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times to the file size distribution.
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1 Introduction

IEEE 802.11 [1] is the de facto standard for wireless local area networks (WLANs).
WLANs aim at providing wireless connectivity to the Internet, representing a valid
alternative to classical Ethernet LANs. Even if performance cannot be directly com-
pared to those obtainable by means of a wired connection, it seems that future
developments of the standard (namely, IEEE 802.11a/g), capable of transferring
data at rates up to 54 Mb/s, will make it an even more attractive solution for ensur-
ing nomadic connectivity. Since wireless access to the Internet is the most common
application of these kind of networks, it is reasonable to assume that the traffic
will be carried over the well-known TCP/IP protocol suite [2]. Hence, an important
issue to address is the interaction between the 802.11 MAC and the closed-loop
nature of TCP. This is accomplished in the first part of the paper, where we esti-
mate the throughput achieved by TCP in a WLAN scenario with many concurrent
persistent connections. In particular, it turns out that, due to the extremely high
overhead encompassed by the 802.11 protocol and the absence of an explicit duplex-
ing mechanism, the feedback traffic (namely, that constituted by the flow of TCP
acknowledgment packets) has an extremely negative effect on TCP throughput. This
motivated us to study the impact of ACK thinning techniques, such as the delayed
ACK option for TCP [3,4] and some modifications, such as those presented in [5].
The results obtained in the first part, in terms of attained service rates, are then
used to evaluate the network performance in the presence of short-lived flows. We
model the network as a processor sharing queue with state-dependent service rate,
and compute the mean session delay for HTTP traffic. Results are first derived for
exponentially distributed file sizes, and are then generalized applying insensitivity
results, along the lines of [6]. In particular, we analyse the impact of the TCP maxi-
mum congestion window size on the mean session delay. It turns out that, by setting
this parameter to a large value, unfairness problems do arise, leading to an overall
performance worsening in the presence of heavy tailed file size distribution. All re-
sults are compared with the outcomes of numerical simulations. The analysis is also
extended to a generalized delayed ACK technique. Evidence is provided that, under
a careful tuning of some system parameters, delayed ACK techniques can help in
reducing the mean session delay.
The paper is organized as follows. Sec. 2 reports a broad description of the net-
work scenario, of the 802.11 MAC protocol and of the delayed ACK mechanism.
The throughput analysis for persistent TCP connections is presented in Sec. 3. The
analysis of session delay for short-lived flows is presented in Sec. 4; Sec. 5 concludes
the paper.

2 The Network Scenario

We consider a WLAN where an access point (AP) provides access to Web or a shared
file system to (n − 1) hosts (also referred to as stations or nodes in the following).
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At any instant of time, a host is downloading (or, receiving) at most one file via
the AP. This file transfer is controlled using TCP. After the completion of a file
transfer, a host waits for a random amount of time before initiating another file
transfer request. The size of the requested files in successive requests are assumed to
be independent and identically distributed. The TCP controlled Data traffic flows in
the downlink direction (from the AP to the hosts) while the TCP Acknowledgement
traffic flows from the hosts to the AP. The AP and various nodes use the IEEE
802.11 MAC protocol for transmission of their data (TCP DATA packets in case of
AP and TCP ACK packets in case of nodes). Relevant details of the IEEE 802.11
protocol are summarized in Sec. 2.1.

The number of active file transfers is now time-varying. The variation in the number
of concurrent file transfers is in turn determined by the effective service rate seen by
the active file transfers. The effective rate at which a file is served at any instant of
time is determined by the interaction between MAC and the closed-loop behaviour
of TCP controlling the ongoing file transfers.

The problem that we address in this work is that of obtaining the average perfor-
mance seen by the hosts. The approach is to first study the detailed interaction
between the IEEE 802.11 MAC and TCP with a fixed number of file transfers to
obtain the effective service rate of the files as a function of the number of concurrent
file transfers (Sec. 3). This is then used to obtain a queueing model that captures
the time varying behaviour of the number of concurrent file transfers, thus providing
us with a node’s average perceived performance (Sec. 4).

2.1 Protocol Description

In the IEEE 802.11 standard, the medium access control is based on a distributed
CSMA/CA mechanism [1]. A node listens to the channel for a time equal to the
distributed inter-frame spacing (DIFS). If the medium is sensed idle, then a random
backoff is generated. During the backoff the node continues sensing the channel. If, at
the end of the backoff, the medium is still idle, the node starts transmitting. Since no
channel load sensing mechanism is provided, an explicit acknowledgment is necessary
to inform the node of the success/failure of its transmission. To accomplish that,
when a node receives a packet, after a short interframe spacing (SIFS), it sends a
short ACK packet to inform the source of the outcome of the previous trasnmission.
The length of the backoff interval, expressed in slots, is uniformly chosen in the set
{0, 1, . . . , CW − 1}, where CW denotes the actual contention window size. At the
beginning, CW is set to a predefined value CWmin. If a collision or loss occurs, the
contention window of the nodes involved in the collision is doubled and another
trasmission attempt is made. The contention window cannot grow indefinitely, but
may reach a maximum value of 2γCWmin = CWmax; moreover, if a packet incurs m
collisions, where m ≥ γ, it is dropped. If a transmission is detected while the backoff
counter has not reached zero, its value is frozen and reloaded as soon as the channel
is sensed idle for a DIFS.
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An optional RTS/CTS mechanism is encompassed by the standard to avoid the well-
known hidden terminal problem of CSMA-based MAC protocols. In this case, after a
DIFS and a random backoff, a RTS packet is sent to the intended destination. After
a SIFS, the destination replies with a CTS, signalling to all the stations in range
the foreseen duration of the packet exchange. After a SIFS, the sender starts the
transmission of the data packet. In this way, a virtual channel sensing mechanism is
provided, since all the stations which received the CTS may update their network
allocation vector (NAV) and go in stand-by for the whole duration of the packet
exchange (the channel is “virtually” sensed busy). As shown in [7], the use of the
RTS/CTS mechanism let the network performance be less sensitive to the mutual
interference generated by a large number of devices. In the following we will assume
that the RTS/CTS exchange precedes any packet transmission.
At the physical layer, the standard encompasses three different options: infrared,
frequency hopping and direct sequence CDMA. We focus on the last option (the
one currently implemented), and, furthermore, use the parameters described for
operations in the 2.4 GHz ISM band, known as 802.11b [8].

