
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Loss-resilient window-based congestion control q

Christophe De Vleeschouwer, Pascal Frossard *

Université Catholique de Louvain, UCL – TELE, Louvain-la-Neuve 1348, Belgium

Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory – LTS4, Lausanne 1015, Switzerland

Received 14 March 2007; received in revised form 30 November 2007; accepted 21 January 2008
Available online 5 February 2008

Responsible Editor: Qian Zhang

Abstract

This paper addresses the problem of fair allocation of bandwidth resources on lossy channels in hybrid heterogeneous
networks. It discusses more particularly the ability of window-based congestion control to support non-congestion related
losses. We investigate methods for efficient packet loss recovery by retransmission, and build on explicit congestion control
mechanisms to decouple the packet loss detection from the congestion feedback signals. For different retransmission strat-
egies that respectively rely on conventional cumulative acknowledgments or accurate loss monitoring, we show how the
principles underlying the TCP retransmission mechanisms have to be adapted in order to take advantage of an explicit
congestion feedback. A novel retransmission timer is proposed in order to deal with multiple losses of data segments
and, in consequence, to allow for aggressive reset of the connection recovery timer. It ensures significant benefit from tem-
porary inflation of the send-out window, and hence the fair share of bottleneck bandwidth between loss-prone and lossy
connections. Extensive simulations analyze the performance of the new loss monitoring and recovery strategies, when used
with two distinct explicit congestion control mechanisms. The first one relies on a coarse binary congestion notification
from the routers. The second one, introduced in [D. Katabi, M. Handley, C. Rohrs, Internet congestion control for high
bandwidth-delay product environments, ACM SIGCOMM (2002) 89–102], exploits accurate and finely-tuned router feed-
backs to compute a precise congestion window adjustment. For both congestion control mechanisms, we observe that
retransmissions triggered based on a precise monitoring of losses lead to efficient utilization of lossy links, and provide
a fair share of the bottleneck bandwidth between heterogeneous connections, even for high loss ratios and bursty loss pro-
cesses. Explicit window-based congestion control, combined with appropriate error control strategies, can therefore pro-
vide a valid solution to reliable and controlled connections over lossy network infrastructures.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Congestion control; Lossy networks; Window-based protocol; Explicit notification

1. Introduction

Congestion control is certainly imperative in
packet networks, as it prevents important band-
width outage that happens when the network is
overwhelmed by too many packets. In addition, it

1389-1286/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2008.01.013

q This work has been funded by the Swiss NSF, under Grant
PP002-68737, and by the Belgian NSF.

* Corresponding author. Address: Ecole Polytechnique Fédé-
rale de Lausanne (EPFL), Signal Processing Laboratory – LTS4,
Lausanne 1015, Switzerland.

E-mail address: pascal.frossard@epfl.ch (P. Frossard).

Available online at www.sciencedirect.com

Computer Networks 52 (2008) 1473–1491

www.elsevier.com/locate/comnet

Author's personal copy

tends to fairly distribute bandwidth resource among
simultaneous connections and users, and avoids any
one connection from swamping the links and
switches between communicating hosts with an
excessive amount of traffic. Two families of
approaches have been proposed to implement con-
gestion control. Rate-based algorithms directly con-
trol the transmission rate of the connection [2,3],
whilst window-based algorithms force the connec-
tion to obey a ‘packet conservation’ principle, which
means that a new packet is not pushed into the net-
work until an old packet leaves [4]. Typically, win-
dow control injects bursts of data into the
network, whilst rate control pushes data at regular
time interval so as to meet a target average rate.
More importantly, window-based protocols are
known to achieve network stability and present a
reduced sensitivity (or increased robustness) to inac-
curate bandwidth estimation, in comparison to rate-
based congestion control schemes. If the sources
implement a rate-based congestion control algo-
rithm but over-estimate the available bandwidth,
the network could temporarily experience an extre-
mely high packet loss rate due to buffer overflows
and may take a long time to recover from it. In con-
trast, a window-based congestion control algorithm
not only controls the transmission rate, but also lim-
its the maximum number of outstanding packets
according to the congestion window size. It allevi-
ates the long term effect of the inaccurate estimation
of the available bandwidth by the sources. This is an
important advantage of window-based algorithms
[5] that motivates a deeper analysis of their
behaviors.

To perform such analysis, we distinguish between
lossless and lossy transmission environments. By
lossless, we refer to networks that are free of non-
congestion-related losses. In contrast, lossy environ-
ments are subject to non-congestion-related losses,
e.g. radio losses. It is worth noting that both lossless
and lossy environments may thus experience con-
gestion losses. In lossless environments, window-
based protocols have been investigated in details.
TCP is certainly the most well-known window-
based congestion control algorithm. TCP is implicit
and end-to-end in the sense that congestion in the
network is inferred by the end-systems, exclusively
based on the network response (e.g., packet loss
and delay) [6]. It only provides a late and coarse
feedback about the network status. Moreover,
packet loss is known to be a poor signal of conges-
tion, since congestion is in general not the only

source of loss. Consequently, TCP becomes ineffi-
cient and prone to instability and unfairness when
the delay-bandwidth product of a connection
increases [7–10]. Explicit congestion control mecha-
nisms [1,11,12], where routers provide explicit feed-
back to the sender regarding network congestion,
have been shown to solve the problems related to
imprecise and late feedbacks. These protocols are
more responsive and stable than the conventional
TCP, and become especially beneficial when the
delay-bandwidth product increases. Hence, it is gen-
erally admitted that window-based algorithm pro-
vides a valid congestion control solution in lossless
environments, especially if some explicit support
from the network is provided to the transport layer.

In lossy environments, this conclusion does not
hold anymore, neither for the implicit nor the
explicit framework. In the implicit framework,
interpreting any kind of loss as a congestion noti-
fication results in flow starvation on lossy links.
This problem has been extensively studied for
TCP connections in wireless environments [13–
16]. These works are further presented and com-
pared to our work in Section 9. In the explicit
control framework, even if the sender adjust its
congestion window independently of losses, the
presence of losses is still able to strangle the con-
nection. This is because the head of the conges-
tion window is anchored to the last
acknowledged data in conventional implementa-
tions of the packet conservation principle. As a
consequence, the congestion window stays blocked
by a lost packet as long the packet has not been
recovered and acknowledged by the receiver.
From these observations, it becomes relevant to
argue about the ability of window-based protocols
to support a significant amount of losses. We pro-
pose to focus on this fundamental question in this
paper. To that aim, we explore how to decouple
the output rate of a window-based congestion
control algorithm, from losses in the network. In
a sense, we provide the mean to extend window-
based congestion control algorithms to lossy envi-
ronments. We are thus not directly concerned by
the stability and convergence issues associated to
a congestion control protocol, as studied in
[2,17,18]. Instead, we are interested in the design
of mechanisms that permit to transpose a given
stable window-based control algorithm from a
lossless towards a lossy environment.

The outline of our approach can be summarized
as follows. In general, the sources of inefficiency for

1474 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

window-based congestion control protocols in pres-
ence of non-congestion-related losses are mainly
twofolds. First, the erroneous interpretation of a
loss as a signal of congestion ends up in congestion
window deflation. Second, the anchorage of the
congestion window to the last acknowledged data
segment prevents to send new data before a previ-
ously lost segment has been successfully retransmit-
ted. This creates an indirect coupling between the
occurrence of loss and the effective rate of the con-
nection. In order to circumvent the first problem, we
promote the use of explicit congestion control
mechanisms. As long as explicit information about
congestion is received by the sender, there is no rea-
son for the sender to infer the congestion state from
losses or delay measurements. Hence, losses are not
interpreted as a congestion signal anymore, and do
not cause congestion window deflation. This in
turns prevents all issues related to the discrimina-
tion of congestion and non-congestion-related
losses. Two explicit congestion control algorithms
are considered in this paper, in order to validate
the proposed loss-resilience mechanisms. The first
one is the eXplicit Control Protocol (XCP), intro-
duced by Katabi et al. [1]. The second one is a novel
eXplicit TCP-like congestion control algorithm
(XTCP), where routers only provide a coarse binary
feedback about congestion. The second issue is
addressed by maintaining the connection active
and efficient during loss recovery periods. This is
done by resetting the connection recovery timer
each time a packet acknowledgment reaches the
source. The sender window is also inflated in
response to duplicate acknowledgments. In addi-
tion, a novel retransmission timer is proposed to
deal with multiple losses of data segments. Based
on the explicit congestion control framework, we
therefore propose to implement aggressive retrans-
mission mechanisms in parallel to the emission of
novel data segments by the sender.

We rely on NS simulations to evaluate the poten-
tial of the proposed loss management and retrans-
mission mechanisms in the explicit window-based
congestion control framework. Our findings can
be summarized as follows:

� In a simple, yet representative heterogeneous net-
work topology, we observe that explicit conges-
tion control combined with the proposed loss
recovery mechanisms permits to utilize fully the
bottleneck link, and provide a fair share of the
bottleneck bandwidth between all connections.

