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Abstract

In this paper we focus on passive measurements of TCP traffic. We propose a heuristic tech-

nique to classify TCP anomalies, i.e, segments that have a sequence number different from

the expected one, such as out-of-sequence and duplicate segments. Since TCP is a closed-

loop protocol that infers network conditions from packet losses and reacts accordingly, the

possibility of carefully distinguishing the causes of anomalies in TCP traffic is very ap-

pealing and may be instrumental to understand TCP behavior in real environments. We

apply the proposed heuristic to traffic traces collected at both network edges and backbone

links. By comparing results obtained from traces collected over several years, we observe

some phenomena such as the impact of the introduction of TCP SACK which reduces the

unnecessary retransmissions, the large percentage of network reordering, etc. By further

studying the statistical properties of TCP anomalies, we find that, while their aggregate ex-

hibits Long Range Dependence, anomalies suffered by individual long-lived flows are on

the contrary uncorrelated. Interestingly, no dependence on the actual link load is observed.
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1 Introduction

In the last fifteen years, the interest in data collection, measurement and analysis

of Internet traffic has increased steadily. Indeed, by acknowledging the failure of

traditional modeling paradigms, the research community focused on the analysis of

the traffic characteristics with the twofold objective of i) understanding the dynam-

ics of traffic and its impact on the network elements and ii) finding simple models

for the design and planning of packet-switched data networks.

By focusing on passive traffic characterization, we face the task of measuring In-

ternet traffic, which is particularly daunting for a number of reasons. First, traffic

analysis is made very difficult by the strong correlation in both space and time, due

to the closed-loop behavior of the client-server communication paradigm. Second,

the complexity of the involved protocols, and of TCP in particular, is such that a

number of phenomena can be studied only if a deep knowledge of the protocol de-

tails is exploited. Finally, some of the traffic dynamics can be understood only if

the forward and backward packets are jointly analyzed – which is especially true

for the detection of erratic flows behavior.

TCP is the dominant transport protocol currently deployed in the Internet, and sup-

ports a wide range of applications such as web and email applications, and newly

emerging peer-to-peer applications. Given this reliance on TCP, there is currently

great interest in understanding TCP performance and its limiting factors (such as

network congestion and sender/receiver buffer limits). TCP relies on a sliding win-

dow protocol to implement both error recovery and congestion control, numbered

segments and acknowledgments are used to detect and react to network losses and

out-of-sequence delivery. Moreover, TCP identifies a segment loss as a conges-

tion notification event, upon which the sender bitrate must be reduced. Defining,

measuring and quantifying the impact of those events can be instrumental in both

understanding and improving TCP performance.

Therefore, identify and classify all these anomalies is of primary importance. The

term anomaly is used for any segment that has a sequence number which is not the

expected one, such as out-of-sequence and duplicate segments. In this context, the

objective of this paper is to propose a heuristic classification technique of anoma-

lies that may occur during the lifetime of a TCP connection. After describing and

validating the heuristic, we apply it to a set of real traffic traces collected at different

measurement points in the Internet. Compared to all previous work, for the first to

the best of our knowledge, we provide the reader an extended set of measurements

collected in different periods, and form different networks. Results show that the

proposed classification allows us to inspect a plethora of interesting phenomena:

e.g., the impact of TCP SACK on the occurrence of unnecessary retransmissions,

the almost negligible impact of the daily load variation on the occurrence of anoma-

lous events, the surprisingly large amount of network reordering, the correlation of
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anomalies, just to name a few.

The identification and characterization of anomalies carried out in this paper can

help in verifying simplistic assumptions that researchers adopt when facing both

modeling and design problems. For example, one commonly accepted assumption

is that packet loss in the Internet can be modeled as a Bernoulli process. While this

assumption is used to simplify the modeling process, to the best of our knowledge,

it has never been verified. Our study is therefore instrumental to the definition of

crucial processes, such as loss and out-of-sequence processes, that drive network

performance.

Finally, we believe that the results presented here have a wider scope, since they

come from an extended measurement campaign and analysis of the possible events

a packet may suffer in the current Internet. While these observations are very im-

portant for issues related to TCP, they are also essential when developing some

applications such as real-time applications. For example, the fact that network re-

ordering occurs only to back-to-back packets (i.e., back-to-back packets can arrive

at the receiver in inverted sequence, but separated by a negligible amount of time)

can be considered and exploited when designing a VoIP application, in which pack-

ets are rarely sent back-to-back due to the low source bitrate. The picture changes

when considering a high-quality IPTV service, in which the out-of-sequence deliv-

ery of packets must be carefully managed.

The remainder of the paper is organized as follows: after presenting the related

work in Sec. 2, we introduce the methodology developed to classify TCP anomalies

in Sec. 3. Results obtained from test-bed, Campus LAN and Backbone traces are

presented in Sec. 4, Sec. 5 and Sec. 6 respectively. Finally, Sec. 7 concludes the

paper.

2 Related work

Internet measurement is the subject of many studies, that can be broadly classified

as using either active or passive methodologies: in the former case, injecting traf-

fic into the network is instrumental to perform the measurement, whereas passive

studies analyze existing traffic obtained from packet traces. The advantage of the

latter measurement technique, on which we restrict our attention in the following,

is that it allows to leverage large amounts of traffic (possibly millions of samples)

without the active probe overhead.

Several studies exploit passive analysis of traffic to focus on packet loss. Many

of them pertain to the area of Network Tomography [1–3], which concern the in-

ference of the internal network characteristics based on end-to-end observations.

