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Abstract

We describe the design and implementation of the QoSbox, a configurable IP router that provides
per-hop service differentiation on loss, delays and throughput to classes of traffic. The novel aspects of
the QoSbox are that (1) the QoSbox does not rely on any external component (e.g., no traffic shaping and
no admission control) to provide the desired service differentiation, but instead, (2) dynamically adapts
packet forwarding and dropping decisions as a function of the instantaneous traffic arrivals and allows
for temporary relaxation of some service objectives; also, (3) the QoSbox can enforce both absolute and
proportional service differentiation on queuing delays, loss rates, and throughput at the same time. We
focus on a publicly available implementation of the QoSbox in BSD-based PC-routers. We evaluate our
implementation in a testbed of BSD routers over a FastEthernet network, and we sketch how the QoSbox
can be implemented in high speed architectures.
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1 Introduction

The capacity of the network links of the Internet has steadily increased in the past decade, and has mostly

resulted in an increase of the traffic that uses these links, without any improvement in the service received.

Stated differently, increasing the capacity of the network far beyond what is needed to accomodate typical

loads, a practice known as overprovisioning, does not always translate in improved quality-of-service (QoS).

Indeed, the service received by an end-to-end traffic flow is bounded by the service received at the link with

the smallest capacity on the end-to-end path. Thus, augmenting the capacity of some links only moves

the bottleneck to another part of the network, and consequently, only changes the location of the service

bottleneck, e.g., from the core to the edge of a network. In particular, access links now appear to be one of

the most likely points of congestion in the network [38].

An approach pursued by some Internet Service Providers (ISPs) to improve the average service re-

ceived by the traffic they serve, is to simply filter out “undesirable,” resource-consumming traffic. However,

network measurements (e.g., [44]) indicate that end users may actually be particularly interested in resource-

consumming traffic such as IP telephony or peer-to-peer transfers, which provides an economic incentive

for most ISPs to avoid traffic filtering, lest they lose an important segment of their customer base.

A more desirable solution, at least from the end users’ perspective, is to have the network support service

differentiation between different classes of traffic. Numerous service architectures for enhancing the best-

effort service provided by the Internet have been propose over the past decade (see [19] for an overview).

However, only very few proposals have actually been deployed to some extent, in large part due to the

complexity of the required arithmetic manipulations or the amount of state information to be maintained in

network routers.

We have previously shown that one can offer relatively strong service differentiation, by solely relying

on dynamically adaptive scheduling and buffer management at the bottleneck links of the network [12].

The architecture we proposed hinges on a specific packet handling algorithm to be implemented in routers,

and does not require admission control, traffic policing, or network reservations, which could make it more

easily deployable than some of the proposed alternatives (e.g., [8]).

The main contribution of the present paper is to demonstrate, through the description of a proof-of-

concept implementation, that the router algorithms we propose are efficient enough for practical use at

typical access link speeds. To that effect, we describe an implementation in BSD-based PCs of the QoSbox,

an IP router providing per-hop service differentiation to classes of traffic. We show that this implementation,

available to the public through the KAME [2] and ALTQ distributions, can be readily deployed in access

networks with links in the order of a few hundreds of megabits per second, and we outline how the algorithms

used can be further modified to be implemented in switch architectures governing high-speed links, in the

2



order of several gigabits per second, at the expense of some reduced accuracy in the service differentiation.

Different from most QoS architectures, the QoSbox does not rely on any external component such as

traffic shaping or admission control to enforce the desired service differentiation, which allows for deploying

a network of QoSboxes in an incremental manner. Instead, the QoSbox dynamically adapts packet forward-

ing and dropping decisions dependent on the instantaneous traffic arrivals. The QoSbox can enforce both

absolute bounds and proportional service differentiation on queuing delays, loss rates, and throughput at the

same time. Since there is no admission control, it may not be feasible to enforce all absolute bounds at all

times, in which case, the QoSbox relaxes some bounds according to an order specified a priori.

This paper is organized as follows. In Section 2, we present an overview of the proposed service ar-

chitecture, and describe the mechanisms used by the QoSbox. In Section 3, we discuss implementation

issues. In Section 4, we assess the efficiency of the QoSbox in a testbed of PC-routers. In Section 5, we

present the related work. Finally, we summarize the current status of the project and draw brief conclusions

in Section 6.

2 The QoSbox

In this section, we discuss the architecture of the QoSbox. To that effect, we first summarize the objectives

and characteristics of the service the QoSbox offers. We then discuss the mechanisms implemented in the

QoSbox to realize the proposed service.

2.1 Overview

Our objective is to provide a service architecture that can provide strong service differentiation in a large-

scale network. More precisely, we want the service architecture to have the following properties: (1) it

must be deployable in an incremental manner, without ever degrading the average level of service provided

in the network, (2) it must scale to networks of large size, and (3) it must support quantitative service

differentiation, including absolute bounds.

To meet these constraints, we propose a per-hop service, which provides service differentiation be-

tween classes of traffic flows with similar service requirements. The service is enforced independently at

each router, no communication between routers is required, and routers do not rely on any external compo-

nents such as admission control or traffic policers. Instead, service differentiation is enforced using packet

scheduling and dropping algorithms designed for dynamic adaptation to changing traffic arrivals.

In comparison to a more traditional architecture, such as a static rate allocation used in conjunction

with admission control, our proposed approach presents two advantages. First, measurements studies, as
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summarized in [43], have shown that Internet traffic is generally highly variable. Consequently, the backlog

at bottleneck links is generally highly variable. A static configuration of the worst-case backlog, as needed

by existing schedulers such as Class-Based Queuing (CBQ, [22]) when delay bounds are offered, therefore

results in under-utilizing network resources, and it is desirable to use instead an architecture dynamically

adapting to changes in the traffic load. Second, because each QoSbox operates independently of other

routers, there is no communication or signaling overhead, and setting up a QoSbox to govern a given link

does not require any knowledge of the characteristics or topology of the rest of the network.

The main limitation of an approach completely avoiding admission control and traffic policing is that

satisfying all service bounds at all times may be impossible. For example, upon arrival of a sudden large

burst of traffic, it may not be feasible to satisfy all absolute bounds (e.g., delay and loss rate bounds) si-

multaneously, in which case some bounds have to be temporarily relaxed. Thus, an order of relaxation of

the service objectives must be chosen at configuration time, for instance, allowing a violation of a delay

bound in favor of a loss rate bound. In the QoSbox, we give precedence to loss differentiation over delay

(or throughput) differentiation. The rationale for our choice is that for TCP and TCP-friendly traffic, losses

are used as a congestion indicator, and therefore result in throughput reduction. In other words, loss differ-

entiation may have a stronger overall impact on the service received by TCP-friendly flows than delay (or

throughput) differentiation.

Because the service paradigm we propose potentially enttails relaxation of service bounds, our approach

is different from traditional deterministic service architectures such as Integrated Services (IntServ, [8]) or

Differentiated Services (DiffServ, [6]), which provide strict service guarantees. Within the limits set by the

potential relaxation of guarantees, the service model the QoSbox supports nevertheless allows for emula-

tion of the Assured Forwarding (AF, [23]) and Expedited Forwarding (EF, [15]) services of the DiffServ

architecture, and even attempts to generalize the service differentiation provided by both AF and EF. In

particular, the QoSbox can support loss, delay and throughput bounds given to each class. In addition, the

QoSbox supports proportional differentiation on loss and delay between classes of traffic, so that AF-like

relative differentiation between classes of service can be quantified.

QoSbox configuration We illustrate in Fig. 1 the service differentiation the QoSbox can provide through

an example of a QoSbox configuration file. The configuration file contains the properties of the output

interface(s) on which QoSbox traffic control must be performed. In the example of Fig. 1, the interface con-

cerned, fxp0, has a bandwidth of 100 Mbps and a buffer size of 200 packets. The field jobs indicates that

traffic control is performed by a variant of the JoBS algorithm (Joint Buffer Management and Scheduling,

[35]) which is the scheduling/dropping algorithm central to the QoSbox.