2.2 Delayed ACK Techniques

When running over bandlimited channels, such as wireless ones, one of the basic
techniques to improve TCP throughput is to thin the feedback traffic, by reducing
the flow of TCP acknowledgment packets. In this way, more bandwidth is ensured to
the forward TCP link, achieving thus a higher throughput. This mechanism presents
some drawbacks. The main one is that, by thinning the TCP ACK flow, the con-
gestion window grows slower, and this results, in general, in an increased session
delay for short TCP sessions [4], which are known to constitute most of the traffic
carried over the Internet. However, this drawback can be, if not eliminated, seriously
mitigated, by using adaptive techniques such as the ones described in [5]. Further,
problems arise at both the beginning and the end of a file transfer. Indeed, at the
beginning of a TCP connections, if the TCP initial window size is set to a value less
than d, a timeout necessarily takes place. This problem may be solved by enlarging
the initial window size to a value greater than 1 [9]. On the other hand, nothing
can be done for the end of a file transfer, where, if the number of packets is not a
multiple of d, time has to be “wasted” waiting for a timeout expiration.
The standard delayed ACK technique for TCP [3] suggests that an ACK packet
should be sent every d = 2 received packets. If no packet is received for more than a
timeout period τout, an acknowledgment packet has to be generated. It is clear that
by further reducing the frequency with which ACKs are sent, we may, in principle,
gain bandwidth, at the expense of a much slower growth of the congestion window
at the beginning of the connection or after a packet loss. In reality, the value of d
cannot be indefinitely increased, since this would cause harmful expirations of the
TCP sender timeout, resulting in an overall performance degradation. Further, in the
case of short sessions, increasing d increases the probability of incurring a timeout
at the end of a file transfer, with a negative impact on the mean session delay.
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Parameter Value

Tslot 20µs

TSIFS 10µs

TDIFS 50µs

TP 144µs

TPHY 48µs

CWmin 32

CWmax 1024

m 7

γ 5

Table 1
Parameters of 802.11b (long PLCP preamble)

2.3 System Parameters

In Table 1 we report the parameters we use for evaluation purposes. TP and TPHY

represent the time necessary to transmit the long PLCP preamble and the physical-
layer header, respectively. (We treat the case of long PLCP header; the analysis is
the same for short PLCP preamble.) As far as the transmission rates are concerned,
we assume ideal channel conditions; hence all hosts use a data rate of Rdata = 11
Mb/s. Further, we take the control rate to be equal to Rcontrol = 2 Mb/s and assume
that TCP packets are LTCP = 8000 bits long. The length of TCP/IP header is
LIPH = 320 bits, whereas the length of the RTS and CTS packets are given by
LRTS = 180 bits and LCTS = 112 bits, respectively. A MAC-layer ACK consists of
LACK = 112 bits. The overhead added by the MAC layer (MAC header plus FCS
field) amounts to LMAC = 272 bits.

The raw trasmission times of a TCP data packet and a TCP ACK, disregarding the
backoff, are given, respectively, by:

TTCP data = TDIFS + TP + TPHY +
LRTS

Rcontrol
+ TSIFS + TP + TPHY +

LCTS

Rcontrol
+

+TSIFS + TP + TPHY +
LMAC + LIPH + LTCP

Rdata
+ TSIFS + TP + TPHY +

LACK

Rcontrol
,

TTCP ack = TDIFS + TP + TPHY +
LRTS

Rcontrol
+ TSIFS + TP + TPHY +

LCTS

Rcontrol
+

+TSIFS + TP + TPHY +
LMAC + LIPH

Rdata
+ TSIFS + TP + TPHY +

LACK

Rcontrol
.

Note that a TCP ACK packet consists just of the TCP/IP header, of length LIPH .
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Fig. 1. Collision probablity as a function of the number of backlogged nodes.

3 Persistent TCP Connections: Throughput Analysis

In this section we find the actual service rate that the TCP controlled file transfers
get when the number of file transfers is fixed and each of these files are of infinite
length. In order to do this, we find the probability of collision owing to multiple
simultaneous transmission attempts when there are nc concurrent TCP connections.
Let nb(≤ nc + 1) be the number of backlogged nodes (i.e., nodes having packets to
be transmitted). We then find the expected time required for successful transmission
of a packet. The relation between nc and nb will be made explicit later.

