
Available online at www.sciencedirect.com
Computer Networks 52 (2008) 180–198

www.elsevier.com/locate/comnet
TCP with gateway adaptive pacing for multihop
wireless networks with Internet connectivity q

Sherif M. ElRakabawy, Alexander Klemm, Christoph Lindemann *

University of Leipzig, Department of Computer Science, Johannisgasse 26, 04103 Leipzig, Germany

Available online 29 September 2007
Abstract

This paper introduces an effective congestion control pacing scheme for TCP over multihop wireless networks with
Internet connectivity. The pacing scheme is implemented at the wireless TCP sender as well as at the Internet gateway,
and reacts according to the direction of TCP flows running across the wireless network and the Internet. Moreover, we
analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless
TCP flows at the Internet gateway to achieve nearly optimal fairness. The proposed scheme, which we denote as TCP with
Gateway Adaptive Pacing (TCP-GAP), does not impose any control traffic overhead for achieving fairness among active
TCP flows and can be incrementally deployed since it does not require any modifications of TCP in the wired part of the
network. In an extensive set of experiments using ns-2 we show that TCP-GAP is highly responsive to varying traffic con-
ditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput for FTP-like traffic as well
as up to 70% more goodput for HTTP-like traffic than TCP NewReno. We also investigate the sensitivity of the considered
TCP variants to different bandwidths of the wired and wireless links with respect to both aggregate goodput and fairness.
� 2007 Published by Elsevier B.V.

Keywords: Wireless network protocols; Ad hoc networks; Performance evaluation; TCP congestion control for hybrid wireless/wired
networks
1. Introduction

In recent years, rapidly emerging wireless net-
works with Internet connectivity, such as wireless
1389-1286/$ - see front matter � 2007 Published by Elsevier B.V.

doi:10.1016/j.comnet.2007.09.016

q A preliminary version of this article was published in [9]. This
work was funded in part by the German Research Council
(DFG) under Grant Li-645/18-1.

* Corresponding author. Tel.: +49 341 97 32270; fax: +49 341
97 32289.

E-mail addresses: sme@informatik.uni-leipzig.de (S.M. ElRa-
kabawy), ak@informatik.uni-leipzig.de (A. Klemm), cl@infor-
matik.uni-leipzig.de (C. Lindemann).
mesh networks [3], have been gaining increasing
importance in academic research and industry.
Common Internet applications such as Web brows-
ing, e-mail and file transfer over such hybrid wire-
less/wired networks require TCP as the underlying
protocol for reliable data transfer. A key problem
for TCP over hybrid wireless/wired networks lies
in the different characteristics of multihop wireless
networks and the wired Internet: in multihop, wire-
less networks, most losses experienced by TCP are
due to packet drops at the IEEE 802.11 link layer
of intermediate nodes. Hidden terminal and exposed
terminal effects are the reason for these packet drops

mailto:sme@informatik.uni-leipzig.de
mailto:ak@informatik.uni-leipzig.de
mailto:cl@informatik.uni-leipzig.de
mailto:cl@informatik.uni-leipzig.de


S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 181
in multihop networks [11]. In contrast, in the Inter-
net almost all packet losses are due to buffer over-
flows at routers.

One solution for this problem lies in splitting the
TCP connection at the node interfacing the wired
and wireless part of the network, denoted as the
Internet gateway. In such a split–connection
approach, a specialized transport protocol like ATP
[16] may run in the wireless part whereas the wired
part uses standard TCP, e.g., TCP NewReno. How-
ever, a straightforward split–connection approach
does not preserve the end-to-end semantics of TCP
and requires complicated handover procedures in
case of mobility [4]. Another solution lies in employ-
ing TCP NewReno in hybrid wireless/wired networks
and performing modifications in all mobile devices of
the wireless network, either on the link layer such as
link layer RED [11] or on the network layer such as
neighborhood RED [18]. These approaches retain
the end-to-end semantics of TCP, though such an
approach cannot be incrementally deployed since it
requires modifications on all wireless devices. For
the emergence of commercial applications in hybrid
wireless/wired networks, more advanced approaches
are needed which provide means for retaining the
end-to-end semantics of TCP and require neither
modifications at the network layer nor at the link
layer of mobile devices.

In this paper, we introduce an effective conges-
tion control scheme for TCP over hybrid wireless/
wired networks comprising a multihop wireless
IEEE 802.11 network and the wired Internet.
Important classes of such networks constitute wire-
less mesh networks comprising mesh clients and
mesh routers connected to the Internet as well as
ad hoc networked mobile devices (laptops, PDAs,
etc.) as opportunistic extensions to the Internet.
For the effective operation of TCP over such hybrid
networks, we propose to distinguish the direction of
the TCP flow: For wired-to-wireless TCP flows, we
introduce an adaptive pacing scheme at the Internet
gateway. For wireless-to-wired flows, building upon
[8], we propose an adaptive pacing scheme at the
TCP sender. Furthermore, we analyze the causes
for the unfairness of oncoming TCP flows in multi-
hop wireless networks where both wired-to-wireless
as well as wireless-to-wired TCP flows pass through
the Internet gateway. Such unfairness was previ-
ously observed in [17,19]. Subsequently, we show
how to throttle aggressive wired-to-wireless TCP
flows at the Internet gateway to achieve nearly opti-
mal fairness for such scenarios. Thus, we denote the
introduced congestion control scheme as TCP with

Gateway Adaptive Pacing (TCP-GAP). In contrast
to previous work [12,18], TCP-GAP does not
impose any control traffic overhead for achieving
fairness among active TCP flows. Moreover, TCP-
GAP can be incrementally deployed, since it does
not require any modifications of TCP in the wired
part of the network. TCP-GAP is also fully TCP-
compatible and preserves TCP-friendliness because
TCP-GAP does not allow more packets to be trans-
mitted than the current TCP window size permits.

We evaluate both the steady-state as well as the
transient behavior of TCP-GAP using ns-2 simula-
tion [10] with IEEE 802.11b/g, where we deploy sce-
narios describing different node topologies, different
link-layer bandwidths as well as different traffic pat-
terns. The results show that TCP-GAP significantly
improves both fairness and end-to-end goodput in
hybrid wireless/wired networks. In fact, TCP-GAP
provides excellent fairness in almost all scenarios
and achieves up to 42% more goodput than TCP
NewReno for FTP-like traffic as well as up to 70%
more goodput for HTTP-like traffic.

The remainder of this paper is organized as fol-
lows. Section 2 summarizes related work on TCP
for hybrid wireless/wired networks and wireless
mesh networks. Section 3 specifies the class of wire-
less/wired networks, for which TCP-GAP is
designed. In Section 4, we introduce the congestion
control scheme of TCP-GAP and present pseudo
code to outline its implementation. A comprehen-
sive performance study of TCP-GAP vs. TCP New-
Reno is presented in Section 5. Finally, concluding
remarks are given.
2. Related work

Several TCP enhancements (e.g., [8,11,18]) and
new transport protocols such as ATP [16] were pro-
posed for multihop wireless networks. However,
only little work focused so far on improving fairness
and performance of TCP over hybrid wireless/wired
networks comprising a multihop wireless IEEE
802.11 network and the Internet.

In [8], we introduced TCP with Adaptive Pacing
(TCP-AP) for multihop wireless networks without
connection to the wired Internet. TCP-AP imple-
ments rate-based packet transmissions within the
TCP congestion window. We showed how a TCP
sender could adapt its transmission rate close to
the optimum using an estimate of the four-hop



182 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
propagation delay and the coefficient of variation of
recently measured round-trip times.

Consistent with [8], we propose an adaptive pac-
ing scheme at the TCP sender. Contrary to [8], we
consider hybrid wireless/wired networks which pos-
sess different characteristics than pure multihop
wireless networks and require novel approaches
for improving TCP performance. Furthermore, we
propose an effective solution for the unfairness
problem between oncoming TCP flows spanning
the wireless and wired domains of the hybrid
network.

Yang et al. [19] proposed a pacing scheme at the
IP layer to improve TCP fairness in hybrid wireless/
wired networks. They derived the pacing rate by the
minimum transmission delay observed for this node,
the most recent transmission delay and a random
delay. Their scheme throttles TCP flows and pre-
vents TCP senders from transmitting too aggres-
sively against competing flows. However, the
derivation of the pacing rate in [19] is static and can-
not adapt to changing network conditions; i.e., may
unnecessarily throttle TCP flows. Furthermore, this
approach does not distinguish between different
TCP flows passing through the same wireless node.