The next set of configuration commands, in lines (2)–(5) contains a description of the service offered to
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(1) interface fxp0\

bandwidth 100M qlimit 200 jobs

(2) class jobs fxp0 high_class NULL\

priority 0\

adc 2000 rdc -1 alc 0.01 rlc -1 arc 10M

(3) class jobs fxp0 med2_class NULL\

priority 1\

adc -1 rdc 2 alc -1 rlc 2 arc -1

(4) class jobs fxp0 med1_class NULL\

priority 2\

adc -1 rdc 2 alc -1 rlc 2 arc -1

(5) class jobs fxp0 low_class NULL\

priority 3 default\

adc -1 rdc -1 alc -1 rlc -1 arc -1

(6) filter fxp0 high_class 0 0 0 0 0 tos 1

(7) filter fxp0 med2_class 0 0 0 0 0 tos 2

(8) filter fxp0 med1_class 0 0 0 0 0 tos 3

(9) filter fxp0 low_class 0 0 0 0 0 tos 4

Figure 1: Example of a QoSbox configuration file. The configuration file defines (1) the properties of the

output interface, (2) the service each class of traffic receives and (3) the filters used by the classifier to map

packets to given classes of traffic. Line numbers are not part of the configuration file, but are used here for

readability purposes.

each class. In this example, Class high class is given a delay bound of 2000 microseconds (adc 2000),

a loss bound of 1% (alc 0.01), and a minimum throughput of 10 Mbps (arc 10M). This class is not sub-

ject to proportional delay or loss differentiation, as indicated by the rdc -1 and rlc -1 commands. The

priority field simply indicates the class index, but does not denote a priority order. Conversely, classes

med2 class, med1 class, low class are not offered delay or loss bounds, but are subject to propor-

tional delay and loss differentiation with a factor of 2. This means that packets from the class med1 class,

should get queuing delays twice as long as those experienced by med2 class packets. Likewise, packets

belonging to low class, should get queuing delays twice as long as those experienced by med1 class

packets. Note that the parameters taken by rdc or rlc can be any positive value, including values less than

one.

Last, commands in lines (6)–(9) specify how packets should be classified. In this example, the only clas-

sification criterion is the DiffServ Codepoint (DSCP, [37]) of the IP header. In the present example, a value
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of 0x03 in the DSCP field of an incoming packet indicates that the packet belongs to Class med1 class.

The configuration file presented above assumes the use of IPv4, but the implementation of the QoSbox pre-

sented in this paper also supports IPv6. In the case of IPv6, the DSCP corresponds to the IPv6 Traffic Class

octet.

Note that we do not necessarily advocate the set of service differentiation parameters we use in this

example. In all likelihood different ISPs would use different parameters depending on their needs and the

type of differentiation they would like to offer. For instance, one could have several classes with different

absolute bounds, or only proportional differentiation, or any mix of guarantees. One of the main features of

the QoSbox is that the specific service semantics are decided by the network operator running the QoSbox,

by means of a configuration file as we just discussed.

QoSbox deployment QoSboxes should primarily be deployed at bottleneck links. Indeed, if a link is

never congested, incoming packets can be transmitted at once, using a First-Come-First-Served queuing

policy, thereby getting a high-grade service (no loss, low delay, high throughput). Hence, there is no reason

to artificially delay the packets supposed to travel on the link to satisfy service objectives. Reports on the

utilization of backbone links indicate that backbone links are used at about 60% of their capacity on average

[49], which tends to show that bottlenecks are rarely present in the cores of the networks. Thus, we can

identify two locations where a bottleneck can occur: at the (ingress or egress) access links of a network,1

where a large number of end users may share a common trunk, and at the interconnection links between two

networks.

At interconnects between two networks, there may be an economic incentive for ISPs to use the service

differentiation offered by a QoSbox to enforce the service level agreements (SLA) they sign as part of their

peering contracts with other ISPs, rather than trying to remove the bottleneck by upgrading a potentially

costly line (e.g., a transoceanic link). We can make a more straightforward economic case for using QoS-

boxes to govern access links (as in the case of Network A in the figure). Indeed, by differentiating incoming

traffic, ISPs can avoid dimensioning their entire network to accomodate worst-case traffic spurts coming

from outside their domains, which may be costly.

We point out that there are a number of questions regarding deployment that we do not answer in the

present paper. For instance, this paper does not address the configuration problem of selecting specific ser-

vice differentiation parameters at each hop in order to achieve end-to-end differentiation. Indeed, by design,

the QoSbox only provides local, per-hop service differentiation. However, the service provided by a QoS-

box, used in conjunction with routing mechanisms that can perform route-pinning, such as Multiprotocol

Label Switching (MPLS, [42]), can be used to infer end-to-end service, and select the most appropriate route
1By ”network”, we refer here to what is generally called an Autonomous System (AS).
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for a particular application given the service demands. A thorough inspection of the interaction of traffic en-

gineering techniques (e.g., routing) with the QoSbox to provide end-to-end service guarantees is outside the

scope of this paper. In addition, the economic feasibility of providing end-to-end service guarantees across

multiple service providers remains an open problem. Likewise, we do not consider in this paper the issue of

path replication and its effect on throughput bound selection, even though path replication techniques, such

as one-to-one protection, are increasingly used in the context of load-balancing and core provisioning. Last,

even though our BSD implementation can be used for packet marking, we assume that packet marking is

handled separately, for instance by the end applications, as in [16].

2.2 Requirements

We next describe two requirements our service architecture has to meet so that it can be used in large size

networks. First, the state information kept in the routers should be small (control path scalability). Second,

the processing time for packet classification and scheduling should be small as well (data path scalability).

The growing amount of traffic present in the core and at the edges of the network also suggests that there is

a need for utilizing the existing network resources as efficiently as possible, for instance, maximizing link

utilization. We use the distinction between control and data paths to refine the requirements the QoSbox has

to satisfy.

Control path requirements. To limit the state information maintained on the control path, admission

control of traffic and/or traffic shaping are not permitted. In other words, no a priori traffic description is

made available to the QoSbox, which therefore has to dynamically adapt to the traffic demand. In a similar

effort to reduce control path complexity, we require that QoSboxes do not communicate control or signaling

information with their peers. In addition to limiting the processing overhead due to signaling, a second

advantage linked to this requirement is a more efficient use of bandwidth.

Data path requirements. We limit the complexity of the operations performed on the data path by first re-

quiring that no per-flow packet classification be performed. Per-flow classification means that each incoming

packet must be inspected, in order to be separated from packets belonging to other flows. As a second data

path requirement, we need to ensure that the complexity of the scheduling primitives is independent of the

number of packets or flows backlogged at the router. Third, in an effort to maximize the utilization of the

network resources, the QoSbox must be able to support best-effort traffic. Therefore, (1) scheduling in the

QoSbox must be work-conserving, meaning that the backlog of packets at a QoSbox increases only at times

when the output link is busy transmitting, and (2) the dropping primitives must minimize packet losses.

Last, for performance purposes, it is desirable to have an algorithm that can be parallelized.

The objective of the aforementioned requirements is to limit the overall computational overhead incurred
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Figure 2: Architecture of an output queue in the QoSbox. The three main components are the packet clas-

sifier, in charge of storing incoming packets in the proper per-class buffer, the rate allocation and dropping

algorithm, and the scheduler, which forwards packets according to the service rates allocated.

by the algorithm we propose to implement service differentiation in the QoSbox, regardless of the traffic

demand, so that the algorithm can be implemented in routers. In this paper, we consider that computational

overhead is negligible if all operations performed on a per-packet basis (packet classification, packet en-

queuing, and packet dequeuing) can be carried out in less time than the average time needed to transmit a

packet on the output link.

