
Computer Networks 50 (2006) 982–1002

www.elsevier.com/locate/comnet
Pricing differentiated services: A game-theoretic approach q

Eitan Altman a, Dhiman Barman b, Rachid El Azouzi c, David Ros d,*,
Bruno Tuffin e

a INRIA, B.P. 93, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex, France
b 111 Cummington Street, Department of Computer Science, Boston University, Boston, MA 02215, USA
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e IRISA/INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Received 16 November 2004; received in revised form 16 May 2005; accepted 26 June 2005
Available online 8 August 2005

Responsible Editor: J.C. de Oliveira
Abstract

The goal of this paper is to study pricing of differentiated services and its impact on the choice of service priority at
equilibrium. We consider both TCP connections as well as noncontrolled (real-time) connections. The performance
measures (such as throughput and loss rates) are determined according to the operational parameters of a RED (Ran-
dom Early Discard) buffer management. The latter is assumed to be able to give differentiated services to the applica-
tions according to their choice of service class. We consider a service differentiation for both TCP as well as real-time
traffic where the quality of service (QoS) of connections is not guaranteed, but by choosing a better (more expensive)
service class, the QoS parameters of a session can improve (as long as the service class of other sessions are fixed). The
choice of a service class of an application will depend both on the utility as well as on the cost it has to pay. We first
study the performance of the system as a function of the connections� parameters and their choice of service classes. We
then study the decision problem of how to choose the service classes. We model the problem as a noncooperative game.
We establish conditions for an equilibrium to exist and to be uniquely defined. We further provide conditions for con-
vergence to equilibrium from nonequilibria initial states. We finally study the pricing problem of how to choose prices
so that the resulting equilibrium would maximize the network benefit.
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1. Introduction

We study in this paper the performance of
competing connections that share a bottleneck
link. Both TCP connections with controlled rate
as well as CBR (Constant Bit Rate) connections
are considered. A RED active queue management
(AQM) algorithm is used for the early dropping of
packets. We allow for service differentiation be-
tween the connections through the rejection prob-
ability (as a function of the average queue size),
which may depend on the connection (or on the
connection class). More specifically, we consider
a buffer management scheme that uses a single
averaged queue length to determine the rejection
probabilities (similar to the way it is done in the
RIO-C (coupled RIO) buffer management [2]);
for any given averaged queue size, packets belong-
ing to connections with higher priority have smal-
ler probability of being rejected than those
belonging to lower priority classes. To obtain this
differentiation in loss probabilities, we assume that
the loss curve of RED is scaled by a factor that
represents the priority level of the application.
We obtain various performance measures of inter-
est such as the throughput, the average queue size
and the average drop probability.

We then address the question of the choice of
priorities. Given utilities that depend on the per-
formance measures on one hand and on the cost
for a given priority on the other hand, the sessions
at the system are faced with a noncooperative
game in which the choice of priority of each ses-
sion has an impact on the quality of service of
other sessions. For the case of CBR traffic, we
establish conditions for an equilibrium to exist.
We further provide conditions for convergence to
equilibrium from nonequilibria initial states. The
game formulation of the problem arises naturally,
since a classical optimization approach where a
common objective function is maximized, is not
realistic in IP networks; indeed, it is quite rare that
users of a network collaborate with each other (or
even ‘‘know’’ each other).
Finally we study numerically the pricing prob-
lem of how the network should choose prices so
that the resulting equilibrium would maximize its
benefit.

We briefly mention some recent work in that
area. Ref. [3] has considered a related problem
where the traffic generated by each session was
modeled as a Poisson process, and the service time
was exponentially distributed. The decision vari-
ables were the input rates and the performance
measure was the goodput (output rates). The
paper restricted itself to symmetric users and
symmetric equilibria and the pricing issue was
not considered. In this framework, with a common
RED buffer, it was shown that an equilibrium does
not exist. An equilibrium was obtained and char-
acterized for an alternative buffer management
that was proposed, called VLRED. We note that
in contrast to [3], since we also include in the utility
of CBR traffic a penalty for losses (which is sup-
ported by studies of voice quality in packet-based
telephony [4]), we do obtain an equilibrium when
using RED. For other related papers, see for in-
stance [5] (in which a priority game is considered
for competing connections sharing a drop-tail buf-
fer), [6] as well as the survey [7]. In [8], the authors
present mechanisms (e.g., AIMD of TCP) to con-
trol end-user transmission rate into differentiated
services Internet through potential functions and
corresponding convergence to a Nash equilibrium.

The approach of our pricing problem is related
to the Stackelberg methodology for hierarchical
optimization: for a fixed pricing strategy one seeks
the equilibrium among the users (the optimization
level corresponding to the ‘‘follower’’), and then
the network (considered as the ‘‘leader’’) optimizes
the pricing strategy. This type of methodology has
been used in other contexts of networking in [9,10].

The structure of this paper is as follows. In Sec-
tion 2 we describe the model of RED, then in Sec-
tion 3 we compute the throughputs and the loss
probabilities of TCP and of CBR connections for
given priorities chosen by the connections. In
Section 4 we introduce the model for competition
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Fig. 1. Drop probability in RED as a function of q.
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between connections at given prices. In Section 5
we focus on the game in the case of only CBR con-
nections or only TCP connections and provide
properties of the equilibrium: existence, unique-
ness and convergence. Remark that isolating elas-
tic (i.e., TCP) flows from real-time (i.e., UDP/
CBR) flows—that is, mapping TCP and UDP
flows to two different service classes—is a fairly
common way of protecting TCP traffic from
UDP flows in a differentiated-services architecture.
Note that, inside each service class, we consider
that flows have different parameters (like, say, dif-
ferent round-trip times). In Section 6 we provide
an algorithm for computing Nash equilibrium for
the symmetric case. The optimal pricing is then
discussed in Section 7. We present numerical
examples in Section 8 to validate the model.
1 RED punishes aggressive flows more by dropping more
packets from those flows.
2. The model