In contrast to [19], TCP-GAP employs adaptive
pacing rather than static pacing. In fact, TCP-
GAP continuously determines its pacing rate by
measuring the four-hop propagation delay of TCP
packets and the contention on the network path.
The four-hop propagation delay describes the time
elapsed between transmitting a TCP packet by the
TCP source node and receiving the packet at the
node which lies four hops apart from the source
node along the path to the destination. Deploying
such an adaptive pacing scheme, TCP-GAP does
not lead to unnecessary goodput degradation if
there is no contention between active flows. Fur-
thermore, we also evaluate a considerably larger
number and more realistic network topologies than
[19]. Beyond [19], we show how to achieve fairness
for oncoming TCP flows over a hybrid wireless/
wired network.

Gambiroza et al. [12] studied TCP performance
and fairness in multihop wireless networks compris-
ing numerous wireless relay nodes (there called
Transit Access Points, TAPs) and a connection to
the wired Internet. They introduced TAP-fairness
to characterize the idealized goodput and fairness
objective for such networks and proposed a distrib-
uted link-layer algorithm for achieving TAP-fair-
ness among active TCP flows. TAP-fairness is
tailored to wireless mesh networks and differs from
both max–min fairness and proportional fairness.
The distributed link-layer algorithm for achieving
TAP-fairness requires to periodically propagate
the offered load and link capacities among all TAPs
resulting in a significant amount of control traffic.

TCP-GAP constitutes a modification at the
transport layer rather than modification at the link
layer as [12]. TCP-GAP employs an adaptive pacing
scheme at wireless TCP senders and the Internet
gateway using an effective estimation of the four-
hop propagation delay and the contention on the
network path rather than measuring offered load
and estimating the link capacity at each wireless
relay node as [12]. In contrast to [12], TCP-GAP
does not require any control traffic for achieving
fairness among active TCP flows. Therefore; we
consider max–min fairness of TCP flows rather than
TAP-fairness.

Mascolo et al. [14] proposed a sender-side band-
width estimation technique for TCP over cellular
mobile networks denoted as TCP Westwood to dis-
tinguish between packet losses due to buffer over-
flow and due to wireless losses. Akan and Akyildiz
[2] proposed an adaptive transport layer suite for
the next-generation wireless Internet, which deploys
an adaptive congestion control method in order to
account for the characteristics of the different wire-
less environments. In contrast to [2,14], we consider
hybrid wireless/wired networks, in which the wire-
less part comprises a multihop IEEE 802.11 net-
work. Moreover, TCP-GAP aims at reducing
performance degradation and improving fairness
due to hidden and exposed terminals rather than
at helping TCP to distinguish between packet losses
due to buffer overflows and wireless losses.

3. Considered network class

We consider IEEE 802.11 multihop wireless net-
works which are connected through one or several
fixed gateway nodes to the wired Internet. These
gateway nodes are denoted as Internet gateways.
Each Internet gateway has at least two network
interfaces. One of them is a wireless IEEE 802.11
interface operating in ad hoc mode. The wireless
subnet can be considered as an independent net-
work running AODV [15] or other routing proto-
cols adopting ETX [7] or ETT [6] as its own
routing protocol. Fig. 1 illustrates the considered
class of wireless/wired networks. Note that the net-
work architecture illustrated in Fig. 1 can be consid-



Server

Internet
gateway

Server

Server

Internet

Router

Mesh
Client

Mesh
Client

Mesh
Client Community

Mesh Node

Community
Mesh Node

Community
Mesh Node

Community
Mesh Node

Community
Mesh Node

Community
Mesh Node

Fig. 1. Targeted network architecture: opportunistic ad hoc extension to the Internet and unplanned, single-radio wireless mesh networks.

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 183
ered both as an opportunistic extension to the Inter-
net with (negligible) pedestrian mobility and as an
unplanned, single-radio wireless mesh network
(e.g. a community network), in which some mesh
routers have Internet connection.

In order to simplify the analysis of the impact of
the hidden and exposed terminal effects [11], we
mostly consider regular network topologies where
the distance between the wireless nodes is 200 m.
In fact, the hidden terminal problem can even occur
to a larger extent in topologies with irregular node
placement. This is due to the fact that the ideal case
with inter-node distances of 200 m (given a wireless
transmission range of 250 m) roughly minimizes the
number of hops necessary for a given spatial dis-
tance to an Internet gateway. With irregular node
placement, the number of hops to the Internet gate-
way would be potentially larger resulting in even
more hidden terminals. Thus, our setup constitutes
a kind of lower bound for the number of hidden ter-
minals. Nevertheless, we also consider random
topologies with irregular node placement in order
to verify the applicability of our approach in such
environments.

Conventional ad hoc routing protocols such as
AODV [15] use the minimum hop count as the rout-
ing metric. For wireless mesh networks, novel rout-
ing metrics like the expected transmission count
(ETX) [7] and the expected transmission time
(ETT) [6] have been proposed. These routing proto-
cols can achieve a higher capacity in wireless mesh
networks due to finding higher quality routes than
routing protocols like AODV.
Nevertheless, since choosing another route from
source to destination cannot totally prevent hidden
terminals in multihop wireless networks, these spe-
cialized routing protocols are complementary to
improvements of TCP. Thus, such routing protocols
tailored to wireless mesh networks may well be com-
bined with TCP improvements such as TCP-GAP.

4. The gateway adaptive pacing scheme

4.1. Dealing with the deficiencies of IEEE 802.11

In order to improve fairness and goodput for
TCP connections across multihop IEEE 802.11
and wired networks, we propose to employ a rate-
based packet scheduling within the TCP congestion
window in the wireless domain while preserving the
traditional TCP variant (i.e., TCP NewReno) in
the wired Internet. Thus, this approach decouples
the wireless part of the hybrid network from the
wired part while preserving the end-to-end seman-
tics of TCP. We achieve this transparent decoupling
by adding some transport layer functionality to the
IP layer at the Internet gateway.

In contrast to TCP pacing [1], the adaptive pac-
ing approach sets the transmission rate adaptively
based on the spatial reuse constraint of multihop
IEEE 802.11 networks and the contention on the
network path of the connection. We recall the spa-
tial reuse constraint of IEEE 802.11 multihop net-
works, which is reported in previous studies such
as [11], by considering the static chain topology
depicted in Fig. 2 where the inter-node distance is



4 6 81 2 73 544 66 8811 22 7733 55

Interference range
& sensing range of

node 4 (550m)

Transmission range
of node 4 (250m)

Fig. 2. A chain of nodes showing the hidden terminal effect.

184 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
200 m. Assume that node 1 wishes to transmit data
to node 2 and node 4 wishes to transmit data to
node 5. In this topology, node 4 is a hidden terminal
for the transmission from node 1 to node 2. That is,
node 4 can neither receive the RTS/CTS handshake
between node 1 and node 2 nor sense the data trans-
mission from node 1 to node 2, since node 1 is out of
the sensing range of node 4. Thus, node 4 may
transmit to node 5 while node 1 is transmitting to
node 2. This causes a collision at the receiving node
2, since node 2 is within the interference range of
node 4.

The spatial reuse constraint is accounted for by
considering the four-hop propagation delay
(FHD) of TCP packets. FHD describes the time
elapsed between transmitting a TCP packet by the
TCP source node and receiving the packet at the
node which lies four hops apart from the source
node along the path to the destination. This mea-
sure can be estimated by measuring the round trip
times (RTT) of TCP packets as well as the number
of hops of the network path. The contention on the
network path of the TCP connection can be esti-
mated by measuring the variation of recent RTT
samples using the coefficient of variation covRTT.
In summary, the adaptive transmission rate R com-
puted by the TCP sender is given by [8]

R ¼ 1dFHD � ð1þ 2covRTTÞ
; ð1Þ

where

dFHD ¼ a � dFHDold þ ð1� aÞ � FHD; ð2Þ

with smoothing factor a = 0.7.
Note that the adaptive pacing algorithm aims at

improving TCP performance in the wireless domain
and thus has to be implemented at the entry point of
a TCP connection into the wireless network. That is,
for connections spanning across wireless and wired
networks we distinguish the two cases:

1. the TCP source is a wireless device and the TCP
destination resides in the wired Internet; denoted
as wireless-to-wired flows.

2. the TCP source resides in the wired Internet and
the TCP destination is a wireless device; denoted
as wired-to-wireless flows.

In case (1) we deploy adaptive pacing at the TCP
source, whereas in case (2) we deploy adaptive pac-
ing at the IP layer at the Internet gateway. In the
following subsections we will discuss the proposed
adaptive pacing scheme in detail with respect to
cases (1) and (2).

