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Abstract

This paper focuses on the protection of virtual circuits (Label Switched Paths, LSPs) in a
(G)MPLS (Generalised Multi-Protocol Label Switching) network. The proposed algorithm
is designed to protect traffic with strong delay requirements such as EF (Expedited For-
warding) ordered aggregates in a DiffServ domain. Indeed, for this type of application, we
need fast restoration in case of failure. The duplication of all the packets in a 1+1 end-to-
end restoration scheme consumes a large amount of bandwidth. Furthermore, end-to-end
recovery with bandwidth sharing schemes are usually considered to be far too slow. Lo-
cal fast-rerouting is a solution which can compete with restoration times and bandwidth
consumption offered by SONET self-healing rings. Our scheme includes a sophisticated
resource aggregation mechanism based on the concepts of “backup-backup aggregation”
and “backup-primary aggregation”. The path selection algorithm is also designed to effi-
ciently reduce the resource usage. Moreover, when considering LSPs at different preemp-
tion levels, our algorithm is able to correctly calculate the amount of bandwidth that can
be preempted despite the sharing of resource. We show that our approach, though local,
can compete with the state-of-the-art end-to-end recovery schemes in terms of resource
consumption. The major contribution of our scheme, the “backup-primary aggregation”,
was then also used in the context of end-to-end recovery and improved its performance
substantially. To be able to save a maximum amount of bandwidth in a decentralised im-
plementation, the nodes that compute backup LSPs need to obtain a certain amount of
link-state information. We propose a solution where the nodes learn almost all the informa-
tion they need with RSVP messages. This drastically reduces the information that needs to
be flooded in the whole network and is the first scalable decentralised solution capable of
sharing a large amount of bandwidth.
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1 Introduction

The deployment of (G)MPLS [1] and DiffServ in core networks allows ISPs (Inter-
net Service Providers) to traffic engineer their network to improve their efficiency
and to offer Quality of Service (QoS) to their customers. Indeed, in MPLS-enabled
networks, it is possible to establish tunnels, called Label Switched Paths (LSPs),
along which packets corresponding to a given forwarding equivalence class (FEC)
are routed. LSPs can be established to “emulate” the classical hop-by-hop routing
of IP, but can also be source-routed, allowing to precisely define how traffic aggre-
gates must be routed. Signalling protocols associated with MPLS, such as RSVP-
TE [2] (Resource reSerVation Protocol with Traffic engineering Extensions), sup-
port bandwidth provisioning of LSPs and offer end-to-end QoS guarantees.

Today, link and node failures are frequent [3]. When an element of the network
fails, all the traffic passing through this element is lost (at least during the recovery
procedure), which can really decrease the QoS perceived by all the users of the net-
work. For this reason, there is a real need to develop algorithms and protocols that
will allow the network to quickly recover from any failure it may encounter. Such
algorithms were studied since virtual circuits exist, but they were mainly solved
off-line with the use of optimisation theory (Linear Programming / Integer Pro-
gramming problems). In on-line traffic engineering, the network must be able to
compute and establish a path from an ingress router to an egress one and to protect
it against failures, based on a request defining the bandwidth and QoS requirement
of the traffic.

1.1 Related works

A classical way to achieve reliability is to use schemes referred to as 1+1 and
1:1 protection (in [4], V. Sharma et al. introduce these concepts in the context of
MPLS). For each LSP we want to establish, we compute two completely disjoint
paths from the ingress to the egress. The best of the two is the primary path, the
other is the backup path. In the 1+1 scheme both paths are used simultaneously:
all packets are duplicated at the ingress and sent on both paths. The egress node
continuously monitors both inputs and selects the “best” one. This way of ensuring
protection has the advantage of fast receiver-driven recovery upon failure but is of
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course very costly in terms of bandwidth. An approach to limit the cost of the 1+1
protection is presented in [5]. Since sharing cannot be used, the goal is to achieve
efficiency by improving path selection. In order to fullfill this objective, the authors
transpose the minimum interference criteria (used in MIRA [6]) by replacing the
concept of maximum flow by maximum 2-route flow. Following this criteria, they
try to route demands such that the reduction of the maximum 2-route flow for the
different ingress-egress pairs is as small as possible. Doing so, they hope that it
will be possible to accept more demands in the future. This is confirmed by the
simulations that show a low rejection ratio for this solution.

In the 1:1 scheme, only the primary path is used to forward packets while the
backup path is in “standby” mode. If a failure occurs (on the primary path), a mes-
sage is sent to the ingress which swaps the backup and the primary path. Obviously
the 1:1 protection induces far more delay than the 1+1. Failure has to be detected,
a message must propagate to the ingress node which must then swap active and
standby paths. For this reason other approaches have also been envisaged. In fact
restoration strategies can be divided into two classes: end-to-end recovery and local
recovery (often called “fast re-routing”). In a local scheme re-routing is handled by
the node directly preceding the failure on the primary path or more generally by
a node “close” to the failure. The idea is to establish a set of backup LSPs each
one protecting the primary path against the failure of one particular node (or link).
Experimental results demonstrate that GMPLS with RSVP can be applied to opti-
cal/electrical mesh networks to yield ultra-fast provisioning and restoration times
competitive with SONET rings [7].

The advantage of the 1:1 solution is that significant bandwidth saving can be re-
alized. Indeed if we assume that only a single failure may happen in the network
at any given time, not all backup paths can be activated simultaneously. Resources
that must be reserved for independent backup paths can thus be shared. Some in-
formation must be made available to the device that computes primary and backup
paths if we want to achieve the best possible aggregation of resources [8–10]. The
authors of [9] present an algorithm able to protect the network against link failures
with a relatively small amount of data. The extra bandwidth consumption is limited
to 63-68%, which is a significant improvement compared to previous methods. M.
Kodialam and T.V. Lakshman show in [8] that a partial information scenario which
uses only aggregated and not per-path information can achieve efficient dynamic
routing of locally restorable bandwidth guaranteed path. The partial information
flooded in the whole network specifies the part of each reserved link bandwidth
which is reserved by primary paths and the part reserved by backup paths. The
same kind of reasoning as [8] in an end-to-end instead of a local protection scheme
is applied in [11]. Our work is related to [8] and presents some similarities. One of
the main advantages of our solution compared to the solution in [8] is that we can
achieve the efficiency of the complete information scheme with nearly the cost of
the partial information scheme.
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Paper [12] integrates QoS constraints in the computation of backup paths. Y. Be-
jerano et al. consider both bottleneck QoS constraints such as bandwidth, and ad-
ditive QoS constraints such as delay and jitter. In that paper, the authors provide
algorithms that find a primary path satisfying QoS requirements combined with a
restoration topology. A restoration topology is a set of bridges, each of which cir-
cumvents a (different) part of the primary path. The proposed solution may violate
the delay constraint for restoration paths, while the primary paths always satisfy the
QoS constraints. One of the key contribution of this paper is the concept of adjusted
delays, which allows existing path computation algorithms to be adapted in order
to identify suitable restoration topologies.

