on the window size, and W,, denotes the window
size at the end of the n® RTT. Under the assumption of independent loss
probability, p, in each RTT, the sequence A,, is i.i.d with the following distri-
bution

a w.p.1—p,
A, =
6 w.p.p.
As noted in the previous section, we make the transformation Y,, = %

(the division by log[a] is made for convenience). The recursive equation for
the process {Y,,} is given by (from equation (4))

Y,+1 w.p. 1 —p,
(Y, — k)" w.p. p.

Yn+1 -

_ log[A]
log[a] *

stable, the necessary and sufficient condition is E log[A,] < 0, or, equivalently,

where £k =

The number £ is positive, since 3 < 1. For this model to be

(k+1)p>1. (8)
In the rest of this section, we assume that the above condition is satisfied.

We also make the following two assumptions.

Assumption 4.1 k = —}ggﬁ is an integer.
Assumption 4.2 lﬁ) %g[[i l]] is an integer.

These two assumptions allow us to use a discrete state space, S = {0,1,2,...}
for Y,,. Thus, Y,, can be modelled as a discrete state space Markov chain. The
state Y, = i corresponds to W,, = Bja‘. The transition probabilities for this
model are shown in Figure 1.

Let P,(j),j € S, be the probability of Y,, being in state j at the end of the
nt" RTT. The probability of being in state j at the end of the (n + 1) RTT

is given by
Poa(j) = A =p)Ba(j — 1) +pPa(j + k), j 2 1

. , ‘ 9)
= pizo Puli), j=0.
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Figure 1. Transition probabilities of Y;,.
Denote the z-transform of Y,, by Y, (2). Y,(z) is defined as

Y. (2) = i PG, (10)

From (9) and (10) we obtain

Yoi1(2) = P (0) = i P ()2
:(1—p)iPn(j—1)zj+pipn(j+k:)zj. (11)

j=1 j=1

Let Y(2) = nlg& Y ,.(2). We note that the steady state window size, W, is given
by W = BjaY . Therefore, the moments of W can be obtained as follows.

EW"] = E[(Ba")"] = ByY(a"). (12)

Theorem 4.1 (a) Y(z2) is given by

1— 1/20
Y(2)= —"17 13
6= T (13
where zy is the unique root of
1-— 1
a-p p)z“l—fzk—i-l:O (14)
p p
that lies outside the closed unit disc.
(b)
W —log[z0]/ log[«]
PW > w) = () . (15)
By

PROOF. From Theorem 3.1 we can conclude that the Markov chain Y,, is
stationary and ergodic. In particular, this implies that Y,, converges to Y and
that P,(-) converges to P(-).

To prove part (a), from (11) we obtain



Y(2) — P(0)=(1—-p)2Y(2) +pzF ipn(j 1+ k)t

V(o)1 (1= p)2) = P(0) + p= 3 P+ 1+ B)7 1
=P(0) +pz (Y (2) — ZO P(i)2"),

and hence,

Y(2)((1 = (1 =p)2)2* —p)=2"P(0) —p>_ P(i)z"

i=0
Since P(0) = p ¥, P.(i), Y(z) can be expressed as

Yito P()(2* = 2)

_(A=p) k1 4 1k _ 7’
P —i—pz 1

Y(2) = (16)

Under the stability condition (8), Y (z) exists and is analytic in the open disc
{# : |#] < 1}. The numerator of equation (16) has at most k — 1 zeros inside
the unit circle and one zero on the unit circle. Hence, there can be at most
k — 1 zeros of the denominator of equation (16) within the unit circle as any
more zeros will make Y (z) non-analytic. Using Rouche’s theorem [14] we can
show that there are at least k zeros of the denominator inside and on the unit
circle. As z = 1 is a zero of the denominator, there are at least k — 1 zeros
inside the unit circle. From the two previous arguments, there are exactly k—1
zeros of the denominator within the unit circle and they must be the same as
those of the numerator for Y (z) to be analytic [11]. Hence, Y (z) reduces to
(13).

To prove part (b), we note that the distribution of Y can be obtained by
inverting Y (z), and is given by

P(Y =j)=(1-1/%)(1/), j=>0. (17)

This, together with the relation W = Bja¥, gives (15). O

Corollary 3 Let a = ﬁgg[ﬁ]}. The n'™ moment of W is given by
B2 n<a
E[W"] = an : (18)
00 n>a
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This follows from (12) and (13).