4.2. Wireless-to-wired flows

We consider the case where a wireless node con-
stitutes the TCP source and a host in the wired
domain is the TCP destination. Fig. 3 illustrates
such a scenario where an FTP flow runs from the
wireless node A over multiple intermediate hops
through the Internet gateway IG to the wired host
B. Throughout this paper, wireless relay nodes are
denoted by RLi whereas wired routers are denoted
by RTi.

To improve TCP performance in the wireless
part, we employ adaptive pacing at the wireless
TCP source A. Note that conventionally measured
RTT values describe the complete round-trip time
of packets crossing both the wireless and the wired
parts of the network. However, for deriving proper
estimates for FHD and covRTT, we only need the
packet RTT in the wireless part, i.e., the time taken
for a TCP packet to be forwarded from A to IG plus
the time taken for the corresponding TCP ACK
packet to be forwarded from IG to A. The round-
trip time in the wireless part, which we denote as
RTTwireless, is calculated as follows: Inspecting the
transport layer TCP header, the Internet gateway
IG maintains the packet sequence numbers of each
TCP flow running between the wireless part and
the wired part. When a TCP data packet with an
arbitrary sequence number x is transmitted by A
and reaches IG, the packet is forwarded to the wired
destination and the forwarding time of the packet is
recorded in a variable T1 at IG. When the packet
reaches the TCP destination B, gets acknowledged,
and the corresponding TCP ACK arrives at IG,
the arrival time of the TCP ACK packet is recorded



ACK x, RTTwired

IG:
Set T1 = forwarding time

IG:
Set T1 = forwarding time

IG:
Set T2 = arrival time
Save RTTwired = T2 – T1 

in ACK packet

IG:
Set T2 = arrival time
Save RTTwired = T2 – T1 

in ACK packet

A:
Set RTTwireless = RTT – RTTwired
Calculate transmission rate

using RTTwireless

A:
Set RTTwireless = RTT – RTTwired
Calculate transmission rate

using RTTwireless

ACK x, RTTwired ACK x

data xdata xdata x

FTP
BRT2RT1

IG

A RL2RL1 RL3 RL4 RL5

TCP Data

TCP ACK ACK x, RTTwired

IG:
Set T1 = forwarding time

IG:
Set T1 = forwarding time

IG:
Set T2 = arrival time
Save RTTwired = T2 – T1 

in ACK packet

IG:
Set T2 = arrival time
Save RTTwired = T2 – T1 

in ACK packet

A:
Set RTTwireless = RTT – RTTwired
Calculate transmission rate

using RTTwireless

A:
Set RTTwireless = RTT – RTTwired
Calculate transmission rate

using RTTwireless

ACK x, RTTwired ACK x

data xdata xdata x

Fig. 3. Wireless chain topology where A constitutes the wireless TCP source and B constitutes the wired TCP destination.

Table 1
Parameters for the gateway adaptive pacing scheme

Parameter Meaning

h Number of hops in wireless domain
b Bandwidth of the wireless interface
awndi Size of receiver advertized window for flow i

tq Average packet queuing delay per wireless node
sdata Size of TCP data packet
sACK Size of TCP ACK packet
RTT Entire round trip time of TCP packets
RTTwireless Round trip time of TCP packets in wireless domain
RTTwired Round trip time of TCP packets in wired domain
covRTT Coefficient of variation of RTT samples
FHD Current four-hop propagation delay in wireless

domaindFHD Exponentially weighted moving average of FHD

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 185
in T2. The time difference between T1 and T2 is cal-
culated and saved in the variable RTTwired, which
describes the packet RTT in the wired domain. Sub-
sequently, IG writes RTTwired into the options field

of the TCP ACK packet, which begins after the
main 20-bytes TCP header, and forwards it towards
A. RTTwired is recorded in terms of milliseconds,
requiring only 16 bits of space in the options field
to express values up to 65,535 ms. When A receives
the TCP ACK packet, it reads RTTwired from the
header and subtracts its value from the conventional
RTT value, getting RTTwireless as a final result.
Afterwards, the TCP sender uses RTTwireless to com-
pute FHD and covRTT with respect to the wireless
domain. For ease of exposition in (3)–(5), we
assume that all wireless devices have the same band-
width b.

Given that

tq ¼
1

2

RTTwireless

h
� sdata þ sACK

b

� �
; ð3Þ

we get

FHD¼ 4 tqþ
sdata

b

� �
¼ 2

RTTwireless

h
þ sdata� sACK

b

� �
;

ð4Þ

covRTT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
i¼1

RTTi
wireless�RTTwireless

� �2

s
RTTwireless

: ð5Þ

Table 1 summarizes the parameters for the Gate-
way Adaptive Pacing scheme and their meaning.
Note that h in Eqs. (3) and (4) denotes the number
of hops between A and IG, which can be acquired
from the routing protocol at IG. After computing
FHD and covRTT, the adaptive transmission rate
is computed as given in Eq. (1).

If wireless devices possess different bandwidths
b1,b2, . . . ,bn (i.e. in a multi-rate mesh network),
the individual bandwidths from intermediate
devices along the current path are needed. Such
information may be piggybacked on some TCP
packets to prevent extra control overhead. Subse-
quently, FHD can be determined by considering
the bandwidths b1,b2, . . . ,bn of individual links
rather than the overall bandwidth b and appropriate
summations.

In case the TCP stack at the wireless source
nodes does not support the adaptive pacing scheme,
the wireless TCP source would simply transmit
packets according to the implemented TCP version
(e.g., TCP NewReno), since the gateway adap-
tive pacing approach is backward compatible to
standard TCP variants. Specifically, the Internet



186 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
gateway would simply forward the TCP packets to
the wired domain without affecting the operation
of standard TCP.

4.3. Wired-to-wireless flows

As a main design goal of our approach is to pre-
vent any modifications of TCP in the wired domain,
we choose to implement adaptive pacing at the
Internet gateway, keeping the entire procedure hid-
den to the TCP source in the wired domain. Since
the Internet gateway is essentially a network router,
the adaptive pacing scheme is implemented at the IP
layer. However, our approach is independent from
the routing protocol employed in the wireless ad
hoc extension of the Internet or the wireless mesh
network.

Fig. 4 illustrates the Gateway Adaptive Pacing
procedure at the Internet gateway. TCP data pack-
ets are received from the wired domain through the
wired interface and buffered in a FIFO queue which
we denote as the pacing queue. Packets buffered in
the pacing queue are then dequeued and transmitted
rate-based through the wireless interface according
to the current transmission rate, which is computed
using Eqs. (1)–(5). Note that in the current case, h in
Eqs. (3) and (4) denotes the number of hops
between the Internet gateway and the wireless node
constituting the TCP destination. RTTwireless

describes the time taken for a TCP data packet to
be forwarded from the Internet gateway to the wire-
data x+1data x

ACK x-1

Buffer incoming TCP data
Dequeue & transmit pkts using

Set T1 = transmission

Buffer incoming TCP data
Dequeue & transmit pkts using

Set T1 = transmission t

Set T2 = arrival
Set RTTwireless

Calculate trans
using RT

Set T2 = arrival
Set RTTwireless

Calculate trans
using RTT

data x+1

Pacing QWireless Interface

data x

ACK x-1

Buffer incoming TCP data
Dequeue & transmit pkts using

Set T1 = transmission

Buffer incoming TCP data
Dequeue & transmit pkts using

Set T1 = transmission t

Set T2 = arrival
Set RTTwireless

Calculate trans
using RT

Set T2 = arrival
Set RTTwireless

Calculate trans
using RTT

IG

Fig. 4. The adaptive pacing proce
less TCP destination plus the time taken for the cor-
responding TCP ACK to be forwarded from the
wireless TCP destination to the Internet gateway.
RTTwireless is computed in a similar way as in Sec-
tion 4.2. That is, the transmission time of a TCP
data packet x at the Internet gateway is recorded
in a variable T1, whereas the arrival time of the cor-
responding TCP ACK at the Internet gateway is
recorded in a variable T2. Subsequently, RTTwireless

is calculated by simply subtracting T1 from T2.
Such rate-based packet transmission has the

advantage of accounting for the deficiencies of
IEEE 802.11, and thus improving the overall perfor-
mance of TCP flows crossing both the wireless and
wired domains. According to the number of wireless
hops as well as the current contention in the wireless
domain, the transmission rate can be adjusted for
each flow separately in order to account for the dif-
ferent environment-specific influences experienced
by each single flow. This is achieved by maintaining
a flow-specific data structure at the Internet gateway
which maintains the specific variables for each
flow separately, e.g., packet sequence numbers,
RTTwireless, h, FHD as well as the current transmis-
sion rate R. Such flow-specific consideration assigns
each TCP flow running through the Internet gate-
way a specific transmission rate, dependent on the
contention experienced by this flow. In Section 5
we will show that such approach yields a significant
performance improvement of both TCP goodput
and fairness.
data x+2 data x+3

packets in FIFO Queue
current transmission rate
time of data packet x

packets in FIFO Queue
current transmission rate 
ime of data packet x

time of ACK x
= T2 – T1
mission rate
Twireless

time of ACK x
= T2 – T1
mission rate

wireless

ACK x-2

Wired Interfaceueue

data x+2 data x+3

packets in FIFO Queue
current transmission rate
time of data packet x

packets in FIFO Queue
current transmission rate 
ime of data packet x

time of ACK x
= T2 – T1
mission rate
Twireless

time of ACK x
= T2 – T1
mission rate

wireless

ACK x-2

dure at the Internet gateway.