� For high loss ratios or bursty loss processes, we
observe that XTCP only achieves fairness
between lossless and lossy connections if the sen-
der can rely on precise feedbacks from the recei-
ver about packets arrival.
� The strategy proposed to manage the retransmis-

sion and recovery timers in the explicit frame-
work, combined with careful inflation and
deflation of the send-out window, significantly
amplifies the benefit obtained by the fast retrans-
mit and fast recovery mechanisms used in TCP
Reno [6] or NewReno [19].
� The proposed eXplicit TCP protocol is shown to

fairly coexist with TCP, in a single queue of an
XTCP-enabled router. It certainly represents an
attractive characteristic for its deployment.

The paper is organized as follows. Section 2
introduces the framework of our study, and defines
the state variables that characterize a window-based
control algorithm. Section 3 then presents the XCP
and XTCP explicit congestion control algorithms
that are considered in this paper for validating the
proposed loss-resilience mechanisms. In Sections 4
and 5, we describe how to implement loss-resilient
mechanisms in the explicit congestion control
framework, based on information conveyed by
cumulative, or respectively precise acknowledgment
packets. Sections 7 and 8 validate and compare loss-
resilience mechanisms in XCP and XTCP, based on
NS simulations. Finally, Section 9 puts our contri-
bution in perspective with earlier related works.

2. Preliminaries

2.1. Terminology for window-based protocols

As the goal of our paper is to explore the ability
of explicit window-based congestion control proto-
cols to support transmission losses, we briefly recall
here the state variables that characterize a window-
based connection. The section follows conventional
TCP terminology, so that readers that are familiar
with these notions may skip the section.

In order to regulate packet transmission, the send-
ers uses feedbacks from the receiver about the state of
session. We limit our study to window-based control
protocols based on positive acknowledgment (ACK),
where the receiver sends feedback information in
response to correctly received packets. The feedback
information is based on the data sequence number
and, possibly on the packet sequence number present

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1475

Author's personal copy

in the packet header. The data sequence number asso-
ciated to a packet identifies the data segment con-
veyed by the packet. Two transmissions of the same
data are thus characterized by the same data sequence
number. The packet sequence number identifies each
packet transmitted by the sender. It corresponds to
a counter incremented by one each time a new packet
is sent. Two packets that (re)transmit the same data at
different time instants have thus the same data
sequence number, but distinct packet sequence num-
bers. Based on the data sequence number definition, a
cumulative acknowledgment with a sequence number
equal to N, indicates that all the data segments with
a data sequence number up to and including N have
been correctly received. At any time, the lack state
variable records the largest cumulative acknowledg-
ment ever received by the sender.

By definition, window-based congestion control
limits the number of transmitted packets, which have
not been acknowledged yet. This number of packets
in transit between sender and receiver, is referred to
as the congestion window size, and is generally
denoted cwnd. This variable is the one that con-
straints the rate of the connection based on the net-
work state of congestion. It is adjusted based on the
information explicitly received from the routers, or
implicitly inferred from the observation of the net-
work behavior (loss and delay). Along with the con-
gestion window, the send-out window denoted swnd,
describes the data that are eligible for transmission,
which are the data whose sequence number lies
between lack and lack þ swnd. In practice
swnd P cwnd, and the difference between swnd and
cwnd corresponds to data packets that have already
left the network, and are stored at the receiver. Note
that swnd is upper bounded by the receiver advertised
window denoted rwnd, which reflects the receiving
buffer capacity. Finally, the data sequence number
of the next segment to be considered for transmission
is given by the nextseq state variable. The strategy
employed at the server, and in particular the update
of lack, swnd and nextseq upon reception of receiver
acknowledgments or timer expiration, and the moni-
toring of swnd, directly drives the behavior of the con-
gestion control algorithm.

2.2. Overview of TCP retransmission and recovery

mechanisms

Before describing in details novel mechanisms to
improve window-based connection over lossy links,
we present a brief overview of TCP retransmission

and recovery mechanisms. Based on the assumption
that the receiver sends out the largest possible cumu-
lative acknowledgment at each packet arrival, TCP
implements three mechanisms to recover from a loss.
They consist in two retransmission schemes respec-
tively initiated by a duplicate or a partial acknowledg-
ment, and a connection reset triggered by a recovery
timer. We describe below these three mechanisms,
and set the framework for the description of our
improved solutions. Readers that are familiar with
TCP can skip the remaining of this section.

2.2.1. Retransmission based on duplicate

acknowledgment

In presence of packet losses, duplicate acknowl-
edgments may be generated in response to the recep-
tion of data that have a higher data sequence
number than any data segments that have not been
received yet. Upon reception of a duplicate ACK,
the sender infers that the data immediately follow-
ing the largest acknowledged data, i.e., the
ðlack þ 1Þth data segment, has either been delayed
or lost by the network. In practice [6], the sender
waits for dupackthreshold duplicate ACKs before
it concludes that the ðlack þ 1Þth data segment has
been lost, and retransmits it. At the same time, the
arrival of a duplicate acknowledgment at the sender
indicates that a packet has reached the receiver and
left the network. In accordance with the congestion
window definition, the send-out window swnd is
incremented by one and a new data packet can be
sent out in response to the arrival of a duplicate
acknowledgment.

2.2.2. Retransmission based on partial

acknowledgment
Retransmission based on partial acknowledg-

ment has been proposed by the NewReno version
of TCP [19]. It is expected to help when multiple
packets are lost from a single window of data.
Among new data acknowledgments, NewReno dis-
tinguishes between complete and partial acknowledg-

ments. Let olack and nlack, respectively, denote the
largest data sequence number acknowledged before,
respectively after the reception of a new ACK. A
new ACK is defined to be a complete ACK if it
acknowledges all the data segments that have been
sent before the last (re)transmission of the
ðolack þ 1Þth segment. On the contrary, a new
ACK is a partial acknowledgment if it only indi-
cates the correct reception of a subset of these
segments.

1476 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

Partial acknowledgments are interpreted as the
loss of the ðnlack þ 1Þth data segment, and the sen-
der retransmits the corresponding data unit.

2.2.3. Recovery timer

In complement to retransmission mechanisms, all
TCP implementations use a recovery timer as a
recovery mechanism of last resort. The expiration
of this timer indicates that the connection stayed
idle for a while, and has to be reset. A connection

reset simply consists in setting cwnd to one, and
nextseq to lack þ 1. All counters and timers are also
reset to zero.

2.3. Motivations for explicit congestion control

Despite its loss recovery mechanisms, TCP is
unable to face non-congestion-related losses. The
erroneous interpretation of a loss as a signal of con-
gestion actually ends up in congestion window
deflation and connection starvation. To circumvent
this problem, we promote the use of explicit conges-
tion control [1,11,12], where the sender can strictly
and uniquely rely on the routers feedback to control
the size of its congestion window. Hence, it does not
interpret losses as a signal of congestion avoids to
undertake actions to slow down the connection
upon reception of duplicate ACKs. It rather tries
to maintain the connection active and effective as
long as (duplicate or new) ACKs are regularly
received, which indicate that the connection is still
alive. However, the anchorage of the congestion
window to the last acknowledged data segment pre-
vents to send new data before a previously lost seg-
ment has been successfully retransmitted. This
creates an indirect coupling between the occurrence
of loss and the effective rate of the connection. We
present two explicit congestion control algorithms
in the next section. Then, we explain in Sections 4
and 5 how to achieve that non-trivial objective of
maintaining the connection when the receivers
returns cumulative and explicit acknowledgments,
respectively.

3. Explicit window-based congestion control

algorithms

This section presents the two specific window-
based congestion control algorithms considered in
this paper. Both protocols rely on the explicit trans-
mission of information about the state of congestion
at the routers to compute the cwnd value. However,

the information provided about congestion is differ-
ent in both cases. The first protocol, introduced in
[1], exploits an accurate feedback from the routers.
In the second novel protocol, we propose to rely
on a coarse binary feedback to notify about conges-
tion. Simulations are then used to evaluate the
impact of the congestion feedback granularity on
the robustness of lossy connections.

3.1. The explicit control protocol (XCP)

The first protocol that we consider here is the
explicit control protocol (XCP), proposed in [1].
XCP is window-based, and controls the size of the
congestion window based on explicit and accurate
feedback from routers. In short, XCP is based on
a few bytes of control information conveyed in the
packet headers. To control the link utilization, rou-
ters inform the senders about the degree of conges-
tion in bottleneck links. In a router, the congestion
information is computed based on the mismatch
between the aggregate traffic rate and the link
capacity, and is adjusted according to the delay
expected for the feedback packet. Fairness is
achieved by reallocation of bandwidth between indi-
vidual flows. Extensive simulations demonstrate
that XCP maintains good utilization and fairness
among lossless connections, while maintaining small
standing queue sizes [1]. In particular, it has been
shown that XCP outperforms TCP when the per-
flow delay-bandwidth product becomes large. In
Section 7, we consider the combination of XCP with
the proposed loss recovery mechanisms.