We now thread the footprints of [10], enhancing the model by considering that,

at backoff stage k, the average backoff time is 2kCWmin−1
2

if k ≤ γ and 2γCWmin−1
2

for γ ≤ k ≤ m. Furthermore, we neglect the packet drops which take place due to
attained maximum number of retransmissions. Hence, denoting with PC the collision
probability, and considering it to be independent of the backoff stage (this has been
observed in [7] to provide good approximation), we get for the average backoff time:

Tb = Tslot ·

[

(1 − PC)

2
CWmin

1 − (2PC)γ

1 − 2PC

−
1 − P γ

C

2
+

2γCWmin − 1

2
(P γ

C − P m
C )

]

.

(1)
The complete derivation of this relation is reported in [11]. Thus, since nb nodes are
backlogged, we may, as in [10], find the collision probability by numerically solving
(1) together with:

PC = 1 −
(

1 −
Tslot

Tb

)nb−1

. (2)

An alternative fixed point formalization of such procedure for the computation of
the collision probability is reported in [12].
The probability of dropping a packet can be estimated as Pdrop = P m

C . Numerical
results for PC and Pdrop as a function of nb are presented in Fig. 1 and Fig. 2.
Observe that, when using the RTS/CTS mechanism, collisions may occur only on

RTS packets. By optimistically considering that retransmissions are triggered after
a SIFS (i.e. when no CTS is detected by the sender), we get that the average time
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Fig. 2. Packet drop probability as a function of the number of backlogged nodes.

“lost” in each collision is:

Tcoll = TDIFS + Tb + TP + TPHY +
LRTS

Rcontrol

+ TSIFS. (3)

Since the collision probability PC is assumed to be independent of the backoff stage
of a node, the number of collisions that a node sees before succeding in transmission
is a geometric random variable. Since the node looses, on an average, Tcoll amount of
time for each collision, the average total time “wasted” in collisions for any succesful
packet transmission may be computed as:

TW = Tcoll ·
m−1
∑

k=0

k(1 − PC)P k
C ≈ Tcoll ·

+∞
∑

k=0

k(1 − PC)P k
C = Tcoll ·

PC

1 − PC

, (4)

where the approximation is based on the assumption that no packet drop takes place
due to reached maximum number of retransmissions. Similarly, the mean number of
backoff periods which precede a succesful transmission is given by

m
∑

k=1

k(1 − PC)P k−1
C ≈

+∞
∑

k=1

k(1 − PC)P k−1
C =

1

1 − PC

. Since each backlogged node attempts transmitting at a rate 1
Tb

, the mean total
time spent in backoff can be estimated as:

Ttbo =
Tb

nb · (1 − PC)
(5)

Note that, to keep the notation clear, the dependence of Tb, PC , TW and Ttbo on nb

is suppressed.

We now use the above results to obtain STCP (nc, d), the throughput achieved by a
single TCP connection in presence of nc competing connections, where each receiver
is employing delACK parameter d. As far as TCP is concerned, we work under the
following assumptions:
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Fig. 3. TCP throughput vs. delACK parameter d for the single station case.

• the retransmission timer at the TCP source is large enough so that no timeouts
take place;

• the transmit buffers at the nodes are well-dimensioned, in the sense that no packet
drop takes place due to buffer overflow;

Since packet drops due to contention are considered negligible, and the network
operates over a lossless channel, the TCP congestion window would grow. However
this growth can not continue indefinitely, since the TCP window is bounded by the
receiver’s advertised window W ∗. Thus TCP window will stabilize, after a transient
phase, at the maximum TCP window W ∗.

3.1 Single station

We start with an analysis of the simplest case, namely a single TCP connection
between the access point (AP) and the station, so that nc = 1. Let us consider the
case W ∗ � 1; a study of the impact on throughput of the value of W ∗ is reported in
the appendix, complementing the results of [13] to the single-hop case. Thus, with
high probability, both nodes will be backlogged and contend for the channel so that
nb = 2. The collision probability can be found by specializing (1) and (2) to the case
nb = 2, obtaining PC as the solution of:

1

PC

=
(1 − PC)

2
CWmin

1 − (2PC)γ

1 − 2PC

−
1 − P γ

C

2
+

2γCWmin − 1

2
(P γ

C − P m
C ), (6)

giving PC ≈ 0.060. Accordingly, the throughput for standard TCP can be estimated
as:

STCP (1, 1) =
LTCP

TTCP data + TTCP ack + 2Ttbo + 2TW

. (7)

To consider the case where the host employs the delACK mechanism, we note that
with probability d−1

d
no acknowledgment will be sent by the receiver, so that no

contention for the channel takes place. Thus, for W ∗ � d, we get the following
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approximate expression for the TCP throughput:

STCP (1, d) = LTCP ·
[

TTCP data +
1

d
(TTCP ack+

+2Ttbo + 2TW ) +
d − 1

d
·
CWmin − 1

2

]

−1

. (8)

Results are plotted in Fig. 3, together with outcomes of ns-2 [14] simulations (ob-
tained with both W ∗ = 1000 and W ∗ = d). As it may be noticed, the use of delACK
result in a remarkable increase in TCP throughput, which is due to the high over-
head encompassed by the standard. Within the evolution of the IEEE 802.11 family
standards, the protocol overhead plays an increasingly important role [15], which
leads to the conclusion that delayed ACK techniques may lead to an even increasing
gain in 802.11a/g.