In [13], W.D. Grover and D. Stamatelakis present the concept of p-cycle. In p-
cycles, spare links are connected into cycles, but the method is different from self-
healing rings because each preconfigured cycle contributes to the restoration of
more failure scenarios than a ring can. One p-cycle can be used for the restoration
of one span on the cycle (like self-healing rings), but also for the restoration of one
span off the cycle if both ends of this span are located on the cycle. This reduces the
amount of bandwidth that is consumed for restoration purpose, comparing to self-
healing rings, so that the authors claim that p-cycles provide ring-like restoration
speed with mesh-like capacity usage. The concept of p-cycles can be applied in IP
networks [14].

1.2 Structure of the paper

We provide a solution for the problem of precomputed local rerouting paths where
bandwidth is reserved for backup paths. One backup LSP protects one primary LSP
against one specific failure (node or link). This scheme can protect important traffic
aggregates that require rapid restoration in case of failure and cannot wait for a
global restoration. Typically, traffic with strong QoS requirements need this kind of
guarantee. Local restoration requires the establishment of many protection LSPs for
which the bandwidth has to be reserved. This can lead to a big waste of bandwidth
if not done properly. The best way to reduce the bandwidth waste is to make the
assumption that two resources (link or node) cannot fail at the same time. When
a failure occurs in the network, we suppose that the preceding failure has been
recovered 3 . This assumption allow us to share bandwidth between two backup
LSPs that will never be active together because they protect different resources.

Our first contribution is an improved bandwidth sharing scheme. When a failure
occurs in the network, the traffic that makes a detour frees some bandwidth on
some part of the primary path. In some cases, this bandwidth can be used without

3 This assumption is implicit in all the 1+1 or 1:1 protection schemes. Indeed, if we want
to protect traffic against double failures in the network, we have to protect backup paths
against failures as well.

4



additional cost by another backup LSP protecting the failed resource, as it is ex-
plained in detail in section 2. This can decrease the bandwidth cost of both local
and end-to-end protection. In section 3, we present an in-depth description of our
algorithm. Section 4 explains how the available bandwidth is computed on a link
when preemption levels are used.

Our second contribution is a method to compute the local backup paths in a decen-
tralised manner. Indeed, to be able to share efficiently the bandwidth and so reduce
the bandwidth cost of the protection, the entity which computes the backup paths
has to know a certain amount of information, as we explain in section 5. The first
(naïve) idea is to flood all the information in the whole network using the TE (Traf-
fic Engineering) extensions of the intra-domain routing protocol. As this approach
is obviously not scalable, we propose an original method that is capable of sharing
a large amount of bandwidth while being scalable.

Simulation results in section 6 give numerical values of the bandwidth gain which
can be achieved using our technique. Finally, we conclude our work in section 7.
In appendix A, we justify our design choice of section 5.

2 Algorithm overview

Our algorithm offers improvements in two main areas compared to previously pre-
sented solutions: (1) reduction of the bandwidth consumed by both local and end-
to-end protection schemes by improving bandwidth aggregation and (2) a method
to handle preemption levels when bandwidth aggregation is used in the network.
Moreover, we provide an efficient and scalable way for the computing nodes to
obtain the essential information to optimise bandwidth sharing.

2.1 Bandwidth sharing

2.1.1 Backup-Backup bandwidth sharing

As already explained, resource sharing is possible under the assumption that, at
any given time, at most a single failure will occur in the network. If this assump-
tion holds, two backup LSPs protecting two distinct nodes will never be activated
together. If these backup LSPs use some common links, we can reserve on these
links only the maximum bandwidth requirement of both LSPs instead of their sum.
Figure 1 presents this scenario. This type of bandwidth sharing can greatly decrease
the bandwidth that need to be reserved for backup paths and is used in all classical
1:1 protection schemes.
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Fig. 1. Backup1 protects LSP1 from failure of node N2. Backup2 protects LSP2 from
failure of node N3. Since Backup1 and Backup2 will never be used simultaneously, they
can share bandwidth on link N1 −N5.

2.1.2 Primary-Backup bandwidth sharing

It is possible to improve further the scheme if we consider that when a backup path
is activated because of a failure, some bandwidth is not used any more on the pri-
mary path ([15]). Indeed as soon as the failure is detected, the node responsible for
the local backup will swap service and recovery paths. Very rapidly the circum-
vented links of the primary path will see their bandwidth consumption reduced.
This bandwidth can thus be used by other backup LSPs protecting the same failed
resource. Figure 2 details the situation.
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Fig. 2. The two primary LSPs (LSP1 and LSP2) will fail together when N2 fails. Backup2,
protecting LSP2, can share bandwidth with LSP1 on link N4−N5. Backup1, protecting
LSP1, is not shown on the figure.

2.1.3 Path computation

In many traffic engineering schemes, a central server using some sort of mixed-
integer programming algorithm computes an optimal mapping between requests
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and LSP paths. This approach usually requires hours of computation and is not
very robust mainly because the global optimum discovered is very sensitive: a few
changes in the set of requests lead to a completely different set of paths. In our
approach, path computation is completely decentralised and real-time. The LSP
requests are received sequentially by the ingress nodes that compute and establish
the LSPs one after the other. Consequently our scheme can combine easily with TE
(Traffic Engineering) algorithms following the same decentralised philosophy. Of
course, it can also combine with a centralised scheme.

In this paper we will always assume without loss of generality that the primary
LSP follows the shortest path according to a certain metric (usually a hop count).
The reader is referred to [16,6,17] for other TE schemes to establish primary paths.
When the primary path is known, we compute the set of backup LSPs required to
prevent any possible node failure along this path. If a backup path cannot be found
under the node-failure assumption 4 , we assume that only a link failure will occur
and compute a new backup path. If it fails again, the request is rejected.

To use bandwidth efficiently, the path computation algorithm has to choose paths
where the resource sharing is high. To compute the backup path we associate with
each link a cost corresponding to the increment of bandwidth required if the backup
LSP goes through the considered link. Dijkstra’s algorithm is then used to compute
the shortest path starting at the node preceding the protected node of the primary
path towards the egress node. We stop the algorithm when it reaches a node that
belongs to the primary path after the protected node.

2.2 Preemption levels

Preemption levels (see [18]) are used to define some LSPs as being “more impor-
tant” than others. When establishing an LSP, it can preempt the bandwidth reserved
by LSPs having a lower preemption level. In case of failure, LSPs with a higher
preemption level will also be restored first.

Handling preemption levels has no impact on the bandwidth sharing efficiency.
However combining resource sharing and preemption levels in the same scheme
requires some special care. This problem will be explained more extensively in
section 4.

4 Obviously it is impossible to protect the path against the failure of the egress node.
However it is possible to protect the link between the penultimate node and the egress. The
backup computed for this purpose only needs to be link-disjoint with the primary path.
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3 In-depth description

For the clarity of the rest of this paper we will first define a few terms and functions.
In figure 3, we can see the differences between the link and the node protection.

Link Protection:

PSfrag replacements
POR PMLprotected link

protected node

Primary LSP

Backup LSP

Node Protection:

PSfrag replacements
POR PML

protected link

protected node

Primary LSP

Backup LSP

Fig. 3. Link or Node protection

The following two notations come from [4].