3.2. An explicit TCP (XTCP)

As an alternative to XCP, we propose a new
explicit congestion control protocol named explicit
TCP (XTCP). Overall, the difference between the
proposed explicit TCP and conventional TCP is
the method to infer congestion from the network
feedback. The TCP sender implicitly infers conges-
tion from a lost data [20]. On the contrary, XTCP
requires an explicit feedback from the routers to
infer that congestion occurred, and then decreases
its congestion window. In order to decouple the gain
provided by an explicit framework, from the con-
gestion control mechanism itself, XTCP mimics
the TCP behavior. It relies on a minimalist binary
feedback from the routers (just as TCP relies on
the binary congestion signal inferred from
losses), and adopts the exact same additive increase

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1477

Author's personal copy

– multiplicative decrease behavior as TCP. Hence,
the XTCP sender just probes the network to the
point of congestion before backing off, just as
TCP would proceed. A TCP-like explicit protocol
is not only interesting for comparison between
explicit and implicit congestion controls, but obvi-
ously presents also advantages in terms of deploy-
ment issues (see Section 8.1).

In more details, the binary feedback is provided
by a congestion flag contained in the XTCP packet
header. The flag is initialized to zero by the sender,
and is set to one when the packet encounters a con-
gested router. When the packet reaches the receiver,
the flag is copied in the ACK header, and returned
to the sender. Upon ACK reception, the sender
decides whether the congestion window should be
decreased or increased based on the congestion flag.
Similarly to TCP, the congestion window is incre-
mented each time an ACK with a null congestion
flag is received, and divided by two when the sender
infers a congestion event based on the returned con-
gestion flags. By definition, a congestion event
occurs when an ACK with a congestion flag set to
one is received, and when the latest congestion event
is older than one RTT. This is to avoid multiple
backoffs during one RTT. In practice, an exponen-
tial weighted average of the RTT samples is used
to estimate RTT.

We now explain how routers define the conges-
tion flag. Formally, a congestion counter is associ-
ated with every queue in the network. Each time a
queue drops a packet due to congestion, the conges-
tion counter associated to the queue is incremented
by one. When an XTCP packet leaves the queue to
be sent out to the output link, if the counter is posi-
tive, the congestion flag of the XTCP packet is set to
one, and the counter is decremented by one.1 The
packet whose congestion flag is set to one does
not necessarily belong to the same flow as the
packet whose drop is responsible for incrementing
the congestion counter. There is no need to main-
tain per-flow congestion states in the router. Note
finally that XTCP does not make any assumption
about the queue management strategy used in rou-
ters. In our simulations, XTCP has been tested both
with Droptail or RED policies [21].

4. Loss recovery based on cumulative

acknowledgments

This section proposes original retransmission and
send-out window management mechanisms to
recover from losses while preserving connection effi-
ciency, in the context of an explicit congestion con-
trol framework. In summary, connection efficiency
is preserved by (i) partial deflation of the send-
out-window upon reception of a new ACK, (ii) reset
of the recovery timer in response to any ACK, and
(iii) definition of a novel retransmission timer. We
describe these three mechanisms and explain how
they interact and complement each others. As a
main outcome, we show that the introduction of a
new retransmission timer induces significant changes
in the behavior of the retransmission and recovery
mechanisms defined for TCP and generally accepted
in the context of implicit congestion control. The
retransmission timer offers an efficient strategy to
handle multiple losses of a segment and enables
more frequent resets of the recovery timer. This in
turn increases the benefit obtained from a careful
management of the inflation of the send-out window
in presence of losses.

4.1. Partial deflation of the send-out-window

As explained in Section 2.2, the arrival of a dupli-
cate acknowledgment at the sender indicates that a
packet has reached the receiver and thus left the net-
work. Hence, the send-out window swnd in TCP is
progressively and artificially inflated upon reception
of duplicate ACKs. Upon reception of new data
acknowledgment, the head of the send-out window
is moved to the largest acknowledged data segment.
It possibly oversteps a number of data segments
whose earlier receptions have triggered duplicate
ACKs, and caused inflation of swnd. In order to
ensure that the number of packets in transit is equal
to the congestion window, swnd has thus to be
decremented. We propose to decrease its value
according to the number of segments that have trig-
gered duplicate ACKs in the past, but which are
implicitly acknowledged by the reception of a new
ACK. In other words, swnd is decremented by
nlack � ðolack þ 1Þ in the explicit congestion con-
trol framework in order to preserve connection effi-
ciency while recovering from losses. In contrast,
swnd is simply reset to cwnd upon reception of a
new ACK in the conventional implementation pro-
posed by TCP Reno [6]. This is because the cwnd

1 To make sure that we do not run into a situation where the
counter is positive, and the queue is empty, we only increment the
counter if its current value is smaller than the number of packets
present in the queue.

1478 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

back off anyway alleviates the potential advantage
taken from a partial deflation of swnd in an implicit
congestion control environment.

4.2. Aggressive reset of the recovery timer

In an explicit congestion control framework,
duplicate ACKs should not be interpreted as a sig-
nal of congestion. They indicate that the connection
is alive, and even convey fresh information about
congestion state. It is therefore important to keep
the connection active upon reception of a duplicate
ACK and to postpone the expiration of the recovery
timer. Hence, we propose to reset the recovery timer
both in response to a new ACK or a duplicate ACK
when the congestion control is explicit. In contrast,
TCP does not reset the recovery timer upon recep-
tion of a duplicate ACK that does not cause a
retransmission. Note that, even if aggressive resets
of the recovery timer ensure that the connection is
maintained, the efficiency of that strategy strongly
depends on the careful management of the tempo-
rary inflation of the send-out window described
above. Both mechanisms closely interact and com-
plement each others.

4.3. Retransmission based on a timer

The partial window deflation and the aggressive
timer reset described above contribute to maintain
the connection active while conventional TCP
mechanisms deal with retransmission of lost pack-
ets. However, it is well-known from the TCP litera-
ture that triggering retransmissions based on
duplicate or partial ACKs is unable to deal with
multiple losses of the same segment, typically
because the dupacks state variable is only reset to
zero after the acknowledgment of new data2.

In an explicit congestion control framework, we
however claim that the recovery timer should be
reset at every duplicate ACK, and that the connec-
tion efficiency should be preserved by progressive
inflation of the send-out window. In these condi-
tions, the multiple losses of a data segment result
in a situation where swnd goes to infinity (or at least
to rwnd), before the recovery timer gets the opportu-
nity to expire and causes the retransmission of the

lost segment. To circumvent the problem, we pro-
pose to implement a retransmission mechanism
based on a novel retransmission timer. When the
timer expires, the ðlack þ 1Þth data segment is
retransmitted. The retransmission timer is reset
every time new data are acknowledged, and every
time a data segment is retransmitted, but is not reset
upon reception of a duplicate ACK that does not
cause retransmission.

In such a mechanism, the retransmission timout
needs to be defined carefully. A short timeout
results in fast retransmission, and rapid loss recov-
ery. However, one should avoid to trigger retrans-
missions for packets that are still in transit.
Stability becomes an issue when retransmissions
are based on a timer. A bad choice of the timeout
value might cause the sender to inject a new packet
into the network before an old one has exited. This
violates the ‘packet conservation principle’ that
guarantees stability for window-based transport
protocols [4]. In order to avoid instability, we pro-
pose to choose the retransmission timeout larger
than a conservative estimation of the round trip
time. Specifically, in our simulations, the retrans-
mission timeout has been defined twice as large as
the recovery timeout that represents a conservative
estimation of the round trip time (see Section 2.2).
Here, it is worth noting that choosing a retransmis-
sion timeout that is larger than the recovery timer
guarantees that the connection ends up in a recovery
phase and does not swamp the network with inade-
quate retransmissions, even in case of underestima-
tion of the round trip time. We have also observed
in the simulations presented in Sections 7.1 and
8.2 that the expiration of such a retransmission
timer is always appropriate. The system is stable
even when the round trip time is under-estimated
(as well as the recovery and retransmission timers).
Moreover, our simulations have revealed that the
behavior of the loss-resilience system is not sensitive
to the actual value of the retransmission timeout.3

Hence, we conclude that defining the retransmission
timeout as a roughly proportional but larger version
of the recovery timeout prevents unstable behavior
of the system. At the same time, it permits efficient
recovery of multiple losses of the same packet.

From a functional point of view, it is worth not-
ing that the retransmission timer triggers the

2 If dupacks is reset to zero immediately after the retransmission
of a packet, subsequent duplicate acknowledgments that corre-
spond to the same window of emission would trigger an
additional and probably useless retransmission.

3 Setting the retransmission timeout to 1.5 or 3 times the
recovery timeout did not significantly affect the behavior of the
system.

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1479

Author's personal copy

required retransmissions before expiration of the
recovery timer, even if its timeout is larger than
the recovery timeout. This is because the explicit
congestion control authorizes frequent resets of
the recovery timer each time a new or duplicate
ACK is received, while it only resets the retransmis-
sion timer in response to a new ACK. That comple-
mentarity between the recovery and the
retransmission timer is fundamental and probably
represents one of the most important findings in
our study. We show later in Sections 7.1 and 8.2
that the proposed retransmission timer improves
the connection efficiency significantly beyond the
benefit that is already provided by partial deflation
of swnd and aggressive reset of the recovery timer.