3.2 Multiple stations

In the case of multiple competing connections, in order to apply the results of the
previous section, we need to compute the distribution of the number of backlogged
nodes.
This issue has also been recently addressed by Bruno et al. [16], where an equivalent
p-persistent CSMA model of the IEEE 802.11 MAC behavior is used in order to
construct a Markovian model for the TCP/MAC interaction. The model is then
explicitly solved and the statistics of the number of backlogged users is obtained.
Our approach is different, in that we do not use an equivalent p-persistent model
for the MAC layer operations and actually do not make any assumption on the
underlying MAC protocol, except for fairness (which comes from the fact that we
are considering donwlink connections only [17]). Further, we look at steady state
behavior, without the need for embedding at AP’s successful transmission instants,
as done in [16]. Nonetheless, our simple approach leads to results similar to the ones
in [16], showing at the same time a good match with simulation outcomes.
We denote by nc the number of active TCP connections, each one corresponding to a
station downloading files from the server. We assume the TCP advertised window to
be set to W ∗ = 1 packet (more relevance will be given to this issue in the following).
The notion of “slot” used in the following corresponds to that introduced in [7] and
does not, in general, coincide with Tslot.
Let us enumerate the node from 0 to nc. The ID of the AP is set to 0. We define the
following notation:

• NS
i (t) is the number of succesful transmission attempts of node i up to time t;

• P S
i is the probability that, given a successful transmission attempt, this has been

performed by node i;
• NB

i (t) is the number of slots, up to time t, during which node i is backlogged.
• P B

i is the probability that node i is backlogged.
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We set NS(t) =
nc
∑

i=0
NS

i (t). Clearly P S
i = lim

t→+∞

NS
i

(t)

NS(t)
. In the limit t → +∞, the num-

ber of TCP data packets transmitted equals that of TCP ACKs, so that we have
P S

0 = 1
2
. We assume the AP to be always backlogged (due to the traffic asymmetry,

this is expected to hold with good approximation for a sufficiently large number of

connections), so that we take P B
0 = 1. We then set ζ0 =

P B
0

P S
0

= 2.

Since TCP provides a fair sharing of the bandwidth [18] and the 802.11 MAC pro-
vides long-term fairness, we have that P S

i = P S
j ∀i, j ≥ 1. Then,

P S
i =

1

2nc

, i = 1, . . . , nc.

Now we need to find a relationship linking P S
i and P B

i , i ≥ 1. We start by considering
a generic station i. We can build an equivalent closed single-server queueing model
of the station behavior. A customer in the queueing model corresponds to a backlog
in the original network. Since only one customer may be present in the system (recall
that we assume W ∗ = 1), the average number of customers equals E[Bi] = P B

i . The
system is closed, and hence stable: then the rate at which customers leave the queue
is equal to the rate at which customers enter the queue. The rate at which customers
leave the queue is equal to:

λi = lim
t→+∞

NS
i (t)

t
= lim

t→+∞

NS
i (t)

NS(t)
lim

t→+∞

NS(t)

t
= P S

i · ω,

where ω is a constant which does not depend on i. Applying Little’s law, we have that
P B

i = λiYi = P S
i ωYi, where Yi corresponds to mean sojourn time in the equivalent

queueing system. The symmetry of the system leads to Yi = Yj, ∀i, j ≥ 1. We denote
the quantity ωY1 by ζ , so that we have P B

i = ζP S
i , i ≥ 1.

For both the access point and the stations, we have then a linear relationship linking
P B

i and P S
i . We then assume ζ = ζ0. While we have no proof of this assumption, the

rationale behind it lies in the per-node fairness provided by the 802.11 MAC. Since
802.11 provides per-node fairness, two nodes that are backlogged (and hence try to
access the channel) with the same probability should experience, in the long term,
the same fraction of successful transmissions, regardless of the fact that are AP or
stations.
Under this assumption, we then obtain P B

i = 1
nc

, i ≥ 1. It is worth remarking that
this result, which is in line with the ones in [16], predicts that TCP is effectively able
to reduce the contention for the channel, letting the number of backlogged nodes
scale with respect to the number of active connections.
In order to check the soundness of the assumptions which led to the results above, we
compared the collision probability that we would get by taking the average number of

backlogged users equal to E[nb] =
nc
∑

i=0
P B

i = 2 to the outcomes of ns2 simulations. The

results, in terms of average collision probability versus number of TCP connections,
are plotted in Fig. 4. As it may be seen, for simulations run with W ∗ = 1 the match is
indeed very good, showing the soundness of our approximate analysis. On the other
hand, as it may be expected, an increase in the value of W ∗ leads to an increase
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in the collision probability. Nonetheless, even for large values of W ∗, the collision
probability is not very sensitive to the number of competing TCP connections.
If we make the assumption of independence between the events that various stations
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Fig. 4. Collision probability versus number of competing TCP connections; simulation
results are shown in terms of 95% confidence interval.

have ACKs to transmit, then the probability that exactly k nodes are backlogged is:

πk =

(

nc

k − 1

)

(

1

nc

)k−1 (nc − 1

nc

)nc−k+1

, k = 1, . . . , nc + 1. (9)

Then, since we are considering persistent connections, a time-scale decomposition
argument can be used to compute the average throughput achieved by each TCP
connection. Hence, we assume that for a fraction πk of the time k nodes are back-
logged, and using (7) we obtain:

STCP (nc, 1) = LTCP ·
nc+1
∑

k=1

πk · [nc · (TTCP data + TTCP ack + 2Ttbo(k) + 2Tw(k))]−1 ,

(10)
where the dependence of Ttbo and Tw on k has been made explicit.

