
1

Structuring Topologically-Aware
Overlay Networks using Domain Names

Demetrios Zeinalipour-Yazti and Vana Kalogeraki
University of California - Riverside, Riverside CA 92521

{csyiazti,vana}@cs.ucr.edu

Abstract— Overlay networks are application layer sys-
tems which facilitate users in performing distributed
functions such as searches over the contents of other
users. An important problem in such networks is that the
connections among peers are arbitrary, leading in that way
to a topology structure which does not match the under-
lying physical topology. This topology mismatch leads to
large user experienced delays, degraded performance and
excessive resource consumption in Wide Area Networks. In
this work we propose and evaluate the Distributed Domain
Name Order (DDNO) technique which makes unstructured
overlay networks topologically-aware. In DDNO, a node
devotes half of its connections to nodes that share the
same domain-name and the remaining half connections
to random nodes. The former connections achieve good
performance, because the bulk of the overlay traffic is
kept within the same domain, while the latter connections
ensure that the topology structure remains connected.
Discovery of nodes in the same domain is achieved through
on-demand lookup messages which are guided by a set
of ZoneCaches. Our technique is entirely decenntralized
making it appropriate for use in Wide Area Networks.
Our simulation results, which are based on a real dataset
of Internet latencies, indicate that DDNO outperforms
other proposed techniques and that it optimizes many
desirable properties such as end-to-end delays, connectivity
and diameter.

I. INTRODUCTION

The advances of public networks in the last few
years have increased the demand for Peer-to-Peer (P2P)
application-layer protocols that can be used in the con-
text of multicast [6], distributed object-location [20],
[21], [22] and information retrieval [28]. Moreover,
P2P file-sharing systems such as Napster [16] and
Gnutella [8] have proven that large-scale distributed
applications are feasible and that the P2P Computing
model will play an important role in infrastructures of
future Internet-scale systems.

P2P overlays can be divided into two categories:
Structured and Unstructured. In Structured P2P over-
lays [20], [21], [22], network hosts and objects are struc-

1

10

100

1000

10000

100000

1 10 100

N
um

be
r

of
 IP

s
co

nt
rib

ut
ed

.

Number of Domains. (Log-Log Plot)

Rank of Domains (based on IPs contributed to Gnutella)

Domains in June 2002

Fig. 1. Our analysis of the network traffic in [27] reveals that Large-
Scale Overlay systems, such as Gnutella, consist of many thousands
of nodes that belong to very few ISPs. More specifically we found
that 45% of the nodes in a set of 244, 000 IPs belong to only 10
large ISPs and that 58% belong to only 20 ISPs.

tured in such a way that object location can be guaran-
teed within some hop count boundaries. In Unstructured
P2P overlays on the other hand, hosts have neither global
knowledge nor structure. Early unstructured systems,
such as [8], rely on flooding the network with queries
in order to locate the objects. Recently more efficient
query routing techniques based on routing indices [7],
heuristics [26] and caching [28] were proposed.

Overlay networks can also be used to provide services
to the applications. For example, OverQoS [23] shows
that it is possible to use overlay networks to provide
QoS (such as statistical loss and bandwidth guarantees)
without the need to modify the underlying IP network,
focusing on streaming applications. RON [1] allows
nodes to communicate with each other to detect path
failures or perform path selection.

Therefore, an important problem is how to structure
such an overlay network efficiently and in a decentralized
manner where each node has only partial information. In
the current topologies the connections between peers are
not based on the underlying IP latencies, leading in that
way to an inefficient overlay structure. This phenomenon
leads to excessive resource consumption in Wide Area
Networks as well as degraded user experience because

2

of the increased network delays between the peers in the
overlay network.

In this work we propose and evaluate DDNO
(Distributed Domain Name Order), which is a dis-
tributed technique to make unstructured overlay net-
works topologically-aware. In DDNO, a node tries to
connect to d/2 nodes that belong to the same do-
main (sibling connections) and to another d/2 of ran-
dom nodes (random connections). The resulted DDNO
topology achieves good performance through sibling
connections while the additional random connections
ensure that the topology structure remains connected.
Discovery of sibling nodes is achieved through multicast
lookup messages which are send out by each node and
which traverse a set of ZoneCaches before finding other
siblings. Our earlier study on the network traffic of the
Gnutella [8] file-sharing network in [27], reveals that
most of the participating nodes do belong to only a
few ISPs (see figure 1). Therefore most nodes have a
good probability of finding other sibling nodes which
makes our scheme beneficial for the largest portion of
the network.

Such an overlay can become the middleware compo-
nent for a variety of network-based applications. In the
context of distributed file sharing for instance, a user
in Germany looking for traditional German music in the
Bavarian dialect has a higher probability of finding some
relevant answers if his search first spans in the German
domains. If the overlay network is not topologically-
aware, then the user’s query will end up traversing
domains across many different countries and continents,
increasing therefore the delay of receiving back all
answers and decreasing the probability of finding the
desired results. Moreover, once the file is located the
actual download time might also be very large as the
file might physically reside far away from the user.

Furthermore, our scheme could increase the per-
formance of P2P Information Retrieval [28] systems.
In [28] we built and evaluated a large-scale decentralized
newspaper network of 1000 nodes using 75 worksta-
tions. In this context, our topologically-aware scheme
would enable users to span their queries to newspaper
proxies that are closer to their locations enabling them
therefore to locate local news. Although the necessity of
topologically-aware overlays has been widely addressed
in the context of structured overlays [4], [19], [25], [29],
it hasn’t received the same attention in the context of
unstructured overlay networks.

Our Contribution

In this paper we consider a fully distributed technique
for addressing the problem of efficient overlay construc-

tion in unstructured networks. More specifically:
• We propose and evaluate DDNO (Distributed Do-

main Name Order), which is an efficient, scalable
yet simple technique for constructing topologically-
aware overlay topologies. DDNO is entirely dis-
tributed, requires only local knowledge and there-
fore scales well with the size of the network.

• We provide an extensive experimental study to eval-
uate the performance of our technique. In addition,
we compare our technique with other heuristic-
based techniques. Our results indicate that DDNO
improves many desirable properties such as low
end-to-end delays, connectivity and low diameter.

The remainder of the paper is organized as follows: In
section II we describe a centralized version of the DDNO
algorithm (DNO) and compare it with other heuristic-
based algorithms for overlay construction in a centralized
setting. In section III we present the DDNO technique
and in section IV we present our experimental results.
In section V we discuss related work and conclude the
paper in section VI.