2.3 Mechanisms

The mechanisms for service differentiation in the QoSbox are packet dropping and packet scheduling at the

output queues of the QoSbox. In other words, the QoSbox is an Output Queuing architecture. One cannot

a priori assume Output Queuing in production routers, which generally use Virtual Output Queuing (VOQ)

or Combined Input-Output Queuing (CIOQ). However, previous research contributions showed it was pos-

sible to emulate Output Queuing routers with CIOQ routers [13] and specific arbitration mechanisms, or to

approximate Output Queuing at high-speeds using feedback control [20]. In the PC-routers that we use for

our implementation, we can assume Output Queuing only if the input queues are empty, that is, only if the

CPU is not overloaded [36]. We will later show that the overhead associated to our proposed mechanisms is

limited enough so that we should not face overload conditions in typical access networks where our imple-

mentation in BSD routers can be deployed. From now on, we assume that traffic control is only performed

at the output queues and solely focus on the operations performed at the output queues.

All output queues in the QoSbox have the same architecture, which is outlined in Fig. 2. Each class of
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traffic is associated with a per-class buffer. When a packet is passed to the interface governing the output

link, a classifier looks up which class the packet belongs to and places the packet in the appropriate per-class

buffer. Note that the classifier does not need to identify the flow to which the incoming packet belongs, but

only the class to which the incoming packet belongs. The per-class buffers have a finite size selected by the

network operator as follows. The maximum amount of traffic that can be held in each per-class buffer can

be fixed to a constant (separate buffers), or, alternatively, the maximum total amount of traffic backlogged

can be bounded (shared buffer).

After the incoming packet has been placed in a per-class buffer, the rate allocation and packet dropping

algorithm adjusts the service rates allocated to each class of traffic and possibly drops packets in order to

enforce the desired service. The computation of the service rates and packet drops is based on the current

backlog, arrivals, loss rate on the one hand, and on queuing delays reported by the scheduler on the other

hand. If needed, packets are dropped from the tail of each per-class buffer. Even though our implementation

in PC-routers does not support them at the present time, more elaborate dropping algorithms can also be

used. A study of alternative dropping strategies for the QoSbox is however outside the scope of the present

paper, and is instead reported in [11].

Service differentiation is provided over a finite-length time interval, called a busy period, whose begin-

ning is defined as the last time the output queue was not backlogged. Similarly, the loss rate and throughput

are computed over the current busy period. The choice of the current busy period as the monitoring interval

for computing loss rates represents a trade-off. We expect busy periods to be generally short, which enables

the output link to react quickly to changes of the traffic load, and limited state information to be maintained.

As a disadvantage, at times of low load, when busy periods are very short, providing service differentiation

only with information on the current busy period can be unreliable. Also, in times of persistent backlogs

resulting in long busy periods, large bursts of packet drops may be allowed if traffic has not been dropped

previously. However, at underloaded links transmission queues are mostly idle and all service classes receive

a high-grade service, and long busy periods without drops require the offered load to be roughly constant.

Near-constant offered loads rarely occur with self-similar arrivals as observed in the Internet. Thus, we

believe that choosing the current busy period as the interval over which we compute loss rates and provide

service differentiation is a sensible choice.

The key difference between the mechanisms used in the QoSbox and mechanisms used in other service

architectures is that here, a single algorithm is in charge of adapting to the current traffic demand both

the service rates and loss rates of all classes. The main argument in favor of using a scheme combining

rate allocation and buffer management is that rate allocation and buffer management both address the same

issue of managing the transmission queue at a given router. The only difference between the two concepts
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Figure 3: Overview of the dynamic service rate allocation and packet dropping algorithm. Di is the

delay and Bi is the backlog. The service rate is dynamically adjusted at times t1, t2 and t4 in function of the

traffic arrivals, and traffic is dropped at times t2 and t3.

lies in the fact that rate allocation manages the head of the transmission queue, deciding the rate at which

packets leave, while buffer management manages the end of the transmission queue, deciding if new packets

can be admitted to the queue. To further illustrate the rationale for combining rate allocation and buffer

management, consider a given class i subject to a delay bound. The queuing delay Di experienced by the

packet at the tail of the Class-i buffer is equal to Bi/ri if Bi is the Class-i backlog, and ri the service rate

allocated to Class i. Thus, to reduce Di in order to satisfy the delay bound, one can either increase ri, or

decrease Bi. In other words, rate allocation and packet dropping can both be used as ”handles” to provide

the desired service differentiation.

As presented in Fig. 3, we take a quantitative view of traffic to determine how to use these handles. For

each class, the QoSbox keeps track of the traffic arrivals, the arrivals that were admitted, and the transmis-

sions since the beginning of the current busy period. As shown in Fig. 3, at any time, the amount of traffic

dropped, from which the loss rate can be derived, is the vertical distance between the total arrivals curve and

the admitted arrivals curve. Similarly, the delay in Fig. 3 is the horizontal distance between the admitted

arrivals curve and the transmission curve, and the backlog is the vertical distance between these two curves,

as illustrated for time t in Fig. 3. Additionally, the service rate is the slope of the transmission curve. With

these parameters, the rate allocation and dropping algorithm can dynamically decide whether to adjust the

service rate of a given class, or drop packets. In Fig. 3, service rates are adjusted at times t1, t2 and t4, and

packets are dropped at times t2 and t3.

To calculate the service rate allocation and determine if packets need to be dropped, the algorithm first
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computes, upon each packet arrival, the minimum service rate that is required to transmit the entire backlog

of each class within the specified delay bounds. For each class, the minimum service rate is lower bounded

by the throughput bound. If this minimum service rate is larger than the current rate allocation for some

classes, the algorithm tries to redistribute the service rates allocated to each class so that no delay bound

violations occur. If no service rate allocation can satisfy all delay bounds, or if a buffer overflow is detected,

the algorithm reduces the backlog of classes by dropping packets according to the loss differentiation spec-

ified. Then, within the range of feasible service rates for each class, the algorithm selects a rate adjustment

that ensures that proportional delay differentiation will be met. Despite the apparent complexity of the algo-

rithm, all these operations can be efficiently implemented. In Section 2.4, we will describe in more details

the rate allocation and packet dropping algorithm, which is an essential piece of the QoSbox architecture.

The service rates calculated by the rate allocation algorithm must be translated into packet forwarding

decisions, which is the task of the packet scheduler. Schedulers translating service rates into packet for-

warding decisions, such as Packetized-Generalized Processor Sharing (P-GPS, [39]) or Virtual Clock [50],

have been proposed in the early 1990s. However, these schedulers were designed for cases where the rate

allocation is static, that is, the service rates allocated to each class of traffic only change when a class joins or

leaves the scheduler. In the context of a dynamic service rate adaptation such as the one we propose, these

algorithms have a worst-case complexity of O(N) where N is the number of packets backlogged in the

system, and may thus be computationally too expensive to be carried out at high speeds. For this reason, we

propose an O(Q) heuristic, where Q is the number of classes in the system, inspired by the Deficit-Round

Robin algorithm [45].

A counter recording the amount of traffic that has been sent in each class since the beginning of the

current busy period, Xmiti, is maintained by the scheduler. An auxiliary counter Rout
i is updated every

time a packet enters the output queue, with

R
out
i ← R

out
i + ri · ∆t , (1)

where ∆t corresponds to the amount of time that has elapsed since the last update of Rout
i . Rout

i corresponds

to the amount of traffic that would have been transmitted since the beginning of the current busy period if

packet scheduling perfectly matched the service rate allocation. Every time the output link is available for

transmission of a packet, the scheduler computes, for each class, the difference Rout
i − Xmiti. Denoting

by k the index of the class for which this difference is maximum, meaning that Class k is the “most behind”

its allocated service rate, the scheduler chooses to transmit the packet at the head of the Class-k buffer,

and records the queuing delay experienced by the transmitted packet, by taking the difference between the

current time and the time this packet was enqueued.
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(1) function enqueue(pkt)

(2) if (output link is idle())

(3) reset all variables();

(4) transmit(pkt);

(5) else

(6) insert tail(pkt);

(7) accounting(pkt);

(8) if (not backlogged anymore() or now backlogged())

(9) reset rates();

(10) while (buffer overflow())

(11) i = select dropped class();

(12) drop(i);

(13) compute min rates();

(14) while (
�

min rates > C and can drop())

(15) i = select dropped class();

(16) drop(i);

(17) compute min rates();

(18) adjust rates();

(19) return (dropped);

Figure 4: Rate allocation and packet dropping in the QoSbox. This sequence of operations is performed

immediately after a packet arriving at the output queue has been classified. Line numbers are printed for

readability purposes.