Numerical results for the aggregated throughput versus the number of TCP connec-
tions are plotted in Fig. 5, where (10) is compared with simulation results and with
the model presented in [19] (the latter has been modified since it already accounts
for d = 2). As it may be seen, our approximate model shows a good match with the
simulation outcomes, thus validating our analysis.
The analysis can be extended to the case of delayed ACK. Taking W ∗ = d in the

previous analysis, we get P S
0 = d

d+1
and P S

i = 1
nc(d+1)

, i ≥ 1. Assuming the AP to be

always backlogged, we get β = d+1
d

and finally P B
i = 1

dnc
. Assuming independence,

we get the following probability distribution for the number of backlogged nodes:

πk =

(

nc

k − 1

)

(

1

dnc

)k−1
(

dnc − 1

dnc

)nc−k+1

, k = 1, . . . , nc + 1. (11)
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Fig. 5. Aggregated throughput vs. number of persistent TCP connections.

Then, using (8) together with a time-scale decomposition argument, we get the
following expression for the average TCP throughput:

STCP (nc, d) = LTCP ·
nc+1
∑

k=1

πk·

{

nc ·

[

TTCP data +
1

d
TTCP ack +

d + 1

d
(Ttbo(k) + Tw(k))

]}

−1

,

(12)
where the dependence of Ttbo and Tw on k has been made explicit.
The level of approximation we may get with the previous formula has been tested
through extensive numerical simulations. In Fig. 6 we reported the TCP throughput,
as a function of d, for nc = 10 (in ns2 we used both W ∗ = 1000 and W ∗ = d).

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

DelACK parameter d

T
hr

ou
gh

pu
t (

b/
s)

analysis (12)
ns2 (W*=1000)
ns2 (W*=d)  

Fig. 6. TCP throughput vs. DelACK parameter d, nc = 10.

4 Short-lived TCP flows: mean delay analysis

It is widely acknowledged that, although a study of throughput for persistent TCP
connections is of interest to characterize the network performance, it does not reflect
the end-user perception. In a Web browsing scenario, the Web page delay is indeed
the performance metric influencing user perception. Assuming that a Web page
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transfer corresponds to a TCP session, we characterize thus network performance in
terms of mean session delay for short-lived TCP flows. As far as traffic patterns are
concerned, we assume an ON/OFF model for HTTP traffic. Nodes alternate between
activity and idle periods. Active periods correspond to the download of a Web page,
whose size, in bits, will be denoted by X. Off periods, referred to as think times,
correspond to the time elapsed between the end of a download and the beginning of
the next one. We assume that think times are exponentially distributed with mean
1
λ
. The file size distribution, where not otherwise stated, is assumed to be general

with mean E[X].

4.1 An affine model for the single station case

Let us start by considering a single TCP connection. In the previous section, we
noted that the maximum congestion window size has a negligible impact on the
connection throughput. Hence, we base our analysis on the assumption W ∗ =
1. Under such an assumption, 802.11 MAC provides, in our scenario, contention-
free access to the wireless channel. Thus, the average round trip time is given by
TTCP data +TTCP ack +(CWmin − 1) ·Tslot. Furthermore, we should take into account
the time spent in the connection setup phase, based on a three-way handshaking.
Neglecting the propagation delay, and considering that the third packet necessary to
setup the connection may be piggybacked within a data frame, the mean connection
setup time may be written as:

E[Tsetup] = 2 ·

[

TDIFS + TP + TPHY +
(CWmin − 1)Tslot

2
+

LIPH

Rdata

+

+TSIFS + TP + TPHY +
LACK

Rcontrol

]

. (13)

TCP encompasses a 4-way handshake to close down the connection; however, after
the delivery of the last TCP segment, the file is taken to be sent to the destination,
and hence we may neglect it in the calculations. For transmitting a message of size
X (in bits), after some easy algebra we obtain an average session delay of:

E[Tsession] = E[Tsetup] +
⌈

X

LTCP

⌉

(TTCP data + TTCP ack + (CWmin − 1)Tslot)−

−
(⌈

X

LTCP

⌉

−
⌊

X

LTCP

⌋)

·
LTCP − X mod LTCP

Rdata

. (14)

In order to validate the model, we simulated 10000 file transfers over 802.11b 1 . The
file size, X, is Pareto-distributed with mean 30 KByte and shape factor β = 1.5. The
results are reported in Table 2. As expected, the more aggressive behavior induced

1 In reality ns2 implementation of TCP provides bit padding and, hence, all the
⌈

X
LTCP

⌉

packets generated present a payload of size equal to LTCP . Furthermore, no explicit con-
nection closing is provided.
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ns2, W = 1 ns2, W � 1 analytical

Mean Session Delay (s) 0.1099 0.1064 0.1095

95% Conf.Int.(s) [0.0956, 0.1243] [0.0928, 0.1199] -

Table 2
Session delay for short TCP connections, mean and 95% confidence interval.

0 1 2 n−1

λ(n − 1) λ(n − 2) λ(n − 3) λ

µ1
µ2 µ3

µ
n−1

Fig. 7. Transition probability diagram of the Markov chain J(t).

by a larger value of W ∗ leads to better performance in terms of session delay.
Notice that the above model is approximately affine in the file size:

E[Tsession] ≈ E[Tsetup] +
E[X]

LTCP

· (TTCPdata
+ TTCPack

+ (CWmin − 1)Tslot) . (15)

Furthermore, the mean session delay shows insensitivity properties with respect to
the file size distribution, depending only on the mean file size. Simulation results
have confirmed such a system feature.