II. CENTRALIZED OVERLAY CONSTRUCTION

TECHNIQUES

To simplify the discussion, in this section we describe
a centralized version of our algorithm (DNO). We also
compare this algorithm to three other currently proposed
algorithms that are either centralized or require that
each node has global information (needs to know its
distance to all other nodes). In a centralized setting,
these algorithms require information about all n hosts
in the system as well as complete information on the
”physical” distances between respective pairs (i.e. an
nxn IP-latency adjacency matrix). In a real setting this
might not be feasible, as transient user populations might
not allow us at any point to gather complete knowl-
edge. Evaluating these centralized algorithms however,
provides us with a lower bound on the performance of
the compared techniques. In section III and IV we will
discuss decentralized versions of these algorithms.

A. Description of Algorithms

The following algorithms take as an input a vertex
set V = {1, 2, ..., n} and construct a ”virtual” overlay
topology G = (V,E), where E set represents the overlay
connections between the V vertices. The following pop-
ular algorithms have been used for constructing overlay
networks:

1) Random Algorithm (RAN): In this algorithm,
each vertex vi selects its d neighbors by randomly

3

Fig. 2. Visualization of a Random graph with n=332 nodes (de-
gree=2, diameter=32) using the Kamada-Kawai visualization model
in Pajek [2]. Random topologies have the advantage that they are
easy to construct and lead to connected topologies (if degree >

log2n [3]). The latencies at the overlay-layer however, usually don’t
match the underlying physical latencies.

choosing d other vertices. Since overlay connec-
tions are bi-directional it avoids connecting vi to
vj if vj is already connected to vi. This is the
algorithm deployed in most current P2P networks
such as [8], [13] and its main advantages are that
it is simple, does not actually require the nxn IP-
latency matrix and leads to connected topologies
if the degree d > log2n [3] (see figure 2).

2) Short-Long Algorithm (SL): The Short-Long al-
gorithm, which was proposed in [19], alleviates
the network unawareness of the RAN algorithm
in the following way: Each vertex vi, selects its
d neighbors by picking the d/2 nodes in the
system that have the shortest latency to itself (these
connections are called short links) and then selects
another d/2 vertices at random (these connections
are called long links). Therefore SL requires the
nxn IP-latency in order to find the latencies be-
tween the various node pairs. The intuition behind
this algorithm is that the d/2 connections to ”close-
by” nodes will result in well-connected clusters of
nearby nodes, while the random links serve to keep
the different clusters interconnected and the overall
graph connected.

3) Short Algorithm (SS): In order to emphasize
that by only selecting the shortest latency nodes
might have a negative effect for the overall network
structure; we also propose and study the Short
(SS) algorithm. In SS, each vertex selects as its d
neighbors the ones that have the shortest latency
to itself (i.e. only short links). This, as we will

see in II-D, will always result in disconnected
topologies.

4) Domain-Name Order Algorithm (DNO): In the
Domain-Name Order Algorithm, which is the cen-
tralized version of the algorithm we propose in
section III, a vertex vi selects its d neighbors
by picking the d/2 vertices that have the same
domain-name with vi. It then selects another d/2
neighbor at random. The idea of this algorithm is
similar to the SL algorithm, in that we want to
create well-connected clusters of nodes that are
topologically close to each other without jeopar-
dizing network connectivity. The main advantage
however, is that the DNO algorithm does not
require any global knowledge, such as the nxn IP-
latency matrix, that SL needs.

B. Evaluation Parameters

Before evaluating the various generated overlay
topologies G, we define four different evaluation parame-
ters. First we define the Aggregate All-Pair Shortest Path
(AggAPSP) parameter, which is the sum of all distances
(pairs of shortest paths) on the overlay graph G. Formally
AggAPSP is defined as follows:

AggAPSPG =

n∑

i=0

n∑

j=0,i6=j

APSP [i][j], (APSP [i][j] 6=∞)

(1)
where APSP is an nxn matrix that stores all the
minimum distances between all pairs. Such a table is
obtained by running some All-Pair Shortest Path (APSP)
algorithm1 on the set of pairs in the edge set E.
AggAPSP , can be thought as the end-to-end delay
between all different pairs, and that is the reason it
needs to be minimized. Although routing of messages
on an overlay is performed based on the routing policies
defined by each node, we use shortest path routing
(similarly to [19]) which provides lower bounds for paths
taken by packets.

Formula 1 however, does not take into regard the fact
that some connection between overlay nodes might not
be available. This happens in the case that the overlay
network G is segmented into two or more partitions.
Therefore we also define the ClustersG metric, which
is the number of disconnected groups of nodes a given
graph has. More formally:

ClustersG = COUNT (Connected Components)
(2)

1We use the Floyd-Warshall Algorithm [9].

4

where Connected Components is an algorithm that
identifies the connected components of a graph2. It is im-
portant to mention that disconnected network segments
are undesirable in overlay networks as this limits the
reachability of nodes in the network.

The Diameter of an overlay G, which is the length
of the longest shortest path between any two vertices vi

and vj , is yet another parameter that needs to be taken
account when evaluating an overlay topology. More
formally DiameterG is defined in the following way:

DiameterG = MAX(SP (vi, vj)), (∀i, j ∈ V and i 6= j)
(3)

where SP is the maximum shortest path between vertices
vi and vj . Consider for example two overlay instances
G1 (ring topology) and G2 (star topology) with the same
number of vertices that have only different diameters δ1

and δ2 (δ1 � δ2). If an overlay message uses a parameter
TTL, which limits the number of hops a message travels,
then the nodes reached by the message are much less for
G1 than G2. Therefore large diameters play a negative
role in the resolution of some overlay message (e.g. some
QUERY message) as those messages are required to travel
more hops and possibly won’t reach an adequate number
of receivers.

C. Description of Datasets

Evaluating topologies based on the parameters outlined
in the previous subsection requires a dataset in which
the IP latencies are not synthetic. We therefore chose
to base our experiments on the measurements of the
Active Measurement Project (AMP) [10], at the National
Laboratory for Applied Network (NLAR). AMP deploys
a number of monitors distributed along 130 sites to
actively monitor the internet topology. AMP monitors
ping and traceroute each other at regular intervals and
report the results back to the project servers. Most of the
current 130 monitors currently reside in the U.S with a
few exceptions of some other International sites.

In our experiments we use an AMP 1.8 GB snapshot
of traces obtained on the 30th of January 2003. The
set includes data from 117 monitors out of which we
extracted the 89 monitors which could be reversed DNS
(i.e. given their IP we obtained a DNS name). We then
construct the nxn IP-latency matrix (for all n=89 physi-
cal nodes), that contains the latency among all monitors.
Since all 89 hosts are located at different domains, we
choose to incorporate some degree of host replication
per domain. Our study in [27] shows that hosts in

2We use the Component-Finding algorithm that uses DFS [9].