Definition 1 The Point Of Repair (POR) is the LSR (Label Switching Router) where
the switching is done between the primary and the backup path at the moment of
the failure.

Definition 2 The Path Merge LSR (PML) is the LSR where the backup path merges
with the primary path.

A network is represented by a multi-valued graph G = (X ,U) where X is a set
of nodes and U a set of directed links between these nodes. Each link Lij ∈ U
between nodes Ni ∈ X and Nj ∈ X is associated with a set of values:

• Cij : the capacity of the link.
• Rij : the total bandwidth reserved on the link.
• Rij[p] : the total bandwidth reserved at preemption level p 5 .
• Pij[p] : the total bandwidth reserved at preemption level p for primary LSPs.
• Pij =

∑P−1
p=0 Pij[p].

• Bij(Lkn)[p] : the total bandwidth used by backup LSPs at preemption level p in
case of failure of link Lkn.

• Bij(Lkn) =
∑P−1

p=0 Bij(Lkn)[p].
• Bij(Nk)[p] : the total bandwidth used by backup LSPs at preemption level p in

case of failure of node Nk.
• Bij(Nk) =

∑P−1
p=0 Bij(Nk)[p].

• Fij(Lkn)[p] : the total bandwidth freed by primary LSPs at preemption level p in
case of failure of link Lkn.

• Fij(Lkn) =
∑P−1

p=0 Fij(Lkn)[p].

5 In section 4 we explain how to compute Rij [p] such that Rij =
∑P−1

p=0 Rij [p]. Note that
we do not need Rij[p],∀p to compute Rij (see equation 3).
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• Fij(Nk)[p] : the total bandwidth freed by primary LSPs at preemption level p in
case of failure of node Nk.

• Fij(Nk) =
∑P−1

p=0 Fij(Nk)[p].

P is the number of preemption levels. In a practical implementation the source
node of each link is responsible for maintaining this set of values up-to-date. Now,
let us have a look at figure 4. This figure represents the bandwidth utilisation of a
fixed link Lij . We can see that the reserved bandwidth for the primary LSPs (Pij)
is the sum of the reserved bandwidth for each of the primary LSPs using this link.
On the figure, we can see that there are four primary LSPs that pass on link Lij

(b1, b2, b3 and b4 are the values of the bandwidth reserved for the four primary
LSPs). The bandwidth reserved for the primary LSPs is thus not shared at all. On
the other hand, the bandwidth reserved for the different backup LSPs (Rij − Pij)
is not the sum of the reserved bandwidth for each of the backup LSPs that pass on
the considered link. Indeed, the bandwidth is shared between the backup LSPs that
protect different resources. X1, X2, X3 and X4 are four resources (link or node)
that are supposed not to fail at the same time. The total reserved bandwidth on link
Lij is Rij . The free bandwidth on link Lij is Cij − Rij.

PSfrag replacements
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Cij

Rij

Pij

0

Free bandwidth

Backup shared bandwidth

Primary LSP reserved bandwidth

Bij (X1) − Fij(X1)

Bij (X2) − Fij(X2)

Bij (X3) − Fij(X3)
Bij (X4) − Fij(X4)
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b3
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Primary LSP 1

Primary LSP 2

Primary LSP 3

Primary LSP 4

Fig. 4. Repartition of the bandwidth on the link Lij

From figure 4 and above definitions, we have:

Bij(Nk)[p] =
∑

∀m:Lmk∈U

Bij(Lmk)[p] (1)

Fij(Nk)[p] =
∑

∀m:Lmk∈U

Fij(Lmk)[p] (2)
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Rij = Pij + max

(

0, max
Lkn∈U

(Bij(Lkn)− Fij(Lkn)) , max
Nk∈X

(Bij(Nk)− Fij(Nk))

)

(3)

Equations 1 and 2 express that a node failure is equivalent to the failure of all its
incoming links. We consider incoming links because it is the same upstream nodes
that will activate the same backup paths in case of a node failure or in case of the
failure of all its incoming links. Note that in equation 3 we have to consider the
maximum over all possible link failure scenarios even if we are protecting against
node failure because it is not mathematically guaranteed that the worst case band-
width consumption will be obtained when faced with a node failure. Indeed con-
sider the failure of link “N3-N2” on figure 2. In this scenario, both Backup2 and
LSP1 will be used simultaneously while it is not the case if node “N2” goes down.
Of course, in most practical situations the worst case will be a node failure.

An LSP request is composed of:

• the source or ingress node: src ;
• the destination or egress node: dst ;
• the required bandwidth 6 : bw ;
• the priority: p.

3.1 Link state management

Each node Ni has to maintain and update the link state information for all the
links that originate at node Ni. This section will explain how the values of Pij ,
Bij and Fij have to be updated for all links Lij when a primary or backup LSP is
established. LetPpr be a primary LSP of preemption level p and required bandwidth
bw. The path of this LSP is the ordered set Ppr = {Ny0 , Ny1, . . . , Nyn

}, as shown
on figure 5. Let Pbu be a backup LSP. The path of this LSP is the ordered set
Pbu = {Nx0, Nx1, . . . , Nxn

}. Let s be the index for which Nys
= Nx0 (= POR),

and e be the index for which Nye
= Nxn

(= PML) i.e. the node where primary and
backup paths merge. The backup path protects node Nys+1 and link Lysys+1 .

When the primary LSP is established, links Lij ∈ Ppr
7 must be updated according

6 In this paper we assume that a single value defines the bandwidth required by each LSP.
In a DiffServ context this corresponds to using L-LSPs or E-LSPs with a single OA (Or-
dered Aggregate). Extensions of the presented algorithms to handle E-LSPs with multiple
OAs is straightforward and will be presented in our future works. Interested readers are
invited to read [19] for further information on how to combine DiffServ and (G)MPLS and
for a definition of L-LSPs and E-LSPs.
7 The notation Lij ∈ Ppr denotes ∃t : Nyt = Ni ∧Nyt+1 = Nj .
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to:
Pij [p]← Pij [p] + bw (4)

When the backup LSP Pbu is established, all links Lij ∈ Ppr∪Pbu must be updated
according to:

Bij(Lysys+1)[p]← Bij(Lysys+1)[p] + bw if Lij ∈ Pbu (5)

Fij(Lysys+1)[p]← Fij(Lysys+1)[p] + bw if (Lij ∈ Ppr) ∧ i < e ∧ j > s (6)

The purpose of equation 6 is to free bandwidth on the primary path between the
POR and the PML in case of failure. To apply equation 6, a backup LSP must
also be signalled on part of the primary path (between the POR and the PML) in
case of decentralised deployment. When Pij[p], Bij(L)[p] and Fij(L)[p] have been
updated according to equations 4 to 6, Rij[p] can then be recomputed by means of
a procedure described in section 4.
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Fig. 5. Primary and backup paths

3.2 Path computation

In this section we will explain the primary and backup paths computations. We
will also highlight what kind of information is needed to make these computations.
For the moment we assume that a centralised entity has access to all the link state
information in the whole network. In section 5 we will explain how it is possible to
distribute these computations.