2.4 Details of Rate Allocation and Packet Dropping

After having presented an overview of the QoSbox architecture, we now delve into the details of the algo-

rithm for dynamic rate allocation and packet dropping, which, as shown in Fig. 2, is the central component

of the QoSbox. Note that the proposed algorithm is only an instance of a class of algorithms that can be

designed to dynamically adapt to an unknown traffic arrival pattern.

We present in Fig. 4 the pseudo-code associated with the operations carried out by the rate adjustment

and dropping algorithm we propose. We refer to [12] for a justification of the operations discussed in this

paragraph. The enqueue function described in Fig. 4 is called upon every packet arrival at the output

queue of the QoSbox.
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First, the algorithm checks the status of the output link. If the output link is not busy transmitting any

packets, a new busy period starts with the arrival of the packet. Since all service differentiation is provided

over the current busy period, all counters (on arrivals and transmissions) are reset, and the incoming packet

is immediately forwarded. This test ensures that scheduling in the QoSbox is work-conserving. Conversely,

if the output link is busy, the current busy period started in the past. In that case, the sequence of operations

carried out starts by a check on the traffic mix present in the QoSbox. If, since the last packet arrival, some

classes are not backlogged anymore, or if the incoming packet belongs to a class that was not previously

backlogged, all service rates are reset: classes which are not backlogged are assigned a service rate equal to

zero, while classes which are backlogged are all assigned the same service rate. This test is needed since,

as we will see later, service rates are adjusted instead of being allocated. Therefore, an initial value on the

service rates has to be explicitly allocated.

Next, the algorithm tests if the incoming packet causes a buffer overflow. In the case of a shared buffer,

the test consists in checking that the total number of packets backlogged is less than a given buffer size. In

the case of separate buffers, the test consists in checking that the number of Class-i packets backlogged,

where i is the class index of the incoming packet, is less than a given value. The algorithm drops packets

until the buffer overflow is resolved. To that effect, the select dropped class function is called. This

function computes, for each class, the difference between the actual loss rate of the class and the loss rate it

should experience to satisfy to the proportional loss differentiation, and returns the class index of the class

for which this difference is the smallest, meaning that the actual loss rate of that class is the “most behind”

the value it should have to realize proportional loss differentiation. Excluded from that computation are

classes for which dropping a packet would cause a violation of a loss rate bound. If no class can be dropped

without yielding a violation of a loss rate bound, the select dropped class function selects the class

for which the violation is the smallest. Completing the dropping operation, the packet at the tail of the buffer

of the selected class is discarded.2

After possible buffer overflows have been resolved, the algorithm updates the arrivals and admitted

arrivals counters, then calls the function compute min rates which determines the minimum service

rate each class must be allocated to meet its delay and throughput bounds. For each backlogged Class i,

the minimum service rate needed to meet the delay bound of Class i is Bi
di−Di

, where Bi represents the

backlog of Class i, di represents the delay bound on Class i, and Di represents the time the oldest Class-i

packet still backlogged in the system has experienced [12]. For each backlogged Class i, the minimum

rate needed to meet the absolute delay bound and the lower bound on throughput is therefore the maximum
2One could drop the packet at the head of the buffer instead. Such a “Drop-From-Front” [33] strategy has the advantage of

lowering the queuing delays of all packets still backlogged, but has the major disadvantage of introducing a much more complex

coupling between queuing delays and loss rates.
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of Bi
di−Di

and fi where fi is the minimum throughput desired for Class i. Finally, if di − Di ≤ 0 and

Bi > 0, meaning that a delay bound violation has occurred, the minimum rate is set to C, the capacity of

the output link. This limit case means that the entire Class-i backlog is transmitted as soon as possible in an

effort to resolve the situation in a timely manner. When more than one class experiences a delay violation,

all classes that have experienced violations get an equal share of the output link, so that in the extreme

case where all classes suffer delay violations, the scheduling becomes equivalent to per-class fair-queuing.

Non-backlogged classes are assigned a minimum service rate of zero.

As long as the sum of the minimum service rates exceeds the capacity of the output link, packets have to

be dropped to decrease the minimum service rates required. Packets are dropped in the same manner as in

the case of a buffer overflow, and after each drop, since the Class-i backlog Bi has decreased, the minimum

service rates are recomputed. It may happen that no packet can be dropped without violating a loss bound.

This condition is tested by the can drop primitive. In such a case, it is impossible to meet at the same

time all bounds on delays and on loss rates. As discussed earlier, for the implementation we present in this

paper, we make the choice of giving higher importance to loss rate bounds than to delay bounds, and thus,

the algorithm stops dropping. We point out that while our implementation uses delay bound relaxation,

the algorithm only requires a relaxation order to be provided, without imposing any specific order. In

fact, choosing the opposite order, i.e., favoring delay bounds over loss rate bounds, can be done in our

implementation by simply removing the can drop() test in line (14) of the pseudocode given in Fig. 4.

We plan in the future to make the relaxation order a configurable option in our implementation.

After service rates and packet drops have been computed to meet absolute differentiation (or some

bounds have been relaxed), the final operation carried out in the enqueue function adjusts the service

rates so that proportional delay differentiation is achieved. In our earlier work [12], we showed that the

service rate adjustment could be performed by a single multiplication ∆ri = K · ei, where ∆ri denotes

the adjustment in the service rate of Class-i, K is a time-dependent factor and ei translates the difference

between the queuing delay encountered the last Class-i packet to have been transmitted and the value this

queuing delay should have had to satisfy the desired proportional delay differentiation. Hence, ei = 0

indicates perfect proportional delay differentiation. The coefficient K is common to all classes, and its

computation takes into account the fact that ri + ∆ri has to be greater than the minimum rate of Class i.

3 Implementation details

Next, we describe the details of our implementation. We first focus on the specifics of the implementation

we carried out for BSD kernels using the Alternate Queuing framework (ALTQ, [9]). We provide a short

review of ALTQ, and then turn to a discussion of the operations performed by our implementation. In our

14



ip_output

if_output

if_start

IF_ENQUEUE

IF_DEQUEUE

altq_enqueue disc_enqueue

altq_dequeue disc_dequeue

Standard BSD ALTQ−enabled BSD

ip_output

if_output

if_start

kernel module

struct
ifqueue

struct
ifaltq

IF_ENQUEUE

IF_DEQUEUE

Figure 5: Functions and structures associated with the output queue in BSD and ALTQ-enabled BSD.

Each queueing discipline implemented in ALTQ consists of a kernel module, represented by the dotted box.

PC-router implementation, all operations are sequential. Even without exploiting potential parallelism in

the algorithm, we will show in Section 4 that our implementation can operate at line speeds in the order of

100-500 Mbps in a 1 GHz PC if the number of classes is small.

3.1 ALTQ

Our implementation of the QoSbox for PC-routers builds on ALTQ. ALTQ is an extension to the FreeBSD,

OpenBSD and NetBSD operating system kernels. In addition to various bug fixes to networking device

drivers, ALTQ provides a modular framework for replacing the default FIFO queueing discipline of network

interfaces by custom-designed queueing disciplines.

In BSD kernels, an output networking interface is governed by the if output and if start func-

tions, which enqueue and dequeue packets from the transmission queue, respectively. The transmission

queue is represented by the ifqueue structure and is shown on the left in Figure 5. An incoming packet is

passed to ip output which, after looking up the route, filling the IP header, and possibly fragmenting the

packet passes it to if output; if output enqueues the packet in the ifqueue structure. When the out-

put link is available for transmission, a packet is dequeued from the ifqueue structure by the if start

function.