The z-transform Y (2) is analytic for 2 < z,. Hence, the n™ moment of W is
finite if n < 11‘; g[[ch]]. The window size distribution can be seen to become heavy
tailed for a < 2. Thus, for a given loss rate, p, either o or 3 can be suitably

chosen in order to reduce the variance of the window size.

5 Upper Bound on the Window Size or Congestion Losses

In this section, we consider the models where the window at the sender is
limited to B,,. This limitation could be due either to the receiver’s advertised
window (model (i7)) or to the BDP+Buffer limitations (model(7ii)). We make
the following transformation

Yn _ log[Bu] B log[Wn]

log[a] (19)

We make the following assumption along with assumptions (3.1) and (4.2).

log[Bu]
log[a]

Assumption 5.1 L = 1S an integer.

5.1 Model (i1)

AAA /i\/_li\ 1-p
o @ @ (D
P P 0
L = log[B,}/logl]

logW)/log[a] ——=

p P P
— ’
1-p
1-p 1-p 1-p 1-p 1-p

(log[By —log[W])/log[ar ] ——=

log[Wh]
log[a]

Figure 2. Transition probabilities of (top figure) and Y;, (bottom figure).

log[Wn]
log[a] '
state Y,, = i corresponds to the state W,, = B,a~". The recursive equation for

The transition probabilities of and of Y, are shown in Figure 2. The

11



the process {Y,,} is given by

Yn+1 -

For this model to be stable, the necessary and sufficient condition is
(k+1)p<1. (20)
In the rest of this section, we assume that the above condition is satisfied.

The balance equations for Y,, in steady state can be written as

S

Pi)=(1—-p)P>i+1), i=1.. k-1
P(i)=pP(i—k)+ (1 —p)P(i+1), i>k

These equations are similar to those of a bulk arrival queue.

The z-transform of the steady state probability distribution of Y is defined as
Y(z) = ZP(j)zj.
=0

Theorem 5.1 Y (z) is given by

1—2
pFtl —z+(1—p)

Y(z) = (1= (k+1)p) (21)

PROOF. Following similar arguments from Kleinrock [11], we can write the
z-transform as follows.

iP(i)zi = ipP(i — k)2 + i(l —p)P(i+ 1)z,

=1 i=1

where P(i — k) = 0 for i < k. Therefore,

o0

Y(2) = P0)=pz" 3 P(i = k)" + 27 i(l —p)P(i+ 1)
=p2"Y (2) + 27 (1 = p)(Y(2) — 2P(1) — P(0)),
which gives

Y(2)(z — pz"*' — (1 = p)) = P(0)(z — (1 — p) — zp)).

12



Using Y (1) = 1 and the L'Hopital’s rule, we get P(0) = [1 — (k + 1)p]/[1 — p].
Hence, we obtain Y(z) as given by (21). O

Corollary 4 The moments of W = B,a™Y are given by

E[W"] = B[(Bua™")")] = ByE[a™] = By Y (a™"). (22)

The distribution of Y can be found by inverting Y (z) using partial fraction
expansion. The distribution can be seen to be a weighted sum of geometric
distributions.

5.2 Model (i)

In this model, along with random losses, a loss occurs when the window size
reaches B. The transition probabilities of Y, are shown in Figure 3. As in
the previous model, the state Y, = i corresponds to the state W,, = B,a~".
Note that the transition probability is different from the previous model only

(log[B] - log[W])/logfar] ——=

Congestion limited with random losses
Figure 3. Transition probabilities of Y,.

at Y = 0. In this model, there is a jump with probability 1 to state k. The
balance equations can be written as,

Pi)=(1—p)P>i+1), i=0,.. k—1.
P(i)=pP(i— k) + (1 =p)P(i+1) + (1 = p)P(0)d;—, i=>k.

Let Y (z) be the z-transform of the steady state probability distribution of Y.