3.2.1 Primary path computation

We assume that local protection will be required for important flows that are sensi-
tive to delay and do not accept the delay of end-to-end protection in case of failure.
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For these flows we assume that the primary path has to be optimised on its own
because it can have some strict delay constraints (the backup paths will be com-
puted next). For example, we can use a simple Dijkstra’s algorithm [20] to find
the constraint shortest path 8 from src to dst, considering a cost of one for all the
links of the network (leading to a min hop path). Note that we can also rely on
any other more suitable technique to compute the primary LSPs. We are aware that
optimising primary and backup paths together, instead of sequentially, could lead
to a better global resource sharing. Indeed, our choice to take the primary path as
a constraint for the backup paths computations limits our search to a subset of the
whole state space. On the other hand, this combined method would lead to less
optimised primary LSPs, which is a more severe shortcoming given that primary
LSPs are used almost all the time.

The computed primary path can be described by an ordered setP = {Nx0 , Nx1, . . . , Nxn
}

with Nx0 = src and Nxn
= dst.

3.2.2 Backup paths computation

Given the primary path P and the node we try to protect Nxk+1
∈ P , we introduce

Incij(Nxk+1
, bw) (resp. Incij(LNxk

Nxk+1
, bw)) which represents the increase of Rij

when a backup LSP requiring bw units of bandwidth and protecting node Nxk+1

(resp. link LNxk
Nxk+1

) uses link Lij . We have Incij(∗, bw) = R
′

ij−Rij where R
′

ij is
the new reserved bandwidth obtained after the new LSP establishment. If R

′

ij > Cij

then Incij(∗, bw) = ∞ (capacity constraint). Rij and R
′

ij can be calculated using
equations 1, 2 and 3.

Each link Lij is assigned a cost Kij given by

• if we protect against failure of node Nxk+1

if (i = Nxk+1
∨ j = Nxk+1

)

Kij =∞

else if (Incij(Nxk+1
, bw) = 0)

Kij = ε

else

Kij = Incij(Nxk+1
, bw)

8 A constraint shortest path is defined as the shortest path that respects (in our case) the
bandwidth constraint. It is equivalent to a shortest path on a pruned topology where all the
links violating the capacity constraint are removed.
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• if we protect against failure of link LNxk
Nxk+1

if (i = Nxk
∧ j = Nxk+1

)

Kij =∞

else if (Incij(LNxk
Nxk+1

, bw) = 0)

Kij = ε

else

Kij = Incij(LNxk
Nxk+1

, bw)

Dijkstra’s algorithm is run from root Nxk
until the next marked node by the proce-

dure is N∗ with N∗ ∈ {Nx(k+1)
, ..., Nxn

} 9 . If no valid node-disjoint path is found,
then select link failure protection. If it fails once again, reject the request. We have
introduced the small number ε which is used instead of zero, to favour the selection
of the minimum hop path if all Incij are null.

3.2.2.1 Needed information To compute the cost Kij for all the links of the
network, we need some information. We claim that Rij , Pij , Bij(X) and Fij(X)
are sufficient to compute Kij , if X is the resource we want to protect (link or node).
Indeed, to compute the increment of bandwidth which would result from the estab-
lishment of the backup path on link Lij , we must check whether the new value of
Bij(X)− Fij(X) is greater than the old value of Rij − Pij .

3.2.2.2 About optimality It is worth noting that our procedure is not optimal
for two reasons. First of all, it is not a network-wide optimum. It is quite obvious
because requests are treated one after the other. This means that choices made for
any particular LSP will never be re-evaluated in the future. But this procedure is
also not optimal at the LSP level, i.e. does not lead to find the set of LSPs min-
imising the increase of bandwidth reservation. Indeed, all the backup LSPs (one for
each node of the primary path) are calculated one after the other. Once again the
sequentiality prevents the algorithm to find an optimal solution.

Despite being sub-optimal, our simulations have shown that this algorithm was a
good heuristic. We also tested an enhanced version of the algorithm. In this version,
once all the backup paths of one primary path are computed, we try to improve the
sharing of each of them (by changing their path) with the knowledge of all the other
backup paths until no more bandwidth gain is observed. In very rare cases it leads
to a global improvement on the total bandwidth consumed at the network level.

9 In case of node protection, the end of the backup tunnel cannot be Nxk+1
because all its

connected links have an infinite weight.
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In all other cases it leads to no improvement at all or even to an increase in the
bandwidth consumption.

Moreover the type of solution we propose is designed to be used in a dynamic en-
vironment where relatively small LSPs (compared to the links capacity) are added
and removed permanently, following users needs. In this context, a form of statisti-
cal multiplexing makes the ordering of establishment less relevant.

4 Preemption levels aggregation

When combining both preemption levels and resource sharing we must be careful
that Rij[p] must correctly reflect the amount of bandwidth which can effectively be
preempted (if required) at each preemption level. Indeed, the amount of bandwidth
assigned to each preemption level has to reflect the fact that by removing all LSPs
at a given level a certain amount of bandwidth will be freed. For primary paths, we
have to reserve at level p the sum of the bandwidth required by all LSPs at level p.
The introduction of backup LSPs and bandwidth sharing makes things a bit more
complex. Indeed when using protection, removing an LSP does not necessarily free
any resource : if we recall equation 3, we see that a decrease of Bij(N) only has an
impact on Rij if node N is the one that maximises the difference. The consequence
is that the preemption of a given quantity of bandwidth will sometimes require
that we tear down a set of LSPs whose total bandwidth is bigger than the required
bandwidth. To do so the LSPs we try to establish must have a preemption level
higher than all the LSPs in this set.

Important remark : In this paper, preemption levels are numbered in decreasing
order of priority. Level 1 is thus more important than level 2.

An example is given in tables 1 and 2. The bandwidth that must be reserved for
backup LSP1 and LSP2 can be limited to max(BW (LSP1), BW (LSP2)) = 10 Mbps
because they protect two distinct nodes. A new LSP with preemption level 1 would
only be able to preempt bandwidth from LSP1. But despite the fact that LSP1 re-
quested 10 Mbps of bandwidth, removing it will only free 5 Mbps because of shar-
ing.

LSP Failure Bandwidth Preemption Level

1 Nx 10 Mbps 2

2 Ny 5 Mbps 1
Table 1
Sharing with preemption levels: LSPs

As explained earlier preemption levels are used to give priority to certain LSP re-
quests. If a link is completely filled then it is still possible to establish a new LSP
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Preemption level Bandwidth

Rij[1] 5 Mbps

Rij[2] 5 Mbps

Rij 10 Mbps
Table 2
Sharing with preemption levels: Rij [p]

through this link by preempting resources belonging to less important LSPs. But
the bandwidth reserved on a link is the result of three terms (cf. equation 3) which
are composed in different proportions for each preemption level.

The algorithm computing Rij[p] is composed of two phases. The first one consists
of computing an intermediate result Gij(L)[p] and Gij(N)[p]. The second phase
computes Rij[p] using this result.

4.1 Phase 1

The value Gij(L)[p] (resp. Gij(N)[p]) represents, up to preemption level p, the
bandwidth that must be reserved on link Lij to be able to forward traffic in case of
failure of link L (resp. node N ), in addition to the bandwidth that is reserved for
primary LSPs.