As shown on the right in Figure 5, ALTQ replaces the operations performed by if output and

if start by user-defined transmission queue structures and functions included in dynamically loadable

kernel modules. Each kernel module implements a specific queueing discipline. A custom packet queue
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structure (struct ifaltq) is used as a replacement to the ifqueue structure to implement the trans-

mission queue. Transmission queue management is realized by enqueue and dequeue functions specific to

each queueing discipline, as denoted by disc enqueue and disc dequeue in the figure. For instance,

the enqueue and dequeue functions of our the QoSbox are called enqueue and dequeue, respectively.

Queueing disciplines that have been developed for ALTQ include Class-Based Queueing (CBQ, [22]), Hi-

erarchical Fair Service Curve (HFSC, [48]), Random Early Detection (RED, [21]) and Blue [18].

Additionally, ALTQ provides a classifier that is used to map incoming packets to classes of traffic. In

the QoSbox, classification only consists of selecting in which buffer to store the packet by looking up a

class index contained in the DSCP, as marked upstream, and adding a priority field tag to the packet buffer.

In a BSD implementation, packets are stored in memory buffers called mbuf’s. The mbuf structure can

be modified to record information, such as the priority field tag we need to insert, in addition to the packet

header and payload

We refer to [9] for more details on the implementation of ALTQ.

3.2 Packet Processing

All mechanisms specific to the QoSbox are realized by enqueue and dequeue. We next describe both

functions in detail.

The dequeue function The dequeue function implements the packet scheduler described in the last

paragraph of Section 2.3. The dequeue function reads the value of the variables Rout
i and Xmiti for

each class (two memory accesses for each class), finds the class for which the difference Rout
i − Xmiti

is maximized (one integer subtraction, and one integer comparison per class), and dequeues the packet

located at the head of the corresponding per-class buffer. Thus, dequeue uses Q integer subtractions and

Q comparisons, for a total of 2Q arithmetic operations, and performs 2Q + 1 memory accesses, one for

reading each of the variables Rout
i and Xmiti, and one for accessing the packet to be dequeued.

The enqueue function The main cause of processing overhead in the QoSbox stems from the operations

occurring during the enqueueing of an incoming packet, that is, the operations performed by the rate alloca-

tion and packet dropping algorithm. This algorithm is implemented by the enqueue function in ALTQ and

relies on several arithmetic operations (e.g., computation of K). In a network simulator, these operations can

be performed using double precision floating-point numbers. In the case of a kernel-level implementation,

floating-point operations should be avoided, because the hardware floating-point unit (FPU) is generally not

supported in the kernel, and floating-point operations using the FPU emulation library are extremely slow.
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The computations in enqueue only use fixed-point arithmetic. In our implementation, all quantities

are expressed using 64-bit unsigned integers, which requires that we adopt some specific units. Delays are

expressed in clock ticks, service rates are expressed in bytes per clock tick scaled by a factor of 232, and loss

rates are expressed as fractions of 232. These units can achieve a satisfactory degree of precision.

Let us now consider the first set of operations, in lines (2)–(4), which are executed when a new busy

period starts. A memory access to check the status of the output link is followed by a reset, for each class,

of the four variables corresponding to the total arrivals (Ai), the admitted arrivals (Rin
i ), the counter Rout

i ,

and the transmissions Xmiti, for a total of 4Q arithmetic operations. The current time is recorded as the

start of a busy period (which requires one assignment operation), and, for the class of the incoming packet,

we set Ai, Rin
i , Rout

i and Xmiti equal to the size of the incoming packet, which results in another four

assignment operations. Lines (2)–(4) thus require 4(Q + 1) + 1 assignments and arithmetic operations

before transmitting the packet.

If the output link is not idle, the incoming packet is added to a per-class buffer, based on the value of its

priority field tag. The insert tail function stores the arrival time of the packet in a timestamp, which is

inserted at the tail of a timestamp list.3 To record the arrival time, enqueue needs to access the CPU clock.

A simple solution would be to use the microtime() function provided in BSD, which has a microsecond

granularity. Using microtime() increases portability of the implementation, because all BSD systems

implement the microtime() function since 4.4-BSD. However, microtime() may not have a fine

enough granularity, and requires a periodic adjustment to account for possible clock skews. Also, using

microtime() generates significant overhead.4 A more efficient solution is to directly read the timestamp

counter (TSC) register available in the Pentium series processors [28], and compatible architectures, such

as AMD processors. This register is an unsigned 64-bit precision integer, and gives the number of cycles

elapsed since the machine has been turned on. The resolution of the TSC register is much finer than that

provided by microtime(). A similar counter (processor cycle counter, PCC) can be found on DEC

Alpha architectures, but only provides a 32-bit precision [14]. We read the TSC or PCC registers if they

are available, and if not, roll back to microtime() to ensure portability of our implementation. Despite

potential variations in the duration of each clock cycle in recent processors, due for instance to power

management, reading A cycle counter provides time measurements accurate enough for our implementation.

The accounting() function called in line (7) adds the size of the (class-i) incoming packet to both

Ai and Rin
i , and proceeds to compute the current loss rate pi = (Ai − Rin

i )/Ai for each class i, which

requires a total of 2Q arithmetic operations (one subtraction, and one integer division per class).
3One could also use an extra tag added to the mbuf holding the packet to mark its arrival time.
4As of 4.4-BSD, a nanotime() function is also available. nanotime() provides nanosecond granularity, but suffers the

same overhead and clock skew adjustment problems as microtime().
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Once the packet has been added to its per-class buffer, the test in lines (8) and (9) in Figure 4 checks

if the set of classes with a backlog in the per-class buffers has changed. If there is a change, service rates

of all classes are reset: classes with no backlog get a service rate of zero, while backlogged classes equally

share the capacity of the output link. In our implementation, there are Q tests to check which classes are

backlogged, and, if a change in the backlogged classes is detected, the reset rates call consists of Q

assignments.

Next, in lines (10)–(12), enqueue drops packets in case a buffer overflow occurs. The while loop

in lines (11) and (12) is executed in the worst-case for each backlogged packet. However, since this while

loop is executed upon each packet arrival, the number of iterations is in fact bounded by the number of

packets that have arrived since the last packet arrival. In a PC-router, it is extremely rare, if not impossible,

in practice, to have simultaneous packet arrivals. In other switch architectures, the number of iterations is

bounded by the internal speed-up of the switch, which is generally less than the number of line cards in the

switch, and remains a relatively small number.

The overhead of the function select dropped class in line (11) depends on the type of loss differ-

entiation offered to the incoming packet(s). If only absolute loss bounds are offered, select dropped class

checks that dropping the incoming packet(s) does not violate loss bounds. This requires looking up the

incoming packet size S, and computing the value for the loss rate if the incoming packet is dropped,

which can be done with one addition and one integer division, by adding S/Ai to pi. If no class can be

dropped without violating a loss bound, the addition and division are performed for each class, along with

a comparison to the loss rate bound, for a total of 2Q arithmetic operations, and Q comparisons. Then,

select dropped class has to find the class for which the violation is minimal. This requires another

Q subtractions (Li− (pi +S/Ai) for each class i), and another Q comparisons to find the minimal violation.

So, the worst-case corresponds to a total of 3Q arithmetic operations and 2Q comparisons.