Theorem 5.2 Y (z) is given by

1— (k+ 1)p> ] — 23
p

13



PROOF. We can find Y(z) as follows.

fj P(i)2" = p2* fj P(i — k)z"* +i i(l —p)P(i+ 1)z + 25 (1 — p) P(0),

=1 i=1 =1

which implies

Y(2) = P(0)=pz"Y (2) + 27" (1 = p)(Y(2) — 2P(1) — P(0)) + 2*(1 = p) P(0),

and gives the relation

Y (2)(z = p" = (1= p)) = P(O)(1 — p)(z"! = 1).

Using Y (1) = 1 and L’Hépital’s rule we get P(0) = [1 — (K + 1)p]/[(k + 1)(1 — p)],
and hence, we obtain Y (z) as given by (23). O

As before, we can obtain the distribution of Y, and hence that of W, by
inverting the z-transform. We can also obtain the moments of W directly
from Y (z).

6 Model (iv): Upper and Lower Bounds on the Window Size

The models analysed in the previous two sections assumed either a lower or
an upper bound on the congestion window. Although approximate, models
(1) — (i17) are easy to evaluate and provide simple expressions to obtain the
throughput of the connection. In this section, we present an analysis when
the congestion window is bounded from above and from below. The recursive
equation for this model is given by

W1 = max(min(A,W,, B,), B), (24)

where B; and B, are the lower and upper bounds, respectively. We make the
assumptions (3.1), (4.1), (4.2), and (5.1).

Let Y, = W be the transformation of W,,. Let L = % be
the number of states of Y,,. The transition probabilities of Y,, are shown in

Figure 4.

14
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Figure 4. Transition probabilities of Y;,.

The recursive equation for the process {Y,,} is given by

min(Y,, + k£, L) w.p. p,
Yoi1 =
max(Y, —1,0) w.p. 1 —p,

Y, is a finite state space communicating Markov chain with L states. There-
fore, its steady state probabilities exist. The steady state probability, P,,, of
being in state m satisfies the balance equation

Pm:(l_p)Perl—i_mefka m:1727"'7L_17

1 _
R=-—"Lp. (25)
p

where we define for convenience P,, = 0 for m < 0.

Proposition 5 Let m = n(k+ 1)+ j, where j =m mod (k+1). The steady
state probability, P,,, is given by

p & if i— i i
(1 . p)m ’ Z(_l) (p 1Si71,(n7i)(k+1)+j +p Si,(nfi)(k+1)+j—1)(1 —p) k.
=0
(26)

Py can be found using the equation % _, P,, = 1. The coefficients, Sij, are

given by
1+ 1+
S..o=S8.,=""T)=(""")
o= (1) (7)

Si; can also be calculated from the recursion

P,=F

S,"j = Si,j—l + S'_l’j.

15



The first few values of S; ; are given in the array below

(i,5))-101 2 3

~1(0 100 0

00111 1

110123 4 (27)
2 10136 10 ...

310141020 ...

PROOF. It can be shown using induction that the steady state probabilities
given by (26) satisfy the steady state equations in (25). The complete proof
is given in Appendix A. O

The steady state probabilities of the window size, P(W = j), can be obtained
from the relation

(o loglBu] — loglj
P(W_j)_P<Y_ log[a] )

We note that % is an integer since the state space of W, W, is of
the form W = {B;-a,i = 0,1, ..., L}. The n'® moment of W can be obtained
from
EW" = 3" j"P(W = j). (28)
JEW
The computational cost for obtaining the moments using (28) is much higher
than if we use either (18) or (22).

A similar expression can be derived when there is a congestion loss at B, (i.e.,
model (iz7) with lower bound on the window size). In this case, the recursion
of (25) is modified as

Pn=1—=p)Pps1+pPny, m=k+1k+2,.. L-1,
P=(1-p) P, i=0,1,..k (29)

It can be seen that equation (29) for m > k 4 1 is same as equation (25)
for m > 1. Therefore, we can use proposition 5 to obtain the probabilities
P;,j > k+ 1 as a function of P;. Since the probabilities are obtained as a
function of P, we first substitute P = Pk(lp%p) in (26), and then we obtain
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Proposition 6 The steady state probabilities for the transition probabilities
as given by equation (29) are given by

1 - if,1—1 % ik
A—pym+ ;:](—1) (P it m-ipr) 5 + P Simeinesn 1) (L= p)™,
m=k+1,k+2, .., L

Pn=P,(1—p)** m=0,1,..,k.

