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a b s t r a c t

Today’s networks are becoming increasingly complex and the ability to effectively and effi-
ciently operate and manage them is ever more challenging. Ways to provide end-to-end
Quality of Service have to cope with the increasing heterogeneity of these networks, which
is due to the several actors of current network scenarios, from access networks to end-user
devices, from protocols to applications and operating systems. Exploiting such heterogene-
ity, in this paper we present an approach to the identification of each element composing
an end-to-end path. Such identification is useful in several situations. For instance, it can
improve the performance of adaptive and network-aware applications, it can help intelli-
gent routing approaches, and it can be used in network and service overlay scenarios. Our
approach, based on Bayesian classifiers, utilizes the measurements and off-line processing
of three QoS parameters, that are delay, jitter, and packet loss. To illustrate the capabilities
of our proposal, we present the results of a large set of experimentations performed with
both different sets of features and different sets of QoS parameters. Using measures related
to various time periods, in which the considered paths presented diverse characteristics,
we show that a blind identification of network bricks is possible and that its results present
a good degree of generalizability.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Representing a reality in almost all networking scenar-
ios, heterogeneous networks have gained more and more
attention from the research community. In spite of their
popularity, quality of service (QoS) analysis and provision-
ing over such networks is very challenging. In current het-
erogeneous networks, end-to-end paths are composed of a
wide range of different elements using different technolo-
. All rights reserved.
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gies. End-user devices (EuD), access networks (AN), operat-
ing systems (OS), applications, and protocols heighten the
heterogeneity of each path. All these variables are nor-
mally unknown to network administrators and service
providers, making it difficult to offer specific and tailored
services (VoIP, Video Streaming, p2p applications, Games,
IMS-based applications, etc.) to the users while guarantee-
ing an acceptable quality.

Therefore, simple, efficient, and accurate end-to-end
methods for the identification of the single parts of the
whole path can be useful to properly monitor, control,
and manage the network. Acquiring this information in a
direct way (i.e., asking to the application or to the user)
is often not possible and, when possible, an erroneous
information may be obtained. For example, in peer-to-peer
file sharing applications the user can incorrectly report the
bandwidth of his Internet connection in order to be differ-
ently considered by his peers. In addition, some techniques

mailto:a.botta@unina.it
mailto:pescape@unina.it
mailto:giorgio@unina.it
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Table 1
Network bricks in our heterogeneous network

Protocol Sender OS Receiver OS Sender AN Receiver AN Bitrate Sender EuD Receiver EuD

UDP Linux Linux Ethernet Ethernet 51.2 kbps Workstation Workstation
TCP Windows Windows WLAN 802.11b WLAN 802.11b 102.4 kbps Desktop PC Desktop PC
SCTP Linux familiar Linux familiar GPRS GPRS 204.8 Kbps Laptop Laptop

UMTS UMTS 409.6 Kbps Palmtop Palmtop
ADSL ADSL 819.2 Kbps

Fig. 1. Abstraction of network scenarios and of the related network bricks.

1 The quality perceived by the users is primarily determined by
parameters like packet loss, delay, jitter, and throughput. In our opinion,
with the very fast expansion of backbone and core networks, these
performance parameters are getting increasingly dominated by the char-
acteristics of the edge of the network. Thus, the observation point for the
performance moves from the network core towards the communicating
hosts and their access networks.
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for the automatic detection exist but, unfortunately, each
of them is able to reveal only a single characteristic of
the end-to-end path and no integrated approaches exist.

In this work we propose a framework for the blind iden-
tification of network bricks (see Section 2 for the definition
of network bricks). With the term blind we refer to an iden-
tification performed by using parameters different from
the network properties we are identifying. More precisely,
our identification process is based on QoS measures ac-
tively collected at the edges of each considered heteroge-
neous path. Using the measures as features, we treat the
identification as a supervised classification problem.
Thanks to well known classification techniques we are able
to accurately detect different components of an end-to-end
path in an integrated fashion.