2.5

5

7.5

10

12.5

15

6 8 10 12 14 16 18 20

A
gg

A
P

S
P

 (
in

 m
ill

is
ec

on
ds

 x
 1

06)

Average Node Degree

AggAPSP for Random Replication
 and varying node degrees

RAND
SL
SS

DNO

5

10

15

20

6 8 10 12 14 16 18 20

A
gg

A
P

S
P

 (
in

 m
ill

is
ec

on
ds

 x
 1

06)

Average Node Degree

AggAPSP for Uniform Replication
 and varying node degrees

RAND
SL
SS

DNO

1

5

10

15

20

6 8 10 12 14 16 18 20

C
lu

st
er

s

Average Node Degree

Overlay Clusters for Random Replication
 and varying node degrees

RAND
SL
SS

DNO

1

5

10

15

20

6 8 10 12 14 16 18 20

C
lu

st
er

s

Average Node Degree

Overlay Clusters for Uniform Replication
 and varying node degrees

RAND
SL
SS

DNO

 0

 2

 4

 6

 8

 10

 12

 14

6 8 10 12 14 16 18 20

D
ia

m
et

er

Average Node Degree

Overlay Diameter for Random Replication
 and varying node degrees

RAND
SL
SS

DNO

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

6 8 10 12 14 16 18 20

D
ia

m
et

er

Average Node Degree

Overlay Diameter for Uniform Replication
 and varying node degrees

RAND
SL
SS

DNO

Fig. 3. Evaluating overlay topologies using data from the RR (left)
and UR (right) datasets. By using DNO or SL we can significantly
reduce the end-to-end delay between overlay nodes (top), while
maintaining a connected topology (middle) with a relatively low
diameter (bottom) for the same average degree.

a real overlay network, such as Gnutella, exhibit this
characteristic. More specifically we choose the following
host replication schemes:

1) Random Replication (RR). We randomly repli-
cate each host [1..k] times. In our experiments
we set k = 7 which consequently generated 332
nodes. This network attempts to address scenarios
in which some domains contribute more hosts than
other domains.

2) Uniform Replication (UR). We replicate each
host k times, for some parameter k. In our ex-
periments we set k = 4, which consequently
generated 356 nodes. This network attempts to
address scenarios in which all domains contribute
equally to the host distribution of the network.

D. Centralized Algorithms Evaluation

For the first experimental series we run the four cen-
tralized algorithms RAN, SL, SS and DNO using both
the RR and UR datasets. The presented results are for
different degree parameters larger than five (at which
most algorithms stabilize to a single cluster). In Figure 3
(top row) we can see that all algorithms, other than SS,
have a large AggAPSP value for smaller degrees but
as the degree increases, AggAPSP quickly stabilizes.
This happens because initially there are fewer paths

5

between the different node pairs. For example, if we have
three nodes a, b, c connected in the following topology
a

5
↔ b

10
↔ c (where the number on the edges represents

the latency between the respective nodes), then the
addition of edge a

2
↔ c will drop the AggAPSP from

30 (5+10+15) to 14 (5+7+2). SS on the other hand,
presents always a very low AggAPSP because: 1)
each node only chooses the nodes that have the shortest
latency to itself and 2) because the network topology
is always disconnected and therefore many entries are
not considered (i.e. APSP[i][j]=∞). The figure indicates
that RAN has the highest AggAPSP, which means that
it has the highest end-to-end delay between nodes. SL
and DNO on the other hand are both able to perform
much better because both algorithms choose half of their
neighbors selectively, (i.e. the lowest IP latency and
domain-name match respectively). On the same figure
we can see that SL performs slightly better than the
DNO algorithm but this is expected as SL has the
advantage of choosing the d/2 ”least latency” nodes
while DNO has to rely on the domain-names as a metric
for network distance. DNO however doesn’t utilize the
IP-latency table which provides the latencies between all
pairs.

The fact that only RAN,SL and DNO generate
connected topologies can be observed in Figure 3 (mid-
dle row). More specifically all three algorithms yield
connected topologies while SS always results in discon-
nected topologies even for very large degree values (i.e.
twenty). This happens because each node selects as its d
neighbors only the nodes that have the shortest latency
to itself.

Figure 3 (bottom row) shows the diameter of the four
algorithms. As we can see only the SS algorithm gener-
ates topologies with arbitrary large diameters even in the
case of very large degree parameters. On the same figure
we can see that SL again slightly outperforms the DDNO
algorithm but only for smaller degree parameters (less
than 10). This is again expected as SL optimizes more
the latency parameter (shortest path) between nodes,
which consequently also decreases the diameter of the
network. All experiments are averages of five executions.

III. DDNO - DISTRIBUTED DOMAIN NAME ORDER

PROTOCOL

In section II we have seen that DNO might be useful
for constructing connected overlays with low end-to-
end delays and low diameters. The problem that arises
in a real overlay setting is that we don’t have global
knowledge or not even a list of active users at all
times. One solution would be to deploy some centralized

1.psc.edu

4.sdsc.edu

2.isem.smu.edu
2.psc.edu

0.psc.edu

0.sdsc.edu

4.isem.smu.edu

0.genac.net.yale.edu

1.genac.net.yale.edu

4.stanford.edu
0.stanford.edu

3.psc.edu

4.psc.edu

3.stanford.edu

3.genac.net.yale.edu

1.isem.smu.edu

2.genac.net.yale.edu

1.stanford.edu

4.genac.net.yale.edu

2.sdsc.edu

3.isem.smu.edu

3.sdsc.edu

1.sdsc.edu

2.stanford.edu

0.isem.smu.edu

Fig. 4. A snapshot of a DDNO Topology with 25 nodes (degree=4)
from 5 domains. Each node tries to connect to d

2
nodes in the same

domain and another d

2
nodes in other random domains.

lookup service, that, given some domain-name, returns
IPs of other active nodes that belong to the same domain.
Although such services are feasible, they are expensive,
usually don’t scale well and are vulnerable to denial of
service attacks and censorship [16]. In this section we
present the Distributed DNO (DDNO) algorithm which
clusters nodes belonging to the same domain together
without the need of centralized component that usually
assists in the overlay construction process. An example
of a DDNO Topology can be viewed in figure 4. Before
describing the DDNO algorithm we will first describe
two deployed functions: i) Split-Hash, which allows us to
efficiently encode urls and ii) dnMatch which determines
whether two domain names dn1 and dn2 belong to the
same domain or not.