To find from which class to drop to satisfy proportional service differentiation, the select dropped class

function implements the technique described in Section 2.4, by minimizing a quantity pi− p∗, where p∗ is a

weighted arithmetic mean of all loss rates (details can be found in [12]). Computing a weighted arithmetic

mean over Q elements requires Q multiplications, Q−1 additions and one integer division, for a total of 2Q

operations. Computing all the pi − p∗ requires in turn to perform Q subtractions, and finding the smallest

pi − p∗ requires another Q comparisons. Thus, all in all, finding the class that needs to be dropped for

enforcing proportional differentiation requires 4Q operations. If both proportional loss differentiation and

a loss rate bound are offered to all classes, the worst-case overhead amounts to a total of 4Q operations for

proportional differentiation and 3Q + 2Q = 5Q for absolute differentiation, as discussed before, that is, 9Q

operations.
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The computation in line (13) determines the service rates rmin
i needed for meeting the delay and through-

put bounds. For each class i, the computation of the minimum service rate required for meeting a delay

bound involves looking up the timestamp of the head-of-the-line packet in the considered class, reading the

machine clock, and performing a subtraction (di −Di) and a division (Bi/(di −Di)). These operations are

augmented by a comparison (max{Bi/(di −Di), fi}) in case a throughput bound fi is also present.

The while loop in lines (14)–(17) drops packets until a feasible rate allocation exists or all loss rate

bounds are reached. The chosen relaxation order imposes that loss rate bounds have higher precedence than

delay bounds, which is enforced by the can drop() test in line (14). Note that all operations in the while

loop in lines (14)–(17), including the functions select dropped class and compute min rates,

can be executed once for each backlogged packet in the worst case. To reduce the total number of oper-

ations, we propose to replace lines (14)–(17) by a call to a function called greedy alloc, based on a

heurisitic initially presented in [35]. Instead of choosing which class to drop to respect proportional loss dif-

ferentiation, greedy alloc redistributes the service rates in a greedy manner to minimize the difference

between service rates and minimum service rates, and then, for each class whose service rate is less than

the minimum service rate required, drops as much traffic as needed to have the minimum service rate equal

to the service rate allocated. The reduced complexity offered by the function greedy alloc comes at at

the expense of a potential relaxation of proportional loss differentiation when packets have to be dropped to

meet delay bounds. greedy alloc uses Q arithmetic operations to redistribute the service rates. Most

of the overhead in greedy alloc comes from the number of operations required when dropping packets.

Each time a packet is dropped, a memory access is performed, and four arithmetic operations are used to

update the variables Rin
i , Rout

i and Xmiti. In the worst case, all backlogged class-i packets are dropped.

However, note that the worst-case is highly unlikely to happen since enqueue is called upon each packet

arrival, and it is highly improbable that a single arrival causes a change in the load so drastic that all packets

have to be discarded. In practice, at most a handful of packets are dropped every time the greedy alloc

function is called. We point out that the number of packets dropped can significantly increase when the

frequency at which greedy alloc is called decreases (e.g., when greedy alloc is called every 1,000

arrivals), but, at the same time, calling greedy alloc less frequently gives the function more time to

complete.

The last step, described in line (18) adjusts the service rates subject to proportional delay differentia-

tion constraints, and has an algorithmic complexity of O(Q). However, adjust rates itself hinges on

computing the coefficient K. The computation of K, whose actual expression is given in [12], requires a

number or tests when the traffic mix changes, and to look at most of the state variables (arrivals, depar-

tures, backlogs) maintained by the system. In particular, it can be shown that the computation of K requires
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Q2 + 5Q arithmetic operations in the worst case [10]. Hence, while the computation of K is simple enough

to be carried out on the fast path of a relatively low-speed router such as our BSD-router implementation,

this computation may have to delegated to a background computation in high-speed routers.

3.3 Overhead Reduction

We have described our implementation in PC-routers running a BSD kernel. We next describe how the

overhead of our implementation can be reduced for higher performance switches.

The overhead of our implementation is primarily caused by three operations in the enqueue function:

the adjustment of the service rates for proportional differentiation, performed by the call to the function

adjust rates, the computation of the minimum service rates required for meeting delay bounds, im-

plemented by the call to compute min rates, and the reallocation of service rates and packet drops for

meeting delay bounds, realized by the call to greedy alloc.

An option to reduce the computational overhead is to reduce the frequency at which adjust rates,

compute min rates, and greedy alloc are called. This comes at the expense of degraded perfor-

mance with respect to service differentiation. The degradation in performance may remain acceptable for

high sampling frequencies. For instance, we showed in [35] that updating the service rate allocation every T

arrivals, with T in the order of 10–100, managed to achieve almost the same results as adjusting the service

rates upon each packet arrival.

When the calls to adjust rates, compute min rates, and greedy alloc are performed only

every T arrivals, we can split enqueue into operations that have to be performed on a per-packet basis,

that is, lines (1)–(12) in Figure 4, from sampled operations, that is, lines (13)–(18). Because no per-packet

operation follows a sampled operation, sampled operations can be delegated to a co-processor. As a practical

example, in an architecture such as the Intel IXP 1200 network processor [1], sampled operations such as

adjust rates could be performed on the StrongARM processor, whereas per-packet operations should

be performed by the micro-engines.

In addition to sampling some operations, simplifications to the arithmetic operations involved can be

carried out at the expense of flexibility. For instance, one may want to restrict the proportional differentiation

factors to powers of two, so that all the multiplications used for proportional differentiation can be replaced

by bit-shifting operations. One may also consider fixed sampling intervals for computing loss rates, instead

of the current busy period, to avoid integer divisions in the loss rate computations. Last, we use byte

counters in our implementation in PC-routers, but one may instead elect to use packet counters, which

require increment/decrement operations instead of additions/subtractions for accounting.
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Figure 6: Network Topology. All links have a capacity of 100 Mbps. We measure the service provided by

QoSboxes 1 and 2 at the indicated bottleneck links.

4 Performance Evaluation

We present experimental measurements of our implementation on a testbed of PC-routers used as QoSboxes.

The PCs are Dell PowerEdge 1550 with 1 GHz Intel Pentium-III processors and 256 MB of RAM. The

system software is FreeBSD 4.3 and ALTQ 3.0. Each system is equipped with five 100 Mbps-Ethernet

interfaces.

We first determine if and how well the QoSbox provides the desired service differentiation on a per-node

basis. We then present an evaluation of the overhead associated to the enqueue and dequeue operations of

the QoSbox. The objective is to show that the implementation of the QoSbox in BSD-based PC-routers is

a solution that can be readily deployed in medium-speed access networks with capacities in the order of a

few hundreds megabits per seconds, and to confirm that the operations responsible for most of the overhead

are those that can be performed as background tasks in higher-performance architectures. Complementary

experiments comparing the algorithms used in the QoSbox with alternative proposals for service differenti-

ation are available in [10].

4.1 Configuration

We consider a local network topology with multiple nodes and point-to-point Ethernet links, as shown in

Fig. 6. All links are full-duplex and have a capacity of C = 100 Mbps. Three PCs are set up as routers,

indicated in Fig. 6 as QoSbox 1, 2 and 3. Other PCs are acting as sources and sinks of traffic. The topology

has two bottlenecks: the link between QoSboxes 1 and 2, and the link between QoSboxes 2 and 3. The

buffer at the output link of each router is shared, and its total size is set to B = 200 packets.
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Class Differentiation parameters

di Li fi ki k�
i

1 8 ms 1 % – – –

2 – – 35 Mbps 2 2

3 – – – 2 2

4 – – – N/A N/A

Table 1: Desired service differentiation. di denotes a delay bound, Li denotes a bound on the loss rate, fi

denotes a minimum throughput bound, and ki (resp. k�i) denotes the desired ratio of delays (resp. loss rates)

between Class (i + 1) and Class i. The desired differentiation is identical at all QoSboxes.

Class No. of Type

flows Protocol Traffic

1 6 UDP On-off

2 6 TCP Greedy/On-off

3 6 TCP Greedy/On-off

4 6 TCP Greedy/On-off

Table 2: Traffic mix. The traffic mix is identical for each source-sink pair. The on-off UDP sources send

bursts of 20 packets during an on-period, and have a 150 ms off-period. TCP sources are greedy during time

intervals [0s, 10s], [20s, 30s], and [40s, 50s], and transmit chunks of 8 KB with a pause of 175 ms between

each transmission during time intervals [10, 20s], [30, 40s], and [50s, 60s]. TCP sources run the NewReno

congestion control algorithm.