Specifically, such studies focus on identifying the “root cause” links, i.e., the links
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that are responsible for the majority of packet losses and reordering. [1] requires

the senders to cooperate with the receiver by time-stamping the packets in order to

detect shared congested links using end-to-end passive measurements. By correlat-

ing the delay experienced by packets belonging to the same flows, authors detect

shared bottleneck links. Other techniques to identify lossy links are presented in

[2], in which authors compare Bayesian inference, random sampling and linear

programming technique to correlate link loss rate and to identify bottleneck links.

Similarly, [3] identifies TCP loss and reordering events based on the IP identifier

field, thus not requiring the observation of both directions of a TCP connection,

with the aim of identifying links that are responsible for poor end-to-end TCP per-

formance.

Rather than focusing on the description of the network links properties, we focus

on investigating how the link and path loss process affects end-to-end TCP perfor-

mance. This topic has already been explored in [4–7]. Specifically, in [4] authors

estimate the loss ratio in the network by observing TCP sequence number of only

data packets . In order to devise a methodology that applies also to the asymmet-

ric routing case, acknowledgment packets are disregarded. Rather than coping with

all the possible network dynamics, a subset of all possible segment arrival patterns

are selected to be representative for the whole figure. All unknown sequences are

disregarded. Adopting a different approach, [5] employs inference techniques to

detect packet losses from reordering events: on arrival of a duplicated acknowledg-

ment, the delay since the transmission of the first unacknowledged packet is tested

using a Bayesian framework based on the distribution of round trip times of the

immediately preceding packets. In case of packet drop, a high delay is suffered

from the highest sequence numbered packets, since an almost-full queue must be

traversed. On the contrary, that penalty is not suffered in case of packet reordering.

The authors show that the proposed methodology is very effective to predict packet

reordering from packet drops on long-lived flows, but fails with short-lived ones.

Our aim in this paper is to provide a reliable classification of all possible events,

and then to study their statistical properties.

The closest work to ours is presented in [6,8,7]. In [6], authors monitor the con-

nection at the sender side only and, aiming at being as accurate as possible, they

leverage information from both the data and acknowledgment streams. However,

the classification considers retransmission and duplicated acknowledgment events

only, therefore being very coarse. In [8] authors describe a tool for passive anal-

ysis of TCP segment traces which explicitly accounts for implementation-specific

details in prominent TCP stacks. However, the tool offers great performance only

if the source operating system (O.S.) is known, which is hardly verified when per-

forming passive trace analysis. Moreover, the tool must be updated to include de-

tails about new O.S. versions. On the contrary, the algorithm we propose stems from

IETF TCP standards [9] and follows a conservative approach, so that ambiguous

cases are not misclassified.
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Finally, in [7], authors propose a simple but detailed and efficient classification al-

gorithm of out-of-sequence TCP segments, of which the classification proposed in

this paper is a modification and an extension. Specifically, our work (of which pre-

liminary versions appeared in [10,11]) aims at identifying and analyzing a larger

subset of phenomena, thus obtaining a finer-grained classification of anomalous

events. In particular, we introduce distinctions based on the cause of possible re-

transmissions, i.e., retransmissions due to timer expiration or Fast Retransmit, and

include novel classification classes, such as false retransmissions caused by TCP

flow control mechanisms.

3 Methodology

The methodology adopted in this paper extend the approach followed in [7]; the

original algorithm discriminates among out-of-sequence segments due to i) packet

retransmissions by the TCP sender, ii) network duplicates, and iii) network reorder-

ing. We adopt a passive measurement technique and, building over the same idea,

we correct and complete the classification rules to include other event types. Be-

sides, we distinguish among other possible kinds of out-of-sequence or duplicate

packets, but we also focus on the cause that actually triggered the segment retrans-

mission by the sender. Since different implementations of the TCP/IP stack may use

different algorithms and parameter setups, instead of trying to identify the plethora

of TCP dialects, the algorithm we propose conforms to TCP standards, as defined

in [9] and following RFCs. We prefer to possibly have a larger number of unknown

events, rather than suffering from a larger misclassification probability.

TCP Packets flowing in both directions are recorded so that both data segments and

ACKs are analyzed; to track the TCP sender status, the IP and TCP layers are ex-

posed to the analyzer. Figure 1 sketches a typical TCP flow evolution: connection

setup, data transfer, and tear-down phases are highlighted. The measurement point

(or sniffer) can be located anywhere in the path between the client and the server; as

shown in the picture, the sniffer can be close to clients (and servers) when measure-

ments are taken at the network edge (as it happens, e.g., on campus LAN) . Since

we rely on the observation of both data and ACK segments, problems may arise

if asymmetric routing forces data and ACK segments to follow different paths. In

such case, flows are ignored.

A flow starts when the first SYN is observed, and ends when either the tear-down

sequence (FIN/ACK or RST messages) is observed, or when no segment is moni-

tored for an amount of time larger than a given threshold 2 . By tracking both flow

2 Since for some flows the tear-down sequence is never observed, to avoid memory star-

vation we use a 15-minute timer, which is large enough to avoid discarding on-going

flows [12].
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Fig. 1. TCP flow evolution over time and RTT Estimation Process.

directions, the sniffer correlates the sequence number of data segments to the ACK

number of backward segments. Three possible cases are in order:

• In-sequence: if the sender sequence number of the current segment corresponds

to the expected one;

• Duplicate: if the data carried by the segment has already been observed before;

• Out-of-sequence: if the sender sequence number is not the expected one, and the

data carried by the segment has never been observed before.