RT2RT1 B

FTP 1

RT2RT1

FTP 2

RL1 RL2

RL8

RL4RL3

RL6RL5 RL7

A1

A2

IG400m

Fig. 5. The two parallel chains topology.

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 187
Utilizing our approach, TCP flows can be
uniquely identified at the Internet gateway using
the IP addresses and the port numbers of the TCP
source and destination nodes. Note that for each
TCP flow i, the Internet gateway has to provide at
maximum a total of awndi free packet buffer space
in the pacing queue, where awndi denotes the size
of the receiver advertised window of flow i. That
is, the wired TCP source of flow i can never transmit
more than awndi packets back to back before wait-
ing for a corresponding TCP ACK to arrive. Hence,
we only need a constant number of free buffer space
which equals awndi for a flow i. Accordingly, the
total buffer space which should be provided at the
Internet gateway is given by

Pn
i¼1awndi packets,

where n denotes the number of active TCP flows
running through the Internet gateway. That is, for
a flow with a TCP data packet size of 1460 bytes
and a receiver advertised window of 64 packets,
we only need 187 kbytes of buffer space for caching
packets at the Internet gateway, which makes up
about 37 Mbytes for 200 flows. In order to avoid
unnecessary buffer space occupation, we also define
two cases for deleting flow-specific queues and
information at the Internet gateway. The first case
is if the Internet gateway identifies a proper flow ter-
mination using the FIN-ACK sequence by the TCP
entities, whereas the second case is if a certain time-
out expires without receiving any packets for a given
flow. Such a timeout interval can be set to a few
minutes. In the unlikely case that the buffer at the
Internet gateway is completely occupied, pacing
would be disabled for new flows until old flows
terminate.

Note that the adaptive pacing algorithm is not
affected if the delayed ACK option is used by the
TCP receiver. The sole difference is that the new
pacing rate gets computed less frequently since only
every second TCP packet gets acknowledged by the
TCP receiver. In fact, the adaptive pacing scheme
combined with the delayed ACK option can signif-
icantly improve the goodput of TCP, as shown in
[8].

4.4. The goodput control scheme for oncoming flows

As we will show in Section 5, applying adaptive
pacing at the Internet gateway yields nearly optimal
fairness between competing TCP flows in all scenar-
ios without oncoming flows. However, in scenarios
with two or more oncoming TCP flows where both
wired-to-wireless as well as wireless-to-wired TCP
flows pass through the Internet gateway, optimal
fairness is not achieved. Consider for example the
network topology depicted in Fig. 5. Here, two par-
allel chains consisting of wireless nodes are con-
nected to the Internet by the Internet gateway IG.
The transmission range of each wireless node is
250 m whereas both the interference range as well
as the carrier sensing range are 550 m. The distance
between both chains is 400 m. Thus, wireless nodes
of opposite chains are within each other’s interfer-
ence range but out of each other’s transmission
range. Suppose there are two FTP transfers, the first
(FTP 1) running from the wired node B as FTP
source to the wireless node A1 as FTP destination
and the second (FTP 2) running from the wireless
node A2 as FTP source to the wired node B as
FTP destination.

Simulation results for this scenario presented in
Section 5 show that applying adaptive pacing on
the Internet gateway significantly improves TCP
fairness compared to standard TCP NewReno.
However, FTP 1 still achieves more goodput than
FTP 2. In order to get deeper insight, we analyze
the TCP packet drop rate on link layer in the wire-
less domain. That is, we compute the number of
TCP packets (data and ACKs) dropped at each
wireless link in order to get insight on the state of
the wireless link at each node. Table 2 shows the
results of this study. It is conspicuous that the link
RL7! RL8 on the lower chain experiences about
12 times more packet drops than the link
RL3! RL4 which has the same relative position
on the opposing upper chain. The same effect can
be observed for the link RL8! IG on the lower
chain which suffers about 2.5 times more packet
drops than the corresponding link RL4! IG at
the opposing upper chain. This explains why FTP
2, which runs on the lower chain, achieves less good-
put than FTP 1. As we will explain in the subse-
quent discussion, the higher drop rate on the links
RL7! RL8 and RL8! IG compared to the links
RL3! RL4 and RL4! IG mainly depends on
the interaction between two effects, namely the



Table 2
Link-layer packet drops for each wireless link in 1000 s simulation time

TCP ACKs A1! RL1 RL1! RL2 RL2! RL3 RL3! RL4 RL4! IG
8 146 112 12 40

TCP data A2! RL5 RL5! RL6 RL6! RL7 RL7! RL8 RL8! IG
11 128 147 141 102

TCP data RL1! A1 RL2! RL1 RL3! RL2 RL4! RL3 IG! RL4
1 54 90 8 40

TCP ACKs RL5! A2 RL6! RL5 RL7! RL6 RL8! RL7 IG! RL8
7 118 127 50 14

188 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
different packet sizes of TCP data and TCP ACK
packets and the opposite directions of the flows.

Suppose RL7 wants to transmit a TCP data
packet to RL8. Prior to the actual data transmis-
sion, RL7 and RL8 conduct an RTS/CTS hand-
shake to avoid collisions with other transmissions.
In case IG is concurrently transmitting TCP data
packets to RL4 at the same time, then IG may con-
stitute an exposed terminal for the transmission
from RL7 to RL8, since RL7 and IG lie in each
other’s carrier sensing range. That means that
RL7 keeps deferring its transmission while IG is
transmitting to RL4. Such deferring causes a TCP
timeout at the source A2 as the TCP packet is con-
sidered lost, which degrades TCP goodput. In an
analogous situation where RL3 wishes to transmit
a TCP ACK packet to RL4, IG may constitute an
exposed terminal for this transmission in case IG
is concurrently transmitting TCP ACK packets to
RL8. However, the difference between these two sit-
uations is that TCP data packets are much larger
than TCP ACK packets and thus the probability
for a longer delay for delivering the TCP ACK
packets is by far smaller than the case with TCP
data packets. Furthermore, the loss of an ACK
packet degrades TCP goodput less than the loss of
a data packet, since TCP ACKs are cumulative,
i.e., individual losses of ACKs can be overcome
without retransmissions.

A further cause for the different goodput of the
two TCP flows can be seen considering the transmis-
sion of TCP data packets from RL3 to RL2. These
transmissions cause hidden terminal collisions at the
receiving IG node, specifically for the transmission
from RL8 to IG. That is, in case RL8 is transmitting
a TCP data packet to IG at the same time when
RL3 is transmitting a TCP data packet to RL2,
the transmission from RL8 to IG will be corrupted
whereas the transmission from RL3 to RL2 will suc-
ceed since RL2 lies beyond the interference range of
RL8. Given that both transmissions incorporate
large TCP data packets with relatively large trans-
mission times, these collisions have a relatively high
probability. In the analogous setting on the opposite
chain, the transmission of TCP ACK packets from
RL7 to RL6 can cause a collision at IG if RL4 is
concurrently transmitting TCP ACK packets to
IG at the same time. However, due to the reasons
stated above, these collisions are less probable and
thus cause less performance degradation than in
the case of TCP data packets. In summary, due
to the different flow directions and the different
TCP packet sizes, FTP 1 takes advantage over
FTP 2, resulting in less goodput and non-optimal
fairness.

To solve this fairness problem, we extend the
transport layer functionality added to the IP layer
of the Internet gateway by incorporating Goodput

Control for all TCP flows passing the Internet gate-
way. Goodput Control monitors the goodput of all
TCP flows passing through the gateway and aims at
achieving optimal fairness by throttling aggressive
wired-to-wireless flows. That is, in case the Internet
gateway IG recognizes that the goodput ratio
between the goodput of a wired-to-wireless flow
and the mean of the goodput of all flows exceeds
a certain threshold S, then IG periodically probes
the ability of the slower TCP flows to increase their
goodput by throttling the rate of the faster TCP
flows down to the value of the mean goodput. Note
that since wired-to-wireless flows gain more good-
put than wireless-to-wired flows, this throttling
can easily be performed by adjusting the transmis-
sion rate of the Gateway Adaptive Pacing algo-
rithm. Throttling the fast TCP flows may result in
either:

1. an increase of the goodput achieved by the
slower flows in case they contend with the fast
flows, or



Fig. 6. Pseudo code for TCP-GAP implemented at the wireless
TCP sender.