4.2 Concurrent TCP sessions: a queueing model

Now we use the results obtained till now to compute the mean session delay in the
presence of concurrent TCP sessions.We consider a WLAN scenario, with one AP
and (n − 1) stations. We work under the following assumptions:

(i) for each connection, W ∗ = 1;
(ii) each session corresponds to a file transfer; file sizes are independent and iden-

tically distributed with mean E[X];
(iii) after the completion of a file transfer, a node generates a random think time.

Idle times are independent and identically distributed with mean λ−1.

Let us denote by J(t) the number of connections active at time t; J(t) is a continuous
time random process which takes values in the state space S = {0, 1, . . . , n−1}. We
assume that the active sessions are served according to a processor sharing discipline
with state-dependent service rate [20,21]. Insensitivity of the stationary probability
distribution πk with respect to the file size and think time distributions follows from
an approach similar to that in [6], or can alternatively be derived from the results
in [21]. In particular, this implies insensitivity of the mean session delay. Hence, in
the following, we will assume, without any loss of generality, that both file sizes and
think times are exponentially distributed.
We denote by Ck the “system capacity” (in terms of effective aggregated TCP rate)
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when there are k connections active, expressed in b/s. Hence, any of the k active
connections is served at a rate Ck

k
. Since files are exponentially distributed, the rate

at which each of the k active sessions finishes is given by Ck

kE[X]
. Hence, the rate at

which one of the k active nodes moves to the OFF state is given by µk = Ck

E[X]
. Then,

the process J(t) is a continuous time Markov chain, whose transition structure is
depicted in Fig. 7. This birth-death process can be solved to obtain the stationary
probability distribution:

πk =

λk
·(n−1)(n−2)...(n−k)

µ1...µk
(

1 +
n−1
∑

i=1

λi(n−1)(n−2)...(n−i)
µ1...µi

) , k = 0, 1, . . . , n − 1. (16)

The “system capacity” Ck is computed, under assumption (i), according to the model
presented in the previous section: C(k) = k · STCP (k, 1). Note that, if we assume
the aggregated throughput to be independent of k, the model reduces to a classical
processor sharing system, for which Ck = C ∀k, leading to the model used in [22] for
assessing the performance of HTTP traffic over EDGE. The average session delay
can then be computed by means of Little’s Law, summing the mean setup time:

E[Tsession] = E[Tsetup] +
E[Y ]

λ
, (17)

where E[Y ] =
n−1
∑

k=0
kπk and λ = λ

n−2
∑

k=0
(k + 1)πk. In Fig. 8 a first comparison be-

tween analytical and numerical results is presented. Think times are exponentially
distributed with mean λ−1 = 10 s, the average file size is 30 Kbytes and two file size
distributions are used, Pareto (with shape factor β = 1.5) and exponential. Simula-
tions are run for both W ∗ = 1 and W ∗ = 1000; each stations download 300 files and
buffers are dimensioned in such a way that no packet drops take place. Notice that,
when W ∗ = 1, similar results, in terms of mean session delay, are achieved by Pareto
and exponential distributions. Further, in this case the ns2 outcomes show a good
match with the analytical results. For exponentially distributed file sizes, the mean
session delay shows a very weak dependence on the value of W ∗. On the other hand,
in the case of Pareto distribution, the mean session delay shows a high variability
with W ∗. In particular, a very large value of W ∗ leads to a much higher mean ses-
sion delay. This phenomenon can be understood as follows: assume there is only one
session active, which corresponds to the transfer of a very large file (an “elephant”),
and that the TCP window size has reached its stationary behavior and is thus equal
to W ∗. In such conditions, if the AP transmission queue is served according to a
FCFS policy, the elephant is going to get most of the network resources, arising
starvation problems for the other incoming sessions (a similar behavior has already
been observed in [23] in the context of wireline networks). In practice, an increase in
the value of W ∗ leads to a smaller mean session delay for elephants, while increasing
it for small files transfer (the “mice”). This is basically due to the implicit unfairness
of the FCFS policy according to which the packets waiting in the AP transmission
queue are served. By setting W ∗ = 1 (or, alternatively, by changing the scheduling
at the AP queue), we force a round-robin scheduling of the various active sessions,
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Fig. 8. Mean delay for short-lived TCP flows vs. number of stations.

so that the increase in fairness leads to a decrease in session delay. Furthermore,
note that, with W ∗ = 1, we achieve not only better performance in the presence of
short-lived flows, but also get insensitivity w.r.t. the file size distribution. It is indeed
clear that, from a network designer point of view, having a system which behaves
in a predictable manner regardless of the traffic characteristics (which indeed may
change due to protocol evolution etc.) is a very desirable property, so that setting a
low value for the advertised window size represents a good choice from an engineer-
ing perspective.
To check the ability of the model to track the system behavior for high loads (where
the terms “load” refers to the queueing model), avoiding numerical instability prob-
lems related to ns2, we acted on the mean think time. Results are plotted in Fig. 9,
where the analytical results are compared with the outcomes of numerical simula-
tions (we reported the 95% confidence interval) for n = 11, W ∗ = 1 and Pareto-
distributed file size.
All the analysis above relies on the assumption of infinite AP transmission buffer
and (consequently) no timeout expiration. Let us now focus on a more realistic sce-
nario, where the buffer size B (expressed in packets) is indeed finite. Then, we can
distinguish among three different regimes. For W ∗ � B we retrieve the behavior
previously described. The case W ∗ ≈ B is the one which leads to the worst perfor-
mance. In this regime, indeed, the unfairness of the FIFO policy according to which
the buffer is served causes mice to experience losses, leading to a lower degree of fair-
ness and higher session delay. For W ∗ ≥ B, on the other hand, also elephants will
experience losses; in this regime TCP effectively reduces the congestion and provides
a “fair” sharing of the network resources. In this case, then, we expect the mean
session delay of elephants to increase (owing to frequent losses) and that of mice to
decrease (since the elephants are now frequently reducing their window sizes). As
a result, an overall performance improvement can be expected. It is also natural to
expect that any value of W ∗ > B would give same performance.
In Fig. 10 we reported some simulation results of these regime. With n = 21 nodes,
we set the AP transmitting buffer size to B = 30 packets, simulated the transfer of
Pareto-distributed files and varied W ∗ from 5 to 35 (packets); note that, as expected,
in this region the session delay is first an increasing function of W ∗ ≤ B, and then
flattens out when W ∗ > B.
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Fig. 10. Mean delay for short-lived TCP flows vs. W ∗, B = 30, n = 21.