We consider four traffic classes with service differentiation parameters as summarized in Table 1. Class 1

gets absolute service differentiation, while Classes 2, 3 and 4 get proportional service differentiation. In

addition, Class 2 is offered a minimum throughput bound.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3, respectively. Each source transmits traffic from all

four classes. The traffic mix, the number of flows per class, and the characterization of the flows is identical

for each source, and as shown in Table 2. Traffic is generated using the netperf v2.1pl3 traffic generator

[29]. Each source transmits six flows from each of the classes. Class 1 traffic consists of on-off UDP flows,

and the other classes consist of TCP flows. UDP sources start transmitting packets with a fixed size of 1024

Bytes at time t = 0 until the end of the experiment at t = 60 seconds. We configured the TCP sources

to be greedy during time intervals [0s, 10s], [20s, 30s] and [40s, 50s]. In the remaining time intervals, the

TCP sources send chunks of 8 KB of data and pause for 175 ms between the transmission of each chunk.

The chosen traffic mix results in an highly variable offered load at QoSboxes 1 and 2, which we present in
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Figure 7: Offered Load. The graph shows the offered load at QoSbox 1. The offered load is similar at

QoSbox 2.

Fig. 7. Additionally, since the source/sink pairs are connected by different routes, the round-trip times of the

different TCP flows in the network are different, reducing the probability of having synchronization effects

between TCP sources that belong to different source/sink pairs.

This experimental setup allows us 1) to gauge the reactivity of the QoSbox to rapidly changing traffic

conditions, 2) to observe how the QoSbox behaves over relatively long busy periods (in the order of ten

seconds), 3) to test a relatively representative set of service differentiation parameters, which is likely to

require temprorary relaxations of some service bounds, and 4) to see how the QoSbox reacts to a mix of

TCP and UDP traffic. We therefore believe that the experiment tests the most important aspects of the

QoSbox, but point out that additional experiments with greedy TCP sources and near-constant loads are

available in [10].

4.2 Service Guarantees

In Figs. 8 and 9, we present our measurements of the service received at the bottleneck links of QoSboxes 1

and 2, respectively. Figs. 8(a) and 9(a) depict the ratios of the delays of Classes 4 and 3, and the ratios of the

delays of Classes 3 and 2. Each datapoint is an average over a sliding window of size 0.5 s. The plots show

that the target value of k = 2 (from Table 1) is achieved when the load is high. Conversely, when the link is

underloaded, we observe oscillations in the ratios of delays. This result is due to the fact that proportional

delay differentiation cannot be achieved by a work-conserving scheduler when the link is underloaded. In

fact, all classes experience queuing delays close to zero when the link is underloaded, and one can therefore

argue that there is no need for differentiation since all classes get a high-grade service. We also see that, at

times t = 0, t = 20, and t = 40, when the load increases abruptly over a short period of time, the delay

differentiation is realized within one datapoint (0.5 s), which shows that the algorithm used in the QoSbox
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Figure 8: QoSbox 1. The graphs show the service obtained by each class at the output link of QoSbox 1.

is efficient at providing differentiation reasonably quickly.

In Figs. 8(b) and 9(b) we show the individual delays of Class-1 packets at QoSboxes 1 and 2. The delay

bound of d1 = 8 ms is satisfied most of the time. We note that there are a few (< 1.5%) delay bound

violations. These delay bound violations are due to the fact that it is impossible to satisfy delay and loss

bounds at the same time, since traffic arrivals are not regulated. As explained in Section 2, when such is

the case, loss differentiation is given precedence over delay differentiation. Note however, that no Class-1

packet ever experiences a delay higher than 10 ms at either QoSbox 1 or 2. Delay values of other classes,

not shown here, are in the range 10–50 ms.

Figs. 8(c) and 9(c) represent plots of ratios of loss rates averaged over a sliding window of size 0.5 s,

and show that proportional loss differentiation is realized, with the desired factor k� = 2, at times of packet

losses. Figs. 8(d) and 9(d) show the loss rate experienced by Class-1 traffic, and we see that, even at times

of packet drops, the loss rate of Class 1 remains below the loss bound of 1%. Loss rates of other classes (not

shown) are generally below 1%, which indicates that most traffic is dropped to satisfy the delay bound on

Class 1, rather than due to buffer overflows.
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Figure 9: QoSbox 2. The graphs show the service obtained by each class at the output link of QoSbox 2.

Last, Figs. 8(e) and 9(e) present throughput measurements obtained by each class, averaged over a

sliding window of size 0.5 s, as well as the aggregate throughput at QoSboxes 1 and 2. We see that whenever

Class 2 sources send traffic at a rate of at least 35 Mbps, the desired minimum throughput of 35 Mbps on

Class 2 is enforced at QoSboxes 1 and 2. Furthermore, we see that the QoSboxes manage to transmit data

at 100 Mbps when needed. Hence, we can infer that the time needed to run the enqueue and dequeue

functions is less than the average transmission time of a packet, and thus, that the overhead associated to the

algorithms running in the QoSbox can be considered negligible for this experiment.

In summary, this experiment on a network with multiple bottlenecks and varying load shows that the

QoSbox achieves the desired service differentiation and utilizes the entire link capacity when needed.

4.3 Limitations of the QoSbox

The experiment we proposed evidenced how delay bounds were relaxed in favor of loss bounds, which is

the main limitation of the QoSbox compared to other proposals relying on admission control.

In addtiion, we mentioned in Section 2 that long busy periods could result in poor loss differentiation,
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due to the loss rates being computed over long intervals. Huang and Guérin recently exhibited through

simulation how such a scenario affects the differentation provided by the JoBS algorithm used in the QoSbox

[25]. In their example, they notably found that adequate loss differentiation could be delayed by as much as

400 ms. While particularly interesting to exhibit the limitations of the algorithms we use in the QoSbox, the

experiment proposed in [25] relies on on-off constant bit rate sources with an infinitely long busy period,

which may be fairly unusual traffic patterns.

4.4 Overhead

We saw that our implementation can fully utilize the capacity of a 100 Mbps link, without overloading the

QoSbox. We next present an analysis of the overhead of our implementation, where we attempt to predict

the data rates that can be supported by the PC-router implementation of the QoSbox, and where we measure

the sensitivity of our implementation to the number of service constraints and to the number of classes. We

will show measurements of number of cycles consumed by the enqueue and dequeue functions for four

different sets of service differntiation parameters, tested for four traffic classes.

Set 1: Same parameters as in Table 1.

Set 2: Set 1 with absolute bounds from Set 1 removed.

Set 3: Set 2 with proportional differentiation from Set 1 removed.

Set 4: No service differentiation.

In the measurements we determine the number of cycles consumed for the enqueue and dequeue

functions, and we indicate the contribution of each function call in enqueue to the total overhead. The TSC

register of the Pentium processor is read at the beginning and at the end of each of the monitored functions,

for each execution of the function.

We compiled our implementation with a code optimizer, in our case, we use the gcc v2.95.3 compiler

[47] with the “-O2” flag set. The results of our measurements, collected under FreeBSD 4.5 and ALTQ

3.1, are presented in Table 3, where we include the machine cycles consumed by enqueue and dequeue,

and the cycles spent in each of the functions called by enqueue. The measurements are averages of over

500,000 datagram transmissions on a heavily loaded link, using the same topology as in Figure 6. The

measurements in Table 3 were collected at Router 1. Measurements collected at Router 2 showed deviations

of no more than ±5% compared to Router 1. The row containing “FIFO” denotes the overhead of the FIFO

queueing discipline in ALTQ, and is used to measure the overhead created by ALTQ itself.