The last two cases are indication that some anomalies occured during the data trans-

fer: to further discriminate such anomalous events, we devise a fine-grained classi-

fication and implement it in Tstat [13], which we then use to analyze the collected

data. The decision process used to classify such anomalous events makes use of the

following variables:

• RTTmin: the Minimum Round Trip Time (RTT) estimated since the flow started;

• RT: the Recovery Time, i.e., the time interval between the observation of the

anomalous segment and of the previously observed segment with the largest se-

quence number;

• ∆T : the inverted-packet gap, i.e., the difference between the time the anomalous

segment and of the last previously received data segment have been observed;

• RTO: the sender Retransmission Timer value, computed according to [14] from

the running estimate of the average and standard deviation of the RTT ;

• DupAck: the number of duplicate ACKs referring to the current segment se-

quence number.
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Fig. 2. Classification heuristic Flow-Chart.

3.1 Heuristic Classification of Anomalies

Following the flow diagram of Figure 2, we describe the classification heuristic.

Given an anomalous segment, the process initially checks if the segment has al-

ready been observed by comparing the current TCP sequence number with those

carried by segments observed so far. The anomalous segment can be classified as

either duplicate or out-of-sequence. In the first case (left branch of the decision

process), the IP identifier field is compared with the original packet: if they are the

same, the anomalous packet is classified as Network Duplicate (Net. Dup.). Net-

work duplicates may stem from malfunctioning apparatuses, mis-configured net-

works (e.g., Ethernet LANs with diameter larger than the collision domain size),

or, finally, from unnecessary retransmissions at the link layer (e.g., when a MAC

layer ACK is lost in a Wireless LAN). Unlike in [7], we classify as network dupli-

cate all packets with the same IP identifier regardless of ∆T : indeed, there is no

reason to exclude that a network duplicate may be observed at any time, and there

is no relation between the RTT and the time a network can generate some duplicate

packets.

When the IP identifiers are different, the TCP sender may have performed a retrans-

mission. If all the bytes carried by the segment have already been acknowledged,

then the segment has successfully reached the receiver, and therefore this is an un-

needed retransmission. Either a Retransmission Timer (RTO), or the Fast Retrans-

mit mechanism has fired: i) if the recovery time is larger than the retransmission

timer (RT > RTO), the segment is classified as an Unneeded Retransmission by

RTO (Un. RTO); ii) if 3 duplicate ACKs have been observed, the segment is clas-

sified as an Unneeded Retransmission by Fast Retransmit (Un. FR).

Unneeded retransmissions are also due to the window probing algorithm imple-

mented by TCP flow control mechanisms. When receiver flow control kicks in, the

TCP sender keeps retransmitting old segments to force the immediate transmis-
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sion of an ACK so as to probe if the receiver window RWND is larger than zero.

In particular, a retransmission due to Flow Control (FC) is identified if i) the se-

quence number is equal to the expected sequence number decreased by one, ii) the

segment payload size is of zero length, and iii) the last announced RWND in the

reverse ACK flow was equal to zero. This is a new possible case which was previ-

ously neglected in [7]. Finally, if none of the previous conditions holds, we label

the anomaly as Unknown (Unk.). Unneeded retransmissions may be due to failures

in performing selective retransmission of missing segments, a misbehaving source,

a wrong estimation of the RTO at the sender side, or, finally, an ACK loss on the

reverse path; distinguishing among these causes is impossible by means of passive

measurements.

Let us now consider the case of segments that have been already observed but have

not been acknowledged yet: this is possibly the case of a retransmission following

a packet loss. Indeed, given the recovery mechanism adopted by TCP, a retransmis-

sion can occur only after at least an RTT, since duplicate ACKs have to traverse

the reverse path to trigger the Fast Retransmit mechanism. When the recovery time

is smaller than RTTmin, then the anomalous segment can only be classified as Un-

known 3 ; otherwise, it is possible to distinguish between Retransmission by Fast

Retransmit (FR) and Retransmission by RTO (RTO) adopting the same criteria

previously detailed. Retransmissions of already observed segments may be due to

data segments lost on the path from the measurement point to the receiver, and to

ACKs delayed or lost before the measurement point.

Finally, let us consider the right branch of the decision process, which refers to

out-of-sequence anomalous segments. In this case, the classification criterion is

simpler: indeed, out-of-sequence can be caused either by the retransmission of

lost segments or network reordering. Since retransmissions can only occur if the

recovery time RT is larger than RTTmin, by double checking the number of ob-

served duplicate ACKs and by comparing the recovery time with the estimated

RTO, we distinguish retransmissions triggered by RTO or FR. On the contrary,

if RT is smaller than RTTmin, then a Network Reordering (Reord.) is identified if

the inverted-packet gap ∆T is smaller than RTTmin. Network reordering can be due

to load balancing on parallel paths, route changes, or parallel switching architec-

tures which do not ensure in-sequence delivery of packets [15].

3.2 Dealing with wrong estimates

The proposed classification algorithm relies on estimates whose values must be

derived from the packet trace itself: especially at the flow setup, these estimates

3 In [7], authors use the average RTT; however, many RTT being smaller the average RTT,

we believe that the use of the average RTT forces a uselessly larger amount of unknown.

8



may not be very accurate, or even valid. In the following, we explain how to cope

with wrong estimates and limit their impact.

3.2.1 The RTT estimation

All measurements related to the RTT are critical, since they are part of RTTmin and

RTO estimation. RTT estimation is updated during the flow evolution according to

the moving average estimator standardized in [14]. Given a new RTT measurement

m, the average RTT estimate is updated according to a low pass filter E[RTT ] =
(1 − α)E[RTT ] + α m where α is equal to 1/8.