The main goal of the Random Early Discard
(RED) algorithm is to provide congestion avoid-

ance (that is, an operating region of low delay
and high throughput) by trying to control the
average queue length at a router [11]. A RED-en-
abled router estimates the average queue length q

by means of an exponentially-weighted moving
average; this estimate is updated with every incom-
ing packet as: q (1 � wq)q + wqQ, where Q de-
notes here the instantaneous queue length ‘‘seen’’
by the packet, and wq 2 [0,1] is the averaging
weight (the lower the value of wq, the longer the
‘‘memory’’ of the estimator). Here we assume that
the time averaging parameters of RED are such
that the average queue size, and hence the drop
probabilities pi�s have negligible oscillations. We
are aware of the fact that for some RED parame-
ters this may not be the case, and that the inter-
action between RED and TCP can lead to
instabilities if the parameters are not chosen
correctly.

This average queue value is then compared to
two thresholds qmin and qmax, with qmin < qmax, in
order to decide whether or not the incoming
packet should be dropped. The drop probability
is 0 if q 6 qmin, 1 if q P qmax, and pmax(x � qmin)/
(qmax � qmin) if q = x with qmin < x < qmax; the lat-
ter is the congestion avoidance mode of operation.
pmax is the value of the drop probability as the
average queue tends to qmax (from the left). This
is illustrated in Fig. 1. In a best-effort network,
the value of pmax is the same for all flows sharing
the buffer, whereas in a network implementing ser-
vice differentiation packets may ‘‘experience’’ dif-
ferent values of pmax, according to the service
class they belong to—as we will see below, it is
the latter case which we are focusing on.

The purpose of the early discarding of packets
(i.e., dropping a packet before the actual physical
queue is full) is to signal the sources that imple-
ment congestion-control mechanisms—like TCP
sources—to reduce their sending rates, in order
to prevent heavy congestion. The random nature
of drops aims at avoiding synchronization of flows
having similar round-trip times [11], i.e., all
sources increasing and decreasing their congestion
windows in unison, leading to strong oscillations
of queue lengths and lower throughput.

We consider a set N containing N TCP flows
(or aggregate of flows) and a set I containing I

real-time CBR flows that can be differentiated by
RED; they all share a common buffer yet RED
handles them differently.1 We assume that they
all share common values of qmin and qmax but each
flow i may have a different value p(i) of pmax, lead-
ing to a differentiated treatment. In other words,
the slope ti of the linear part of the curve in
Fig. 1 depends on the flow i:
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ti ¼
pðiÞ

qmax � qmin

.

Denote t ¼ ðti; i 2 I [NÞ. We identify ti as the
priority class of a connection. The service rate of
the bottleneck router is given by l.
2.1. Practical considerations

Let us add a few remarks concerning practical
issues of this proposal, like scalability and imple-
mentation complexity. First, in a DiffServ-like
architecture [12], users may select a specific QoS
treatment on a packet-per-packet basis, and that
treatment corresponds precisely to a RED-like
AQM policy that may drop packets with a proba-
bility that depends on a tag carried by the packet
(this is how the Assured Forwarding per-hop
behavior [13] operates)—the tag may well be set
by the user to signal how the packet should be
treated by the core routers. So, in the context of
our proposal, from a practical (i.e., implementa-
tion) viewpoint, a user choosing her own p(i) in
the router requires just a straightforward setting
of the QoS tag she puts on her packets.

On the other hand, letting a user choose the
thresholds qmin and qmax does not seem realistic:
the (feasible) values of the thresholds depend on
link speeds and on the actual, ‘‘physical’’ capacity
of router queues, which may vary from a link/
router to another [11].

The fact that each source may choose a different
value for the slope could cause problems in scaling
our approach to large networks or to a large num-
ber of flows. This scaling problem can, however, be
solved by using the following distributed approach:
the RED queue could restrict to put on each packet
the value of q at a given time. Then the decision of
whether the packet would be dropped or not,
depending on the slope that corresponds to the
source of the packet, can be delegated to the edge
router that corresponds to that connection. (In a
differentiated service environment, there are edge
routers that behave as policers, i.e. they can mark
or drop packets that do not comply with the user�s
type.) The edge routers are directly connected to
the corresponding sources so it is much easier to
take the dropping decisions there. Note that our
analysis does not depend on how exactly conges-
tion signals are conveyed to a given source so using
the above approach does not change our results.
3. Computing the throughputs

We use the well-known relation for TCP rate:

ki ¼
1

Ri

ffiffiffiffi
a
pi

r
; i 2N; ð1Þ

where Ri and pi are TCP flow i�s round-trip time
and drop probability, respectively. a is typically ta-
ken as 3/2 (when the delayed-ACKs option is dis-
abled) or 3/4 (when it is enabled). We shall assume
throughout the paper that the queueing delay is
negligible with respect to Ri for the TCP
connections.

In contrast, the rates ki, for i 2 I, of real-time
flows are not controlled and are assumed to be
fixed. If N ¼ ; we assume throughout the paper
that

P
j2Ikj > l (unless otherwise specified),

otherwise the RED buffer is not a bottleneck. Sim-
ilarly, if I ¼ ; we assume that TCP senders are
not limited by the receiver window.

In the model above, we assume that the number
of flows is constant over time. This corresponds to
a scenario of long-lived flows in which, for in-
stance, TCP connections are used for the transfer
of large files in storage networks or in backup of
disks (so that we may assume that the square-root
throughput formula (1) holds) and UDP flows are
associated to the streaming of long CBR-encoded
multimedia flows. Furthermore, we assume that
the short-lived TCP flows, even if more numerous
than long lived flows, do not affect the perfor-
mance of long-lived TCP flows. (This assumption
is compatible with the natural scaling that is ex-
pected to occur as the Internet grows, see [14].)

In general, since the bottleneck queue is seen as
a fluid queue, we can writeX
j2I[N

kjð1� pjÞ ¼ l.