A. The Split-Hash and dnMatch Functions

Each node participating in a DDNO topology has
some Domain Name (dn), which is a string that con-
forms to the syntax rules of RFC 1035 [15]. Such
a string, which is case insensitive, can be expressed
with the regular expression dn = label(.subdomain)+,
where label and subdomain are some strings with certain
restrictions, such as length and allowed characters. In
order to determine whether two domain names dn1

and dn2 belong to the same domain we first introduce
the split-hash function, which is a hashing function
that splits a domain name dn into k hashes, where
k is the number of subdomain strings in dn (k =
|subdomain(dn)|). More formally split-hash is defined
as following:

1: procedure SPLIT-HASH(dn)
2: int size = |subdomaindn|
3: for j = 1 to size do
4: result[j] = hash(m, subdomaindn[j])
5: end for
6: return result
7: end procedure

6

where hash(m, subdomaindn[j]),
hashes the subdomaindn[j] using m bits. We chose to
use hashcodes instead of raw domain-names because it
allows us to keep the lookup message size small3. Fur-
thermore, for performance reasons the hashcode doesn’t
need to be a non-colliding key4 as this would again make
` prohibitively large. For example if we use a total of 160
bits for all the k generated hashes, then there would be an
additional 100 bytes augmented to the lookup message
after 5 hops. Instead, using a 20-bit hash function and
assuming that keys are uniformly generated, we will be
able to uniquely identify more that 1 million nodes and
travel a distance of 40 hops with the same amount of
bytes.

Now that we have introduced split-hash, we use the
dnMatch(dn1, dn2) comparison function, which com-
pares the individual subdomains hashes of dn1 and dn2.
In the basic case, dnMatch returns true if dn1 6=dn2

and the subdomain of dn1 and dn2 matches. For ex-
ample if dn1=”a.aol.com” and dn2=”b.aol.com” then
dnMatch(dn1, dn2) = true. For dn1=”a.yahoo.de” and
dn2=”a.yahoo.com” then dnMatch(dn1, dn2)=false. Of
course our scheme can take advantage of the hierarchical
structure of DNS and return the amount of similarity
between two domain names (instead of using an exact
match answer). For example if dn1=”a.rochester.rr.com”
and dn2=”b.ny.rr.com” then dnMatch can return 2

3
=

0.66, rather than simply true or false.
The only limitation with dnMatch is that it can’t

distinguish two nodes that share the same dn, such as
nodes in private networks using NAT (Network Address
Translation). Although these nodes won’t be able to
connect to each other as siblings, they present only a
small fraction of the nodes in networks such as Gnutella,
in which they are less than 5% [27].

B. Joining a DDNO Topology

Let n denote a node which wants to join an overlay
network N . Since n doesn’t know which other nodes
are currently active in N , it has to either probe nodes
to which it was connected in some past session, or to
consult some distributed discovery service D (i.e. some
hostcache) which will provide n with an initial list
of active nodes5. DDNO doesn’t specify the details of
the initial discovery part as its operation is application

3RFC 1035 [15] defines that subdomain name must be 255
characters or less.

4Hash functions such as SHA-1 are 160-bit and collision of two
keys is difficult.

5Both techniques are deployed in many Peer-to-Peer systems, such
as Gnutella and Kazaa and work reasonably well. Hostcaches are
either located on Web pages or dedicated servers.

specific. It assumes that an out-of-band discovery ser-
vice will provide n with a random list of active hosts
L={n1, n2, ..., nk}, for some constant k≥ degree

2
. It is

important to notice that the individual hostcaches do not
have global knowledge and therefore they can’t be used
for disseminating some pre-computed overlay structure
or the distances between all node pairs.

Algorithm 1 Join Network
1: procedure JOIN NETWORK(n, N)
2: random← 0
3: while true do
4: while (random < d/2) do
5: if (empty(L)) then
6: L← getRandomList(d/2)
7: end if
8: random← connect(L)
9: end while

10: next← getRandNode()
11: L← lookupDN(dn(n), ttl,next)
12: wait(interval)
13: connect(L)
14: end while
15: end procedure

After n obtains the list L, it first attempts to establish
a connection to d/2 random nodes, where d is the degree
of n. The pseudocode of this procedure can be viewed in
lines 4 to 9 of Algorithm 1. It is quite possible that some
or all of the nodes ni in L are not able to accept any new
incoming connections. This might either happen because
ni reached its maximum degree or because ni went
offline. It this case n will need to obtain an additional
list L from D. The next step is to find d/2 sibling
connections (nodes which have a dnMatch with n). This
is achieved by sending a lookupDN message to one
of the existing (random) neighbors. The message will
attempt to return a number of sibling nodes in N . We
will discuss the complete operation of the lookupDN
message in the next subsection. It is important to mention
that a lookupDN message might get terminated without
returning any results. Therefore a node might choose to
pipeline several consecutive lookup messages.

C. Domain-Name Lookup in a DDNO Topology

We now focus our attention on the lookupDN proce-
dure which is used by some node n, in order to discover
other sibling nodes in N . We model the lookupDN mes-
sage (denoted as `) as a multicast walker. The goal of the
multicast walker ` is to reach some node z that can guide
it to the destination (i.e. a sibling of n). Note that before
reaching z, ` may need to traverse a number of randomly
selected neighbors. This can be viewed in figure 5, in

7

zoneCache

LookupDN

n
 a

c
b

e

d

18:[a,b]

17:[a,b,e]
 19:[a]

16:[a,b,e,c]

20:[]

14:[a,b,e,c,b,d]

Overlay Connection

f

15:[a,b,e,c,b]

13:[a,b,e,c,b,d,f]

m

TTL:[state]

Fig. 5. Domain-Name Lookup in a DDNO topology. Each
lookupDN message retains path information in order to populate the
ZoneCaches of other nodes. The list appends shown on the lookupDN
message in the picture illustrate the accumulated path in `.

which ` takes the random itinerary [a, b, e, c, b, d]. At d
however, ` is allowed to make an informed decision on
which neighbor to follow next (in this example node
f). This is achieved by using a special structure called
ZoneCache that contains information on which nodes
are reachable in a r-hop radius (it will be discussed in
the next subsection). At the end of this procedure, ` is
expected to reach some node m, which is a sibling of
n. m then issues a broadcast message to all of its own
siblings. Each of the receiving nodes, including m, will
respond with a LookupOK message (denoted as `′) if they
are willing to accept new connections. Therefore node
n will end up receiving several answers out of which
it will attempt to establish a connection to d/2 nodes,
which will n’s siblings.