Since the measurement point is neither co-located at the transmitter, nor at the

receiver, the direct RTT measurement is not available. As shown in Figure 1, let

RTT (s, d) denote the half path RTT sample, which represents the delay at the

measurement point between an observed data segment flowing from the source to

the destination, and the corresponding ACK on the reverse path. Let RTT (d, s)
denote the delay between the ACK and the following segment. An estimate of the

total round trip time RTT is given by

RTT = RTT (s, d) + RTT (d, s).

The estimation of the average RTT is not biased, given the linearity of the expec-

tation operators. Therefore, it is possible to estimate the average RTT by

E[RTT ] = E[RTT (s, d)] + E[RTT (d, s)].

The standard deviation of the connection RTT , std(RTT ), can be correctly esti-

mated if RTT (s, d) and RTT (d, s) are independent measurements, which usually

holds.

Finally, given E[RTT ] and std(RTT ), it is possible to estimate the sender retrans-

mission timer as in [14]:

RTO = E[RTT ] + 4std(RTT ).

Regarding the estimation of RTTmin, we have

RTTmin = min(RTT (s, d)) + min(RTT (d, s)).

In general, this estimator gives a biased estimate of the real minimum RTT , since

RTTmin ≤ min(RTT ). This leads to a conservative classification algorithm, which

possibly increases the number of anomalies classified as unknown, rather than risk-

ing some misclassification.
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3.2.2 No RTT Sample Classification

There are some cases in which the RTT measurement is not available, but an

anomalous event is detected. This happens in particular at the connection start,

since no valid RTT samples may be available at the very beginning. Since most

of TCP flows are very short [13], these events are quite frequent and cannot be

neglected. The choice of the initial values of RTO and RTTmin is critical, since

inappropriate choice may lead to wrong classifications. We adopt the following

approach:

• if no valid RTT samples have been collected, the heuristic uses RTO = 3s and

RTTmin = 1ms as default values

• the RTO is forced to assume values larger or equal to 1s, according to [14]

• the RTTmin is forced to be larger than 1ms.

3.2.3 Batch Classification

Given that a TCP sender can transmit several segments per RTT, it may happen that

more than one anomalous segment is detected. This occurs, for example, when the

TCP sender adopts the SACK [16] extension and retransmits more than one seg-

ment per RTT , or when packets belonging to the same window travel on a path in

which packets are reordered and arrive with “strange” patterns. In such cases, the

measurements of RT and ∆T may be wrong and lead to incorrect classifications.

We therefore implement a filter in the classification heuristic that correlates the clas-

sification of the current anomaly with the classification of the previous segment. In

particular, if the current recovery time RT is smaller than E[RTT ] (suggesting that

the segment belongs to the same window as the previous one) and the previous seg-

ment was not classified as in sequence, we classify the current anomalous segment

as the previous one.

For example, consider a simultaneous SACK retransmission of two segments trig-

gered by a Fast Retransmit. The first retransmitted segment is correctly classified

given that three duplicate ACKs have been observed on the reverse path, and the

RT is larger than RTTmin. However, the second retransmitted segment cannot

be correctly classified, given that no duplicate ACK has ever been observed, and

RT < RTT . By explicitly considering the classification of the first segment, it is

possible to correctly identify the second segment as a retransmission triggered by

Fast Retransmit.
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4 Testbed Validation

To proof-check the correctness of the heuristic, we setup a simple testbed to per-

form controlled anomalies injection and verify the accuracy of the proposed heuris-

tic.

The testbed involves two hosts, acting as transmitter and receiver, connected by a

100 Mbps Ethernet link through a router capable to artificially inject anomalies. All

hosts run Linux operating system, with the netem [17] network emulator directly

enabled in the kernel. Linux is forced to use TCP NewReno, with no SACK option.

The traffic is captured at both the sender and receiver side, so that it can later be

processed to inspect the TCP anomaly identified by the proposed heuristic. Fur-

thermore, for comparison purposes, kernel-level TCP statistics at the server side

are also recorded using netstat. netstat gives access to some statistics about

TCP loss recovery mechanisms, and duplicate/out-of-sequence segments.

A number of experiments were performed, varying the amount of data to be trans-

ferred, and controlling the percentage of packet loss, duplication and re-ordering in-

jected by the network emulator. In particular, link capacities were limited to 5 Mbps

by means of a token bucket. The propagation delay is set to 50 ms, and theminimum

Round Trip Time equal to 100 ms.

Not surprisingly, the analyzer correctly identifies all network duplicates and all

network reordering, so that the results perfectly match those of the kernel level

log.

Therefore, in the following we focus on the impact of packet loss. For a more

detailed analysis, we consider two scenarios. In the first one (named Short), a

TCP connection transferring 3 kB of data was generated, while in the second case

(named Long), a TCP connection transferring 1 MB of data was involved. Each

experiment was repeated 5000 and 500 times, for Short and Long file size respec-

tively. I.i.d. packet loss were introduced, with average percentage set to 5%.

The comparison of the heuristic versus kernel-level classifications is reported in

Table 1 in terms of the number of identified RTO, FR and Unk. events. In the table,

we distinguish results derived considering the transmitter/receiver side packet trace.

As a general remark, the heuristic classification exhibits a very good matching with

the kernel truth. To further inspect the result, let us first consider the short flow

scenario. An excellent match between the heuristic classification and the kernel

log is achieved. Indeed, 952 out of 971 RTO events and 31 out of 50 FR events are

correctly classified at the transmitter; 39 missing events were classified as unknown.

Similar results are observed at the receiver side.

Considering the long flows case, 97% of losses are recovered by FR and 3% by RTO
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according to the kernel measurements. The heuristic classification identifies 85%

of FR, 17% of RTO and 6% of unknown events when run at the sender side. The

apparent overestimation of the RTO percentage is due to the batch classification.