If we operate in the linear part of the RED curve
then this leads to the system of equations:
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P
j2I[N

kjð1� pjÞ ¼ l;

pi ¼ tiðq� qminÞ; 8i 2 I [N

8<
:
with (N + I + 1) unknowns: q (average queue
length), and pi, i 2 I [N, where ki, i 2N is
given by (1). Substituting (1) and

pi ¼ tiðq� qminÞ 8i; ð2Þ

into the first equation of the above set, we obtain a
single equation for q:
X
j2N

1

Rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

tjðq� qminÞ

r
ð1� tjðq� qminÞÞ

þ
X
j2I

kjð1� tjðq� qminÞÞ ¼ l. ð3Þ

If we write x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� qmin

p
, then (3) can be written

as a cubic equation in x:

ZðxÞ ¼ z3x3 þ z2x2 þ z1xþ z0 ¼ 0; ð4Þ

where

z3 ¼
X
j2I

kjtj; z2 ¼
X
j2N

1

Rj

ffiffiffiffiffiffi
atj

p
;

z1 ¼ l�
X
j2I

kj; z0 ¼ �
X
j2N

1

Rj

ffiffiffi
a
tj

r
.

Note that this equation has a unique positive solu-
tion if there are only TCP or only real-time con-
nections; in either case, it becomes a quadratic
equation.

Proposition 1. Fix the values of tj, j 2 I [N. The

cubic Eq. (4) has a unique real positive solution.

Assume that the solution lies in the linear region of
RED. Then the average queue size is given as

qmin + x2 where x is the unique positive solution of

(4) and the loss probability for session i is given by

pi = ti(q � qmin).

Proof. Assume first that I and N are both non-
empty. Since the coefficients of the cubic equation
are real, it has either a single real solution and two
other conjugate complex solutions, or it has three
real solutions [15]. Consider first the case in which
all solutions are real. Then since the product of
solutions is positive (it equals �z0/z3), there are
either one or three positive solutions. But the latter
is excluded since the sum of solutions is positive (it
equals �z2/z3).

Next consider the case of a single real solution.
Since the two other solutions are conjugate, their
product is positive. Then since the product of all
solutions is positive (it equals �z0/z3), the real
solution is positive. h

Note that, in the case of only real-time connec-
tions ðN ¼ ;Þ operating in the linear region, we
have

q ¼ qmin þ
P

j2Ikj � lP
j2Ikjtj

ð5Þ

and

pi ¼ ti

P
j2Ikj � lP

j2Ikjtj
. ð6Þ

(Recall that, throughout the paper, when consider-
ing this case we shall assume that

P
j2Ikj > l.)

In the case of only TCP connections ðI ¼ ;Þ
operating in the linear region, we have

q¼ qminþ
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4a

P
j2N

1

Rj
ffiffiffi
tj
p

� �P
j2N

ffiffiffi
tj
p
Rj

� �s !2

4a
P

j2N

ffiffiffi
tj
p
Rj

� �2

ð7Þ

and

pi¼ti

�lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4a

P
j2N

1

Rj
ffiffiffi
tj
p

� �P
j2N

ffiffiffi
tj
p
Rj

� �s !2

4a
P

j2N

ffiffiffi
tj
p
Rj

� �2
.

ð8Þ
4. Utility, pricing and equilibrium

We denote a strategy vector by t for all flows
such that the jth entry is tj. By (ti, [t]�i), we define
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a strategy where flow i uses ti and all other flows
j 5 i use tj from vector [t]�i.

We associate to flow i a utility Ui. The utility
will be a function of the QoS parameters and the
price payed by flow i, and is determined by the
actions of all flows. More precisely, Ui(ti, [t]�i) is
given by

aikið1� pðti; ½t��iÞÞ � bipðti; ½t��iÞ � dðtiÞ;
ai > 0; bi P 0

where the first term stands for the utility for the
goodput, the second term stands for the dis-utility
for the loss rate and the last term corresponds to
the price d(ti) to be paid by flow i to the network.2

In particular, we find it natural to assume that a
TCP flow i has bi = 0 (as lost packets are retrans-
mitted anyhow, and their impact is already taken
into account in the throughput). Moreover, since
ki for TCP already includes the loss term pi(ti, [t]�i),
the utility function of TCP is assumed to be

U iðti; ½t��iÞ ¼ aikið1� pðti; ½t��iÞÞ � dðtiÞ.
We assume that the strategies or actions available
to session i are given by a compact set of the form:

ti 2 Si where Si ¼ ti
min; t

i
max

� �
; i 2 I [N.

Here we assume that ti
min > 0 for all i 2 I [N.

Each flow of the network strives to find its best
strategy so as to maximize its own objective func-
tion. Nevertheless its objective function depends
upon its own choice but also upon the choices of
the other flows. In this situation, the solution con-
cept widely accepted is the concept of Nash
equilibrium.

Definition 1. A Nash equilibrium of the game is a
strategy profile t = (t1, t2, . . . , tM) where M = I + N

from which no flow has any incentive to deviate.
More precisely, the strategy profile t is a Nash
equilibrium if the following holds true for any i
2 Linear utilities are commonly used for their tractability (see
e.g. [16]), but they also have some mathematical justification: a
utility that is given as the sum of (weighted) performance
measures can be interpreted as the Lagrange relaxation of
constraints that are imposed on the average delays, average loss
probabilities, etc.
ti 2 arg max
�ti2Si

U ið�ti; ½t��iÞ.

ti is the best strategy that flow i can use if the other
flows choose the strategies [t]�i.

Note that the network income is given byP
i2I[NdðtiÞ. Since the pi(ti, [t]�i) are functions of

ti and [t]�i, d can include pricing per volume of
traffic successfully transmitted. In particular, we
allow for d to depend on the uncontrolled arrival
rates of real-time sessions (but since these are con-
stants, we do not make them appear as an argu-
ment of the function d).