The arguments above may be applied to analyze the impact of very long connections
(persistent, in the limit) on Web browsing users. This situation is indeed the case in
the presence of users downloading extremely long files (i.e., DivX files), typically by
means of peer-to-peer applications. In such situations, clearly, the risk is that the
persistent users grab all the available bandwidth, leading to starvation problems for
Web users. This situation is clearly undesirable from the network management point
of view, since the overall result is to satisfy only those (few) users who, due to na-
ture of their application, are not really sensitive to the network performance. On the
other hand, a large amount of users, who just require short connections, experience
unsatisfactory performance. While the choice of a small value of W ∗ would solve
these problems, this is a factor that cannot be controlled by the network provider.
Hence we need to look for alternative solutions to these unfairness problems. One
could be represented by the deployment of per-flow scheduling at the AP’s buffer,
but its feasibility remains an open issue. On the other hand, a small amount of
random losses is expected to increase the fairness among the various flows; we are
currently investigating the use of RED techniques at the AP’s buffer in order to en-
hance the performance of short-lived flows in the presence of persistent connections.
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d = 1 d = 2 d = 3 d = 4 d = 5

0.1064 0.1044 0.1053 0.1043 0.1090

[0.0928, 0.1199] [0.0934, 0.1154] [0.0951, 0.1156] [0.0945, 0.1141] [0.0993, 0.1188]

Table 3
Session delay for short TCP connections with delayed ACK, mean and 95% confidence
interval (s), τout = 40 ms.

4.3 On the use of delayed ACK for short TCP connections

The analysis (both the affine model for the single station case and the modified En-
gset model for the multiple stations case) can be extended to account for the use of
delayed ACK, under the assumption W ∗ = d, yielding similar results. The problem
is here to account for the interaction with the receiver-based delayed ACK timer,
which can expire (under our assumptions) at the end of a file transfer. As we show in
[11], the timeout interval may have a great impact on network performance and, in
particular, the choice of a high timeout value may have a negative effect on session
delay.
Results for the single station case (obtained with τout = 40 ms) are presented in
Table 3, for d varying from 1 (i.e. standard TCP) to 5. Simulations consisted in
the transmission of 10000 Pareto-distributed files, with W ∗ = 1000 and a large
buffers. We think there is no real reason to go beyond d = 5, since, as it is apparent
from simulation results, increasing too much the number of delayed ACK has not a
beneficial impact on network performance. This may be understood by considering
the effect of the timeout at the end of the file transfer. Indeed, by increasing d, we
increase the probability that the receiver will be forced to send an ACK due to time-
out expiration. To investigate the impact on session delay of the slower congestion
window growth, we simulated also the dynamic delayed ACK scheme proposed in
[5]. According to such scheme, the delayed ACK parameter d is varied dynamically
as a function of the sequence number nseq of the received TCP packet. If nseq < 2,
standard TCP is used, i.e., d = 1. For 2 ≤ nseq < 5, d = 2 is used, whereas d = 3 is
used for 5 ≤ nseq < 9. Finally, d = 4 is used for nseq ≥ 9.
With this scheme, we obtained an average session delay of 0.1080 s, with a 95%
confidence interval of [0.0980, 0.1180] s. Comparing with the results in Table 3, we
may notice that we get performance that are slightly worse than that obtained with
the standard delACK option d = 2.
On the whole, we may thus conclude that, by choosing an initial window size equal
to d, and by appropriately tuning the timeout interval, the delayed ACK option,
with d = 2, 3, 4 may outperform standard TCP and also the more complex multi-
threshold scheme proposed in [5].
We evaluated also the impact on network performance of the delayed ACK op-

tion in the presence of concurrent TCP connections. We limit ourselves to the cases
d = 1, 2, 3 and to the scheme of [5] (it turns out that by taking larger values of d no
performance improvement is achieved, and, further, the system behavior becomes
very sensitive in the delACK timer value). The initial congestion window size was
varied accordingly. HTTP traffic is modelled as done for the standard TCP case,
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Fig. 11. Average session delay vs. number of stations.

with Pareto-distributed file sizes and exponential think times. Simulations were run
with W ∗ = 1000. Results are presented in Fig. 11. Notice that, for a large number
of stations, delayed ACK lead to a considerable reduction of the mean session delay,
making it an attractive choice for hot-spot scenarios.