Indeed, the Linux kernel considers as “fast retransmit” multiple losses recovered

after the first RTO, while, due to the batch classification, the heuristic classify these

losses as RTO events. In Table 1 the values in brackets correspond to the classifica-

tions obtained by Linux kernel naming. In this case, the match is excellent. Notice

also that in the testbed scenario std(RTT ) is very small, since no cross traffic is

queued at the router. This is therefore a worst case scenario. Nonetheless, excellent

results are achieved by the proposed heuristic classification.

Table 1

Comparison of Heuristic versus Kernel Classifications.

Scenario Measurement point RTO FR Unk.

Heur. transmitter 952 31 39

Short Heur. receiver 970 40 0

Kernel transmitter 971 50

Heur. transmitter 302(99) 1553(1756) 106

Long Heur. receiver 300(93) 1506(1713) 86

Kernel transmitter 58 1762

5 Measurement Results - Campus Network

In this section, we present results obtained running the algorithm on campus LAN

traces. We consider measurements that have been gathered from the sole Internet

edge link of our institution. Our campus network behaves like an Internet stub, be-

cause the access router is the sole gate to the Internet. More than 7,000 hosts are

present: most of them are clients, but some servers are regularly accessed from out-

side. We collected all packets flowing into the access link that connects the campus

border router to the GARR network [18], the nation-wide ISP for research and ed-

ucational centers. Measurements were performed over several years. We present

only a subset of results, and in particular:

• from the 6th to the 7th of February 2001. The bandwidth of the access link was

14 Mbit/s;

• from the 29th of April to the 5th of May 2004. The bandwidth of the access link

was 28 Mbit/s.
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5.1 Impact of RTTmin and RTO

We first present a set of measurements to double-check the impact of the choices de-

scribed in Sec 3.2. In particular, we are interested in the impact of the measurement

of RTTmin and RTO. The first one is involved in the classification of the network

reordering anomalies that may occur when identifying two out-of-sequence seg-

ments separated by a time gap smaller than RTTmin. Left plot of Figure 3 shows the

Cumulative Distribution Function (CDF) of the ratio between the inverted packet

gap ∆T and the value of the RTTmin considering only TCP anomalies classified

as network reordering. Measurements referring to 2004 are reported, and similar

results are obtained considering the 2001 dataset. The CDF clearly shows that ∆T
is much smaller than the RTTmin. This is due to the very small inverted packet gap

of reordered packets and suggests that the initial choice of RTTmin is appropriate.

The fact that the inverted packet gap of reordered packets is very small is an inter-

esting observation that can be useful when designing protocols that have to cope

with network reordering. For example, multimedia applications like VoIP or IPTV

services may exploit this in order to reduce receiver buffer and play-out delay.

Right plot of Figure 3 reports part of the CDF of the ratio between the actual Re-

covery Time RT and the corresponding estimation of the RTO when considering

anomalous events classified as retransmissions by RTO. Also in this case, results

referring to the 2004 dataset are reported. The CDF shows that RT > RTO, which

is a clear indication that the estimation of the RTO is not critical 4 . Moreover, it can

be noted that about 50% of the cases have a recovery time which is more than 5

times larger than the estimated RTO. This apparently counter intuitive result is due

to the fact that the heuristic neglects the RTO back-off mechanism implemented in

TCP, which consists in doubling the RTO value at every retransmission of the same

segment. Not considering the back-off mechanism leads to a robust and conserva-

tive approach.

4 The small percentage of values below 1 is due to the batch classification heuristic. In

those cases, RT < RTT , and therefore RT < RTO holds.
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Table 2

Traffic volume and anomaly breakdown, incoming direction for 2004 traffic.

Pkts Flows Anom Flow RTO FR Reord NetDup FC Un.RTO Un.FR Unkn

% % % Class % % % % % % % %

3.77 76.22 9.86 Short 5.13 1.84 20.56 35.24 0.02 39.29 0.01 3.19

5.14 16.71 6.63 Medium 6.32 2.87 10.38 13.24 0.37 12.21 0.06 3.76

91.09 7.07 83.51 Long 88.55 95.30 69.06 51.52 99.61 48.50 99.93 93.05

100.0 100.0 100.0 Breakdown 33.65 12.07 28.12 0.60 0.54 3.23 1.45 20.35

5.2 Aggregate Results

Figure 4 reports the percentage of identified anomalous events during the 2004 pe-

riod. The right plot of Figure 4 refers to incoming traffic, i.e., traffic whose destina-

tion host is inside our campus LAN; the left plot reports measurements on outgoing

traffic, i.e., traffic whose destination host is outside our campus LAN. Each bar in

the plot explicitly underlines the impact of the batch classification (light pattern)

and of the lack of RTT samples (dark pattern).

Considering the incoming anomalies classification (right plot of Figure 4), we ob-

serve that there is a large dominance of network reordering and retransmissions

due to RTO expiration. Fast Retransmit occurs only for a very small portion of

the total retransmissions. This is related to the characteristics of today’s data traffic,

which is mainly composed of very small file transfers that do not allow TCP to trig-

ger Fast Retransmit [19]. The coarser classification in [7] did not allow to observe

such effect. Network reordering is also quite common, while network duplicates

are seldom identified. Similarly, receiver flow control is rarely used to slow down

server transmission, and a small percentage of unnecessary retransmissions is also

present. Finally, a rather large percentage of anomalies that could not be classified

is observed. Investigating further, we noticed that, for most of them, the recovery

time is smaller than the estimated RTO (therefore missing the retransmission by

RTO classification), but larger than the RTTmin and the number of duplicate ACKs

is smaller than 3. We suspect that they may be due to either i) transmitters that

trigger the Fast Retransmit with just 1 or 2 duplicate ACKs, or ii) servers with
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aggressive an RTO estimation that triggers the retransmission earlier than that as-

sumed by the RTO estimation at the measurement point. We prefer to classify these

events as unknown rather than risking to misclassify them to follow a conservative

approach.