4.4. Summary and discussion

The main differences between the retransmission
and recovery mechanisms proposed in this paper
and the ones implemented in TCP are twofold. First,
losses are not interpreted as a signal of congestion in
the explicit control framework, which avoids the need
to sharply reduce the congestion window in response
to duplicate ACKs. It permits to keep the connection
active and efficient as long as enough ACKs are
received. The connection efficiency is preserved since
the congestion window stays unchanged upon recep-
tion of a duplicate ACK, and the send-out window is
only partially deflated upon reception of a new ACK.
Second, the presence of a retransmission timer also
contributes to preserve the connection efficiency as
it allows for a reset of the recovery timer each time
a new ACK or a duplicate ACK is received. Such
an aggressive reset strategy is especially beneficial in
conjunction with the partial deflation of the conges-
tion window. Hence, we conclude that the window
and timer management mechanisms introduced
above nicely complement each others. They contrib-
ute together to the robustness of the explicit conges-
tion control framework in the presence of packet loss.

Finally, we emphasize that the proposed mecha-
nisms are strictly dedicated to an explicit congestion
framework, but can not contribute to improve the
performance of an implicit congestion control algo-
rithm. As an example, our simulations have revealed
that the partial deflation of swnd, already proposed
by TCP NewReno, brings a significant benefit when
implemented in the context of an explicit congestion
control, but does not significantly help in a classical
TCP context. In TCP, duplicate ACKs cause a
decrease of the congestion window size, which allevi-

ates the benefit obtained from a partial deflation of
swnd. Similarly, in an implicit congestion control
framework, it is far better to reset the connection in
presence of multiple losses, rather than to use a
retransmission timer that keeps the connection alive
but severely strangled due to the cwnd back off.

5. Loss monitoring and recovery with explicit

acknowledgments

With the limited information available from
cumulative acknowledgments, a sender can only
learn about a single lost packet per round trip time.
We rather consider here precise feedbacks about
packet arrival, and analyze how the window-based
congestion control can take advantage of such rich
feedbacks in lossy environments. We first present
the protocols that allow to include a rich feedback
within receiver acknowledgments. Then we describe
the novel loss retransmission mechanisms that have
been specifically designed to exploit this feedback
information in an explicit congestion control frame-
work. Simulation results are later provided in Sec-
tions 7 and 8.

5.1. Packet sequence number feedback

The main limitation of cumulative acknowledg-
ments comes from the imprecise information that
they convey about the status of the connection.
Upon reception of a duplicate ACK, the sender
can not infer which exact packet has triggered the
ACK, and consequently, which data segment has
reached the receiver. A simple way to circumvent
this limitation is to uniquely identify every packet
that is sent on the network, and to force the receiver
to include that unique identifier within the acknowl-
edgments returned to the sender. In our simulator,
this has been done by adding a field to the packet
header that contains its packet sequence number.
Remember from Section 2 that the packet sequence
number is defined based on a counter incremented
by one each time a new packet is sent. Every time
the source sends a packet, it writes the state of the
counter in the packet header, and increments the
counter by one. This concept of packet sequence
number has been introduced previously by Keshav
and Morgan [22] for the design of efficient retrans-
mission mechanisms in the context of rate-based
congestion control, where the transmission of new
packets and the loss recovery mechanisms are
totally decoupled [22]. On the contrary, we are inter-

1480 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

ested in window-based congestion control. We ana-
lyze the benefit offered by a feedback including
packet numbers when the emission of novel data
segments is directly constrained by a send-out win-
dow, whose head is attached to the largest cumula-
tive acknowledgment received by the sender.

Note that another way for the sender to learn
about the data segments that have reached the recei-
ver is the selective acknowledgment (SACK) option
proposed for TCP [23]. We have not consider this
mechanism here, but we expect that conclusions
drawn from our implementation can be extended
to SACK implementations.

5.2. Retransmission based on accurate loss

monitoring

When informed about the data segments that have
been correctly received, the sender can adopt intelli-
gent strategies to retransmit the missing data. Based
on the feedback about the packets that have been
received in or out of order, the sender updates a
loss-monitoring window. It records information about
the segments that are still waiting for a cumulative
ACK, and its size is limited by the largest number
of out-of-sequence packets that can be buffered at
the receiver (i.e., rwnd). We now define how the
loss-monitoring information is maintained, and later
explain how this information is exploited to trigger
data retransmissions.

Let N < rwnd denote the size of the loss-monitoring
window, in packets. Given the largest acknowledged
data sequence number ðlackÞ, the loss-monitoring win-
dow stores the state of all segments whose data sequence
number j verifies lack < j < lack þ 1þ N . In practice,
we use a circling buffer to store the state of the relevant
data segments. Let W ½�� be an array of size N. At any
time, W ½j mod N � stores the loss-monitoring window
state corresponding to the jth data segment. Given
lack < j < lack þ 1þ N , W ½j mod N � is defined as
follows:

� W ½j mod N � ¼ FREE, with FREE being a con-
stant flag value, when the jth data segment has
not yet been sent over the network;
� W ½j mod N � ¼ RECV , with RECV being a con-

stant flag value, when the jth data segment has
been received out of order by the receiver;
� W ½j mod N � ¼ X , with X > 0 being the packet

sequence number of the latest packet sent over
the network and conveying the jth data segment,
in any other case.

In more details, the loss-monitoring window state
variable is maintained as follows:

1. First, each array position is initialized to the con-
stant FREE value, indicating that each block of
the array is available to store the state of future
data segments.

2. When a packet is sent out, the loss-monitoring
window is updated as follows. Let d denote the
data sequence number of the data segment con-
veyed by the packet, and p be the packet sequence
number. Then, W ½d mod N � is set to p, indicating
that all packets with a packet sequence number lar-
ger than p have been sent out before the last emis-
sion of the dth data segment. Recording this
information is important for the retransmission
mechanism proposed hereunder.

3. Upon reception of a new ACK, the lack state
variable is updated. W ½j mod N � is reset to
FREE, 8j such that olack < j < nlack. This indi-
cates that the corresponding positions of the
array are now available to store the state of
future data segments. Note that before sending
out a new data segment n on the network, the
sender has to check that W ½n mod N � ¼ FREE,
to ensure that the new segment will not exceed
the storage capacity of the loss-monitoring
window.

4. Upon reception of a duplicate ACK, W ½d mod N �
is set to RECV, where d denotes the sequence num-
ber of the data segment conveyed by the packet
that has triggered the ACK. It means that the
dth data segment has been correctly received. Note
that packet number can be read from the header of
the received ACK, and that the sender obviously
knows which data segment has been sent in a given
packet.

Given the state of the loss-monitoring window
W ½��, the design of novel retransmission mechanisms
is driven by the following rules. First, a data seg-
ment can only be retransmitted once the sender
has received dupackthreshold acknowledgments,
triggered by packets that have been sent out later.
Second, the number of retransmissions per dupack-

threshold acknowledgments is limited to one. Third,
a data segment should only be retransmitted once
per RTT, so as to preserve the ‘packet conservation’
principle. To follow these rules, we define the state
variable rseqn to denote the sequence number of
the data segment that is expected to be the best
candidate for a retransmission. Among all data

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1481

Author's personal copy

segments monitored in the window W, rseqn is
defined as the segment with the least recent
(re)transmission, and for which the sender has no
indication about correct delivery. Formally, given
W ½:�, rseqn is defined by

rseqn ¼ arg min
lackþ1<j<lackþ1þN ; W ½j�6¼RECV =FREE

W ½j�: ð1Þ

Let dupcount then denote a counter that is incre-
mented by one every time an ACK triggered by a
packet whose sequence number is larger than
W ½rseqn� reaches the sender, without indication on
the correct reception of the rseqnth data segment.
This happens when the ACK or packet correspond-
ing to the last retransmission of the rseqnth data
segment has either been delayed or lost. When dup-

count reaches dupackthreshold, the rseqnth data seg-
ment is finally retransmitted. After a retransmission,
or after the sender received an ACK indicating the
correct reception of the rseqnth data segment, dup-

count is reset to zero and rseqn is updated based
on Eq. (1). To avoid multiple retransmissions of
the same data in a single RTT, dupcount is only reset
to zero once the packet sequence number gets larger
than W ½rseqn� þ cwnd.

We note here that the send-out window is respec-
tively inflated or partially deflated in response to a
duplicate ACK or to a new ACK, as explained in
Section 4.1. The inflation/deflation process is impor-
tant to keep the connection active while lost seg-
ments are retransmitted. Moreover, both the
retransmission timer and the aggressive recovery
timer defined in Sections 4.3 and 4.2 are also used
in conjunction to the loss-monitoring window.