26



Set enqueue dequeue Pred.

fpred

X s X s (Mbps)

1 11323 3140 1057 316 291

2 10723 2305 1092 340 305

3 3039 1512 1138 348 864

4 2573 668 1078 343 988

FIFO 25 66 221 147 –

Table 3: Overhead and predicted maximum throughput. This table presents, for four different sets

of service differentiation parameters, the average number of cycles (X) consumed by the enqueue and

dequeue operations, the standard deviation (s), and the predicted throughput fpred (in Mbps) that can be

achieved. In the 1 GHz PCs we use, one cycle roughly corresponds to one nanosecond.

Since the enqueue and dequeue functions are invoked once for each IP datagram, we can predict the

maximum throughput of a PC-router to be

fpred =
F

nenqueue + ndequeue
· P , (2)

where F denotes the CPU clock frequency in Hz, nenqueue denotes the number of cycles consumed by the

enqueue function, ndequeue denotes the number of cycles consumed by the dequeue function, and P is

the average size of a datagram. The equation given above assumes that clock cycles have a fixed duration,

neglects bus contention and operations that occur in an interrupt context (e.g., arrival of a packet at the

input link), and does not take into account the cost of packet classification. Thus, Eqn. (2) is an optimistic

estimate. In the case of our implementation in 1 GHz PCs, we have F = 109. Data from a recent report [3]

indicates that the packet size distribution on the Internet is multimodal, and that the average size of a packet

on the Internet is P ≈ 451 bytes. Using these values for P and F in the above equation shows that, in the

four sets of constraints considered, we estimate that our implementation can be run at data rates of at least

291 Mbps.5

While common PCs can nowadays send/forward traffic at close to 1 Gbps, especially when using large

packet sizes, we point out that most bottleneck links in access networks operate at far more modest speeds.

For instance, a T-1 line coming out of a small corporate office operates at 1.54 Mbps, and could easily

be governed by a QoSbox. For faster bottleneck links (e.g., ISP-ISP interconnects), one would need to
5Previous measurements in [12] exhibited slightly more significant overhead under the same type of arrivals, but were collected

using an older version of our software, and an older version of the FreeBSD operating system.
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Set accounting select compute greedy alloc adjust rates

dropped class min rates

X s X s X s X s X s

1 777 393 46 585 582 419 3128 667 6471 1512

2 1052 350 44 616 219 135 – – 6696 1087

3 774 401 1138 1005 568 434 3172 1044 – –

4 948 382 793 190 202 121 – – – –

Table 4: Overhead distribution. This table presents, for the four considered sets of service differentiation

parameters, the average number of cycles (X) consumed by each of the functions called by enqueue, and

the standard deviation (s). In the 1 GHz PCs we use, one cycle roughly corresponds to one nanosecond.

implement some of the approximations and the parallelism discussed in Section 3.3. Finding an upper

bound on the speed at which our algorithms can run, using current hardware, is an open problem, to which

the measurements presented here only give a partial answer.

Table 4 indicates that a dominant portion of the overhead is linked to the presence of proportional delay

differentiation (Sets 1 and 2). In particular, Table 4 confirms most of the overhead is incurred by functions

that can be sampled, notably, the implementation in greedy alloc of the greedy algorithm for the redis-

tribution of the service rates in presence of absolute delay bounds, and the rate adjustment for proportional

delay differentiation, in adjust rates. The row corresponding to Set 4 gives some insight as to the

cost of the operations that have to be performed on a per-packet basis: without calls to greedy alloc

and adjust rates, the overhead is almost negligible. As pointed out in Section 3.3, we can sample

greedy alloc and adjust rates so that these operations are performed every T arrivals, where T is

in the order of 10–100, without large performance penalties in terms of service differentiation. Taking into

account the possibility of sampling the two most time-consumming functions, a simple extrapolation of the

results of Table 4 indicates that the overhead, albeit not negligible, appears to be reasonable.

Last, varying the number of classes in Set 1, we gathered the overhead of the enqueue and dequeue

functions in Table 5. Table 5 indicates that, as discussed in Section 3, the overhead of the enqueue function

appears linear in the number of classes. The small discrepancy observed for Q = 2 is linked to the absence

of proportional differentiation in that experiment. Measurements for the dequeue function tend also to

exhibit linearity, but with a much higher constant cost independent of the number of classes.
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Number of enqueue dequeue

classes Q

2 3094 1000

4 11323 1057

6 15090 1091

8 20656 1224

Table 5: Overhead in function of the number of classes. This table shows that the overhead, expressed

as an average number of cycles, appears to be linear in the number of classes.

5 Related Work

Tools that facilitate the implementation and configuration of queuing disciplines in PCs have been devised

since the days of UNIX System V, with STREAMS [40]. More recent packages, such as ALTQ [9], Net-

graph [17], the x-kernel [27], Click [30] and Dummynet [41] allow for implementing sophisticated queuing

disciplines in Linux or BSD.

Therefore, the implementation of QoS architectures using PC-routers is not new. For instance, the ALTQ

package itself supports natively the CBQ and HFSC [48] schedulers. However, without external admission

control, the ALTQ implementations of these QoS schedulers are in practice essentially used to control the

bandwidth individual users can receive.

With respect to building fully functional QoS networks, one can cite the attempts at creating DiffServ

networks using PC-routers. Implementations of DiffServ components in the Linux 2.1 kernel are for in-

stance discussed in [7]. The authors of [7] integrate traffic policing and scheduling/dropping in the same

router, which generates significant overhead, and, as a result, traffic can only be forwarded at approximately

20 Mbps. A similar effort to implement DiffServ components in the Linux kernels has been recently pursued

by [5], and as an application of Click [30].

A very different effort is pursued by flow-aware networking [31], which attempts to provide per-flow

differentiation to active (i.e., backlogged) flows. The building block of flow-aware networking, is that, at

any given time the number of flows simultaneously backlogged in a router is small (in the order of a few

hundreds), so that it is possible per-flow differentiation. An implementation in Linux, called the Cross

Protect router [32], is available. The major differences with our approach are their use of per-flow service

differentiation, and per-flow admission control. We report an investigation of the interaction of flow-aware

networking and class-based services as proposed in the QoSbox elsewhere [11].

From the algorithmic perspective, the notion of using a dynamic rate allocation to react to traffic arrivals
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is not new, and was for instance proposed in [24, 34, 46]. However, these approaches do not fully exploit

the interaction between dropping and scheduling, and instead rely on admission control and traffic policing

to enforce service differentiation. More recently, the Alternative Best-Effort (ABE, [26]) service has been

proposed as a service architecture that does not hinge on admission control. ABE considers only two classes

of traffic, and uses the Duplicate Scheduler with Deadlines (DSD) to provide strict delay bounds to one class

of traffic, at the expense of a higher loss rate. ABE does not quantify the differentiation in the loss rates

obtained by both classes. Similar to the QoSbox, no traffic policing or admission control are required.

6 Conclusion

We discussed the design of the QoSbox, a configurable IP router that provides proportional and absolute

service differentiation to classes of traffic on a per-hop basis, by dynamically adapting to the traffic demand.

The number of classes or the service differentiation each class obtains are only limited by the computational

power available. No admission control or traffic policing is required, and there is no communication between

routers.

We presented the implementation of the QoSbox in BSD-based PC-routers, and showed through analysis

and measurements that the PC-router implementation is a solution that can be readily used in low/medium-

speed access networks with bandwidths in the order of a couple of hundred megabits per second. We also

identified a number of approximations and techniques that can be used to implement the QoSbox in high-

speed routers used in network cores and interconnects between autonomous systems.

We evaluated the potential of the QoSbox using a testbed PC-routers, and showed that the QoSbox

is a promising alternative to traditional architectures relying on admission control and traffic policing for

providing quantitative service differentiation.

A version of the QoSbox for BSD kernels is available to the public, along with the source code and

documentation at http://qosbox.cs.virginia.edu/software.html. The software has been

available under the BSD license since late October 2001, and is now distributed as part of ALTQ 3.1, and

the KAME [2] snap-kits. Inclusion in the base BSD distributions as part of ALTQ is under consideration.
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