We shall sometimes find it more convenient to
represent the control action of connection i as
Ti = 1/ti instead of as ti. Clearly, properties such
as existence or uniqueness of equilibrium in terms
of ti directly imply the corresponding properties
with respect to Ti.
5. Equilibrium for only real-time sessions or only

TCP connections

We assume throughout that ti
max 6 1=

ðqmax � qminÞ for all connections. The bound for
ti
max is given so that we have ti

maxðqmax� qminÞ 6 1.
From (2) we see that pi 6 1 with equality obtained
only for the case ti = 1/(qmax � qmin).3

In our analysis, we are interested mainly in the
linear region. For only real-time sessions or only
TCP connections, we state the assumptions and
describe the conditions for linear region operations
and we show the existence of a Nash equilibrium.

Theorem 1. A sufficient condition for the system to

operate in the linear region is that for all i:

1. For only real-time connections:

k > l and ti
min >

k� l
kðqmax � qminÞ

. ð9Þ
3 Note that if the assumption does not hold then for some
value q 0 < qmax we would already have for some i, pi = 1 so one
could redefine qmax to be q0. An important feature in our model
is that the queue length beyond which pj = 1 should be the same
for all j.
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2. For only TCP connections:

ti
min >

�lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4að

P
j2N

1
Rj

q
Þ2

4
ffiffiffiffiffiffiffiffiffi
aDq

p P
j2N

1
Rj

0
@

1
A

2

; ð10Þ

where k ¼
P

j2Ikj and Dq: = qmax � qmin.

Proof. The condition (9) (respectively (10)) will
ensure that the value of q obtained in the linear
region (see (5) and (7), respectively) is not larger
that qmax. Indeed, for real-time connections, (9)
implies that

X
j2I

kjtj >
k� l

qmax � qmin

;

which implies together with (5) that q < qmax.
Finally, the fact that the queue size is not below

the lower extreme of the linear region (i.e., pi > 0
for all i) is a direct consequence of k > l.

The case of only TCP connections is proved in
Appendix A.1. h

The following result establishes the existence of
Nash equilibrium for only real-time sessions or
only TCP connections.

Theorem 2. Consider either the case of only real-
time sessions or of only TCP connections. Assume

that the system operates at the linear regime and the

functions d are convex in Ti :¼ 1/ti. Then a Nash

equilibrium exists.

Proof. See Appendix A.2. h
4 Si is a sublattice of RM if t 2 Si and t 0 2 Si imply that t ^
t 0 2 S i a n d t ^ t 0 2 S i , w h e r e t ^ t0 ¼ ðmaxðt1; t01Þ; . . . ;

maxðtM ; t0M ÞÞ and t ^ t ¼ ðminðt1; t01Þ; . . . ;minðtM ; t0M ÞÞ.
5.1. Supermodular games

Let us now introduce the notion of a supermod-

ular game, which will be used in Theorems 3–5
below. Supermodular games have the following
appealing monotonicity property: for any user i

and any fixed policy [t]�i of the users other than
i, the best response of user i to the other users�
policy [t]�i is monotone in [t]�i.

This implies the following properties of super-
modular games.
• Several dynamic update schemes (for example,
a round robin one) converge to a Nash equilib-
rium. For example, if we start with all players
using their smallest available action and a
round robin update scheme is used (where at
each time period another player changes its
action to a best response against the actions
used by other players) then the sequence of
actions will be monotone nondecreasing and
hence will converge to a limit. (More details will
be given below in the so called ‘‘Greedy Algo-
rithm’’ that we shall introduce.)

• This limit turns out to be an equilibrium. Hence
the monotonicity property of the best response
sequence implies existence of an equilibrium.

• Using the same procedure when starting with
the largest strategy of each user gives a mono-
tone decreasing sequence whose limit is again
a (possibly different) Nash equilibrium. For
more details see [17].
Definition 2. The game (S1, . . . ,SM,U1, . . .,UM) is
supermodular if for all i

• Si is a sublattice,4

• Ui is upper semi-continuous in ti and [t]�i,
• Ui has nondecreasing differences in (ti, [t]�i), i.e.,

for all ti P t0i and ½t��i P ½t�0�i,

U iðti; ½t��iÞ � Uiðt0i; ½t��iÞP Uiðti; ½t�0�iÞ
� Uiðt0i; ½t�

0
�iÞ;

where Si ¼ ½ti
min; t

i
max�, S = S1 · S2 � � � · SM and

M = I + N.

By nondecreasing differences in (ti, [t]�i), we
mean that it has the property that the incremental
gain by choosing a greater ti is greater when [t]�i is
larger. For example if the utility of user i has non-
decreasing differences in the vector t, user i in-
creases her utility if she increases her slope in
response to an increase in the slope of another user
j. If Ui is twice differentiable, then the supermodu-
larity is equivalent to
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o2Ui

otiotj
P 0; ð11Þ

for all t in S. Applying Topkis� Theorem [17] in
this context shows immediately that each flow�s
best response function is increasing in the action
of the other flows. An useful propriety of super-
modular games is that we can use monotonicity
to prove the existence of equilibria and greedy
algorithms. A greedy algorithm is a simple, so-
called tatônnement of Round Robin scheme for
best response that converges to the equilibrium.

Let us now introduce the following asynchro-
nous dynamic greedy algorithm (GA).

Greedy Algorithm. Assume a given initial choice t0

for all flows. At some strictly increasing times sk,
k = 1,2,3, . . ., flows update their actions; the
actions tk

i at time sk > 0 are obtained as follows.
A single flow i at time sk+1 updates its tkþ1

i so as to
optimize Ui(Æ, [tk]�i) where [tk]�i is the vector of
actions of the other flows j 5 i. We assume that
each flow updates its actions infinitely often. In
particular, for the case of only real-time sessions,
we update tkþ1

i as follows:

tkþ1
i ¼ arg max

ti2½timin
;timax �

aikið1� piÞ � bipi � dðtiÞ; ð12Þ

where pi in (12) is given by (6).
For the TCP-only case, we update tkþ1

i as
follows:

tkþ1
i ¼ arg max

ti2½timin
;timax �

ai

Ri

ffiffiffiffi
a
pi

r
ð1� piÞ � dðtiÞ; ð13Þ

where pi in (13) is given by (8).
We assume that the duration of a stage is quite

long, so that sufficient information can be
obtained by the user in order to be able to
estimate pi.