6. Simulation setup and performance evaluation

Sections 7 and 8 analyze through simulations the
advantages and limitations of the retransmission
mechanisms presented in Sections 4 and 5, in the
context of explicit window-based congestion con-
trol. The purpose of those simulations is to check
that the proposed loss recovery mechanisms permit
to exploit a stable window-based control algorithm
in a lossy environment. We are thus not directly
concerned by the stability and convergence issues
– we assume they have been studied while designing
and testing the protocol in lossless environments –
but rather by the preservation of the protocol effi-
ciency in presence of losses, as attested by a fair par-
tition of bandwidth between contending lossy and
lossless connections. We present results based on

ns-2 simulations in a simple topology that has been
chosen in order to check whether the fair control of
the connections is preserved in presence of losses.
This topology is represented in Fig. 1, where n
sources share a bottleneck link. Half of the flows
ends up in node N2, through a loss-free link, while
the other half ends up in node N3, across the lossy
link. We refer to the flows that go through the lossy
(loss free) link as lossy (loss free) flows. All links
have a bandwidth equal to 5 Mbps, and a propaga-
tion delay of 20 ms. In the rest of the paper, the
number of sources n is equal to 10, packet size is
set to 1000 bytes, and losses generated on the lossy
link are either randomly distributed (default case),
or follow a bursty process.

In order to evaluate the performance of the pro-
posed loss-resilience mechanisms, we measure the
bottleneck link utilization and analyze how the bot-
tleneck bandwidth is partitioned between loss-free
and lossy links. A desirable solution ensures full-
link utilization and a fair partition of the bottleneck
between the connections, independently of whether
they are affected by losses or not. Hence, for the
above topology, the performance of loss-resilient
protocols is estimated by comparing the sum of
the bottleneck throughputs measured for lossy and
loss-free flows. An equal usage of the bottleneck
by lossy and loss-free flows reflects good perfor-
mance of the loss-resilience mechanisms.

To support the reading, Table 1 introduces the
terminology used to denote the transport protocols
obtained when combining XCP [1] or XTCP with
several loss retransmission mechanisms. In Table
1, XCP_dumb refers to the implementation pro-
posed in [1]. It simply relies on the mechanisms
implemented by TCP Reno to recover from losses,
without exploiting the advantages provided by the
explicit congestion framework. In contrast, XCP
does not halve cwnd upon reception of a duplicate

3
n/2+1

S
R

N

1

0

S

S

S

S

1

2

3

4

n

1N

Bottleneck
link

link
Loss–free

R R2 n/2

Rn

Lossy
link

N

N

2

R

Fig. 1. Network topology reflecting different users accessing a
bottleneck through links with different loss characteristics, e.g.
wired and wireless.

1482 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

ACK, and only partially deflates swnd upon new
ACK reception. We then use the prefix LR to
denote the implementations of retransmission timer
and aggressive reset of the recovery timer (see Sec-
tions 4.3 and 2.2.3). The suffix PA then indicates
that partial acknowledgments are used to trigger
fast retransmissions (see Section 2.2.2). Finally,
LMXCP assumes that the packet sequence number
is conveyed by the packet header to allow for accu-
rate loss monitoring, as described in Section 5.2.
The last acronym, namely LR-LMXTCP_TCP-
friend, refers to a TCP-friendly version of LR-
LMXTCP, defined in Section 8.

7. Loss-resilient XCP validation

7.1. Performance of loss-resilient mechanisms

As explained above, the performance of the pro-
posed loss recovery mechanisms can be evaluated in
terms of the fairness between the lossless and lossy
connections that share a common bottleneck link.
Therefore, we first analyze the throughputs offered
to lossy and lossless flows in the network topology
presented in Fig. 1. On the one hand, Fig. 2a illus-
trates the problem encountered by the reference
implementation of XCP [1] in lossy environments.
We observe that the presence of losses causes starva-

tion of the lossy flows. This is because, by default, the
XCP loss recovery mechanisms are the ones opti-
mized for TCP, and do not exploit the explicit frame-

Table 1
Acronyms for loss-resilient XCP and XTCP protocols

Acronym Definition

XCP_dumb eXplicit Control Protocol with
retransmission and recovery mechanism
implemented as in TCP Reno, similar to [1]

XCP eXplicit Control Protocol with partial
deflation of swnd and preservation of cwnd

upon loss observation (see Section 4.1)
XCP_PA XCP + retransmissions based on partial

ACKs (see Section 2.2.2)
LR-XCP XCP + retransmission timer (see Section 4.3)
LR-XCP_PA XCP_PA + retransmission timer
LR-LMXCP XCP + retransmissions based on accurate

loss-monitoring (see Section 5)
LR-XTCP eXplicit TCP with retransmission timer and

recovery mechanisms adapted to the explicit
congestion control framework (see Section
4.4)

LR-XTCP_PA LR-XTCP + retransmissions based on
partial ACKs (see Section 2.2.2)

LR-LMXTCP eXplicit TCP + retransmissions based on
accurate loss-monitoring (see Section 5)

LR-LMXTCP-
TCPfriend

LR-LMXTCP + mechanism to ensure TCP
friendliness (see Section 8.1)

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

XCP_dumb - loss-free
XCP_dumb - lossy (5%)

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XCP_PA_D1 - loss-free
LR-XCP_PA_D1 - lossy (5%)

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR_LMXCP_D1 - loss-free
LR_LMXCP_D1 - lossy (5%)

Total

Fig. 2. Sums of throughputs measured respectively for loss-free
and lossy flows. Sums of throughputs are plotted as a function of
time, and loss rate is set to 5% for lossy connections. In all
graphs, the dupackthreshold parameter is set to 1 (as indicated by
D1).

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1483

Author's personal copy

work specificities. On the other hand, we show in
Fig. 2b and c, that the presence of loss-resilient mech-
anisms dedicated to the explicit control framework
permits a better distribution of resources between
heterogeneous connections and significantly
improves the fairness in comparison with Fig. 2a.
We also observe that the accurate monitoring of
losses performed by LR-LMXCP mitigates the
throughput fluctuations due to loss-related connec-
tion backoffs.

We now analyze in more details the performances
of the proposed algorithms. Fig. 3 presents the fair-
ness ratio measured between lossy and loss-free
flows as a function of the loss rate. The fairness
ratio between lossy and loss-free flows is defined
as the ratio between the sums of throughputs mea-
sured respectively for all lossy and loss-free flows
on the bottleneck link. Without surprise, we observe
that the fairest and the worst bottleneck bandwidth
allocation are achieved by the LR-LMXCP and the
XCP_dumb protocol, respectively. In addition, we
observe that LR-XCP_PA performs significantly
better than XCP_PA. We conclude that the pres-
ence of a retransmission mechanism based on a
timer is worthwhile. By comparing LR-XCP with
LR-XCP_PA, we observe that partial acknowledg-
ments mainly help at high loss rates, i.e., when more
than one packet is likely to be lost in a single RTT.
Additional results presented in [24] show that the
benefit of LR-LMXCP over LR-XCP is exacerbated
when the dupackthreshold parameter is small and
the loss rate is high. In that case, retransmissions
are rapidly triggered by LR-LMXCP, and losses
are rapidly recovered. If needed, several different
data segments might be retransmitted in a single
round trip time. On the contrary, even with a small

dupackthreshold, LR-XCP can only consider the
retransmission of the ðlack þ 1Þth segment, and is
therefore limited to a maximum of one retransmis-
sion per round trip time.

7.2. Bottleneck link utilization

The (loss-resilient) XCP protocols therefore fail to
achieve full-link utilization. In Fig. 2b, we observe
that the total throughput traces do not saturate at
5 Mbits/s. This is confirmed by a detailed analysis
provided in [24]. When the loss rate increases, the
sum of the loss-free and lossy throughputs becomes
smaller than 5 Mbits/s. We explain this link utiliza-
tion deficiency by the small queue sizes maintained
by XCP routers [1], which makes them unable to
absorb rate fluctuations that can be due to a recovery
phase caused by packet losses.

In order to improve the link utilization, we pro-
pose to maintain non-zero persistent queues in XCP
routers. Therefore, we have modified Eq. (1) in [1]
so that the efficiency controller targets both maximal
link utilization and a non-zero persistent queue. Spe-
cifically, Q is replaced by ðQ� cÞ in Eq. (1) of [1],
where c denotes the size in packets of the targeted per-
sistent queue. Q is defined based on the Q samples as
follows. In [1], a Q sample corresponds to the mini-
mum queue seen by an arriving packet during the last
propagation delay. This definition results in large
fluctuations of Q along the time. To derive a stable
signal from Q, we define Q as the exponential
weighted average of the Q samples, i.e., each time a
new Q sample is generated, Q is set to
b Qþ ð1� bÞ Q. In our simulation, b is set to 0.9,
while the persistent queue c is set to 10 packets. The
thresholds defining the RED queue policy [21] have
been increased accordingly. Fig. 4 presents the results
obtained with and without persistent queues in XCP
routers for the LR-XCP_PA protocol. We observe
that the presence of persistent queues in routers pre-
serves the bottleneck link utilization. We conclude
that, even when accurate congestion control is possi-
ble, persistent queues in routers remain useful to
absorb the unpredictable throughput fluctuations
resulting from packet losses, which may cause the
expiration of the recovery timer, for example.