P, =P

Py can be obtained from the normalizing condition Zz'L:o P =1.

We note that in the above equations we compute the probabilities with respect
to Py unlike in (26) where the probabilities are computed relative to P.

7 Upper Bound on Window Size and Window Dependent Random
Losses : An Approximation

In the models considered in the previous sections, the probability of a loss in
an RTT was independent of the window size in that RTT. In this section, we
consider a model in which the losses in an RT'T depend on the window size
in that RTT. Specifically, we assume that each packet is dropped (or, equiv-
alently, is in error) with a constant probability ¢. As a consequence of this
assumption, the probability of packet drops in an RTT is no longer indepen-
dent of the window size in that RTT. First, we present the model with window
dependent losses. Then we propose an approximation to this model which will
enable us to compute the throughput in the window dependent model using
the expression for throughput in the window independent model (model (iz)).

We make the following assumption.

Assumption 7.1 In each RTT, the window is reduced only once even in the
presence of multiple packet drops.

We note that this assumption is consistent with loss recovery mechanisms of
the recent TCP flavours such as New Reno and SACK.

Let W, be the window size in the n'* RTT. Let p,, be the probability that the
window is reduced in the n** RTT. Then, p, is given by

Pa=1—(1—¢q)". (30)
The window size evolution for this model can be written as

Wn+1 = min(Aan, Bu)u
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where B, is the upper bound on the window size, and A,, is now given by

a w.p. 1—p,,
A, = !

B W.p. pn.

Next, we propose an approximation to the above model, and relate this ap-
proximation with model (7).

For ¢ - B, << 1, we can approximate p,, as
Dn = qW,. (31)

Using the approximation (31), the average window drop probability, F[p|, in
an RT'T is given by
Elp] = ¢E[W]. (32)

We now substitute E[p] as the probability of random loss in the expression
for computing the average window size in the model (i7). From equation (22)
with n = 1, we have

1—at

BW] = Bu(1 = (k+1p) ey 1y =

and this together with (32) gives

1—a!
EW|=B,1—(k+ 1)qEW . (33
The above equation is a quadratic equation in E[W], namely
EW 4+ i E[W] 4 ¢y = 0, (34)

(k)

where ¢, = ¢l =1 a0 = —(1+ (k+ 1)¢By), and ¢y = B,. Therefore, its
roots can be explicitly written as

—c1 £/t — 4deaeg
E[W]is = ! . (35)

2C2

Proposition 7 The solution of equation (34) which satisfies the inequality

E[W] < B, is
—c1 — ¢/ — 4deye
EW] = — Y1 720 (36)

2C2

PROQOF. Please see Appendix B. O

18



We can now obtain an approximate throughput of the session in the window
dependent loss model by using (36). We note that this expression is an ap-
proximation and we shall compare this approximation with actual simulation
results at the end of Section 8.

8 Simulation Results

Scalable TCP was proposed as a modification to the existing standard TCP for
high speed networks. In the congestion avoidance phase, Scalable TCP uses
the following algorithm to update the sender’s window at the end of every
RTT:

1.01 x W, if no losses are detected during the n'* RTT,
n+l —
0.875 x W,, if one or more losses are detected during the n'* RTT.

As mentioned in the Introduction, Scalable TCP is an instance of MIMD
protocols, and therefore, we validate our models by performing simulations
with Scalable TCP. The simulation are performed using ns-2 [15]. The simu-
lation setup has a source and a destination node. The source node has infinite
amount of data to send and uses Scalable TCP with New Reno flavor. The
link bandwidth is 150 Mbps and the two way propagation delay is 120 ms.
The window at the source is limited to 500 packets to emulate the receiver
advertised window. The BDP for this system is approximately 2250 packets
(packet size is 1040 bytes). In the Scalable TCP we have implemented in ns-2,
the following assumptions are made:

e The minimum window size, Bj, is 8. The growth rate of Scalable TCP is
very small for small window sizes. It has been recommended in [4] to use
the Scalable algorithm after a certain threshold.

e There is no separate slow start phase since slow start can be viewed as a
multiplicative increase algorithm with a = 2.

e For each positive ACK received, the window is increased by a — 1 packets.
When a loss is detected, the window is reduced by a factor of 5. « is taken
as 1.01 and S is taken as 0.86. This value of 3 gives k = —% ~ 15. We
set a and [ in this way so as to be close to the values recommended in [4]
(e =1.01, 8 = 0.875).