Remark 1. For the case of real-time sessions, we
may obtain a closed-form solution for tkþ1

j with
specific cost function d(ti) such as d

ti
which will lead

to update of tkþ1
i as follows:

dk
i ¼

P
j6¼ikjtk

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaiki þ biÞð

P
j2Ikj � lÞð

P
j 6¼ikjtk

j Þ
q

� ki

ffiffiffi
d
p ;
where dk
i is such that oUi

oti
jti¼dk

i
¼ 0 and Ui corre-

sponds to the utility function of real-time session
i. Then tkþ1

i is given by:

tkþ1
i ¼

ti
min if dk

i < 0;

ti
max if dk

i < ti
min; dk

i P 0;

ti
min if dk

i > ti
max; dk

i P 0;

di otherwise.

8>>>>>><
>>>>>>:

Theorem 3. For the case of only real-time connec-

tions we assume that "j, kmin 6 kj 6 kmax, and

ðI � 1Þkmintmin P kmaxtmax;

where tmin ¼ mini2Ifti
ming and tmax ¼ maxi2Ifti

maxg.
Then there is smallest equilibrium t and largest equi-

librium �t, and the GA dynamic algorithm converges

to t (respectively �t) provided it starts with tj
min for

all j (respectively tj
max for all j).

Proof. Both statements will follow by showing
that the game is super-modular, see [17,18]. A
sufficient condition is that

o2U i

otiotj
¼ �ðaiki þ biÞ

o2pi

otiotj
P 0.

We have

opi

oti
¼

X
j

kj � l

 !
1P

j2Ikjtj
� tiki

ð
P

j2IkjtjÞ2

 !
;

leading to

o2pi

otiotk
¼ kk

X
j2I

kj � l

 !
�
P

j2Ikjtj þ 2tiki

ð
P

j2IkjtjÞ3
.

The latter is nonpositive if and only ifP
j 6¼ikjtj P kiti. A sufficient condition is that

(I � 1)kmintmin P kmaxtmax. Thus the game is
super-modular. The result then follows from stan-
dard theory of super-modular games [17,18]. h

Theorem 4. For the case of only real-time connec-

tions, we assume that "j, kmin 6 kj 6 kmax, and

2t3
mink

2
min > t3

maxk
2
max. Under supermodular condition,

the Nash equilibrium is unique.

Proof. See Appendix A.3. h
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Theorem 5. For the case of only TCP connections,

assume that "j, tmin 6 t 6 tmax and

ð3þ piÞ
opi

oti

opi

otj
P 2piðpi þ 1Þ o2pi

otiotj
8 i; j; i 6¼ j.

ð14Þ

Then the game is super-modular.

Proof. See Appendix A.4. h

Remark 2. It would also be interesting to consider
a price per unit of received volume, i.e., of the
form d(ti)ki(1 � pi). However, looking at the
super-modularity of the utility function gives a
condition depending on d 0(ti), d(ti) and the tj that
does not seem tractable. On the other hand, we
can consider a pricing per unit of sent volume,
i.e., of the form d(ti)ki (since ki is fixed), Conditions
of Theorems 2,3 then hold to provide a Nash
equilibrium.

Note that in the model presented above, users
choose at each stage an action that maximizes their
utility function, depending on the actions of all
other flows. This dependence appears in the loss
probability pi. In our case, a user can determine
her utility function without hypothesis of full
knowledge: since users only need to have aggregate

information about other flows (like the total rateP
j2Ikj in the CBR-only scenario), there are in

principle no scalability issues, i.e., no need of
exchanging or storing per-flow information at the
routers. The issue of how such aggregate values
are signaled to sources is outside the scope of this
paper.

Remark 3. As already mentioned, in supermodu-
lar games, one can obtain equilibrium dynamically
in stages, such that during each stage, users choose
an action that maximizes their utility function,
depending on the actions of all other flows. This
dependence appears in the loss probability pi. In
our case, a user can determine his utility function
without hypothesis of full knowledge of the
actions of other players. Indeed, in real-time
connections, it is possible for each source to
obtain the sufficient information for determining
its actions by using RTP/RTCP (each source can
obtain the receiver reports (RRs) that include the
reception quality statistics such as the number of
packets received, fraction lost, and cumulative
number of packets lost). Hence the source i can
obtain the loss probability �pi at each stage. For
TCP connections, the ACK packets could be
sufficient to acquire the loss probabilities pi.

In case of only real-time connections, the loss
probability at stage k is given by

piðti; ½tk�1��iÞ ¼ ti

P
j2Ikj � lP

j 6¼ikjtk�1
j þ kiti

; ð15Þ

where ti is the action of user i and tk�1
j is the opti-

mal action of user j at stage k � 1. At stage k � 1,
we have

�pk�1
i ¼ piðtk�1

i ; ½tk�1��iÞ ¼ tk�1
i

P
j2Ikj � lP
j2Ikjtk�1

j

;

where tk�1
i is the optimal action of user i at stage

k � 1. Note that the loss probability �pk�1
i is esti-

mated through RTP/RTCP protocol at end of
stage k � 1. Hence at stage k, when the action of
user i is ti, the loss probability (15) of user i
becomes:

piðti; ½tk�1��iÞ ¼ ti

P
j2Ikj � lP

j 6¼ikjtk�1
j þ kiti

;

¼ ti

tk�1
i

P
j2Ikjtk�1

j þ kiðti � tk�1
i Þ

tk�1
i

P
j2Ikj � l

� �
0
@

1
A
�1

¼ ti

tk�1
i

1

�pk�1
i

þ kiðti � tk�1
i Þ

tk�1
i

P
j2Ikj � l

� �
0
@

1
A
�1

¼ p̂ðti; tk�1
i ; �pk�1

i Þ.