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 189
2. no change in the goodput of the slower flows in
case there is no contention.

Considering case (1), the throttling is effective for
improving TCP fairness between competing flows,
while in case (2), throttling fast flows would not
yield any benefit for slow flows, but would rather
unnecessarily decrease the goodput of the fast flows.
Thus, in case (2), the throttling is disabled. This
way, fast flows are only throttled in case they affect
the goodput of slow flows, i.e., in case both fast and
slow flows share the same bottleneck. To maintain
the responsiveness of our approach to changing net-
work conditions, we continuously verify whether
throttling is still necessary. This is done by applying
an aging algorithm to the throttling value, i.e., with
increasing time the degree of throttling decreases in
order to account for changing traffic conditions
after which the throttling might be unnecessary.
Furthermore, whenever IG recognizes a termination
of a TCP flow, it resets all throttling-specific vari-
ables. In case the unfairness still remains, it is han-
dled during the next periodic probing. As verified
by our simulations, suitable values for the throttling
parameters are 5 s for the throttling interval as well
as 1.1 for the threshold S, i.e., a fast TCP flow may
at maximum achieve 10% more goodput than the
mean goodput of all flows, or else it gets temporarily
throttled.

As we will show in Section 5, using this Goodput
Control algorithm, the fairness of competing TCP
flows can be optimized while avoiding any addi-
tional control traffic overhead or requiring global
knowledge about the network topology. Recall that
our approach is implemented at the Internet gate-
way only, which is not affected by energy consump-
tion issues and has sufficient processing power and
memory. Consider that the Goodput Control
approach only works for TCP flows passing the
same Internet gateway. Nevertheless, there might
be network topologies in which similar effects as
described above cause unfairness between TCP
flows passing different Internet gateways. However,
we argue that in multihop extensions to the Internet
or mesh networks, these scenarios are rare since
Internet gateways are typically located at substan-
tial distances. Otherwise, single-hop wireless Inter-
net access would rather be deployed than
multihop wireless extensions of the Internet. Thus,
our solution is beneficial in almost all considered
scenarios. In the remainder of this paper, we denote
our Gateway Adaptive Pacing scheme including
Goodput Control as TCP with Gateway Adaptive

Pacing (TCP-GAP).
4.5. Considering handovers due to node mobility

In wireless mesh networks, there may be scenar-
ios where the TCP entities in the wireless domain
are mobile devices which move along multiple gate-
ways. Due to the mobility in such scenarios, a hand-
over procedure has to be performed between the
Internet gateways by the routing layer. That is, as
the mobile device moves, it may find Internet gate-
ways to which it has a shorter route than the current
Internet gateway.

The advantage of TCP-GAP in such scenarios is
that it does not require any exchanging of hard-state
information about the TCP connections between
the Internet gateways. Using TCP-GAP, Internet
gateways only maintain soft-state information
about TCP connections which can be built up from
scratch by new Internet gateways after a handover
procedure. Other approaches such as the split–con-
nection approach [4] require complicated handover
procedures between Internet gateways as they main-
tain hard-state information about TCP connections,
which have to be transferred to new Internet
gateways.
4.6. The TCP-GAP algorithm

To provide intuition on how to implement TCP-
GAP, we provide pseudo code for the Gateway
Adaptive Pacing scheme as well as for the Goodput
Control approach. The implementation involves the
wireless TCP sender as well as the Internet gateway.
Fig. 6 outlines the functionality added to the TCP
implementation at the wireless TCP sender, whereas
Fig. 7 shows the functionality which has to be added
to the IP layer implementation at the Internet gate-
way. Recall that these additions are independent of
the applied routing protocol as long as the number



Fig. 7. Pseudo code for TCP-GAP implemented at the Internet gateway.

190 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
of hops to wireless nodes and the bandwidth of the
wireless interface are provided.

5. Comparative performance study

5.1. Simulation environment

The simulation experiments in this paper are con-
ducted using the network simulator ns-2 [10]. In the
wireless domain, the link-layer parameters of IEEE
802.11 are configured to provide a transmission
range of 250 m and a carrier sensing range as well
as an interference range of 550 m, as consistent with
a Lucent WaveLan DSSS radio interface. The trans-
mission of each data packet on the link layer is pre-
ceded by a Request-To-Send/Clear-To-Send (RTS/
CTS) handshake. We consider a wireless channel
bandwidth of 11 Mbit/s as supported by IEEE
802.11b/g and set the size of TCP data packets to
1460 bytes. In the last experiment of Section 5.2.2
we also consider a higher wireless bandwidth of
54 Mbit/s as supported by IEEE 802.11a/g while
varying the bandwidth of the full-duplex wired
links. Unless otherwise stated, in the wireless
domain of all considered topologies, each node is
200 m apart from each of its adjacent nodes. As
ad hoc routing protocol for packet routing in the
wireless domain we use AODV [15]. For simulations
with FTP-like traffic, unless otherwise stated, we set
the bandwidth of the full-duplex wired links to
10 Mbit/s and the link delay to 40 ms.

In all experiments, except for experiments
showing transient behavior over time, we conduct
steady-state simulations starting with an initially
idle system. In each run, we simulate TCP flows
until 55,000 packets are successfully transmitted,



S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 191
and split the simulation output in 11 batches of size
5000 packets. The first batch is discarded as initial
transient. The considered performance measures
are derived from the remaining 10 batches with
95% confidence intervals by the batch means
method, i.e., the confidence intervals are obtained
with a confidence level of 95%.

5.2. FTP-like data transfer

In the first set of scenarios, we consider TCP
senders with continuous data transfer, i.e. FTP-like
traffic where the TCP flow is backlogged, simulating
large file transfers. Potential real life scenarios are
for instance students downloading lecture materials
from the university server or police patrol officers
acquiring information on a suspect from the local
database of their department.

5.2.1. Chain topology

First we consider a chain topology as depicted in
Fig. 3 of Section 4.2. In the first experiment, we
define an FTP flow running from the wireless node
A to the wired host B, where we vary the length of
the wireless router-chain and plot the achieved
goodput accordingly. Fig. 8 shows the goodput vs.
number of wireless hops h of TCP-GAP as well as
TCP NewReno. We observe that for h < 4 where
no hidden terminals are present, TCP NewReno
achieves slightly higher goodput than TCP-GAP.
That is, the bursty transmission of TCP NewReno
gains a slight advantage over the adaptive pacing
of TCP-GAP, since the IEEE 802.11 link-layer
scheduling prevents packet losses caused by hidden
terminals for less than four hops. However, in our
8000

4000

2000

1000

 500
 10 9 8 7 6 5 4 3 2 1

G
oo

dp
ut

 [
K

bi
t/

s]

Number of Wireless Hops

TCP-GAP
TCP NewReno

Fig. 8. TCP goodput vs. wireless chain length for wireless-to-
wired flows.
simulation, we noticed that the bursty traffic of
TCP NewReno results in severe unfairness in sce-
narios with multiple flows, even in topologies where
no hidden terminal is present. Therefore, instead of
disabling the adaptive pacing scheme for wireless
routes with less than four hops, TCP-GAP com-
putes the transmission rate using the h-hop delay
and achieves best fairness results due to its adaptive
pacing scheme. For chains with h P 4, we observe
that TCP-GAP achieves up to 41% more goodput
than TCP NewReno due to the presence of the hid-
den terminal problem. Such performance improve-
ment is the result of the consideration of the IEEE
802.11 spatial reuse constraint in the computation
of the TCP-GAP adaptive pacing rate.

In the second experiment, we consider the oppo-
site case where the wired host B constitutes the TCP
sender and the wireless node A constitutes the
TCP destination. Fig. 9 shows that for h < 4, both
TCP variants achieve similar goodput with a maxi-
mum of 3% value deviation. For h P 4, the adaptive
rate-based transmission of TCP-GAP effectively
decreases network congestion and achieves up to
42% more goodput than TCP NewReno.