For what concerns the impact of the batch classification and the lack of a valid RTT

sample, observe that the first is evenly distributed among all classification cases,

while the latter one has a large impact on the identification of retransmissions by

RTO. This is due to the lack of valid RTT samples at the very beginning of the TCP

connection.

When considering outgoing traffic (left plot of Figure 4), the heuristic correctly

identifies the anomalies. RTOs with no RTT samples are the large majority, since

client HTTP requests are so short that no RTT sample is ever collected. Neither

Network Reordering nor Duplicates are identified. This is correct, given that our

Campus LAN is a switched Ethernet LAN in which packets can be duplicated or

reordered only in case of malfunctions. This supports the validity and robustness of

the classification heuristic.

Considering the average percentage of total anomalies, about 4% and 8% of in-

coming and outgoing traffic, respectively, is affected by an anomaly; however, the

average values are not representative due to the process non-stationaries.

Finally, in order to further verify the validity of our heuristic, we split the flows

into three different classes based on their length. Short flows (also called mice in

the literature) have payload size no longer than 5 segments. Long flows (the so

called elephants) have payload size larger than 20 segments, and the medium sized

flows whose payload size is larger than 5 segments, but shorter than, or equal to

20 segments. Let us focus on the classification of anomalous events for incoming

traffic during the 2004 time period; results relative to outgoing flows and to the

2001 dataset are similar and they are not reported here due to lack of space.

Table 2 reports some statistics on the amount of flows, packets and anomalies ob-

served discriminating flows based on their length and the occurrence of different

anomaly types; for the sake of clarity, we omit to further mention the “batch” or “no

RTT sample” classification. More specifically, the table reports the occurrence of

each anomalous event, i.e., the ratio between the number of anomalies occurring in

a given class over the total number of such anomalies. The bottom line reports the

anomaly breakdown, i.e., the relative occurrence of each event type irrespectively

of the flow class. Considering the percentage of packets and flows, it can be seen

that a small amount (about 7%) of long flows accounts for more than 91% of the

totally observed packets but only 83.51% of the anomalies. Also, short flows ac-

count for about 9.86% of the total anomalous events despite generating only 3.77%

of the packets. This means that short flows are relatively more penalized by the

occurrence of anomalies than long flows.
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Fig. 5. Anomalous events occurrence versus time: outgoing traffic (positive values), and

incoming traffic (negative values); 2004 measurements.

As expected, retransmissions due to RTO expiration are distributed (almost) pro-

portionally to the flow length among all classes, with a little bias toward short flows,

which have a larger percentage of RTOs. Retransmissions due to Fast Recovery are

mainly triggered by long flows; indeed, short flows cannot trigger Fast Retrans-

mit [19]. Interestingly, short flows have a significant number of anomalies due to

packet reordering, which account for more than one fifth of the total number of

anomalies: a packet belonging to a short flow has a larger chance to suffer from a

reordering than a packet belonging to a long flow. Probably, in this scenario, many

long flows are transported over paths in which packet reordering does not occur.

Indeed, packet reordering is peculiar to specific paths: there are paths over which

no reordering is ever observed, while in some others reordering is quite frequent.

The same reasoning applies to network duplicates. Neglecting flow control and

unnecessary retransmissions as their occurrence is marginal, we observe that the

anomalies classified as unknown are mainly associated to long flows. A significant

portion of those events, namely 15%, is represented by packet retransmissions trig-

gered by a Fast Retransmit occurred after the reception of the second (rather than

the third) duplicate acknowledgment, as proposed in [20]. This behavior, which is

not compliant to the IETF standard [9], is typical of most flavors of Microsoft Win-

dows platforms; indeed, as reported in [21–23], by default Windows retransmits a

segment when the second 5 duplicate acknowledgment is received. Two additional

remarks can be made on this regard. First, we point out that, although the wide

5 This feature is controllable with the registry parameter HKEY\_LOCAL\

_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\

TcpMaxDupAcks
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Fig. 6. Anomalous events occurrence versus time: outgoing traffic (positive values), and

incoming traffic (negative values); 2001 measurements.

majority of today clients is represented by Windows platforms, the direction of the

traffic we are observing is representative of incoming data downloaded by inter-

nal clients from Internet servers, where the mixture of OS is less biased and thus

the phenomenon is not prominent. Second, we observe that, by classifying as Fast

Retransmit the retransmission triggered by the second DUPACK, the overall per-

centage of Fast Recovery would raise up to 14% of all anomalous events. However,

we prefer to be strictly compliant to the standard, and thus we conservatively avoid

any possible misclassification.

5.3 Time characterization

We report in this section the occurrence of anomalies versus time. We omit the

sub-classification due to batch arrivals or to the lack of valid RTT samples for the

sake of clarity. Figures 5 and 6 depict the time evolution of the volume (in percent-

age, normalized over the total number of packets in each direction) of anomalous

segments. Measurements aggregate anomalies over an interval of time equal to 15

minutes. The detailed classification is outlined in colored slices whose size is pro-

portional to the percentage of that particular event. Positive values refer to outgoing

traffic; negative values refer to incoming traffic. Figure 5 refers to the 2004 period,

while Figure 6 refers to the 2001 period.