One important problem with this approach is that `
might get locked in a cycle (e.g. loop b → e → c
in figure 5), limiting therefore its reachability. This
might happen if the various nodes or the ` messages
don’t retain any state. An approach to overcome this
problem is to keep some state at each node (e.g. a
list with the identifiers6 of the ` messages received
recently). However, instead of retaining such state at each
node, we choose to incorporate state information in ` as
this also serves as an implicit mechanism to populate
the ZoneCaches along `’s path. The state information
included in `, includes the split-hash h (described in
section III-A), on the domain-name of each node that `
traversed (i.e. state` = {h(vn), ..., h(vm)}).

The complete pseudocode of the lookupDN proce-
dure can be viewed in Algorithm 2. A node n sends
a lookup message to node m using some ttl parameter,
which determines the maximum number of hops that the
given lookup should be forwarded. The ttl parameter,
which is used in many networked applications, starts out
from a predefined value and is decremented each time a
lookup message is forwarded until it becomes zero.

6` messages are uniquely identified by a random identifier that is
locally generated by the issuer of `.

Algorithm 2 lookupDN
1: procedure LOOKUPDN(n, ttl, m)
2: cacheRoute(n,ZoneCache(m))
3: if (dnMatch(n, m)) then
4: if ((degree(m) < d) and not(connected(n, m)))

then
5: send(n,"LOOKUPOK m.IP,m.PORT")
6: end if
7: broadcast(siblings(m))
8: else if (ttl > 0) then
9: if (hit(ZoneCache(m), hash(n))) then

10: next← getNextNode(ZoneCache(m))
11: else
12: next← getRandNode()
13: end if
14: lookupDN(n, ttl− 1, next)
15: end if
16: end procedure

D. The ZoneCache Structure

ZoneCache is a caching structure which is deployed
locally at each node and its functionality is to guide
lookupDN messages to their sibling nodes. A snapshot
of such a structure is displayed in table I. The first
column includes the hash of some domain-name and
this information is extracted from parsing lookupDN
messages. The second column indicates, the peer con-
nection that will lead a future `2 to the corresponding
destination, and the third column indicates the respective
cost in hops. Finally ZoneCache also uses a timestamp
parameter (fourth column) in order to limit the number
of entries in the structure to a total size of C 7. Once
the repository of some node becomes full the node uses
the Least Recently Used (LRU) policy to keep the most
used entries in the cache.

The cache stores only the hashcodes of the nodes
that are located within an r-hop radius in order to
both limit its size and accuracy. We show how this
works with the following example: Assume that node
n sends a lookupDN message ` searching for some
sibling and that this message reaches some node d (in
figure 5). Also assume that ` has already passed from
five nodes and that it has the following state: state` =
{a, b, e, c, b}. If the radius parameter of m’s ZoneCache
is set to three then node d will store the following
quadruples (i.e. information for only three hops away):
{(b, b, 1, ts), (e, b, 2, ts), (c, b, 3, ts), (a, b, 2, ts)}
where the first field is a hash of the destination node,
the second field the next neighbor that leads to the
destination, the third field the number of hops and the
last field the timestamp parameter generated at the time

7We set ZoneCache’s maximum entries parameter C to 350.

8

TABLE I

THE ZoneCache Structure. IT CACHES DOMAIN REACHABILITY

INFORMATION FROM LOOKUPDN MESSAGES THAT TRAVERSE A

GIVEN NODE.

Dest. Domain Hash Neighboor # Hops TimeStamp
9A78DF Socket3 3 10000000
421CDE Socket1 2 10012000

...
2AB356 Socket1 2 10160000

of the record insertion. Please note that before storing
the quadruples, we identify and eliminate cycles in the
state` sequence (therefore (a, n, 2, ts) is also consid-
ered). Furthermore if d’s ZoneCache already contains
any of the following hashcodes {a, e, c, b} then ` would
update some tuple only in the case that the new entry
provides a shorter path to the respective entry. The next
question is how the cached information becomes useful
to some future lookup message. Suppose that node a
sends a lookupDN message `2 to d (see figure 5) and
that a and c are siblings (i.e. dnMatch(a, c) = true).
Following the previous example, d has an entry in its
zonecache which indicates that c can be reached through
b in 3 hops. Therefore `2 will be routed towards c.
Although neighboring ZoneCaches could actively ex-
change routing updates at regular intervals, like BGP, our
passive caching scheme reduces significantly the amount
of transmitted message and works well in dynamic
environments as we will see in section IV.

E. DDNO Topology Maintenance

When a node disconnects from the DDNO topology it
does not need to send any priori notification to the other
nodes. This happens because each node continuously
tries to maintain its degree to the pre-determined value
d. If some random neighbor of n leaves N then n will
either attempt to re-establish the dropped connection or
find another node from the discovery service outlined
in subsection III-B. On the other hand, if some sibling
of n disconnects then n consults its ZoneCache in
order to send the new lookupDN message towards a
current sibling. It is expected that n will discover another
sibling in 2 hops (as a node already maintains (d

2
− 1)

siblings), which therefore makes the recovery of broken
connections cheap.

Another technique would be to proactively exchange
lookupDN messages with sibling nodes. Although such
a strategy might allow a node to instantly react in the
event of failures, it might become a large overhead for
the overlay topology. For example our study in [27], on
a collection of 56 million overlay messages obtained

from the Gnutella network, reveals that 23% of all
messages are Ping messages and 40% of them are
Pong messages. Ping/Pong messages are the main
technique for proactively discovering new nodes in the
Gnutella Network.

F. Query Routing in a DDNO Topology

One of the major objectives of overlay networks is to
facilitate users in performing distributed functions, such
as queries over the contents of other users. In [28], we
have made an extensive study on a number of different
query techniques that can be applied in randomly gener-
ated topologies. In this work we propose the deployment
of the DDNO topology which leads to more desirable
overlay properties. Given that we have a DDNO topology
some node might deploy any of the following search
techniques: Breadth-First-Search (BFS) [8] (query all
neighbors), Random BFS [28] (query a random subset
of neighbors), ISM [28] (intelligently query a subset
of neighbors) or >RES [26] (query the neighbors that
returned the most results in the past). Our study which
was performed a real network of 1000 nodes deployed
on a network of 75 PCs reveals that by using our ISM
technique we might be able to retain high degrees of
recall while using only half messages and time used by
the brute-force BFS technique.

DDNO allows multiple search algorithms to be de-
ployed on top of its topology. The advantage of using
DDNO is that the bulk of the incurred overlay traffic will
remain within the same domain since only d/2 of the
traffic will make its way to a different domain. Finally,
the DDNO topology gives space for more sophisticated
search techniques. In the context of a large-scale file-
sharing application with many thousands of nodes, we
might decide to forward query requests to only sibling
nodes.