7.3. Receiver buffers

Fig. 5 illustrates the impact of the constraint
imposed on the sender by the receiver advertised
window, which reflects the receiver buffer capacity,

0

 0.2

 0.4

 0.6

 0.8

1

0 2 4 6 8 10

Fa
ir

ne
ss

 r
at

io

Error rate (%)

XCP_dum
XCP_D3

XCP_PA_D3
LR-XCP_D3

LR-XCP_PA_D3
LR-LMXCP-D3

Fig. 3. Fairness ratio measured between lossy and loss-free flows
as a function of the loss rate. dupackthreshold ¼ 3.

1484 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

and its ability to store out-of-sequence packets [20].
It constrains the send-out window of the sender and
limits the number of packets the sender can send in
advance, while waiting for the recovery of a lost
packet. Fig. 5 shows that the performance of LR-
LMXCP only significantly degrades when the con-
straint on the send-out window becomes of the same
order of magnitude as the congestion window. The
same conclusion holds for LR-XCP [24]. This obser-
vation is important because it demonstrates that
efficient loss-resilient mechanisms do not require
large buffering capabilities from the end-hosts.

7.4. Bursty losses

Finally, we discuss the effects of bursty loss pro-
cesses on the congestion control performance. Fig. 6

analyzes how the correlation of losses affects the
retransmission mechanisms. In these simulations,
each loss event causes the loss of X consecutive
packets on a flow, with X ranging from 1 to 4. As
expected, we observe that LR-XCP mechanisms
are more sensitive to bursts of losses than LR-
LMXCP. This is because LR-XCP mechanisms
retransmit at most one packet per round trip time,
and are thus less efficient than LR-LMXCP when
multiple losses occur in the same window of data.
Interestingly, we finally observe that the retransmis-
sion mechanism based on cumulative ACKs
remains competitive (compared to LR-LMXCP) at
low loss rates when losses are bursty.

8. Loss-resilient XTCP analysis

In this section, we explore the behavior of the
novel explicit TCP (XTCP) in presence of losses,
and consider its gradual deployment. We use the
simulation setup described in Section 6, and analyze
the combinations of XTCP with loss-resilience
mechanisms that are defined in Table 1.

8.1. Gradual deployment: joint TCP and XTCP

queuing

We consider the coexistence of TCP and XTCP
traffic, and we describe a mechanism that allows
end-to-end loss-resilient XTCP flows to compete
fairly with TCP flows. This mechanism provides a
possible path for incremental XTCP deployment.

 4.5

 4.6

 4.7

 4.8

 4.9

5

0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

LR-XCP_PA_D1
LR-XCPQ_PA_D1

Fig. 4. Comparison between an XCP router that minimizes the
persistent queue, and an XCP router that targets a persistent
queue of 10 packets (LR-XCPQ_PA). The graph plots the
bottleneck link utilization as a function of the loss rate for both
systems.

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Receiver advertised window (packets)

LR-LMXCP_D1 - loss-free
LR-LMXCP_D1 - lossy (5%)

LR-LMXCP_D3 - loss-free
LR-LMXCP_D3 - lossy (5%)

Fig. 5. Impact on fairness of the constraint imposed on the send-
out window by the receiver advertised window. dupackthreshold is
respectively set to one and three, and the lossy connections
experience 5% of losses.

0

1

2

3

4

5

0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

B1 - LR-XCP-PA
B4 - LR-XCP-PA
B1 - LR-LMXCP
B4 - LR-LMXCP

Fig. 6. Impact on fairness of the bursty nature of losses
appearing on the lossy link. The acronym BX, with X ¼ 1 or 4,
means that each time a loss event happens, X consecutive packets
are dropped on the link. The loss rate refers to the product of loss
event with the X parameter. Curves on the upper (lower) half of
the graph refer to loss-free (lossy) connections.

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1485

Author's personal copy

An XTCP-enabled router queues both TCP and
XTCP traffics together in a single buffer, but only
increments or decrements the XTCP congestion
counter when it deals with XTCP packets. TCP
and XTCP routers are therefore very similar, and
only minor changes are necessary to enable XTCP
in a router, which surely facilitates the deployment
of XTCP. To start a loss-resilient XTCP connec-
tion, the sender then has to check whether the recei-
ver and the routers along the path are XTCP
enabled. As mentioned in [1] while evoking the pos-
sibility of jointly handling TCP and XCP in two dis-
tinct queues of a single router, this kind of
verification can be done using TCP and IP options.
If routers are not compliant with XTCP, the sender
reverts to TCP.

In order to permit such a gradual deployment of
XTCP, we now extend the design of loss-resilient
XTCP into a TCP-friendly version, which leads to
a fair allocation of resources between TCP and
XTCP flows. First, we have estimated the level of
(un)fairness between TCP and XTCP, based on a
simulation that compare the sum of throughput
measured on the bottleneck link, for TCP and
LR-LMXTCP flows respectively. The topology con-
sidered for this simulation is the one described in
Fig. 1. Routers obey a drop tail policy, and are
XTCP enabled. All links are loss-free. Half of the
flows are TCP flows. The others are LR_LMXTCP.
In Fig. 7a, we observe that LR-LMXTCP flows
achieve three to four times larger throughputs than
TCP flows. This unfairness is mainly due to the dif-
ferent behavior of LR-LMXTCP and TCP when
they face (congestion) losses. LR-LMXTCP handles
losses in an efficient way, while TCP generally
resorts to a recovery phase when more than one loss
occur in a single flight of packets [6].

To increase fairness between XTCP and TCP, we
propose a simple change to the design of the loss-
resilient XTCP sender, so that it triggers an artificial
connection back-off when it detects conditions for
which TCP is expected to experience a timeout.
We use the LR-LMXTCP_TCPfriend acronym to
refer to this version of LR-LMXTCP. The artificial
back-off emulates the TCP recovery process
described in Section 2.2.3. It consists in resetting
the congestion window to one, but without resetting
the nextseq state variable to lack þ 1. To mimic the
TCP recovery phase, a state variable, denoted rec-

phase, is updated to the largest data sequence num-
ber ever sent out by the sender, and the congestion
window is not incremented based on received

acknowledgments as long as the lack state variable
remains smaller than recphase. The artificial back-
off is triggered when (i) a congestion flag is received
and (ii) either the congestion window is smaller than
dupackthreshold, or two congestion flags are
received in less than one RTT. These conditions
reflect the fact that a loss ends up in a recovery
phase for TCP either when the connection can not
enter a fast recovery phase, or when two packets
are lost in a single RTT. The plots provided in
Fig. 7b reveal that this modification is efficient, since
LR-LMXTCP_TCPfriend now competes fairly with
TCP, while reaching full-link utilization.

For the sake of completeness, we discuss here
cases where loss-resilient transport protocols are
desirable, thereby motivating the deployment of
our proposed solution. In general, we distinguish
two kinds of communication applications, depend-

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 50 100 150 200 250 300

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP
TCP reno

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 50 100 150 200 250 300

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP - TCPfriend
TCP reno

Total

Fig. 7. Throughput traces showing how loss-resilient XTCP
competes with TCP. (a) LR-LMXTCP is unfair to TCP, (b) LR-
LMXTCP with artificial backoff simulations achieves improved
fairness.

1486 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

ing on whether they support transmission errors or
not. For example, a file transfer application requires
a reliable connection, while a video streaming appli-
cation can support moderate loss rates. In current
networks, TCP is commonly used for reliable trans-
fers, thereby forcing every link in the network to be
reliable. In particular, in wireless environments, the
fact that TCP does not support non-congestion-
related losses forces the network to handle radio
losses at the link layer, by adjusting wireless trans-
mission power and local retransmission mecha-
nisms. A non desired consequence is the fact that,
independently of the transport protocol (UDP or
TCP), the losses affecting a video streaming applica-
tion are also handled at the link level. A more desir-
able solution would handle losses and decide about
the relevance of retransmissions at the application
level, by taking into account the relative importance
of packets with respect to the reconstructed video
quality. The implementation of our proposed solu-
tion changes the global picture. Indeed, it gives the
transport layer the ability to deal reliably and effi-
ciently with losses that are not due to congestion.
This in turns permits the wireless link to relax the
constraint imposed on retransmission mechanisms,
thus pushing the decisions about retransmission
towards higher layers of the protocol stack and clo-
ser to the application layer. Hence, differentiated
processing of losses can be implemented for distinct
applications, and globally more efficient usage of
wireless resources could hopefully be achieved. Typ-
ically, file transfer applications would rely on XTCP
to achieve reliability on top of error-prone wireless
links, while video streaming applications would
implement their own loss-resilience mechanisms on
top of a UDP session whose rate could be controlled
based on the explicit notifications received from
routers.