Gij(L)[p]← max
(

0,
∑p

k=0 Bij(L)[k] −
∑p

k=0 Fij(L)[k]
)

∀p, L : 0 ≤ p < P,L ∈ U

Gij(N)[p]← max
(

0,
∑p

k=0 Bij(N)[k] −
∑p

k=0 Fij(N)[k]
)

∀p,N : 0 ≤ p < P,N ∈ X

The algorithm is based on the following idea: we do not need to reserve extra band-
width at level p if, up to that level, a sufficient amount of bandwidth will be freed by
the failure we consider. However we should note that Gij(X)[p] (X being either a
node or a link) can never be negative even if

∑

Fij(X)[p] >
∑

Bij(X)[p] because
it would mean we have to “unreserve” bandwidth that is used by active primary
paths (recall that Fij(X)[p] is already reserved).

Figure 6 shows the situation. Up to level 1, a failure will free more bandwidth
than needed by the backup LSPs. For this reason Gij(X)[0] = Gij(X)[1] = 0. For
p ≥ 2,

∑p
k=0 Bij(X)[k]−

∑p
k=0 Fij(X)[k] > 0. The values of Gij(X)[2], Gij(X)[3]

and Gij(X)[4] are represented graphically on the figure.

15



Gij(X)[p] is the balance up to level p between the required backup bandwidth and
the freed primary bandwidth. If Gij(X)[p0] > 0 for a particular p0, this means that
we must add a new reservation of bandwidth at level p0 to correct the difference. If
we assume that the correction has already been done for all p < p0, the new reser-
vation at level p0 must consist of Gij(X)[p0]−Gij(X)[p0 − 1] units of bandwidth.

This reasoning is only for a particular failure. As any node in the network can
fail, we have to define a new vector Mij[p] accounting for the maximum difference
between the total bandwidth required and freed considering all possible failures.
This is the purpose of phase 2.
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4.2 Phase 2

We introduce the vector Mij[p] given by :

Mij[p]← max
(

max
L∈U

(Gij(L)[p]) , max
N∈X

(Gij(N)[p])
)

∀p : 0 ≤ p < P

This vector plays the same role as Gij(X)[p] but at the network-wide level. Now
that we have such a failure independent value we can compute :



























Rij[0]← Pij[0] + Mij[0]

Rij[p]← Pij[p] + Mij[p]−Mij[p− 1]

∀p : 0 < p < P

This formula reflects the computations we made in the example of tables 1 and 2. It
should be pointed out that the difference Mij[p]−Mij [p−1] can be negative which
looks a bit surprising at first. Indeed it means we have to reserve less bandwidth at
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level p than the sum of the bandwidth requirements of all primary LSPs. In fact this
just means that a certain amount of bandwidth initially reserved at level p has been
upgraded to level p0 < p to be aggregated with backup LSPs.

5 The signalling problem

We will now study how the nodes can obtain the information they need to compute
all the paths in a decentralised scheme. In sections 3.2.1 and 3.2.2, we saw which
information is needed to compute primary paths, backup paths and the reserved
bandwidth on a link. In this section, we will understand where this information is
needed and the solution we propose to achieve our objective, i.e. to stay scalable
while achieving optimal bandwidth sharing.

5.1 Where must the information be available?

First, we can say that the information is needed where the computations are made.
If all the computations are made by a centralised server, the solution is simple: it
computes all the (primary and backup) paths and thus it knows all the LSPs of
the network. The objective of this section is to discuss how our proposal can be
decentralised.

The computation of the primary path is made by the ingress node. Indeed, this
node is the most appropriate because it receives the request for the creation of the
LSP.

The computation of the reserved bandwidth on a link (Rij[p], ∀p) is made by
the node (Ni) immediately upstream of the link. This computation influences the
admission control of a new LSP (primary or backup) on that link.

For the computation of the backup path, different solutions are possible. This
computation can be made by:

• The ingress of the primary LSP. In this case, the ingress computes all the backup
paths that protect all the links and nodes we want to protect on the primary path.
After all the computations, it forwards these backup paths to the nodes on the
primary path which will establish them.

• The POR. In this case, this is the node immediately upstream of the link or node
we want to protect (the POR) that computes the backup path. It is also this node
that establishes the backup path.

• The node to be protected or the node immediately downstream of the link to be
protected. This node computes the backup path and sends it to the POR which
establishes it.

17



In appendix A, we compare these three solutions. We have chosen to use the third
one which appears to be excellent. Indeed, as we see in this appendix, the bandwidth
cost is minimum and we can extend RSVP to support this solution without requiring
any additional signalling protocol.

5.2 Establishment of the LSPs

In this paragraph, we present a preview of our signalling solution. The computa-
tion of the backup paths is distributed between all the nodes of the primary path.
They are computed when the RESV message 10 of the primary path is sent by the
egress back to the ingress node. At this time, each node, one after the other, will
compute one backup path protecting itself or its upstream link. It will send the
computed backup path to the upstream node. This node will establish this backup
path, compute a new backup path protecting itself or its upstream link and send it to
its upstream node. This operation is repeated until the ingress node of the primary
path is reached. In addition to the backup path, each node must send to its upstream
node the union of the links already used by previously computed backup paths, as
this information will be used by upstream nodes to compute other backup paths.

Each node keeps in memory some fields of the RSVP messages it transmits. Since
RSVP is a soft state protocol, the path is refreshed regularly. If the path is not
refreshed, the LSP (and its associated information) disappears.

Each node which computes a backup path keeps this knowledge in memory. Be-
sides, only a very limited amount of information needs to be flooded in the link-
state routing protocol, e.g. OSPF(-TE).

5.2.1 Establishment of a primary LSP

Each node on the path of the LSP decides whether to accept or reject the LSP.
This decision is made considering the reserved bandwidth of the downstream link
(capacity check). Obviously, to decide whether to accept or reject the LSP on a
downstream link, the RSVP message must contain a flag specifying that it is a
primary LSP. Once it is accepted, the node stores the value of the LSP’s bandwidth
(which updates the value of Pij[p]).

10 This is a message of the RSVP protocol ([2]), which is used to establish LSPs in MPLS
networks.
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5.2.2 Establishment of a backup LSP

The same kind of admission control is also needed at the establishment of a backup
LSP. As with primary paths, a flag of the RSVP message must specify the type of
the LSP (i.e. backup in this case). Each node Ni has in memory the present value
of Pij[p], Bij(X)[p], ∀j, X, p. Indeed, Ni can compute these values thanks to the
primary and backup RSVP messages seen at the establishment of the LSPs. To
take primary-backup aggregation into account, Ni also needs to known Fij(X)[p].
For this purpose, we propose to forward a specific message on all the nodes of
the primary path between the POR and the PML. We will call this message the
Fij_message. This message must specify the primary LSP to which it is related
and the resource (X) which is protected.