Thus, the utility function becomes:

U iðti; ½t��iÞ ¼ aikið1� p̂ðti; tk�1
i ; �pk�1

i ÞÞ
� bip̂ðti; tk�1

i ; �pk�1
i Þ � dðtiÞ

¼ Û iðti; tk�1
i ; �pk�1

i Þ.

In the above formulation, the sources need to
know the total rate through the bottleneck router
in order to execute the iteration. This can be
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achieved using bottleneck capacity estimation
(e.g., pathrate, pathchar) and available band-
width estimation tools (e.g., pathload), see [19,
20].

In the case of only TCP connections, the loss
probability at stage k is given by

piðti; ½tk�1��iÞ

¼

ti �lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4a

P
j 6¼i

1

Rj

ffiffiffiffiffiffi
tk�1
j

p
 !

þ 1
Ri
ffiffi
ti
p

( ) P
j 6¼i

ffiffiffiffiffiffi
tk�1
j

p
Rj

� �
þ
ffiffi
ti
p

Ri

	 
vuut
0
@

1
A

2

4a
P

j 6¼i

ffiffiffiffiffiffi
tk�1
j

p
Rj
þ
ffiffi
ti
p

Ri

� �2
;

where ti is the action of TCP i and tk�1
j is the opti-

mal action of TCP j at stage k � 1. Note that at
stage k � 1, we have

�pk�1
i ¼ piðtk�1

i ; ½tk�1��iÞ

¼

tk�1
i �lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4a

P
j

1

Rj

ffiffiffiffiffiffi
tk�1
j

p
 !P

j

ffiffiffiffiffiffi
tk�1
j

p
Rj

� �vuut
0
@

1
A

2

4a
P

j

ffiffiffiffiffiffi
tk�1
j

p
Rj

� �2
.

From the definition of loss probability at stage k, it
is difficult to express pi as a function of �pk�1

i , ti and
tk�1
i , as in real-time connections case. The source

needs to estimate the value of

�
1

Rj

ffiffiffiffiffiffi
tk�1
j

p �
and offfiffiffiffiffiffi

tk�1
j

p
Rj

� �
.

From this reason, we define another algorithm
which allows us to obtain the Nash equilibrium

without estimating the value of

�
1

Rj

ffiffiffiffiffiffi
tk�1
j

p �
andffiffiffiffiffiffi

tk�1
j

p
Rj

� �
. In this algorithm we consider that the

probability at stage k is approximated by

pi¼ piðti; tk�1
i ;�piÞ

¼

ti �lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4a

P
j

1

Rj

ffiffiffiffiffiffi
tk�1
j

p
 !P

j

ffiffiffiffiffiffi
tk�1
j

p
Rj

� �vuut
0
@

1
A

2

4a
P

j

ffiffiffiffiffiffi
tk�1
j

p
Rj

� �2

¼ ti

tk�1
i

�pk�1
i .
Thus, the utility function becomes

Uiðti; ½t��iÞ ¼ aikið1� pðti; tk�1
i ; �pk�1

i ÞÞ � dðtiÞ
¼ Û iðti; tk�1

i ; �pk�1
i Þ.

From the definition of the loss probability at stage
k (see (16)), we can see that if this algorithm con-
verges, it will be to a Nash equilibrium. We post-
pone to future work the mathematical analysis of
the convergence of that algorithm. Nonetheless,
using numerical simulations, we have found out
that so far, the iterative algorithm always con-
verged to a Nash equilibrium.
6. Symmetric users

In this section, we assume that all flows have the
same utility function (for all i, ai = a, ki ¼ �k and
bi = b for real-time sessions and ai = a and
Ri = R for TCP connections) and the same inter-
vals for strategies (ti

min ¼ tmin and ti
max ¼ tmax).

6.1. Algorithm for symmetric Nash equilibrium

For symmetric Nash equilibrium, we are inter-
ested in finding a symmetric equilibrium strategy
t* = (t*, t*, . . . , t*) such that for any flow i and
any strategy ti for that flow (real-time session or
TCP connection),

Uðt�ÞP Uðti; ½t���iÞ.

Next we show how to obtain an equilibrium strat-
egy. We first note that due to symmetry, to see
whether t* is an equilibrium it suffices to check
(6) for a single flow. We shall thus assume that
there are L + 1 flows all together, and that the first
L flows use the strategy to = (to, . . ., to) and flow
L + 1 uses tL + 1. Define the set

QLþ1ðtoÞ ¼ arg maxtLþ12½tmin;tmax�ðUðtLþ1; ½to��ðLþ1ÞÞÞ;

where to denotes (with some abuse of notation) the
strategy where all flows use to, and where the max-
imization is taken with respect to tL+1. Then t* is a
symmetric equilibrium if

t� 2 QLþ1ðt�Þ.
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Theorem 6. Consider real-time connections only,
operating in the linear region. Assume that the
functions d are convex in Ti :¼ 1/ti. The symmetric

equilibrium t* satisfies:

T �
od̂ðT Þ
oT

�����
T¼T �

¼ akþ b

ðI�kÞ2
;

where T* = 1/t* and d̂ðT Þ ¼ dð1TÞ.

Proof. Recall that k ¼ I�k. Then for real-time
connections, we have

U ¼ a�k� ða�kþ bÞ ðk� lÞ
�kþ T i

P
j 6¼i

�k=T j
� d̂ðT iÞ;

which gives, when considering the derivative,

oU
oT i
¼ ða�kþ bÞ

ðk� lÞ
P

j 6¼i
�k=T j

ð�kþ T i
P

j 6¼i
�k=T jÞ2

� od̂ðT iÞ
oT i

.