The expression for the density function of W, f(w), and the moments of W
modified for the minimum window at 8 is given by

a [w

sy =2 (9) (57
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Figure 5. Density Function of the window Figure 6. Density Function of the window
size, W. a = 1.55 size, W. a = 2.53

and
BEw" =8
a—n
respectively. In the simulations, the density function of W is obtained by
sampling the window at an interval of RTT = 0.12s. We would like to note
that the RTT is very close to the propagation delay in the present setting,
and does not vary much.

Figures 5 and 6 show the PDF of W for two different values of loss rate,
p. Simulation results are observed to match well with the analysis (equation
(37)). Depending on the value of the root, 2y, of equation (14), the distri-
bution can be seen to become heavy tailed. For example, for p = 0.07, the
tail decreases at rate 1.55 indicating the heavy tailed nature of the window
size. In the models which we considered, the window size was assumed to take
rational values. In practice, however, the window size (or, strictly speaking,
the number of packets in the network) takes only integer values. For example,
when the window size is 8.5, the sender sends 8 packets. The density for the
window size through simulations is, therefore, defined only at integer values
whereas the theoretical plot is shown for real values. This results in a small
discrepancy between the simulations and the theoretical function. Figure 7
shows the throughput in (TCP packets)/RTT as a function of the loss rate, p.
The error bars are the 99% confidence intervals. Figure 8 shows the through-
put in (TCP packets)/RTT as a function of the loss rate, p, for the model
in which the maximum window at the sender is limited by the receiver’s ad-
vertised window. The receiver buffer is assumed to be limited to 500 packets.
The error bars are the 99% confidence intervals. A good match is observed
between the simulations and the analysis.

In Figure 9, the throughput is plotted as a function of loss rate. The through-

puts as obtained from models (7), (i), and the exact model (model (iv)) are
compared with the simulations. The vertical line p = 1/(k + 1) separates the
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Figure 9. Throughput (pkts/RTT) versus loss rate, p.

two regions where model (i) and model (ii) are valid, respectively. As p ap-
proaches 1/(k + 1) from either direction, the approximate models (i) and (i)
diverge from the simulation results. However, model (i) gives a good estimate
when (k+ 1)p >> 1, i.e,, p >> 0.625 (k = 15 in the simulations). Similarly,
model (i7) gives a good approximation of the system when p << 0.625. The
exact model fits well throughout the range of p. The throughput for model (7)
is plotted for p > 0.068 because a (in equation (18)) is > 1 for p > 0.0673.

Approximation : Next, we compare the approximate throughput formula for
the window dependent loss model as obtained using (36), with simulations.
The simulation setup is as before. In Figures 10 and 11, the throughput is
plotted as a function of the packet loss probability, ¢, for two different maxi-
mum window sizes, B, = 500 and B, = 2000. The approximation gives a good
match over a large range of values of ¢q. Although we had assumed ¢B, << 1,
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the approximation seems to give a good match for larger values of ¢, too. As ¢
increases, the expected window size, E[W], and the probability of being near
B, decreases. The inequality, ¢E[W] << 1, still holds for larger values of g,
and therefore the approximation seems to give a good match.

9 Conclusions

The logarithm of the window size process of a connection using the MIMD
congestion control algorithm is equivalent to the workload process in a G/G/1
queue. The throughput of the connection and the higher moments of the win-
dow size process can be computed using the Laplace-Stieltjes transform of
the equivalent workload process. For window independent losses, an exact ex-
pression can be obtained for the steady state probability distribution of the
window size, and the throughput of the connection. For window dependent
losses, an approximate expression, analogus to the square root formula for
standard TCP, can be used to compute the throughput. This approximation
is observed to be close to the actual throughput obtained from simulations.
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A Proof of Proposition 5

We first note that for m = 1, (26) gives P; = Fy7%;,which is also obtained
from (25). From (25), for m > 1, P,,’s follow the recursion

Pm_Pmek

Pm—i-l: 1_p

We show that the probabilities given by (26) satisfy the above recursion. Let
m = n(k+ 1) + j, where j = m mod (k + 1). Let n denote the level of m.
There are two cases : a) j = k, and b) j < k. When j = k, P, and P,,_ are
on the same level n. When j < k, P,, is on level n and P,,_, is on level n — 1.