5.3 Computation of the LSPs

If we follow the procedure described in section 5.2, each node Ni is able to com-
pute the primary reserved bandwidth (Pij[p], ∀p) and the total reserved bandwidth
(Rij[p], ∀p) on all the links that originate at Ni. We propose that each node Ni floods
Pij[p] and Rij[p], ∀p in the LSAs 11 of OSPF-TE together with the capacity (Cij) 12 .
Thanks to this flooding, every node in the network knows Cmn, Rmn[p] and Pmn[p]
∀p and ∀mn | Lmn ∈ U , i.e. for all the links of the network. Notice that we flood in
the network the same amount of information than the partial information scheme
of [8].

5.3.1 Computation of the primary LSPs

All the nodes know the free bandwidth of all the links. So all the nodes, including
the ingress node, are able to compute primary LSPs.

5.3.2 Computation of the backup LSPs

As we have seen in section 3.2.2, a node which computes a backup path has to
know some information about other LSPs protecting the same resource. Our idea
is the following: “If it is always the same node that computes all the backup paths
protecting a certain resource, this node knows almost all he has to know to compute
them!” So, we propose to associate with each resource a dedicated node which
computes the backup LSPs protecting it. The information obtained by the backup
path computations will be used for future backup path computations.

11 LSA stands for Link State Advertisement.
12 OSPF-TE already floods the capacity Cij and the free bandwidth Cij −Rij ([21]).
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In our proposal, for a node N , the dedicated node is N itself, and for a link Lij ,
the dedicated node is Nj . We can see on figure 7 how the POR can ask for the
computation of a path. Arrow 1 means: “Compute for me a path protecting you, or
similarly, protecting this link between me and you.” The protected node computes
a backup path and sends it back to the POR (arrow 2), which establishes it. We
propose to include this message exchange in the RSVP protocol (it is theoretically
possible). The arrow 1 message is included as an object in the PATH message of
the primary LSP and the arrow 2 message is included in the RESV message (see
example in section 5.5).

2

1

PSfrag replacements
POR Protected

Node

Fig. 7. Example of message exchange

With this scheme, each node Ni knows all the backup paths of the network protect-
ing itself and its incoming links because it has computed these backup paths. More
formally, each node Ni knows: Bmn(Lji)[p] and Fmn(Lji)[p], ∀p, ∀m,n,j | Lij ∈ U
and Lmn ∈ U ; and thus Bmn(Ni)[p] and Fmn(Ni)[p], ∀p ∀mn | Lmn ∈ U (see
equations 1 and 2).

5.3.3 Data flow summary

Table 3 presents the structure of the information database at node Ni, ∀j | Lij ∈ U ,
∀k | Lki ∈ U , ∀mn | Lmn ∈ U , ∀p. This table shows how Ni obtains information
and how it is exported. Figure 8 shows the same information, but in a more con-
venient way. Figure 9 shows the part of the whole Bxx(Lxx)[p] table which is kept
at each node. If M is the number of links in the network and K is the number of
neighbours of node Ni then the size of the whole table would be M 2. Out of this
table, only K(2M −K) values are stored locally and (M −K)2 are not used at all.
Besides, none are flooded.

5.4 Simplification of signalling

The transmission of the Fij_messages can be a problem. Indeed, they require an
additional protocol on the primary path between the POR and the PML. But if we
look a little deeper, we can see that we do not actually need them. Indeed, we can
put them in primary RSVP refresh PATH messages. The only drawback of this
method is that this introduces an additional delay (we must wait for the next PATH
refresh message).
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Information Obtained by Exported

Pij [p] RSVP-TE of primary LSPs Flooded with OSPF-TE

Pmn[p], ∀m 6= i OSPF-TE Kept locally

Bij(Lmn)[p], ∀n 6= i RSVP-TE of backup LSPs Kept locally to compute Rij [p]

Fij(Lmn)[p], ∀n 6= i Fij_message Kept locally to compute Rij [p]

Rij[p] Computation using Flooded with OSPF-TE

Pij [p], Bij(Lmn)[p], Fij(Lmn)[p]

Rmn[p], ∀m 6= i OSPF-TE Kept locally

Bmn(Lki)[p] Computation of backup paths Kept locally

Fmn(Lki)[p] Computation of backup paths Kept locally

Bmn(Lkj)[p], ∀j 6= i, ∀m 6= i Not needed

Fmn(Lkj)[p], ∀j 6= i, ∀m 6= i Not needed
Table 3
Database details at node Ni
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Doing so, all the nodes between the POR and the PML regularly send primary
PATH refresh messages which contain Fij_objects. When a backup path is closed,
these nodes stop sending the Fij_objects in the primary PATH refresh messages.
Doing so, these nodes (including the protected node) can update their database.

5.5 A simple example

In this section, we will show an example to clarify the explanations. We consider
the topology of figure 10. In order to avoid complex notation, we will not mention
preemption levels in this example. This does not remove any generality to our pro-
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posal. Implicitly, all the mentioned values are specified for the specific preemption
level of the requested LSP.
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Fig. 10. Topology of the example

Node 1 receives a request for the establishment of an LSP of b units of bandwidth
from node 1 to node 6. Node 1 computes a primary LSP. Node 1 knows the free
bandwidth on all the links because they have been flooded by the extended routing
protocol (e.g. OSPF-TE). The computed path is N1 → N2 → N5 → N6. Once
the primary path is computed, node 1 establishes it. It sends a PATH message to
node 2 (see figure 11a). In this PATH message, an RSVP object asking for a local
restoration is added. Node 2 accepts the request and forwards the PATH message
to node 5 (figure 11b). Node 5 accepts the request and forwards the PATH message
to node 6 (figure 11c). Each node on the primary path has seen the PATH message
so it knows that a protection LSP must be computed.

Node 6 computes a backup path that protects itself. As it is not possible, it computes
a path protecting link L56: N5 → N4 → N6. Node 6 sends this path to node 5 as
an object in the RESV message (figure 11d). Node 5 also computes a backup path
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that protects itself: N2 → N4 → N6. It sends this path to node 2 with the RESV
message. At the same time, it can establish the backup LSP which protects link
L56 (figure 11e) 13 . Now, it is node 2 that receives the RESV message. This node
computes a backup path that protects itself: N1 → N3 → N4 → N6. Node 2 sends
this path to node 1 with the RESV message. At the same time, node 2 establishes
the backup path protecting node 5 (figure 11f). In this case, as the protected part
of the primary LSP is greater than 2 links, node 2 has to send an Fij_message to
node 5. This message indicates that the failure of link L12 will free the primary
bandwidth between node 1 and node 6. We can remark that although there are three
backup paths, there is only one Fij_message that must propagate in the network.
Now, node 1 receives the RESV message from node 2 meaning that the primary
LSP is established. Finally, node 1 establishes the backup path protecting node 2
(figure 11g).

We will now study in more detail when nodes store information in their memory.
We can follow in table 4 which information is known at which moment by which
nodes. For example, the first three lines show that when the PATH message of a
primary path is forwarded by a node, this node stores this information. The fourth
line shows that when a node computes a backup path, this node will keep a piece
of information about this backup path. The fifth and sixth lines show that the nodes
on the path of a backup LSP also store some information.