5.2.2. Parallel chains topology

As a second topology, we consider two parallel
chains as shown in Fig. 5 of Section 4.4. Consistent
with the previous scenario, we define three wired
nodes while we set two FTP flows running between
the wireless and wired domains. We consider three
different traffic scenarios, where each case corre-
sponds to a specific adjustment of the flow direc-
tions. That is, first we consider the case where
both FTP flows start at the nodes A1 and A2 as
8000

4000

2000

1000

 500
 10 9 8 7 6 5 4 3 2 1

G
oo

dp
ut

 [
K

bi
t/

s]

Number of Wireless Hops

TCP-GAP
TCP NewReno

Fig. 9. TCP goodput vs. wireless chain length for wired-to-
wireless flows.



 0

200

400

600

800

 1000

 1200

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)

Aggregate Goodput

Fig. 11. Goodput in parallel chains topology for wired-to-
wireless flows.

 0

 200

 400

 600

 800

1000

1200

TCP-GAP 
w/o Goodut Control

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wired to wireless)
FTP 2 (wireless to wired)

Aggregate Goodput

Fig. 12. Goodput in parallel chains topology for oncoming flows.

192 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
TCP sources and end at the wired host B as TCP
destination. Second we consider the opposite direc-
tion where both FTP flows start at B and end at A1
and A2, respectively. In the final scenario we exam-
ine mixed flow directions where FTP 1 runs from A1
as source to B as destination and FTP 2 runs from B
as source to A2 as destination. Figs. 10–12 show the
results of this simulation, where each figure corre-
sponds to a specific adjustment of the flow direc-
tions. The figures plot the individual goodput of
each FTP flow as well as the aggregate goodput,
which is defined as the sum of the goodput achieved
by both flows.

In Figs. 10 and 11 we see that TCP-GAP signifi-
cantly outperforms TCP NewReno both in terms of
fairness and goodput. Using TCP NewReno, FTP 1
occupies the entire available bandwidth at the cost
of FTP 2, while both flows share the available band-
width equally using TCP-GAP. In fact, TCP-GAP
also achieves a higher aggregate goodput than
TCP NewReno. The starvation of FTP 2 using
TCP NewReno is due to the aggressive window
strategy which provokes severe contention between
the flows on link layer. While one flow, FTP 1 in
this case, occupies almost the entire bandwidth,
the other flow experiences a severe packet drop on
link layer, increasing the corresponding IEEE
802.11 contention window even further. Note that
approaches which aim to improve TCP perfor-
mance by exchanging control information between
wireless nodes would not work in such scenarios
since no direct communication is possible between
nodes belonging to one chain and nodes belonging
to the opposite chain due to the 400 m inter-chain
distance.
 0

200

400

600

800

 1000

 1200

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)

Aggregate Goodput

Fig. 10. Goodput in parallel chains topology for wireless-to-
wired flows.
Fig. 12 plots the results for the case with mixed
flow direction where FTP 1 runs from B to A1
and FTP 2 runs from A2 to B. We observe that
TCP-GAP without Goodput Control achieves
much better fairness than TCP NewReno, although
the fairness is not optimal as in the previous two
cases. Such unfairness between oncoming flows
was also observed in [17,19] and further discussed
in Section 4. In Fig. 12 we observe that, due to
the Goodput Control scheme, TCP-GAP achieves
optimal fairness with almost no sacrifice of the
aggregate goodput. This shows that the Goodput
Control scheme constitutes an effective method for
achieving optimal fairness between oncoming flows.
5.2.2.1. Responsiveness. In order to evaluate how
quickly a specific TCP variant responds to changing
traffic conditions in the network, we conduct a fur-



S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 193
ther simulation using the parallel chains topology.
We define two FTP flows which run from the wired
domain to the wireless domain, i.e., FTP 1 starts at
B and ends at A1 whereas FTP 2 starts at B and
ends at A2. While FTP 1 runs from the beginning
of the simulation until the end, FTP 2 runs from
the beginning of the simulation and stops at time
N1 = 130 s, then restarts again at time N2 = 160 s
where it continues until the end. We are interested
in studying how FTP 1 reacts to the stopping and
starting of FTP 2. Figs. 13 and 14 plot the goodput
of both flows vs. simulation time for TCP-GAP and
TCP NewReno, respectively. Considering TCP-
GAP, we observe that FTP 1 quickly takes advan-
tage of the entire available bandwidth when FTP 2
stops, while both flows share the bandwidth fairly
when they contend for the channel. As for TCP
 0

 200

 400

 600

 800

1000

1200

100 120 140 160 180 200

G
oo

dp
ut

 [
K

bi
t/

s]

Simulation Time [s]

FTP 1
FTP 2

Fig. 13. Responsiveness of TCP-GAP (high responsiveness).

 0

 200

 400

 600

 800

1000

1200

100 120 140 160 180 200

G
oo

dp
ut

 [
K

bi
t/

s]

Simulation Time [s]

FTP 1
FTP 2

Fig. 14. Responsiveness of TCP NewReno (FTP 2 completely
starves).
NewReno, we see that FTP 1 occupies the entire
available bandwidth at cost of FTP 2, which com-
pletely starves. We conclude that TCP-GAP not
only provides superior fairness compared to TCP
NewReno but also quickly responds to changing
network conditions. In Section 5.3 we will show
how this improved responsiveness results in sub-
stantial improvement in aggregate goodput for
short TCP flows.

5.2.2.2. Sensitivity to bandwidths of the wireless/

wired parts. In order to get intuition on the sensitiv-
ity of the performance of TCP to the ratio between
bandwidth in the wired part to the wireless part of
the connection, we consider the wired-to-wireless
case as used for the responsiveness simulation, i.e.,
by considering two FTP flows. We adopt IEEE
802.11g in the wireless domain and set the wireless
link bandwidth to 54 Mbit/s. For the wired domain,
we vary the bandwidth from 1 Mbit/s up to
100 Mbit/s and plot the aggregate goodput as well
as the fairness index of both TCP-GAP and TCP
NewReno. As measure for fairness, we use Jain’s
index [13] which is given by

F ðxÞ ¼
Xn

i¼1

xi

" #2

n
Xn

i¼1

x2
i

,
; ð6Þ

where n denotes the number of flows and xi de-
scribes the goodput achieved by flow i.

By varying the wired link bandwidth we consider
different network scenarios where we may have a
simple DSL link to the Internet with 1–2 Mbit/s as
well as other cases where the FTP connections run
between a wireless node and a close-by campus ser-
ver over fast links of 100 Mbit/s. Figs. 15 and 16
show the results of this simulation. In the figures
we observe that for wired link bandwidths up to
5 Mbit/s, TCP-GAP and TCP NewReno achieve
similar aggregate goodput and nearly optimal fair-
ness index. However, for bandwidths above
5 Mbit/s, TCP-GAP achieves about 13% more
aggregate goodput than TCP NewReno while main-
taining optimal fairness results. Contrary to TCP-
GAP, TCP NewReno fails to divide the available
bandwidth equally between the flows for wired link
bandwidths above 5 Mbit/s.

The reason for such behavior is that for wired
link bandwidths below 5 Mbit/s, the wired part con-
stitutes the bottleneck of the TCP connections.
Thus, the wireless link is underutilized and there is
no sign of congestion. This leads to similar goodput



 0

1000

2000

3000

4000

5000

6000

100503010521

A
gg

re
ga

te
 G

oo
dp

ut
 [

K
bi

t/
s]

Bandwidth of wired links [Mbit/s]

TCP GAP
TCP NewReno

Fig. 15. Aggregate goodput vs. bandwidth of wired links.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

100503010521

F
ai

rn
es

s 
In

de
x

Bandwidth of wired links [Mbit/s]

TCP-GAP
TCP NewReno

Fig. 16. Jain’s fairness index vs. bandwidth of wired links (0.5
indicates worst fairness among two flows, while 1 indicates
optimal fairness).

IG FTP 3IGFTP 1

B3

B1 B2

B4

FTP 2

FTP 4

A1

A2

RL1 RL2 RL3 RL4 RL5 RL6 A3

RL7

RL8

RL9

RL10

RL11

RL12

A4

RT3

RT2

RT1

Fig. 17. The cross topology.

194 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
and nearly optimal fairness results. As the band-
width of the wired link increases, the traffic load
in the wireless domain also increases up to a point
where the wired link bandwidth surpasses the avail-
able bandwidth in the wireless domain. From that
point on the wireless domain constitutes the bottle-
neck of the TCP connections resulting in increased
congestion. While this noticeably degrades the per-
formance of TCP NewReno with respect to aggre-
gate goodput and fairness, TCP-GAP achieves
significantly better results due to its adaptive trans-
mission strategy.