Case a): From (26),

Py
Poks1)+x = (1= p)nth+D)

'Z(—l)i (pi_lsifl,(nfi)(k+1)+k +piSi,(nfi)(k+1)+kfl) (1-p)™,
P
1 — p)ynhri—

n

> (=1 (pi_lsi—l,(n—i)(k—&-l) +pi5i,(n—i)(kz+1)—1) (1—p)™,
=0

Poky1) = (

Substituting in the RHS of (A.1), we get
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B
Pog1)+k — PPags1) = W

i

—1) (pi_lsifl,(nfi)(kJrl)Jrk +piSi,(nfi)(k+1)+kfl) (1—p)*

+

Mz ﬁ‘tﬂ:

(-1 (piSifl,(nfi)(kJrl) +pi+152-7(n,i)(k+1)71> (1 — p) D
1=0

T (1 p)ntD)

(pi_lsifl,(n—i)(k+1)+k +pi51,(nfi)(k+1)+k*1) (1- p)ik|i:0

+> (-1) (piilsi—l,(n—i)(k—l-l)—‘rk + piSi,(n—i)(k+1)+k—1) (1—p)*

i

Il
—

)

_|_

-

Il
—

(—1)i (pi_lsifQ,(nfz#l)(kJrl) +pi5¢71,(n7i+1)(k+1)71> (1 - p)ik

)

+(_1)n+1 (pn 10 +pn+15n,—1) (1 . p)(n—l-l)k :

Py

i i ik
= W . (p Sifl,(nf’i)(k+1)+k + p S’i,(n*i)(k+l)+k—1> (1 — p) ’

+ Z i |: z—l J(n—1)(k+1)+k + Sz 2,(n— z)(k+1)+k+1)
=1

—i_pZ S J(n—1)(k+1)+k—1 +Sz 1,(n— z)(k—&-l)—&—k)} (]- _p)lk

+(_1)n+1 (Pnan,o +pn+15n’71) (1 _ p)(nJrl)k :

The coefficients \S; ; follow the recursion
Si’j = S@j_l + S'_l’j. (AQ)

Also, from (27), S_1; = 6o, Vj, and Sp; = 1,Vj > 0. Therefore, for i = 0,
we can substitute Si_1 (n—ik+1)+% DY Sic1,(n—i)(k+1)+k+1, a0 Sj (n—i) (kg 1) 1h—1
by Si(n—i)(k+1)+%- Similarly, S;o = 1,Vi, and S; _; = 0, Vi. Therefore, we can
substitute S, 1 by Spi1,1, and S, 19 by Spo. The coefficients of p"~! and p’
can be substituted by the recursion given in (A.2).
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Py,
(1 —p)ntD)

(pi_lsifl,(n—i)(k+1)+k’+l +pi5i7(n*i)(’f+1)+k) (1= p)"li=o

+ Z(—l)i [pi_lsifl,(nfi)(k+1)+k+1 + Pi(Sz‘,(nﬂ')(kH)M} (1 - p)ik
i=1

+(=1)"* (PnSn,o +pn+15n+1,—1) (1- p)(n+1)k ;

By sy i, i—1 i ik
= —(1 _ p>n(k+1) : ;(—1) [p Sifl,(nJrlfi)(kJrl) +p S@',(nJrlfi)(kJrl)fl} (1 - p)

=(1—p)Pusiye+n) = (1 = p)Proy1.

This proves case (a).

Case (b) : Since j < k, we can write m = n(k+1)+j—k as (n—1)(k+1)+75+1.
From (26),

Py
P = Pager)+j = (1 — p)nk+ti—k

n

S o(-1) (pi_lsi—l,(n—i)(k—i-l)—f—j +piSi,(n—z‘)(k:+1)+j—1) (1—p)™,

i=0
By
Pk = P (et 1)4j+1 = (1— p)n(kz+1)+j—k—k'
Z(—l)l (pz_lSi—l,(n—l—i)(k+1)+j+1 +pZSi,(n—1—i)(k+1)+j) (1 - ]0)Z )
i=0
Therefore,
P,
Pm - mefk = .