In table 5, we can see which information is known by each node at the end of the
process. It is the same information as in table 4, but sorted by node and type. We
can see that this information is in agreement with the information of table 3 and
figure 8.

6 Simulation results

This simulation section is composed of two parts. The first part contains a deep
analysis of the results of the simulation of our algorithm on a first topology. In the
second part, we briefly present some results obtained on three other topologies.

6.1 Detailed results

For this part of the simulation, we have used a randomly generated topology which
was composed of 50 nodes and 102 full-duplex links. Among the 50 nodes, 30 were
chosen to act as border routers. We affected to each ingress-egress pair a probabil-
ity. The topology used has been “perfectly engineered” thanks to a Generalised

13 For reason of clarity, we do not show the PATH and RESV messages used for the estab-
lishment of the backup LSPs.
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Step Node Updated information Obtained from

a 1 P12 RSVP (primary)

b 2 P25 RSVP (primary)

c 5 P56 RSVP (primary)

d 6 B54(L56) B46(L56) F56(L56) Local BP computation

e 5 F56(L56) B54(L56) RSVP (backup)

4 B46(L56) RSVP (backup)

5 B24(L25) B46(L25) F25(L25) F56(L25) Local BP computation

f 2 F25(L25) B24(L25) RSVP (backup)

4 B46(L25) RSVP (backup)

2 B13(L12) B34(L12) B46(L12) F12(L12)

F25(L12) F56(L12) Local BP computation

g 5 F56(L12) Fij_message

1 F12(L12) B13(L12) RSVP (backup)

3 B34(L12) RSVP (backup)

4 B46(L12) RSVP (backup)
Table 4
Evolution of the information transmission

maximum concurrent flow algorithm. By “perfectly engineered”, we mean that a
load of 100% is reachable throughout the network if the ingress-egress probabil-
ities are respected and the LSP-bandwidth are infinitesimal. This has been done
because we realized it was useless to engineer the traffic on a network with engi-
neering inconsistencies such as huge links following very small ones (they can only
reach a very small relative load). And indeed, the Generalised maximum concur-
rent flow approximation we used is close to the behaviour used by some network
engineers we have met (e.g. “double up the link capacity when it reaches 50% of
load”). Network engineering in the context of fault protection is still a very active
domain of research (cf. [22,23]).

The most important value when designing a restoration scheme is the “cost” of such
a protection in terms of additional bandwidth reserved for backup LSPs. We will
call it “network oversubscription” and represent it by γ. It is given by:

γ =

∑

Lij∈U Rij −
∑

Lij∈U Pij
∑

Lij∈U Pij

γ measures the network-wide bandwidth reservation increase caused by the backup
LSPs compared to the unprotected case.

25



Node Type Information

1 Pij P12

Bij(L) B13(L12)

Fij(L) F12(L12)

2 Pij P25

Bij(L) B24(L25)

Fij(L) F25(L25)

Bmn(Lki) B34(L12) B46(L12) B13(L12)

Fmn(Lki) F12(L12) F25(L12) F56(L12)

3 Bij(L) B34(L12)

4 Bij(L) B46(L56) B46(L25) B46(L12)

5 Pij P56

Bij(L) B54(L56)

Fij(L) F56(L56) F56(L12) F56(L25)

Bmn(Lki) B24(L25) B46(L25)

Fmn(Lki) F25(L25)

6 Bmn(Lki) B54(L56) B46(L56)

Fmn(Lki) F56(L56)

Table 5
State of the tables of the nodes

Four algorithms for node-failure protection are presented in the following results.
The first one (labelled “LOCAL”) is as the name suggests a local recovery scheme
using only the basic “backup-backup” bandwidth sharing scheme. The second one,
“LOCAL with FBW 14 ”, is an enhanced version taking into account the concept of
“primary-backup aggregation” (using the vector Fij(F )). The same difference ex-
ists between the two algorithms labelled respectively “END-TO-END” and “END-
TO-END with FBW”. It should be noted that the “END-TO-END” algorithm is
similar in its behaviour to the algorithm presented in [9] which we consider to be
the state-of-the-art in end-to-end resource aggregation.

6.1.1 Results

Figure 12 presents the evolution of γ when we progressively add LSPs to the net-
work. The vertical position of each algorithm is not surprising. However it should

14 FBW is an acronym for Freed Bandwidth.
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be noted how the introduction of vector F improves the performance of the recov-
ery. In terms of resource consumption, local restoration with FBW is as good as
end-to-end recovery without FBW. On this topology, the “distance” between the
best local approach and the best end-to-end scheme is less than 10%, a price we
consider quite cheap to benefit from very short restoration delays.

The decrease of γ that occurs after the establishment of 2000 primary LSPs should
be pointed out. This behaviour is due to the method to choose the path of the pri-
mary LSP. Indeed, as the primary always follows the minimum hop path, many
primary LSPs will tend to overlap while enough bandwidth remains available on
this minimum hop path. This tends to create regions where links are used to protect
only a small number of nodes. This situation does not create a lot of opportunities
to aggregate bandwidth. If we take a look at figure 13, we will see that when 2000
primary LSPs and corresponding backups are established in the network, the mean
reserved bandwidth is close to 45%. This mean load suggests that some links are
completely filled. The following requests thus have to make a detour to avoid the
saturated links. Because of this, backup LSPs are now established in other parts of
the network where a more important sharing can be realized.

This is confirmed by figure 14 which shows the mean number of non-null elements
in vector Fij(F ), i.e. the evolution of 1

|X |

∑

F∈X sign(Fij(F )) 15 . Despite not be-
ing shown in this paper the same kind of behaviour is observed for the density of
vector Bij(F ). The slope of the curve increases shortly after 2000 primary LSP es-
tablishments indicating that backup LSPs are now using links where no bandwidth
has been reserved for protecting the same node. This suggests that choosing our
primary paths in a smarter way could have a big impact on the amount of sharing.

This simulation proves the interest of including restoration mechanism in the MPLS
layer. Indeed lower layer recovery schemes such as SONET self healing rings im-
pose a high level of oversubscription (> 100 %, see [24] for details).
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15 sign(x) is equal to 1 if x is positive, to −1 if x is negative and to 0 if x is equal to 0.
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6.2 Results on other kinds of topologies

We have used three other topologies. The first two topologies were generated us-
ing the BRITE topology generation tool [25]: one using Waxman’s method [26]
and the other one using Barabasi-Albert’s [27]. The third one is the topology of
an operational network. The Waxman topology is composed of 50 nodes and 100
full-duplex links. We set the value for parameters α and β to 0.15 and 0.2. The
Barabasi-Albert topology is composed of 50 nodes and 97 full-duplex links. The
operational network is composed of about 20 nodes and 40 full-duplex links. For
the Waxman (WAXMAN) and the Barabasi-Albert (BA) topologies, we have gen-
erated an LSP between each pair of nodes. The size of an LSP is chosen according
to a uniform random distribution between 5 and 10 units of bandwidth (for com-
parison, all the links of both topologies have a bandwidth of 1000 units). For the
operational network, we have used real traffic measurements (represented in a traf-
fic matrix) to fix the size of the LSP requests. The procedure to obtain the traffic
matrix of the operational network is similar to the one described in [28]. The pri-
mary paths were computed with the DAMOTE algorithm [16], which is a good
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WAXMAN BA Operational Network

LOCAL 52.7 65.8 111.4

LOCAL with FBW 50.0 63.2 108.5

E2E 48.6 62.3 93.7

E2E with FBW 43.8 57.4 83.4
Table 6
Oversubscription

primary path computation algorithm according to simulations in [28,29].