Apart from the network outage that is evident between midnight and 9:00 of April

30th 2004, the first result is that TCP anomalies are highly non stationary. There
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Fig. 7. Amount of incoming (negative values) and outgoing (positive values) anomalies at

different timescales.

are some peaks of significant magnitude that reach 10% during 2004 and almost

15% during 2001. Considering the incoming traffic of 2004 trace, Retransmissions

by RTO, Network Reordering and Unknowns are the largest parts of the anoma-

lies. TCP Flow control seldom kicks in, and a negligible number of Unnecessary

Retransmissions is identified. Surprisingly, the typical night and day effect, which

is commonly present on the total traffic volume (and also in the considered link), is

not anymore visible when considering TCP anomalies. Notice also that the last two

measurement days are weekend-days. In particular, Labour Day was celebrated on

Sunday the 1st of May in Italy: therefore the link load during that weekend was

particular low. Nonetheless, the RTO fraction is almost equal to the one observed

during busy hours of weekdays; only the Network Reordering seems to disappear.

This indicates a weak correlation between link load and TCP anomalies: we will

further investigate this considering backbone traffic in Section 6.

If we compare 2004 and 2001 incoming traffic plots, it can be noted that after three

years Unnecessary Retransmissions almost disappear. Indeed, in the 2001 trace, a

significant portion (about 40% or more) of the anomalous events is identified as

unnecessary retransmissions. This fact is explained by the vast popularity of TCP

SACK that was used by only 21% of flows during 2001. Its usage increased to 90%

of flows during 2004 (this information is obtained from the three-way-handshake

negotiation). At the same time, a reduction of the fraction of TCP anomalies is

noticeable comparing 2001 and 2004 measurements: this may be related to access

link capacity that was a major bottleneck during 2001, so that severe congestion

was common.
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6 Measurement Results - Backbone Traffic

In this section we present results obtained through traffic traces collected from dif-

ferent backbone networks. The first one is a packet-level trace gathered from the

Abilene Internet backbone, publicly available on the NLANR Web site [24]. The

trace, which is 4 hours long, has been collected on June 1st, 2004 at the OC192c

Packet-over-SONET link from Internet2’s Indianapolis node toward Kansas City.

The second measurement point is located on the GARR backbone network [18],

the nation-wide ISP for research and educational centers. The monitored link is

a OC48 Packet-over-SONET from Milano-1 to Milano-2 nodes, and statistics re-

ported in the following are relative to August 2005. Traces show different routing

symmetry: while GARR traces reflect almost 100% of traffic symmetry, only 46%

of ABILENE traffic is symmetric; this is of particular relevance, since the algo-

rithm relies on the observation of both data and ACK segments to track TCP flow

evolution.

All the gathered flow-level and aggregated statistics, related to anomalous traffic

as well as to many other measurements that we do not report here, are publicly

available on the Tstat Web page [25]. In the following, we arbitrarily use “In” and

“Out” tags to discriminate between the traffic directions – even though neither an

inner nor an outer network region actually exists since the measurement point is

located in the backbone.
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6.1 Statistical Analysis of Backbone Traffic

Figure 7 depicts the time evolution of the volume of anomalous segments classified

by the proposed heuristic applied to the GARR traffic; in order to make plots read-

able, only RTO and network reordering are explicitly reported, whereas the other

kinds of anomalies are aggregated. Measurements are evaluated with different gran-

ularity over different timescales: each point corresponds to a 5 minute window in

the hourly plot (top plot), a 30 minute window for both daily and weekly plots and a

2 hour interval in the monthly plot (bottom plot). Both link directions are displayed

in a single plot: positive(negative) values refer to the Out(In) direction. The plot of

the entire month clearly shows a night-and-day trend, which is mainly driven by

the link load. The trend is less evident at finer time scales, allowing us to identify

stationary periods during which advanced statistical characterization can be per-

formed. The same monthly dataset is used in Figure 8, which reports the volume of

anomalies normalized over the total link traffic (top plot), and the anomaly break-

down, i.e., the amount of anomalies of each class normalized over the total number

of anomalous events (bottom plot). Labels report, for each kind of anomaly, the

average occurrence over the whole period obtained aggregating both traffic direc-

tions. The RTOs account for the main part of anomalous events, being almost 70%:

as previously noted, RTO events correspond to the most likely reaction of TCP

to segment losses. Packet reordering is also present in a significant amount. The

average total amount of anomalous segments is about 5% considering Out traffic

direction, and about 8% considering In direction, with peaks ranging up to 20%.

Besides the precise partitioning of such events, it is interesting to notice that the

periodical trend exhibited by the total amount of anomalies observed early in the

monthly plot of Figure 7, almost completely vanishes when considering the normal-

ized amount shown in top plot of Figure 8 (previously noted from Figures 5 and 6).

Thus, while the total amount depends on the traffic load, the percentage of anoma-

lies seems independent from the load. This is an interesting finding that clashes

with the usual assumption that the loss probability increases with load. Very simi-

lar results were also obtained for the Abilene trace, confirming that the percentage

of anomalies over the total amount of traffic remains steadily constant even when

the link load exhibits large fluctuations. An explanation of the possible cause of

such a counter-intuitive result may lay in the greedy nature of TCP, which pushes

the instantaneous offered load to the bottleneck capacity causing packet losses. In-

deed, even if the average offered load is much smaller during off-peak periods,

congestion may arise on bottleneck links (i.e., possibly at the network access).