5 Conclusions

In this paper we have analysed the network performance of an 802.11-based WLAN
in the presence of HTTP traffic. We have derived estimates for the TCP throughput
in the presence of nc competing persistent connections, for both standard TCP
and generalized delayed ACK techniques. These results have then been employed
to develop a queueing model which has enabled us to estimate the mean session
delay for short-lived flows. Insensitivity of the results with respect to the file size
distribution has been shown to hold in the presence of a small value of the advertised
window size. In the presence of a large advertised window size, unfairness problems
do arise, leading to an overall performance worsening for heavy-tailed distributed file
size. The effect of limited buffers size has been investigated, and its impact on both
fairness and session delay has been discussed. Generalized delayed ACK techniques
have also been analysed, and it has been shown that, under a careful tuning of some
system parameters, they can lead to an overall performance enhancement in terms
of both throughput and session delay.
These results provide precious guidelines for network designers, showing in particular
the positive effect of a small advertised window size option on network behavior
and the benefits deriving from the use of generalized delayed ACK techniques. The
results can be reinterpreted as an argument in favour of the introduction of per-
flow scheduling at the AP, so that a PS-like sharing of the bandwidth may be
achieved even in the presence of a large value for the TCP advertised window. Also
the introduction of active queue management techniques could represent a (partial)
solution, in that random dropping of packets when the AP buffer fills up is expected
to increase fairness.

19



Further insight into a real WLAN environment, where both uplink and downlink
traffic coexist, may be achieved combining the presented results with the ones in
[17]. In [17] the authors present an in-depth analysis of the unfairness arising in
an IEEE 802.11 WLAN among uplink and downlink persistent TCP connections.
This problem is rooted into the per-node fairness provided by the IEEE 802.11 MAC,
which does not ensure in such mixed scenario per-flow fairness. Nonetheless, as stated
in [17], one of possible way to overcome this issue is to use a small value for the TCP
advertised window size. In this case, further, we know from the presented results that
also the unfairness between mice and elephants is solved. Combining the two, we can
thus conclude that, by setting W ∗ to a limited value, fairness between short-lived
flows (uplink and downlink, mice and elephants) is provided, which enables the use
of a PS queueing model to estimate the perceived performance.
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A Impact of the maximum TCP congestion window size W ∗

Under the assumptions reported in §3 (no timeout expiration and no packet losses),
the congestion window would grow indefinitely. Assume that there is a maximum
limit, W ∗ on the TCP congestion window size (this indeed may be thought as the
limit imposed by the receiver by means of an appropriate setting of the adver-
tised window). Due to the aforementioned assumptions, after some period (tran-
sient phase), TCP congestion window will stabilize at W ∗. For the moment, let
us focus on a single connection: the couple (XS, XD) will denote the number of
packets queued at the sender and receiver side, respectively. Clearly, we have that
XS(t)+XD(t) = W ∗. Furthermore, assume that the reception of a MAC layer ACK

21



represents a renewal instant for the process (XS(t), XD(t)) 2 . Then, embedding at
such instants, (XS(n), XD(n)) represents a Markov chain, as depicted in Fig. A.1 for
the case W ∗ = 4. Due to the particular transition structure, the resulting Markov
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Fig. A.1. Structure of the embedded Markov chain, W ∗ = 4.

chain can be easily solved, leading to the following stationary probability distribu-
tion:

P [(XS(n), XD(n)) = (α, β)] = πα,β =

=















1
W ∗

(α, β) = (a, W ∗ − a), a = 1, . . . , W ∗ − 1,
1

2W ∗
(α, β) = (a, W ∗ − a), a = 0, W ∗,

0 otherwise.

(A.1)

To compute the throughput we may work in the following way: except for the “ex-
tremal” states, in all the other states a packet is acknowledged with probability 1/2,
due to the fair access to the medium provided by the 802.11 DCF 3 . In the state
(0, W ∗) this occurs with probability one. However, the time it takes to accomplish the
transition is state-dependent. In particular, considering that collisions are possible
in all but the extremal states, we have, using Markov renewal reward theorem:

S = L·





1

2

∑

i,j=1,...,W ∗
−1

πi,j + π0,W ∗



·







∑

i,j=1,...,W ∗
−1

πi,j ·
[

1

2
(TP + TA) + Ttbo + Tw

]

+

+π0,W ∗

(

TA + Tslot

CWmin − 1

2

)

+ πW ∗,0

(

TP + Tslot

CWmin − 1

2

)}−1

. (A.2)

After some algebra, the equation above reduces to:

S =
L

TA + TP + φ(W ∗)
, (A.3)

2 This is strictly true only if we assume a geometric backoff is present at the MAC layer,
which is clearly just an approximation of the complex 802.11 MAC behavior. Note that, by
appropriately expanding the state space, we could account for the real protocol behavior.
3 Note that DCF provides only long-term fairness, but suffers from short-term unfairness.
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where φ(W ∗) = 2(W ∗
−1)(Ttbo+Tw)+Tslot(CWmin−1)

W ∗
is the average time spent in collision

resolution. It is then routine to check that, if W ∗ ≥ 1:

∂φ

∂W ∗

=
2(Ttbo + Tw) − Tslot(CWmin − 1)

(W ∗)2
< 0,

so that φ(·) is monotone decreasing. The behavior of the function φ(·) is plotted in
Fig. A.2. As a result, an increase in W ∗ leads to a throughput enhancement; the
analysis may be extended to the case of delACK with similar results. Theoretical
and simulation results for W ∗ = d and W ∗ � d are plotted in A.3. These results
complete the analysis of [13] for the case of a single-hop network.
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