G. DDNO in a Hybrid Overlay Environment

Although the proposed DDNO topology leads to a
flat topology, the basic approach can be utilized in
some hybrid P2P environment such as Kazaa[13] and
Gnutella[8] v0.6. In such an environment some nodes
with long-time network connectivity and high bandwidth
connections, known as SuperPeers or UltraPeers, form
a backbone infrastructure which can be utilized by other
less powerful nodes (denoted as RegularPeers). Such
a model allows the network size to grow to millions
of users because it differentiates short-time connection
and modem users from other more powerful users (e.g.
ADSL, cable modem users).

9

DDNO could be deployed in a hybrid P2P environ-
ment in the following way: A superpeer s initiates a
lookupDN ` message to find d/2 other sibling and d/2
random superpeers. RegularPeers will again utilize the
lookupDN message to discover the superpeer nodes that
belong to their domain and that might be able to serve
them. Of course using such an approach in an overlay,
requires a large number of participating nodes, as smaller
numbers would limit the number of superpeers the `
message locates. Therefore in the next section we present
an experimental evaluation of the basic ”flat” topology
approach, rather than the ”hybrid” topology discussed in
this subsection.

IV. EXPERIMENTAL EVALUATION

In this section we present our simulation-based envi-
ronment and results of our evaluation. More specifically,
we develop distributed versions of the centralized algo-
rithms RAN,SL and DNO presented in section II-A.
We deliberately don’t present SS because it generates
disconnected topologies. In a distributed setting some
node has no topological information other than which
are its own neighbors. Therefore global lists of other
active nodes or IP-latencies are not available.

Since there is no fine-grained model of time in a
simulation environment, we choose to divide time into
units of algorithm iterations. During an iteration each
node n is given the opportunity to establish connections
to up to d neighbors. n is not assured that it might be
able to connect to d neighbors in a single iteration. This
happens because some or all of its attempts target nodes
that have already reached their expected degree and
therefore don’t accept any new incoming connections.
Therefore an algorithm may require several iterations
before it stabilizes.

A. Description of Algorithms

Below we provide a brief description of the algorithms
compared. They are named according to their centralized
counterparts:

1) Distributed Random Algorithm (DRAN): This
algorithm is very similar with RAN in that each
node n selects its d neighbors randomly but
DRAN uses the notion of iterations instead of
allocating all nodes at once.

2) Binning SL Algorithm (BinSL): BinSL is a
distributed version of the SL algorithm proposed
in [19] and discussed in section II-A. It again
selects d/2 nodes at random and another d/2 nodes
that have the shortest latency to itself. Since the

adjacency-matrix of IP latencies is not available,
BinSL deploys the notion of distributed binning in
order to approximate these latencies. More specif-
ically each node calculates the round-trip-time
(RTT) from itself and k well-known landmarks
{l1l2..lk} on the Internet. The numeric ordering of
the latencies represents the ”bin” the node belongs
to. Latencies are then further classified into level
ranges. For instance if the latencies are divided
into 3 levels then; level 0 accounts for latencies in
the range [0,100), level 1 for the range [100,200)
and level 2 for all other latencies. The level vector
is then augmented to the landmark ordering of a
node yielding a string of the type ”l2l3l1 : 012”. It
is expected that nodes belonging to the same bin
will be topologically close to each other although
false positives are possible, that is, some nodes do
belong to the same ”bin” although they are not
topologically close to each other. The rate of false
positives is a function of how many landmarks are
used, as fewer will degrade the performance of the
binning scheme. We therefore experimented with
the following two datasets: i) BinSL-4 which uses
4 landmarks with 3 levels and ii) BinSL-12 which
uses 12 landmarks and 3 levels.

3) Distributed DNO Algorithm (DDNO): This is
the technique we advocated in section III. We
have experimented with various parameters for
ZoneCache’s caching radius and ttl parameters for
lookup messages but present only the following
most representative results: i) DDNO-3 which uses
lookupDN messages with a ttl of 20 and caching
radius of 3. ii) DDNO-5 which uses again a ttl of
20 but caches in a larger radius of 5.

B. Performance Evaluation

In the first experiment we evaluate the distributed
algorithms against the three parameters we defined in
section II-B (i.e. AggAPSP, Clusters and Diameter) using
the UR dataset in which each node has a degree of 8. We
obtained similar results for the RR dataset and therefore
omitted their presentation. As we can see in figure 6
(left) DRAN has again the highest end-to-end delay
as the AggAPSP stabilizes at 19M ms while all other
algorithms perform much better. DDNO-3 and DDNO-5
use ≈13.5−14.5M ms while BinSL-4 and BinSL-12 use
≈16−17M ms. This means that DDNO-5 presents a 30%
improvement upon the DRAN technique. We can also
see that although we increase by three times the number
of landmarks in the BinSL algorithm the accuracy of the
binning scheme only increases about 0.8M ms.

10

13

14

15

16

17

18

19

20

21

22

 1 2 3 4 5 6 7 8 9 10

A
gg

A
P

S
P

 (
in

 m
ill

is
ec

on
ds

 x
 1

06)

Algorithm Iteration

AggAPSP for Uniform Replication
 with different algorithm Iterations

DRAN
BinSL-4

BinSL-12
DDNO-3
DDNO-5

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

M
es

sa
ge

s
pe

r
N

od
e

Algorithm Iteration

Lookup Overhead for Uniform Replication
 with different algorithm Iterations

DDNO-3
DDNO-5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

C
on

ne
ct

io
ns

 D
ro

pp
ed

Algorithm Iteration

Connection Drop for Uniform Replication
 with different algorithm Iterations

DDNO-3
DDNO-5

Fig. 6. a) Performance Evaluation (left) of DRAN, BinSL-4, BINSL-12, DDNO-3 and DDNO-5 using the UR dataset and b) Overhead
Evaluation (middle,right) of the DDNO-3 and DDNO-5 techniques.

We can also observe that DRAN and BinSL manage to
stabilize within the first few iterations as their operation
doesn’t involve temporary connections. We already dis-
cussed that DDNO maintains more that d/2 random con-
nections if it is not able to locate d/2 siblings. Although
this increases connectivity and prevents network frag-
mentation, it also slightly delays the stabilization pro-
cess. We also experimented without allocating temporary
connections and found that such an approach is viable,
as it stabilizes after the seventh iteration, but it initially
results in a very high AggAPSP. In this experimental
series, and for the subsequent sections, all algorithms
always generate connected topologies which therefore
make the ClustersG evaluation parameter equal to one.
Furthermore the DiameterG remains constant at five.
Therefore the graph for both evaluation parameters is
omitted. In the remaining subsections our goal is to
investigate the overhead of DDNO technique, how it
performs in a dynamic environment and how it scales
with larger network sizes.