(1— p)n(k+1)+j—k'

n

> (-1) (pi_lsi_L(n—i)(k—i-l)—i-j +piSi,(n—i)(k:+1)+j—1) (1-p)*
=0

n—1

+ ) (-1 (pisi—L(n—l—i)(k—l—l)-ﬁ—j-i-l +pi+lsi,(n—1—i)(k+l)+j> (1—p)iriF|
=0
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Py i—1 i ik
~ =)k (P Sictin-ine s + P Simopmin i) (1= p)*lizo

+> (-1) (piilsifl,(nfi)(kJrl)Jrj + PiSi,(nfi)(kH)H*l) (1-p)™*
=1

+> (-1 (pi_lsi—z,(n—i)(k+1)+j+1 + piSi—l,(n—i)(kH)H) (1-p"|
=1

Using substitutions similar to that in case (a) we get

by i—1 i ik
- (1 _ p>n(k+1)+j—k ’ (p Si—lﬂ(n—i)(k+1)+j+1 +p Si,(n—i)(k-i-l)—i-j) (1 - p) ’i:O

+> (=1 [pi7151—1,(n—z‘)(k+1)+j+1 +Pi(52‘,(n—i)(k+1)+j} (1—p)*
i=1
— Pk; n 1 i i—ls zS 1 ik
- k1) +j—k 'Z(— ) [p i—1,(n—i) (k+1)+j+1 T P i,(n—i)(k+1)+j] (1-p)
i=0

(L —p)t
=(1- p>Pn(k+1)+j+1 = (1 = p)Pus1-

This completes the proof. O

B Proof of Proposition 7

Let 0 = %ﬁfl) Note that 6 is less than 1, since « is greater than 1.

The discriminant is given by

¢t —degca = (1 + (k+ 1)¢B)* — 4Bqgb
=1+ ((k+1)¢B)*+ (2(k+1) —40)¢B
> 0.

The last inequality is obtained using the fact £ > 1 and 6 < 1. Since the
discriminant is positive, both the roots, E[W]; 2, are real. Using the fact ¢; < 0
and cg, co > 0 along with Descartes’ sign rule, we obtain that both the roots
are real and positive.

We first show that ;TC; > B,.
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262 N 2(]9

2q0 2q0

The first term in the above equality is positive. In the second term, we use the
fact 8 < 1 together with k£ > 1, to note that the coefficient of B, is greater
than 1. Therefore, we obtain 32 > B,. Hence, E[W]; in (35) does not satisfy
the constraint E[W] < B,,.

Next, we show that E[W], satisfies the given constraint. We denote the de-
pendence of E[W]s on ¢ by f(q).

ql0 ql0 \ 2¢0 20 2q0 20 qt
. 1 (k+1)B,
=lim [ —
ald (2q9 T )

The function g(g) is a continuous and decreasing function of ¢ € (0,1]. Let
h(q) be defined as

h(q) = /(9(q) — Bu)? + do,

where dy = (@ - 1) B2 > 0. Since dy > 0, h(q) is a positive and continuous

function of ¢ € (0, 1].

We can rewrite f(q) as

f(q) = 9(q) — h(q). (B.2)

Now consider
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(9(q) — Bu) ")

h(q)= 0,1
O ot -ppra 1O
/ (g(Q) _ BU> /
W (q)| = , 1.
7' (9)] |\/(g(q)_Bu)2+d0 9 (@], g€ (01]
Since dy > 0, we obtain
7 (@)] < lg'(a)] (B.3)
Since ¢(q) is a decreasing function of ¢, ¢’'(¢) < 0. We can rewrite (B.2) as
Fa) ==(g'(@)| + 1'(q))- (B-4)

Using inequality (B.3) in (B.4), we obtain

f'(q) <0.

Therefore f(q) is a decreasing function of ¢ € (0, 1]. Also, from (B.1), we have
lim,|o f(q) = By. Therefore, f(q) < By, q € (0,1]. Hence, E[W], satisfies the
constraint. [
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