Equating oU
oT i
¼ 0 we obtain (6). h

992 E. Altman et al. / Compute
5 We note that it is desirable to have a ‘‘nontrivial’’
parameterized pricing function that leads to an optimal revenue
for some parameter. We also tested other pricing functions that
did turn out to be ‘‘trivial’’ in the sense that the benefit was
always monotone in the parameter; an example of such a
function is exp(�bti) and the network optimizes with respect to
b.
7. Optimal pricing

The goal here is to determine a pricing strategy
that maximizes the network�s benefit. Typically,
pricing is motivated by two different objectives:
(1) it generates revenue for the system and (2) it
encourages the players to use the system resources
more efficiently.

Our focus here is on pricing strategies for reve-
nue maximization, i.e., how a service provider
should price resources to maximize revenue.
The corresponding maximization problem is given
by

cðt�Þ ¼ arg maxd

XI

i¼1

dðt�i Þ;

where t* is a Nash equilibrium which can be ob-
tained when considering special classes function
of d(Æ) depending on a real parameter that we will
also (with some abuse of notation) call d. We then
obtain a system of equations that can be solved
numerically (to get the t* satisfying the Nash equi-
librium), and a numerical optimization over the
parameter d can be obtained. We use in our
numerical example d(t) = d/exp(t). We also consid-
ered other families of pricing functions such as d/t,
d/t2 and so on and we observed monotonous
behaviour of cost c as a function of d.

Nevertheless, an assumption of this optimiza-
tion problem is that the network knows the num-
ber of flows and the parameters ai, bi and Ri "i.
A more likely situation is when the network only
knows the distribution of the number of players
I (now a random variable) and the distribution
of parameters ai, bi and Ri (assumed independent
and independent between flows for convenience).
A numerical investigation of optimal parameters
can be realized as well.
8. Numerical examples

In the following simulations, we obtain a un-
ique Nash equilibrium for only real-time sessions
or only TCP connections. Moreover, the GA algo-
rithm converges as it satisfies the conditions of
supermodularity. All the conditions of supermod-
ular games (Theorems 3 and 5) and uniqueness
of Nash equilibrium (Theorems 2 and 3) are only
sufficient but not necessary as shown in the numer-
ical results. The pricing function that we use for
player i throughout this section is d/exp(ti). We
shall investigate how the choice of the constant d
will affect the revenue of the network.5

8.1. Symmetric real-time flows

In the following numerical evaluations, we
show the variation of different metrics as function
of d. Figs. 2 and 3 correspond to a unique symmet-
ric Nash equilibrium case in which all the real-time
flows have ki = 2 Mbps with tmin = 1, tmax = 15,
I ¼ 20, qmin = 10, qmax = 40, l = 30 Mbps. Here
we set the values of parameters to ensure that the
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system operates in the linear region such as

tmin >
1
Dq

�
1� lP

j2I
kj

�
¼ 0:0083. Moreover, the

values above also ensure the uniqueness of the
equilibrium (Theorem 3). The bound on tmax is
needed only to limit the value of loss probability
to 1. The value of d which maximizes the network
revenue occurs at d = 3.33. All the flows attain a
loss rate of 0.25. Note that for the real-time flows
symmetric case, p�i ¼ ð

P
j2Ikj � lÞ=

P
j2Ikj at the
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Nash equilibrium is a constant. The average queue
size, given by qmin þ p�i =t�i , is shown in Fig. 2. We
observe the value of t* at which maximum network
income is achieved is close to tmin while the system
operates in the linear region of RED throughout.

We plot in Fig. 3 sample paths of a connection
that uses the GA Algorithm for symmetric users
(Section 6) (the evolution for all connections is
the same). The figure illustrates convergence to
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the same Nash equilibrium when t0 started from
tmin or tmax. We plot it for d = 20. In Fig. 3(a),
the value of t* is 4.152208, and in Fig. 3(b), it is
4.152208.

8.2. Nonsymmetric real-time flows

In the next experiment, instead of having the
symmetric case, the rates ki are drawn uniformly
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from [1, 10] Mbps with tmin = 1, tmax = 15,
qmax = 40, qmin = 10, I ¼ 20, l = 30 Mbps.
Fig. 4 shows how different metrics vary with d at
unique Nash equilibrium. To ensure that the flows
operate in the linear region, we need tmin >
1
Dq P 1

Dq

�
1� lP

j
kj

�
. We observe that d = 15.66

maximizes the network revenue. Fig. 4(b) shows
that values of t* for flows having higher rates in-
crease slower than that of flows having lower rates,
i.e., higher rate flows experience less loss rates.
Fig. 4(c) shows that flows having different rates
gain similarly in their utility functions. We plot
the individual and average loss rate in Fig. 4(e)
and (f). We confirm in these experiments about
uniqueness of Nash equilibrium, although the
sample path of different connections will depend
on the connection rates. The condition for unique-
ness is that 2t3

maxk
2
min > t3

mink
2
max which in our case is

given by, 2 · 153 · 12 = 6750 > 100 = 13 · 102.
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Fig. 5. Symmetric TCP Flows. (a) Queue size vs. d, (b) t*
8.3. Symmetric TCP connections

For symmetric TCP connections we have con-
sidered Ri = R = 20 ms for all connections with
tmin = 2, tmax = 20, l = 30 Mbps, N = 20, a =
0.1. Fig. 5(a)–(d) show the effect of increasing d

on the queue size, equilibrium strategy, utility
and network income. Fig. 6(a)–(b) show the con-
vergence to Nash equilibrium in case of symmetric
TCP connections starting from tmin and tmax

respectively. The maximum value of network reve-
nue is found at d = 0.6704. In this symmetric case,
the loss probability is given by

p� ¼ R2

3N 2
l2 þ 3N 2

R2
� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 6N 2

R2

s8<
:

9=
; ¼ 0:0017.

To ensure that the symmetric TCP flows operate in
the linear region, we satisfy the condition on tmin:
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vs. d, (c) utility vs. d and (d) network income vs. d.
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tmin >
�lþ
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¼ 4:6271� 10�5.