C. Overhead Evaluation

In order to assess the overhead of the DDNO tech-
nique, we investigate the average number of hops each
lookupDN message ` traverses before finding some sib-
ling node. These results are, as with the previous subsec-
tion, from the execution using the UR dataset. As we can
see in figure 6 (middle), ` initally requires about eight
messages (hops), before it is able to locate its siblings.
In the subsequent iterations the various ZoneCaches get
populated, which consequently lead more ` messages to
the right regions. The plot indicates that after the sixth
iteration, ` requires only five hops for both DDNO-3
and DDNO-5 although DDNO-5 stabilizes slightly faster
because of the expanded coverage it offers.

The second overhead parameter that we investigate
is the total number of temporary connections that are
swapped with sibling connections once the latter are

 70

 75

 80

 85

 90

 95

 100

 105

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 R

es
ol

ve
d

Lo
ok

up
D

N
Algorithm Iteration

% Resolved LookupDN for RR dataset
 with different algorithm Iterations

DDNO-3, 0% failures
DDNO-3, 5% failures

DDNO-3, 10% failures
DDNO-3, 20% failures

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

M
es

sa
ge

s
pe

r
N

od
e

Algorithm Iteration

Lookup Overhead for RR dataset
 with different algorithm Iterations

DDNO-3, 0% failures
DDNO-3, 5% failures

DDNO-3, 10% failures
DDNO-3, 20% failures

Fig. 7. Evaluation of the DDNO-3 algorithm over the RR dataset,
in a dynamic network topology where nodes leave and arrive.

found. Figure 6 (right) indicates that DDNO-5 is again
able to perform slightly better because ` messages are
resolved faster, which consequently eliminates the need
for temporary connections. We can further see that the
total number of swapped connections for DDNO-5 and
DDNO-3 is 100 and 120 respectively. This accounts to
only a drop of ≈7% of the total connections in the case
of DDNO-5 and ≈8.5% in the case of DDNO-3.

D. Dynamic Environment Evaluation

Network failures in overlay systems are commonplace
because of the misusage exhibited at the application layer
(e.g. users shut down their PCs without disconnecting)
and the overwhelming amount of generated network
traffic. Such failures generate a dynamic environment in

11

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 R

es
ol

ve
d

Lo
ok

up
D

N

Algorithm Iteration

% Resolved LookupDN for LRR datasets
 with different algorithm Iterations

DDNO-3, LRR-5K
DDNO-3, LRR-10K

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

M
es

sa
ge

s
pe

r
N

od
e

Algorithm Iteration

Lookup Overhead for LRR datasets
 with different algorithm Iterations

DDNO-3, LRR-5K
DDNO-3, LRR-10K

Fig. 8. Evaluation of the DDNO-3 and DDNO-5 algorithms over
the LRR-5K and LRR-10K datasets which are networks of 5,000 and
10,000 nodes respectively.

which peers are leaving or joining the network in an ad-
hoc manner. A highly dynamic environment neutralizes
the purpose of the ZoneCaches, as cached information
might become outdated before it gets the chance to be
utilized.

We choose to evaluate only DDNO-3, where each
node uses a ZoneCache with a 3-hop radius, since our
preliminary runs on networks of different sizes, indicated
that such a setting consistently offered good performance
at a low overhead. In order to simulate network failures,
we disconnect at each iteration a fraction of nodes. The
failure rates we used are {0%, 5%, 10%, 20%}.

In figure 7 (top) we plot the number of resolved
lookupDN messages after running DDNO-3 using the
RR dataset. The figure indicates that ≈89% and ≈85%
of the messages are resolved at 5% and 10% of failures
respectively. Therefore low degrees of node failures don’t
significantly affect the performance of our scheme. With
20% failures the number of resolved lookup messages
drops to 75%. Although this might be acceptable in some
settings, the fact that the number of hops required by
each message increases over time (see figure 7 (bottom)),
might make our scheme not appropriate in such a dy-
namic setting. On the same figure 7 (bottom), we can
also see that with 5% and 10% of failures the number
of hops required by each messages stabilizes at 5 and 6
hops respectively. It is important to remind that in DDNO

there is no explicit mechanism to delete outdated entries
in the distributed ZoneCaches as this would introduce an
additional messaging cost. Each node therefore relies on
its LRU policy to invalidate old entries.

E. Scalability Evaluation

In this subsection we show how our technique scales
to larger network sizes by measuring the percentage of
resolved lookupDN messages and the average number of
hops each message travels. For this experimental series
we derive a new dataset from the Active Measurement
Project data presented in II-C. More specifically we
chose the Random Replication scheme and generate
the Large Random Replication (LRR) dataset with
5,000 (LRR-5K) and 10,000 (LRR-10K) nodes. We
used DDNO-3 with ttl`=20 and nodes having a degree
of 12.

In figure 8 (top) we can see that in the first iteration
approximately 57% and 60% of the lookupDN messages
are resolved for the LRR-5K and LRR-10K datasets
respectively. This low rate is attributed to the fact that the
various ZoneCaches are not populated adequately. In the
subsection iterations however, the lookupDN procedure
is able to resolve ≈95-98% of the requests. In figure 8
(bottom), we can see that after the first two iterations,
lookupDN messages are resolved within 4-5 hops. This
result shows that resolving lookup in a completely
decentralized fashion doesn’t actually impose a large
overhead of messages even in larger topologies. Another
interesting observation is that although the network size
was doubled in the LRR-10K dataset, the number of
hops taken by the lookupDN message has only slightly
increased (≈0.2 messages).

V. RELATED WORK

The need of topologically-aware unstructured overlay
networks has recently been addressed [19], [14]. In the
proposed BinSL algorithm [19], which was evaluated
in this work, end-to-end delays are minimized using a
system of k landmarks. Recently an approach to create
resilient unstructured overlays with small diameters was
proposed in [24]. In the proposed algorithm a node
selects from a set of k nodes, r nodes at random (r⊂k)
and then finds from the rest f=k-r nodes the ones
that have the largest degree. The algorithm results in
networks with powerlaw distributions of node degrees
differentiating it therefore from DDNO in which we have
a uniform distribution.