Note that the actually achievable bandwidth
strongly depends on the number of wireless hops
of the TCP connections, i.e., the achievable band-
width decreases with increasing number of wireless
hops as shown in Figs. 8 and 9. In this scenario,
the achievable bandwidth is about 5 Mbit/s.
5.2.3. Cross topology

As a third and more complex topology we con-
sider a cross of wireless nodes, where the Internet
gateway IG is positioned at the center of the cross
as depicted in Fig. 17. The wired domain comprises
seven wired hosts, which are depicted as diamonds.
We define four FTP flows and consider similar flow
directions as for the previous topology. That is, in
case (1), which is depicted in Fig. 17, all FTP flows
run from the wireless to the wired domain with the
TCP source and destination entities (A1! B1),
(A2! B2), (A3! B3) and (A4! B4). In case (2),
we consider the opposite direction where the flows
start in the wired and end in the wireless domain,
where the TCP entities are given by (B1! A1),
(B2! A2), (B3! A3) and (B4! A4). Finally, we
consider the mixed case where two FTP flows run
from the wireless to the wired domain and the other
two flows run the other way round, given the TCP
entities (A1! B1), (B2! A2), (A3! B3) and
(B4! A4).

Figs. 18–20 show the results of this simulation.
Consistent with the previous results, the figures
show that TCP-GAP considerably outperforms
TCP NewReno both in terms of fairness and aggre-
gate goodput. In fact, TCP-GAP achieves optimal
fairness between the competing flows in the first
two cases. Consistent with the mixed case of the pre-
vious simulation, in Fig. 20, we notice that for TCP-
GAP without Goodput Control, the first two flows
get slightly less goodput than the other two flows.
From this figure we conclude that using Goodput
Control yields optimal fairness between oncoming



 0

200

400

600

800

 1000

 1200

 1400

 1600

 1800

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)
FTP 3 (wireless to wired)
FTP 4 (wireless to wired)

Aggregate Goodput

Fig. 18. Goodput in cross topology for wireless-to-wired flows.

 0

200

400

600

800

 1000

 1200

 1400

 1600

 1800

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)

Aggregate Goodput

Fig. 19. Goodput in cross topology for wired-to-wireless flows.

 0

 200

 400

 600

 800

1000

1200

1400

1600

1800

TCP-GAP
w/o Goodput Control

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)

Aggregate Goodput

Fig. 20. Goodput in cross topology for oncoming flow.

 0

100

200

300

400

500

600

700

800

TCP NewReno TCP-GAP

G
oo

dp
ut

 [
K

bi
t/

s]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)
FTP 5 (wireless to wired)

FTP 6 (wireless to wired)
FTP 7 (wireless to wired)
FTP 8 (wireless to wired)

Aggregate Goodput

Fig. 21. Goodput in random topology for oncoming flows
running on paths of different lengths.

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 195
flows, even in cases where we have multiple wireless-
to-wired as well as wired-to-wireless flows.
5.2.4. Random topology

As a final topology for the continuous FTP data
transfer experiments we consider a random topol-
ogy of 120 wireless nodes uniformly distributed on
a flat area of 2500 m · 1000 m. According to [5],
all nodes in the wireless domain can communicate
with each other over one or more hops with proba-
bility P = 99.9%. Similar networks do already exist
such as the MIT Roofnet which builds up an
unplanned IEEE 802.11b wireless mesh network
over an urban area of about four square kilometers
[6]. We define eight FTP flows with randomly cho-
sen TCP source and destination pairs, where FTP
1–FTP 4 run from the wired to the wireless domain
and FTP 5–FTP 8 run in the opposite direction. The
position of the Internet gateway is also randomly
selected while we define two routers and one host
in the wired domain similar to the wired nodes
depicted in Fig. 5. Thereby, the wired host B3 con-
stitutes the TCP source for FTP 1–FTP 4 and the
TCP destination for FTP 5–FTP 8. Opposed to pre-
vious experiments, in this simulation, TCP flows run
on paths of different lengths. Fig. 21 shows that
TCP-GAP achieves much better fairness between
the flows than TCP NewReno. Specifically, TCP
NewReno lets FTP 1 and FTP 4 almost completely
starve while all flows get a fraction of the available
bandwidth using TCP-GAP. We notice that TCP-
GAP achieves slightly less aggregate goodput than
TCP NewReno due to the well known tradeoff
between aggregate goodput and fairness which is
caused by the absence of optimal scheduling of
IEEE 802.11. This problem is further discussed in
[18]. Note that the different wireless path lengths



0

200

400

600

800

1000

1200

1400

10.90.80.70.60.50.40.30.20.1

A
gg

re
ga

te
 A

ve
ra

ge
d 

G
oo

dp
ut

 [
K

bi
t/

s]

Mean for Exp. Distributed Pause Times [s]

TCP-GAP
TCP NewReno

Fig. 22. Aggregate averaged goodput vs. exp. distributed pause
times.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
10.90.80.70.60.50.40.30.20.1

F
ai

rn
es

s 
In

de
x

Mean for Exp. Distributed Pause Times [s]

TCP-GAP
TCP NewReno

Fig. 23. Jain’s fairness index vs. exponentially distributed pause
times (0.5 indicates worst fairness among two flows, while 1
indicates optimal fairness).

196 S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198
of the considered flows may have further impact on
the fairness between multiple flows. Such effects are
not further investigated in this paper and are subject
to future work.

5.3. HTTP-like data transfer

In this set of experiments, we consider variable
length TCP flows, i.e., HTTP-like data transfer
where a TCP source transmits small files with vari-
able pause times between successive file transfers.
Following [8], we choose Pareto distributed file sizes
with mean 30 kbytes and shape factor b = 1.5,
whereas the pause times between successive file
transfers are exponentially distributed. Specifically,
file sizes and pause times are generated using an
external traffic generator, which utilizes the GNU
Scientific Library [20]. File sizes are generated using
the gsl_ran_pareto function with shape factor
b = 1.5 and mean 30 kbytes, whereas pause times
are generated using the gsl_ran_exponential function
with variable values for the mean. In all HTTP
experiments, we only consider the case where the
flows run from the wired domain to the wireless
domain, which is consistent to the case in reality
where most of the traffic of an HTTP connection
constitutes the download of Web data from a
WWW server in the Internet.

5.3.1. Parallel chains topology

We reconsider the parallel chains topology intro-
duced in Section 5.2.2, though, with two variable
length HTTP flows rather than continuous FTP
flows. To evaluate the impact of inter-file pause
times on TCP performance, we vary the mean for
exponentially distributed pause times and plot the
fairness index as well as the aggregate averaged
goodput of TCP-GAP and TCP NewReno. The
aggregate averaged goodput is computed by mea-
suring the goodput of each file transfer, averaging
the goodput of the file transfers for each flow and
finally summing up this average goodput over all
flows. The goodput of each file transfer is computed
similar to the case of FTP flows, since pause times
between the file transfers are not considered.

Figs. 22 and 23 show the results of this simula-
tion. In Fig. 22 we see that TCP-GAP outperforms
TCP NewReno, achieving up to 70% more aggre-
gate averaged goodput. In particular, we observe
that the aggregate averaged goodput of TCP-GAP
actually increases for increasing pause times, while
the goodput of TCP NewReno remains unchanged.
Similar effects were also identified in [8] and are to
be ascribed to the high responsiveness of the adap-
tive pacing scheme. That is, considering HTTP traf-
fic, the probability that both flows contend for the
wireless channel at the same time decreases with
increasing pause times. Thus, a single flow gets a
higher chance to acquire the entire available band-
width for itself without sharing it with the other
flow. Hence, since TCP-GAP is highly responsive
to changing network conditions, it takes advantage
of this effect and can quickly acquire the available
bandwidth. On the contrary, the bad responsiveness
of TCP NewReno does not allow taking advantage
of the free bandwidth and, thus, the aggregate aver-
aged goodput does not change with increasing pause
times.

Fig. 23 underlines the fact that the contention
between flows decreases for HTTP-like traffic, since



0

 100

 200

 300

 400

 500

 600

 700

 800

TCP NewReno TCP-GAP

A
ve

ra
ge

d 
G

oo
dp

ut
 [

K
bi

t/
s]

HTTP 1 (wired to wireless)
HTTP 2 (wired to wireless)
HTTP 3 (wired to wireless)

HTTP 4 (wired to wireless)
Aggregate Averaged Goodput

Fig. 24. Averaged goodput for HTTP random scenario.