8.2. Loss-resilient XTCP performances

We now use simulations to analyze the perfor-
mance of loss-resilient XTCP protocols. Fig. 8 pre-
sents the results in terms of fairness ratio between
lossy and lossless flows. We observe that TCP rap-
idly starves the lossy flows. This is illustrated for
TCP Reno, but the conclusion holds for other ver-
sions of TCP (New Reno and SACK), since their
behavior in presence of losses is dominated by cwnd

shrinkage upon loss detection. We also see that the
retransmission based on partial ACKs only
improves LR-XTCP beyond a sufficient loss rate.

Moreover, we note that an accurate feedback, as
explored by LR-LMXTCP, brings a significant
improvement over approaches that are based on
cumulative ACKs. Because LR-LMXTCP preserves
high efficiency at high loss rates, we conclude that
window-based congestion control protocols, when
coupled with a precise feedback from the receiver,
are able to support lossy environments. In addition
to these general conclusions, we also observe that
LR-LMXTCP-TCPfriend performs even better
than LR-LMXTCP, since the artificial backoff
introduced in this TCP friendly version improves
the fairness between lossless and lossy flows.

Interestingly, in-depth comparisons between
Figs. 8 and 3 reveal that LR-XTCP performs worse
than LR-XCP for loss rates larger than 1%. We
explain that observation by the fact that a connec-
tion controlled based on a binary congestion feed-
back is severely impaired when simultaneously
affected by losses and congestion notifications.
Indeed, upon congestion notification, cwnd is halved
by two. In presence of losses, the head of the send-
out window stays blocked at the last acknowledged
data segment, and the amount of transmitted data
per RTT gets directly penalized by the sharp reduc-
tion of cwnd. We conclude that the smooth regula-
tion of cwnd supported by XCP is helpful in
presence of heavy loss rates, at least when the sender
infers losses based on cumulative acknowledgments.
In contrast, when the sender receives accurate infor-
mation about received data segments from the recei-
ver, we observe that similar loss resilience is
achieved whatever the smoothness of the congestion
control mechanism, and LR-LMXCP and LR-
LMXTCP perform equally well. In presence of

0

 0.2

 0.4

 0.6

 0.8

1

0 2 4 6 8 10

Fa
ir

ne
ss

 r
at

io

Error rate (%)

TCP Reno
LR-XTCP

LR-XTCP_PA
LR-LMXTCP

LR-LMXTCP-TCPfriend

Fig. 8. Fairness ratio measured over the bottleneck between lossy
and loss-free flows, as a function of the loss rate. Losses are
randomly distributed. The dupackthreshold parameter is set to 3.

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1487

Author's personal copy

accurate feedback about packet arrival, each con-
nection indeed triggers the retransmissions faster.
We conclude that either a finely-tuned congestion
control or an accurate loss monitoring is required

to face large error rates. In other words, the combi-
nation of a coarse cwnd adjustment mechanism with
cumulative acknowledgments results in a lack of
aggressiveness of lossy connections compared to
the connections that are not subject to losses.

To complete these results, Figs. 9 and 10 further
analyzes the behavior of the TCP-like explicit con-
gestion control algorithms. When the connection
bandwidth-delay product increases, Fig. 9 shows
that LR-LMXTCP preserves higher utilization of
the bottleneck link than TCP or LR-
LMXTCP_TCPfriend. This is not surprising since
(i) connection backoff is more frequent with TCP
than with LR-LMXTCP, and (ii) a backoff penal-
izes the bottleneck utilization in presence of a large
bandwidth-delay product that makes the queues too
small to absorb the temporary reduction of sending
rate associated to the backoff. Besides, Fig. 10 ana-
lyzes the temporal fluctuation of the lossless and
lossy connection throughputs for different proto-

3

 3.5

4

 4.5

5

 10 20 30 40 50 60 70

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Link delay (ms)

TCP Reno
 LR-LMXTCP - TCPfriend

 LR-LMXTCP

Fig. 9. Bottleneck link utilization as a function of the link delay
parameter. Queue size is fixed to 50 packets.

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

TCP Reno - loss-free
TCP Reno - lossy (5%)

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XTCP_PA - loss-free
LR-XTCP_PA - lossy (5%)

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP - loss-free
LR-LMXTCP - lossy (5%)

Total

0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP-TCPfriend - loss-free
LR-LMXTCP-TCPfriend - lossy (5%)

Total

Fig. 10. Sum of loss-free and lossy flow throughputs as a function of time. Losses are randomly distributed with a loss rate of 5%.

1488 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

cols, and shows that the TCP friendly throughputs
fluctuate more than the non-friendly ones. This is
in accordance with what we expect from TCP-like
connection backoff.

9. Related works

The first paragraph of this section surveys the
numerous research efforts that have been made in
order to improve TCP performance over lossy links.
Because TCP interprets any kind of losses as a con-
gestion notification, without any precaution, TCP
results in flow starvation over lossy links. The prob-
lem is well-known, especially in wireless environ-
ments. In the past decade, three main approaches
have been considered to circumvent that problem
[13–16]. The first one consists in increasing link-
layer reliability to hide link-related losses from
TCP sender [25–27]. The second one splits the
end-to-end connection, and terminate the TCP con-
nection at the base station to hide the lossy link
from the sender [28,29]. The third approach works
end-to-end, and attempts to give the TCP sender
the capability to handle appropriately losses that
are not related to congestion. Some of those
schemes builds on refined TCP acknowledgments
to allow the TCP sender to recover from multiple
losses, without resorting to a coarse timeout
[23,30,31]. Others methods distinguish between con-
gestion-related losses and other forms of losses,
either based on explicit loss notification [13], or on
end-to-end bandwidth estimation [32]. A last strat-
egy proposed to handle non-congestion-related
losses consists in delaying or in freezing the conges-
tion response algorithms to allow the recovery of
the losses caused by channel errors [16] or hand-offs
[15,33]. In a sense, our work is related to the third
approach, since we do not attempt to hide losses
to the sender, but we rather give the sender the
capability to handle them. However, our work is
quite different from the approaches described in
the above references, essentially because our goal
is not to improve TCP performance, but rather to
explore the limitations of the window-based conges-
tion control paradigm in lossy environments.

In parallel to solutions for circumventing the fra-
gility of TCP to non-congestion-related losses, a
number of works have proposed to decouple con-
gestion control from the observation or inference
of losses, similarly to our work. In [12], the size of
the congestion window is adapted based on the
explicit rate feedback provided by the bottleneck.

The authors analyze the performance improvement
resulting from the explicit and fine-granular partici-
pation of the network in the congestion control.
They do not specifically address the loss-resilience
problem, and in consequence, they do not encour-
age the use of aggressive retransmission mecha-
nisms. In [14], the authors exploit the fact that the
packet error-rate on wireless links is proportional
to the packet size, and propose to control conges-
tion based on the loss patterns observed for tiny
TCP/IP header packets. Doing so, they decouple
the congestion control from the wireless losses
affecting the large data packets. While discussing
the performance of their proposed decoupling strat-
egy, the authors in [14] mention that it is important
to be aggressive in retransmitting lost data, as long
as their transmission is allowed by the congestion
window defined based on the small control packets.
In that, they stick to one of the main conclusions of
our investigations. We go beyond by understanding
and alleviating the limits of conventional loss recov-
ery mechanisms when used in conjunction with
explicit congestion control mechanisms. Another
work of interest is described in [34], where the
authors demonstrate that explicit congestion notifi-
cation (ECN) is unable to distinguish between con-
gestion and wireless losses. They propose to control
the flow only based on ECN bits, i.e., without
adjusting the congestion window in response to loss
packets. In that, the approach is similar to our pro-
posed XTCP. However, the authors in [34] do not
discuss the need and relevance for aggressive loss
retransmission mechanisms, which is the central
component of our contribution. Hence, to the best
of our knowledge, none of the earlier works has
provided a detailed investigation and a precise
description of retransmission mechanisms dedicated
to an explicit window-based congestion control
framework.

10. Conclusions

We have considered the design of retransmission
strategies dedicated to an explicit window-based
congestion control framework in the context of
two different receiver feedback mechanisms. With
conventional cumulative acknowledgment mecha-
nisms, preservation of the cwnd upon reception of
a duplicate ACK, partial deflation of the send-out
window upon reception of a new ACK, and reset
of the recovery timer upon reception of both new
and duplicate ACKs appear to significantly contrib-

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1489

Author's personal copy

ute to maintain the connection efficiency in presence
of losses. An original retransmission timer has then
been proposed as a complement to the recovery
timer to handle multiple losses of the same data seg-
ment. In the presence of richer acknowledgments,
we have designed loss monitoring and recovery
mechanisms capable to exploit precise knowledge
about packet reception, in order to increase retrans-
mission aggressiveness.