Topologically-aware overlays have also been ad-
dressed in the context of Structured P2P overlays in [4],
[19], [25], [29]. These systems rely on some hashing

12

scheme which allows nodes to quickly send messages
to some destination node. Although structured overlays
are of particular importance in applications such as
decentralized web caches [11], they are not appropriate
for content-based retrieval systems [28] and large-scale
systems with transient user populations [5]. Li et al
[17] propose techniques to construct overlay networks
(meshes). However, their techniques are not distributed.

Application-layer multicast systems such as
Narada [6] initially construct a richer connected graph
(mesh) and then use some optimization algorithm to
generate a mesh that has certain performance properties.
As part of the mesh quality improvement algorithm,
Narada nodes randomly probe each other and calculate
the perceived gain in utility. We believe that our approach
is simpler and cheaper in terms of messages. It is
furthermore designated for larger groups of members,
which might leave and join in an ad-hoc manner.

Finally, network-awareness is also addressed in the
context of large-scale service overlays [12]. In the pro-
posed scheme, a hierarchically fully connected topology
of nodes that are clustered based on their distances is
constructed. Although the centralized clustering compo-
nent might be fast and accurate, decentralized approaches
are more scalable and less expensive.

VI. CONCLUSIONS & FUTURE WORK

In this work we propose and evaluate DDNO (Dis-
tributed Domain Name Order), which is a distributed
technique to make unstructured overlays topologically-
aware. We compare DDNO with a number of other over-
lay construction techniques in both centralized and dis-
tributed settings. Our experiments indicate that DDNO
is an attractive technique for topologically aware overlay
construction as it optimizes many desirable properties
such as end-to-end delays, diameter and avoids network
partitioning, scales to large overlay networks and works
well in dynamic environments.

We believe that our technique is simple enough to be
incorporated in existing overlay systems with minimum
changes to the respective protocols. In the future we
want to test our technique using new datasets, such as a
dataset of latencies that we are in the process of obtaining
from Akamai. We are further interested in deploying our
middleware platform, which is currently under devel-
opment, in a larger and more realistic simulation over
the PlanetLab [18] distributed overlay testbed which is
expected to run over 1000 geographically distributed
machines in the next few years.

REFERENCES

[1] Andersen D., Balakrishnan H., Kaashoek F. and Morris R.
”Resilient Overlay Networks”, INFOCOM 2004.

[2] Batagelj V. and Mrvar A. ”PAJEK - Program for large network
analysis”, Connections, 21:47–57, 1998.

[3] Bollobás B. ”Modern Graph Theory, Graduate Texts in
Mathematics” vol. 184, Springer-Verlag, New York, 1998.

[4] Castro M., Druschel P., Charlie Hu Y., Rowstron A.
”Topology-aware routing in structured peer-to-peer overlay
networks”, In IFIP/ACM Middleware, 2001.

[5] Chawathe Y., Ratnasamy S., Breslau L., Lanham N., Shenker
S. ”Making Gnutella-like P2P Systems Scalable”, In ACM
SIGCOMM’03, Karlsruhe, Germany, August 2003.

[6] Chu Y-H, Rao S.G., Zhang H. ”A Case For End System
Multicast”, In ACM SIGMETRICS, 2000.

[7] Crespo A. and Garcia-Molina H. ”Routing Indices For Peer-
to-Peer Systems”, In ICDCS’02, Vienna, Austria, 2002.

[8] Gnutella, http://gnutella.wego.com.
[9] Gross J.L. and Yellen J. ”Graph theory and its applications”,

CRC Press, 1999.
[10] Hansen, T., Otero, J., McGregor, A., Braun, H-W., ”Active

measurement data analysis techniques”, In CIC, June 2000.
[11] Iyer S., Rowstron A., Druschel P., ”SQUIRREL: A decentral-

ized, peer-to-peer web cache” In PODC 2002.
[12] Jin J. and Nahrstedt K. ”Large-Scale Service Overlay Net-

working with Distance-Based Clustering”, In IFIP/ACM
Middleware’03, pp 394-413, Rio de Janeiro, Brazil, June 2003.

[13] Kazaa, http://www.kazaa.com/
[14] Liu Y., Liu X., Xiao L., Ni L. M., Zhang X. ”Location-aware

topology matching in P2P systems”, IEEE INFOCOM 2004.
[15] Mockapetris P. ”Domain Names - Implementation and Speci-

fication”, RFC-1035, Network Working Group, Nov. 1987.
[16] Napster, http://www.napster.com/.
[17] Li Z. and Mohapatra P. ”The impact of topology on overlay

routing service”, in IEEE INFOCOM 2004.
[18] PlanetLab http://www.planet-lab.org/.
[19] Ratnasamy S., Handley M., Karp R.,

Shenker S. ”Topologically-Aware Overlay Construction and
Server Selection”, In IEEE INFOCOM’02, NY, June 2002.

[20] Ratnasamy S., Francis P., Handley M., Karp R., Shenker
S. ”A Scalable Content-Addressable Network”, In ACM
SIGCOMM’01, August 2001.

[21] Rowstron A. and Druschel P., ”Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems”,
In IFIP/ACM Middleware’01, Nov. 2001.

[22] Stoica I., Morris R., Karger D., Kaashoek M.F., Balakrishnan
H. ”Chord: A scalable peer-to-peer lookup service for Internet
applications”, In ACM SIGCOMM’01, August 2001.

[23] Subrmanian L., Stoica I., Balakrishnan H., Katz H. R.
”OverQoS: An Overlay based Architecture for Enhancing
Internet QoS”, In INFOCOM 2004, Hong Kong, March 2004.

[24] Wouhaybi R. and Campbell A. ”Phenix: Supporting Resilient
Low-Diameter Peer-to-Peer Topologies” In IEEE INFO-
COM’04, Hong Kong, to appear in 2004.

[25] Xu Z., Tang C., Zhang Z. ”Building Topology-Aware Overlays
using Global Soft-State”, In ICDCS 2003, Providence, RI.

[26] Yang B., and Garcia-Molina H. ”Efficient Search in Peer-to-
Peer Networks”, In ICDCS’02, Vienna, Austria, July 2002.

[27] Zeinalipour-Yazti D. and Folias T., ”Quantitative Analysis of
the Gnutella Network Traffic”, Tech. Rep. UC-CS-89, UCR.

[28] Zeinalipour-Yazti D., Kalogeraki V., Gunopulos D. ”Exploit-
ing Locality for Scalable Information Retrieval in Peer-to-Peer
Systems”, Information Systems Journal, to appear in 2004.

[29] Zhao B.Y., Duan Y., Huang L., Joseph A.D., Kubiatowicz
J.D. ”Brocade: landmark routing on overlay networks” In
IPTPS’02, Cambridge MA, March 2002.