S.M. ElRakabawy et al. / Computer Networks 52 (2008) 180–198 197
the fairness of TCP NewReno increases consider-
ably compared to the case for FTP-like data trans-
fer where TCP NewReno has the worst fairness
index of 0.5. However, the fairness index of TCP-
GAP still lies above the fairness index of TCP New-
Reno for all pause times. From the previous figures
we conclude that TCP-GAP achieves nearly optimal
fairness, not only for FTP-like traffic, but also for
HTTP-like traffic.
5.3.2. Random topology

As a final scenario we consider another random
topology with the same settings as given in Section
5.2.2.2, however, in this case we consider four
HTTP-like flows with a fixed mean for the exponen-
tially distributed pause times of 1 s. Consistent with
our previous findings, in Fig. 24 we observe that
TCP NewReno achieves good fairness between the
HTTP flows due to the decreased channel conten-
tion which results from the relatively high inter-file
pause times. However, TCP-GAP still achieves
slightly better fairness and considerably more aggre-
gate averaged goodput than TCP NewReno. From
the simulations with HTTP-like traffic we conclude
that Gateway Adaptive Pacing significantly
improves TCP performance for HTTP traffic both
in terms of fairness and goodput.
6. Conclusion

For improving both goodput and fairness of TCP
flows in multihop wireless networks with Internet
connectivity, we proposed an adaptive pacing
scheme on the Internet gateway and the wireless
TCP sender. By deploying rate-based congestion
control for the wireless part of the network at the
Internet gateway, our approach, denoted as TCP
with Gateway Adaptive Pacing (TCP-GAP),
accounts for the different characteristics of the wire-
less and wired domains. We gave insight on the rea-
sons of the unfairness in case of oncoming flows
where both wired-to-wireless as well as wireless-to-
wired connections pass through the Internet gate-
way. Subsequently, we introduced a goodput con-
trol scheme at the Internet gateway in order to
achieve nearly optimal fairness for such scenarios.

We showed through comprehensive simulations
using ns-2 [10] that nearly optimal fairness between
multiple TCP flows in hybrid wireless/wired net-
works can be achieved by solely modifying the
transport layer. Thus, our approach is easily deploy-
able since it requires neither modifications of stan-
dard TCP in the wired domain nor modifications
at the link or network layers. Furthermore, TCP-
GAP is fully TCP compatible and does not impose
any control traffic overhead. In future work, we
are developing a prototype implementation of
TCP-GAP in our wireless mesh testbed.

References

[1] A. Aggrawal, S. Savage, T. Anderson, Understanding the
performance of TCP pacing, in: Proceedings of the IEEE
INFOCOM, Tel Aviv, Israel, 2000.

[2] Ö.B. Akan, I.F. Akyildiz, ATL: an adaptive transport layer
suite for next-generation wireless internet, IEEE Journal on
Selected Areas in Communications 22 (2004).

[3] I.F. Akyildiz, X. Wang, W. Wang, Wireless mesh networks:
a survey, Computer Networks 47 (2005).

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. Katz, A
comparison of mechanisms for improving TCP performance
over wireless links, IEEE/ACM Transactions on Networking
5 (1997).

[5] C. Bettstetter, On the minimum node degree and connectiv-
ity of a wireless multihop network, in: Proceedings of the
ACM MOBIHOC, Lausanne, Switzerland, 2002.

[6] J. Bicket, D. Aguayo, S. Biswas, R. Morris, Architecture and
evaluation of an unplanned 802.11b mesh network, in:
Proceedings of the ACM MOBICOM, Cologne, Germany,
2005.

[7] D. De Couto, D. Aguayo, J. Bicket, R. Morris, A high-
throughput path metric for multi-hop wireless routing, in:
Proceedings of the ACM MOBICOM, San Diego, CA, 2003.

[8] S. ElRakabawy, A. Klemm, C. Lindemann, TCP with
adaptive pacing for multihop wireless networks, in: Proceed-
ings of the ACM MOBIHOC, Urbana-Champaign, IL,
2005.

[9] S. ElRakabawy, A. Klemm, C. Lindemann, Gateway adap-
tive pacing for TCP across multihop wireless networks and
the internet, in: ProcACM/IEEE MSWiM, Malaga, Spain,
2006.



198 S.M. ElRakabawy et al. / Computer
[10] K. Fall, K. Varadhan, (Ed.), The ns-2 Manual, Technical
Report, The VINT Project, UC Berkeley, LBL, USC/ISI and
Xerox PARC, 2005.

[11] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla, The
impact of multihop wireless channel on TCP throughput and
loss, in: Proceedings of the IEEE INFOCOM, San Francisco
CA, 2003.

[12] V. Gambiroza, B. Sadeghi, E. Knightly, End-to-end perfor-
mance and fairness in multihop wireless backhaul networks,
in: Proceedings of the ACM MOBICOM, Philadelphia, PA,
2004.

[13] R. Jain, D. Chiu, W. Hawe, A Quantitative Measure
of Fairness and Discrimination for Resource Allocation
in Shared Systems, DEC Technical Report DEC-TR-301,
1984.

[14] S. Mascolo, C. Casetti, M. Gerla, M. Sandidi, R. Wang,
TCP Westwood: bandwidth estimation for enhanced trans-
port over wireless links, in: Proceedings of the ACM
MOBICOM, Rome, Italy, 2001.

[15] C. Perkins, E. Royer, S. Das, Ad hoc on-demand distance
vector (AODV) routing, in: IETF RFC 3561, 2003.

[16] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, R. Sivaku-
mar, ATP: a reliable transport protocol for ad hoc networks,
in: Proceedings of the ACM MOBIHOC, Annapolis, MA,
2003.

[17] K. Xu, S. Bae, S. Lee, M. Gerla, TCP behavior across
multihop wireless networks and the wired internet, in:
Proceedings of the ACM WoWMoM, Atlanta, GA, 2002.

[18] K. Xu, M. Gerla, L. Qi, Y. Shu, Enhancing TCP fairness
in ad hoc wireless networks using neighborhood RED,
in: Proceedings of the ACM MOBICOM, San Diego CA,
2003.

[19] L. Yang, W. Seah, Q. Yin, Improving fairness among TCP
flows crossing wireless ad hoc and wired networks, in:
Proceedings of the ACM MOBIHOC, Annapolis MD, 2003.

[20] The GNU Scientific Library. <http://www.gnu.org/soft-
ware/gsl/>.

Sherif M. ElRakabawy received the
degree Diplom-Informatiker (M.Sc. in
Computer Science) from the University
of Bonn, Germany in 2003. Currently he
is a Ph.D. student at the Chair of Com-
puter Networks and Distributed Systems
at the University of Leipzig. His research
interests include mobile ad hoc/mesh
networks as well as mobile peer-to-peer
systems.
Alexander Klemm received the degree
Diplom-Informatiker (M.Sc. in Com-

puter Science) from the University of
Dortmund in March 2000. From April
2004 to June 2006 he was a Ph.D. stu-
dent in the Mobile Computing Systems
Group at the University of Dortmund,
obtaining his Ph.D. in Computer Science
in June 2006. Currently he is a project
manager at radprax MVZ GmbH.

Networks 52 (2008) 180–198
Christoph Lindemann holds the Chair of
Computer Networks and Distributed
Systems in the Department of Computer
Science at the University of Leipzig. He
received the degree Diplom-Informatiker
(M.S. in Computer Science) from the
University of Karlsruhe, Germany in
1988 and the degree Doktor-Ingenieur
(Ph.D. in Engineering) from the Tech-
nische Universität Berlin, Germany in
1992. His current research interests lie in

mobile computing systems, especially mobile ad hoc networks
and peer-to-peer systems as well as modeling and performance

evaluation as an umbrella topic. He is member of the IFIP
working group 7.3 and a senior member of the IEEE. He is on the
editorial board of the international journals Ad Hoc Networks
and Performance Evaluation. He is currently serving as chair of
the special interest group on measurements, modeling, and
evaluation of computer systems and communication networks
within the German Society of Informatics (GI). In 2005, he
served as general co-chair for the 11th International Conference
on Mobile Computing and Networking, ACM MobiCom. He
organized the ACM MobiShare Workshop in 2006 and is serving
as general chair of the 26th International Symposium on Com-
puter Performance, Modeling, Measurements, and Evaluation,
Performance 2007.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

	TCP with gateway adaptive pacing for multihop wireless networks with Internet connectivity
	Introduction
	Related work
	Considered network class
	The gateway adaptive pacing scheme
	Dealing with the deficiencies of IEEE 802.11
	Wireless-to-wired flows
	Wired-to-wireless flows
	The goodput control scheme for oncoming flows
	Considering handovers due to node mobility
	The TCP-GAP algorithm

	Comparative performance study
	Simulation environment
	FTP-like data transfer
	Chain topology
	Parallel chains topology
	Responsiveness
	Sensitivity to bandwidths of the wireless/wired parts

	Cross topology
	Random topology

	HTTP-like data transfer
	Parallel chains topology
	Random topology


	Conclusion
	References