Table 6 shows the oversubscription values for the three topologies. These values
are given after the establishment of all the LSPs leading to a mean reservation of
about 40% for WAXMAN and BA topologies and 20% for the operational network
topology. We can notice that absolute values for the oversubscription on the WAX-
MAN and BA topologies are close to the values found in the previous section. On
the smaller operational network topology, we notice that the oversubscription level
is higher. But even in this case, compared to SONET restoration for which the over-
subscription is over 100% in all cases and does not protect against node failures,
these results are competitive. Finally, The relative reduction of bandwidth when
primary-backup aggregation is used (i.e. with FBW) can go up to 10.3% in the case
of end-to-end protection. This means that this kind of aggregation is not limited to
local restoration and provides good results for end-to-end protection as well.

7 Conclusion and future work

The contribution of this paper is threefold. First of all we improved the best known
bandwidth sharing scheme without sacrificing simplicity. This new aggregation
technique is able to provide a substantial decrease of the network oversubscrip-
tion of both local and end-to-end protection schemes. The second interest of this
paper is to explain the modification required to handle correctly the notion of “pre-
emption levels”. The third contribution is to provide a scalable way to implement
our efficient bandwidth sharing solution in a distributed way.

Our results show that fast-rerouting is a viable approach to protect traffic that can
only accommodate very short interruptions. They also suggest that routing the pri-
mary path in a smarter way could help reduce the resource usage further. This topic
will probably be an active domain of research for our future work.
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A Comparison to other possible signalling schemes

We will study in detail the three different solutions of section 5.1 and justify our choice.
They differ in the node that computes the backup LSPs.

A.1 Presentation of the three possible locations for backup path computation

A.1.1 Computation by the ingress of the primary LSP

It is the ingress of the primary LSP that computes the backup paths protecting the links
and nodes of the primary path. We consider two propositions to achieve this goal. The first
proposition is that each node floods all the information (B..(L..) and F..(L..)) in the whole
network. Doing so, every node of the network (including the ingress node) can compute the
backup paths. But this proposition is really not scalable.

The second proposition is that each node keeps the information concerning itself and sends
it to the ingress node. Thus, firstly, the ingress node computes the primary LSP and es-
tablishes it. Secondly, each node on the primary path sends the information it owns to the
ingress to allow it to compute the backup paths. When the backup paths are computed, the
ingress sends each POR the backup path it has to establish. Furthermore, the POR forwards
the backup path to the protected node so that it can keep this information in memory. The
protected node has to be aware of this information because it will send it to the ingress of
the future primary LSPs passing on it.
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With this scheme, each node Ni knows all the backup paths protecting itself, all the backup
paths protecting the incoming links and all the backup paths using itself. Formally, this
information is: Bmn(Lji) and Fmn(Lji), ∀mn | Lmn ∈ U ,∀j | Lji ∈ U and thus Bmn(Ni)
and Fmn(Ni), ∀mn | Lmn ∈ U (see equations 2 and 1).

A.1.2 Computation by the POR

It is the POR which computes the backup path. The POR is the node immediately upstream
of the resource to protect. In case of link protection, there is only one node per protected link
that can be the POR for the backup LSP. On the other hand, in case of node protection, there
are multiple nodes that can potentially be a POR for a backup LSP protecting a particular
node. Indeed, each neighbour of the node can be the POR. So, every potential POR must
store the information about the node. Thus, after having established a backup LSP (see
figure A.1), the POR sends the new information to the protected node (arrow 1) which
forwards it to all its neighbours except the POR (arrows 2).

Node

2

2

2

2

1
Protected

POR

Fig. A.1. Example of exchange of messages in the case A.1.2

With this scheme, each node i knows (∀k which is i or a neighbour of node i): Bmn(Ljk)
and Fmn(Ljk), ∀mn | Lmn ∈ U ,∀j | Lji ∈ U and thus Bmn(Nk) and Fmn(Nk), ∀mn |
Lmn ∈ U (see equations 2 and 1).

A.1.3 Computation by the node to protect

It is the solution we have chosen. This has already been explained in section 5.3.2.

A.2 Evaluation of the performance of the three solutions

In this section, we will estimate the cost of the three solutions. For these estimations, we
need to introduce some new notations:

• l is the number of nodes on the primary path

• x =| X | i.e. the number of nodes in the network

• u =| U | i.e. the number of links in the network
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• s is the mean size of the backup paths

• t is the mean degree of the nodes, i.e. the number of neighbours of the node

• C1 and C2 are constant values representing the size in bytes of the representation of
(respectively) one record in the database and the identifier of one node.

The bandwidth cost of a message is computed this way:

size_of_the_message * number_of_links_crossed_by_the_message.

A.2.1 First solution

In the first solution, the ingress must get the information from all the nodes of the primary

path. The information for one node Ni is







Bmn(Ni)− Fmn(Ni)

Bmn(Lji)− Fmn(Lji)
, ∀m,n. Nj is supposed

to be the node preceding Ni on the primary path. Thus, the size of the information to trans-
mit to the ingress node 16 for each node on the primary path is 2∗u∗C1. The information of
the egress node has to cross (l−1) links to reach the ingress, but the information of the node
just downstream the ingress node has to cross just one link to reach it. The total number of
links crossed by the information of one node is: 1 + 2 + ... + (l− 1) =

∑l−1
k=1 k = (l−1)∗l

2 .
The total cost is 2∗u∗C1∗(l−1)∗l

2 for all the messages that go from each node of the primary
path to the ingress node.

When the ingress node has computed all the backup paths, it has to send them to the PORs
because it is the PORs that will establish them. The cost of one path message is s ∗C2. So,
with similar arguments like above, the total cost of these messages is s∗C2∗(l−1)∗l

2 .

In conclusion, the total bandwidth cost of this first solution is (s∗C2+2∗u∗C1)∗(l−1)∗l
2 . Fur-

thermore, this solution requires an additional signalling for every node to send its informa-
tion to the ingress and for the ingress to send the computed backup path to the nodes on the
primary path.

A.2.2 Second solution

The POR can compute the backup path. After having established the backup path, it has
to transmit the computed path to the downstream node. This node will in turn transmit
this information to its neighbours (see figure A.1). The bandwidth cost of this operation is
s ∗ t ∗ C1. This operation requires an additional signalling.

16 Here, we do not take into account the fact that in case of lightly loaded networks, a high
number of B and F components may be equal to zero.
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A.2.3 Third solution

The POR asks to the downstream node to compute the backup path protecting it. After the
computation, the protected node sends the path to the POR which establishes it. The band-
width cost of this operation is s ∗ C2. This operation may require an additional signalling
protocol. But as we have seen, we can extend RSVP to support this scenario.
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