We plot sample paths of a connection which illus-
trate convergence to Nash equilibrium when t0

started from tmin or tmax. We plot it for d = 0.1.
In Fig. 6(a), the value of t* is 2.724076, and in
Fig. 6(b), it is 2.724076.
8.4. Nonsymmetric TCP connections

We present a nonsymmetric case in Fig. 7 in
which the Ris are drawn uniformly from
[1,20] ms with tmin = 2, tmax = 20, l = 30 Mbps,
N = 20, a = 0.2, qmax = 40, qmin = 10. The value
of d at which network revenue is highest is
0.8948. We ensure that the nonsymmetric connec-
tions operate in the linear region by setting:

tmin >
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4ð

P
j2N

1
Rj
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q
4
ffiffiffiffiffiffiffiffiffi
aDq

p P
j2N

1
Rj

0
@
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A
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¼ 0:5476.
8.5. Real-time flows and TCP connections

In this experiment (see Fig. 8), we combine both
real-time and TCP connections. We have I = 15,
N = 15, l = 13 Mbps, RTT = 10 ms, treal

min ¼ 5,
treal
max ¼ 11, tTCP

min ¼ 5, tTCP
max ¼ 11, k = 1 Mbps, qmin =
10, qmax = 40, a for both real-time and TCP con-
nections are 100 and b = 4. We found two Nash
equilibriums for each values of d. Therefore, we
plot two curves in each plot corresponding to each
Nash equilibrium. The highest network revenue is
achieved at d = 353.15, treal = 11, tTCP = 5 and at
d = 254.35, treal = 5, tTCP = 11. In the simulations,
we observe the values of q < qmax and since there is
at least one TCP flow i with throughput ki > 0, this
implies that the flow has loss probability pi > 0 and
average queue length q > qmin. We conclude that
the system operates in the linear region. Our objec-
tive in this set of experiments is to show that there
exists a Nash equilibrium for both real-time and
TCP connections. The loss experienced by real-
time flows at the first NE is 0.3676 and that by
TCP flows is 0.1826. The corresponding values at
the second NE is 0.2349 and 0.4461.
9. Conclusions and future work

We have studied in this paper a fluid model of
the RED buffer management algorithm with differ-
ent drop probabilities applied to both UDP and
TCP traffic. We first computed the performance
measures for fixed drop policies. We then investi-
gated how the drop policies are determined. We
modeled the decision process as a noncooperative
game and obtained its equilibria. We showed the
existence of the equilibria under various condi-
tions, and provided ways for computing them
(establishing also convergence properties of best-
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response dynamics). The goal of the network pro-
vider is to use a pricing function that is going to
optimize its revenue. Determining an optimal
function seems a difficult problem (left for future
research), and we restricted ourselves to specific
classes of functions where only one parameter var-
ies. We finally addressed the problem of optimiz-
ing the revenue of the network provider.
Concerning the future work, we are working on
deriving sufficient and necessary conditions for
operating at the linear region when there are both
real-time and TCP connections; these seem to be
more involved than the conditions we have ob-
tained already. We will further study the impact
of buffer management schemes on the performance
and on the revenues of the network; in particular,
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other versions of RED will be considered (such as
the gentle-RED variant). We will also examine
how well the fluid model is suitable for the packet-
level model that it approximates.

We intend to consider in the future other utility
functions, and in particular include delay and/or
jitter terms. We plan to compare the performance
of Nash equilibrium with the team problem in
which the whole network efficiency is maximized.
We shall then consider other pricing functions
which would increase the efficiency of the Nash
equilibrium.
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Appendix A

A.1. Proof of Part 2 of Theorem 1

For only TCP connections, we have,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmax � qmin

p ¼
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p
. ð16Þ

From (7), we get the following sufficient and neces-
sary condition for q 6 qmax:
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A sufficient condition for the latter isX
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Solving the quadratic equation (17) for tmin, we see
that this is implied by (10).

Finally the fact that we are not below the lower
extreme of the linear region (i.e., pi > 0 for all i) is
a direct consequence of the fact that zero loss prob-
ability would imply infinite throughput (see (1)),
which is impossible since the link capacity l is finite.

A.2. Proof of Theorem 2

We first show that the utility function is con-
cave in the case of only real-time sessions. Replac-
ing ti by 1/Ti in Eq. (6), we obtain

pi ¼
P

j2Ikj � l

ki þ T i
P

j6¼ikj=T j
;

which is convex in Ti. The convexity of pi in Ti fol-
lows from the fact that

P
j2Ikj � l > 0. Hence Ui

are concave in Ti and continuous in Tj. The exis-
tence then follows from [21]. For TCP connec-
tions, we have
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Then (18) becomes

o2Ui

oT 2
i

¼ ai
o2ki

oT 2
i

1þ a

R2
i k

2
i

 !
� oki

oT i

� �2
2a

R2
i k

3

" #

� o
2d̂ðT iÞ
oT 2

i

. ð20Þ



k

1000 E. Altman et al. / Computer Networks 50 (2006) 982–1002
Since the function d̂ is convex in Ti, then form (20),
it is sufficient to show that the second derivative of
ki with respect to Ti is nonpositive. We have
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. Now, we

must prove that the second derivative of the func-
tions F1 and F2 are nonpositive for all C1 P 0 and
C2 P 0. We begin by taking the second derivative
of F1. After some simplification, we obtain
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which is positive. For the second function F2, since
the function F2 is positive, it suffices to show that
the second derivative of function [F2(Ti)]

2 is non-
positive, we have
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which is nonpositive.
A.3. Proof of Theorem 4

Under supermodular condition, to show the
uniqueness of Nash equilibrium, it suffices to show
that [22],
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This leads to the sufficient condition:
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A.4. Proof of Theorem 5

For supermodularity on TCP connections, we
consider the sufficient condition o2Ui
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P 0. It
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