We now focus on the correlation structure of the time series counting the num-

ber of anomalies per time unit (i.e., the anomalies counting process). Though this

could be presented in many different ways, we decided to use the Hurst parameter

H as a very compact index to identify the presence of Long Range Dependence

(LRD) in the series. Intuitively, H = 0.5 indicates uncorrelated processes, while
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Fig. 9. Hurst parameter estimate for different anomalies and traces.

increasing values of H ∈ [0.5, 1] are symptomatic of increasing correlation in the

process, with values around H = 0.7 usually considered typical of LRD. The H
estimation is performed using the Multi Resolution Analysis (MRA) [26,27] with

the code provided in [28]. Stationary time-windows have been considered. In par-

ticular, stationarity holds for the two backbone link traces when considering few

hours periods. H estimate is depicted in Figure 9 distinguishing anomalies, mea-

surement points and traffic directions. In all cases, H is considerably higher than

0.5, meaning that these series are LRD. Reordering and FR series exhibit H smaller

than for the RTO series, for all traces and traffic directions. By further measuring

H in different subsets of the original trace and by using different time units (from

10 ms to a few seconds), we gathered sufficient information to confirm the presence

of LRD in the anomalous traffic.

6.2 Analysis of a Single Elephant Connection

Other interesting observations can be drawn by focusing on a specific network path,

where it can be assumed that network setup is homogeneous during the observation

period: in particular, we consider the longest TCP flow that has been observed on

our campus LAN. It corresponds to a large file download from a host in Canada

which lasted about eleven hours (from 9:10am to 8:12pm of Wednesday the 5th

of May), transferring 359 MBytes in 307,124 packets. The flow throughput varied

from 60 kbit/s up to 160 kbit/s, while the measured RTT varied in the [300, 550] ms

range. Figure 10 plots time series curves where each series corresponds to one

of the anomalies 6 . First of all, we point out that, while each time series is non-

stationary, the aggregated series is stationary. The largest number of anomalies refer

6 Time series curves have been smoothed using a low pass filter to allow a better under-

standing of the process.
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Fig. 10. Time plot of anomalous events for the selected elephant flow.

to RTO and FR, and this holds for the whole flow lifetime. It is worth noticing that

typically, while the number of RTO increases, the number of FR decreases (and

vice-versa): large values of RTO probably correspond to high congestion levels,

during which the sender congestion window is reduced and the chance of receiving

three dup-ACKs is therefore smaller. Similar behaviors were observed for other

long flows not shown here for the sake of brevity. No network reordering has been

identified during the whole flow lifetime. As previously observed, this suggests

network reordering to be path dependent, and a similar reasoning applies to network

duplicate events.

We now focus on the fluctuation of the rate and the statistical properties of the

counting process of i) the received packets per time unit and ii) the anomalous

events per time unit. The time unit is 100 ms long. According to MRA, both these

processes are stationary: moreover, from our measurements, stationarity usually

holds for long flows in general. Figure 11 depicts the log-scale diagram for both

the considered time series. The log-scale diagram is a flexible tool to evaluate the

power spectra, and it has good properties once dealing with LRD process, and it

provides excellent H estimates [26]. The diagram reports the process correlation

estimate: a horizontal line is symptomatic of an uncorrelated process, while linear

slope for large scales is indication of high correlation. Figure 11 shows that the traf-

fic generated by the TCP flow is highly correlated for the whole flow lifetime. This

has been previously observed and is well known [26]. The slope of the curve leads

to an estimation of the parameter H ≃ 0.74; the time scale of the RTT is visible

as the “bump” around 400 ms in the left-hand side of the curve and represents an

intrinsic time periodicity for the flow dynamic related to the RTT . Indeed, the RTT

has been recognized as a natural time cutoff scale i) below which traffic is highly ir-

regular and uncorrelated, and ii) above which traffic is long-term correlated. These

results confirm similar findings in the literature [29,30].

Considering the anomalous event process (solid dots), the plot clearly states that no
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Fig. 11. Energy plots of the time series of i) number of segments and ii) number of anoma-

lies.

correlation is present. The fact that a single flow suffers from uncorrelated anoma-

lies seems a counter-intuitive results, since we already noticed that the aggregated

anomaly exhibits LRD phenomena. A possible intuition of this may stem from the

fact that anomalies observed from a single flow are sampled from the aggregate on

larger time scales (in the order of RTT ) so that they are perceived as uncorrelated.

7 Conclusions and Discussion

In this paper we defined, identified and studied the TCP anomalies, i.e., out-of-

sequence segments, by extending and refining the heuristic originally proposed

in [7]. We applied our technique to traffic traces collected at both network edges

and core links. By studying the statistical properties of these phenomena, some

interesting aspects of TCP were observed. First, though the absolute amount of

anomalies is highly dependent on the link load, both its relative amount over the

total traffic and the anomaly breakdown are almost independent from the current

load. This is a quite interesting finding that clashes with the usual assumption that

the loss probability increases with load.

Second, when considering the aggregation of traffic flows at any Internet link, the

arrival process of anomalies is highly correlated. On the contrary, when consider-

ing individual flows, the suffered anomalies are almost i.i.d.. This is an important

observation that validates the quite popular assumption that packet drops can be

modeled by i.i.d. processes.
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Third, RTO is the most preferred mechanism to identify packet loss by the TCP

sender. Flows are often too short to allow Fast Retransmit to kick in. Novel conges-

tion control and recovery mechanisms should cope with this packet loss identifica-

tion scheme.

Fourth, network reordering can be large on some paths, while negligible on other

paths. When present, reordered packets are separated by few ms, i.e., an amount

of time that is negligible with respect to the flow RTT. This observation has conse-

quences that extend beyond TCP, e.g., on multimedia protocols that must cope with

network reordering.

Finally, the proposed heuristic has been proved to be reliable and conservative. It

can be adopted to monitor traffic in real time, giving network operators deep insight

into the offered performance.
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