The proposed approaches have been validated
through simulations, both for the XCP protocol
introduced in [1], and for an original eXplicit TCP
(XTCP) protocol. XCP is characterized by a smooth
and precise adjustment of the congestion window in
response to accurate and finely-tuned feedbacks
computed by XCP routers, while XTCP relies on
binary notification about congestion to coarsely
adjust the congestion window. The performance of
the proposed loss recovery mechanisms are evalu-
ated in terms of the fairness between the lossless
and lossy connections sharing a common bottleneck
link. Our simulation results have shown that, when
the sender is directly notified about packet arrival at
the receiver, both XCP and XTCP achieve full utili-
zation and fair partition of the bottleneck resources
between lossy and lossless connections. Whilst being
always advantageous, a precise notification of
received packets to the sender however becomes
almost mandatory when the congestion window is
controlled based on coarse binary feedback. We
conclude that accurate feedback is required either
from the router (to support a finely-tuned conges-
tion control) or from the receivers (to monitor losses
accurately) in order to preserve the connection effi-
ciency in presence of high loss rates.

The loss-resilience mechanisms proposed in this
paper have been shown to maintain close to optimal
link utilization, and fair allocation of bottleneck
resources among lossy and lossless connections.
The combination of explicit control with dedicated
retransmission mechanisms provides thus an inter-
esting solution to establish reliable and controlled
window-based connections in a lossy environments.

Interestingly, we have also demonstrated that
TCP and XTCP may coexist fairly in a single queue
of a router, which enables gradual deployment of
the proposed explicit control solution. This might
be of particular interest when considering wireless
infrastructures. In that case, a loss-resilient control
protocol might indeed permit to relax the link-layer
loss-resilience mechanisms, leaving higher-transport
and/or application-layers of the network protocol

stack decide about the relevance of a retransmis-
sion, thereby resulting in more efficient usage of
resources.

References

[1] D. Katabi, M. Handley, C. Rohrs, Internet congestion
control for high bandwidth-delay product environments,
ACM SIGCOMM (2002) 89–102.

[2] N. Dukkipati, M. Kobayashi, Z.-S. Rui, N. McKeown,
Processor sharing flows in the internet, in: Thirteenth
International Workshop on Quality of Service (IWQoS),
LNCS 3552, Passau, Germany, 2005, pp. 267–281.

[3] N. Dukkipati, N. McKeown, Why flow-completion time is
the right metric for congestion control, ACM SIGCOMM
Computer Communication Review 36 (1) (2006) 59–62.

[4] V. Jacobson, Congestion avoidance and control, in: ACM
SIGCOMM, Stanford, CA, 1988, pp. 314–329.

[5] R.J. La, V. Anantharam, Window-based congestion control
with heterogeneous users, in: IEEE INFOCOM, Anchorage,
Alaska, 2001, pp. 1320–1329.

[6] M. Allman, V. Paxson, W. Stevens, TCP congestion control,
in: RFC 2581, 1999. <http://www.rfc-editor.org/rfc/
rfc2581.txt>.

[7] C. Partridge, T. Shepard, Tcp performance over satellite
links, IEEE Network 11 (5).

[8] S. Low, F. Paganini, J. Wang, S. Adlakha, J.C. Doyle,
Dynamics of tcp/red and a scalable control, in: IEEE
INFOCOM, New York, USA, 2002.

[9] M. Allman, D. Glover, L. Sanchez, Enhancing TCP over
satellite channels using standard mechanisms, in: RFC 2488,
1999.

[10] M.G., S. Dawkins, M. Kojo, V. Magret, N. Vaidya, Long
thin networks, in: RFC 2757, 2000.

[11] K. Ramakrishnan, S. Floyd, A proposal to add explicit
congestion notification to IP, in: RFC 2481, 1999.

[12] A. Karnik, A. Kumar, Performance of TCP congestion
control with explicit rate feedback, IEEE/ACM Transac-
tions on Networking 13 (1) (2005) 108–120.

[13] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. Katz, A
comparison of mechanisms for improving TCP performance
over wireless links, IEEE/ACM Transactions on Networking
5 (6) (1997) 756–769.

[14] S. Wang, H. Kung, Use of TCP decoupling in improving
TCP performance over wireless networks, ACM Wireless
Networks 7 (3) (2001) 221–236.

[15] T. Goff, J. Moronski, D. Phatak, V. Gupta, Freeze-TCP: A
true end-to-end TCP enhancement mechanism for mobile
environments, in: IEEE INFOCOM, Tel-Aviv, Israel, 2000,
pp. 1537–1545.

[16] S. Bhandarkar, N. Sadry, A. Narasimha Reddy, N. Vaidya,
TCP-DCR: a novel protocol for tolerating wireless channel
errors, IEEE Transactions on Mobile Computing 4 (5)
(2005) 517–529.

[17] P. Ranjan, E. Abed, R. La, Nonlinear instabilities in tcp-red,
in: IEEE INFOCOM, New York, USA, 2002, pp. 249–258.

[18] F. Baccelli, D. Hong, Interaction of TCP flows as billiards,
IEEE/ACM Transactions on Networking 13 (4) (2005) 841–
853.

[19] S. Floyd, T. Henderson, The Newreno modification to TCP’s
fast recovery algorithm, in: RFC 2582, 1999.

1490 C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491

Author's personal copy

[20] J.F. Kurose, K.W. Ross, Computer Networking: A Top–
Down Approach Featuring the Internet, Addison Wesley,
2001.

[21] S. Floyd, V. Jacobson, Random early detection gateways for
congestion avoidance, IEEE/ACM Transactions on Net-
working 1 (4) (1993) 397–413.

[22] S. Keshav, S. Morgan, SMART retransmission: perfor-
mance with overload and random losses, INFOCOM’97 3,
1131–1138.

[23] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP
selective acknowledgment options, in: RFC 2018, 1996.

[24] C. De Vleeschouwer, P. Frossard, Explicit window-based
control in lossy packet networks, Tech. Rep. TR-ITS-
2006.016, EPFL – Signal Processing Institute. Available
from: <http://lts4www.epfl.ch/~frossard/publications/pdfs/
tr_xtcp.pdf> (October 2006).

[25] H. Balakrishnan, S. Seshan, R. Katz, Improving
reliable transport and handoff performance in cellular
wireless networks, ACM Wireless Networks 1 (4)
(1995) 469–481.

[26] E. Amir, H. Balakrishnan, S. Seshan, R. Katz, Efficient TCP
over networks with wireless links, in: Fifth workshop on Hot
Topics in Operating Systems, 1995, pp. 35–40.

[27] C. Parsa, J. Garcia-Luna-Aceves, Improving TCP perfor-
mance over wireless networks at the link layer, Mobile
Networks and Applications 5 (1) (2000) 57–71.

[28] A. Bakre, B. Badrinath, I-TCP: Indirect TCP for mobile
hosts, in: Proceedings of ICDCS, 1995, pp. 136–143.

[29] K. Brown, S. Singh, M-TCP: TCP for mobile cellular
networks, IEEE/ACM SIGCOMM Computer Communica-
tion Review 27 (5) (1997) 19–43.

[30] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe
Reno and SACK TCP, SIGCOMM Computer Communi-
cation Review 26 (3) (1996) 5–21.

[31] D. Lin, H. Kung, TCP fast recovery strategies: analysis
and improvements, in: INFOCOM, vol. 1, 1998, pp. 263–
271.

[32] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, R. Wang,
TCP Westwood: end-to-end bandwidth estimation for
enhanced transport over wireless links, Wireless Networks
8 (5) (2002) 467–479.

[33] W. Lioa, C.-J. Kao, C.-H. Chien, Improving TCP perfor-
mance in mobile networks, IEEE Transactions on Commu-
nications 53 (4) (2005) 569–571.

[34] S. Biaz, X. Wang, Red for improving tcp over wireless
networks, in: International Conference on Wireless Net-
works, Las Vegas, Nevada, USA, 2004, pp. 628–636.

Christophe De Vleeschouwer was born in
Namur, Belgium, in 1972. He received
the Electrical Engineering degree and the
Ph.D. degree from the Université cath-
olique de Louvain (UCL) Louvain-la-
Neuve, Belgium in 1995 and 1999
respectively. He was a research engineer
with the IMEC Multimedia Information
Compression Systems group (1999–
2000). He has been a visiting Research
Fellow at UC Berkeley (2001–2002), and

a post-doctoral researcher at EPFL (2004). He is now a Belgian
NSF research associate at UCL in the communication and
remote sensing laboratory (TELE). His main interests concern
video and image processing for communication and networking
applications, including content management and security issues.
He is also enthusiastic about non-linear signal expansion tech-
niques, and their use for signal analysis and signal interpretation.

Pascal Frossard is an Assistant Professor
at the Signal Processing Laboratory of
EPFL (Lausanne, Switzerland), since
2003. He got his M.Sc. and Ph.D., both
from EPFL, in 1997 and 2000, respec-
tively. Between 2001 and 2003, he has
been with the IBM TJ Watson Research
Center (Yorktown Heights, NY, USA).
His current research interests include
image representation and coding, non-
linear representations, visual informa-

tion analysis, joint source and channel coding, multimedia com-
munications, and multimedia content distribution.

C. De Vleeschouwer, P. Frossard / Computer Networks 52 (2008) 1473–1491 1491