To illustrate the capability of the proposed approach we
present the results of a large set of experimentations con-
ducted over a real heterogeneous wired-wireless network.
In particular, over a number of end-to-end paths, first we
present the results of the network bricks identification
using different sets of features; then, taking into account
the relationships among QoS parameters, we present the
results obtained with a reduced set of such parameters.
Our findings show that the network bricks identification is
possible and that the accuracy can be sliglty improved by
considering a selected subset of statistics. Moreover, they
show that discarding a single QoS parameter slightly af-
fects the identification accuracy.

The rest of the paper is organized as follows. Section 2
provides some definitions to clarify our approach, and de-
tails the paper contribution. Section 3 contains a short
description of the analytical tools we used for the identifi-
cation. In Section 4 we overview the considered end-to-
end paths, measurement methodology, data traces, and
statistical tools adopted to determine the features. Section
5 presents the results of the network bricks identification.
In Section 6 we present and describe related work. Finally,
Section 7 ends the paper with conclusions and issues for
future research.

2. Problem definition and approach

A blind identification of network bricks based on QoS
metrics allows to identify network elements without phys-
ically dealing with them (e.g., identify elements that are
physically unreachable).

In this paper we use a number of terms and abbrevia-
tions. To help the reader, we provide the following
definitions.

Definition 1. Network brick. With the term network brick
we mean a network element or a device component from
those shown in Table 1 and graphically represented in
Fig. 1. In the following we also simply refer to them as
bricks.

Definition 2. End-to-end path. With the term end-to-end
path we mean a network path composed of network bricks
(see Fig. 1). Differently from the common literature, our
definition of end-to-end path also includes elements like
the bitrate, end-user devices, their operating systems,
and the transport layer protocol.

Definition 3. QoS parameter. With the term QoS parameter
we mean a parameter among delay, jitter, and packet loss1.
For each of them some statistics are calculated, which are
successively used as features for the classification.

Definition 4. Feature. With the term feature we mean a
statistical indicator calculated over a QoS parameter data
trace. In this work we consider the features reported in
Table 2 (for more information see Section 4.1). We also
divide them in concise and detailed statistics as reported
below.

Definition 5. Concise statistic. With the term concise statis-
tic we mean one of the following: mean, median, mini-
mum, maximum, standard deviation, and inter quantile
range.

Definition 6. Detailed statistic. With the term detailed sta-
tistic we mean one of the following: autocorrelation coeffi-
cients of Pearson, Spearman, and Kendall evaluated at both
lag 2 and 10, and Shannon entropy.



Table 2
Features evaluated on the samples of the QoS parameters

Concise
statistics

Mean, median, standard deviation, minimum,
maximum, IQR

Detailed
statistics

r(2), r(10), s(2), s(10), s(2), s(10), entropy

A. Botta et al. / Computer Networks 52 (2008) 2975–2987 2977
Definition 7. Identification. In this work we treat the net-
work bricks identification as a supervised classification
problem. For this reason the terms identification and classi-
fication will be indifferently used.

Even if the network bricks identification constitutes our
principal contribution, our work consists of three main
parts carried out in three successive phases (see Fig. 2):

� First, we collect several traces of selected QoS parame-
ters over a broad range of heterogeneous network paths.
The traces are collected end-to-end with an active mea-
surement approach over the network represented in
Fig. 3. More details regarding the adopted measurement
approach are provided in Section 4.1.

� Second, after data acquisition and sanitization (see Sec-
tion 4.1), we calculate some statistics for each consid-
ered QoS parameter. The statistics were selected
looking at their capability to discriminate the network
bricks by capturing their peculiar characteristics. In par-
ticular, thanks to the analysis we conducted in [2], we
verified that the selected statistics actually presented
different values for different scenarios and therefore
they are the most useful for the identification task.

� Third, using these statistics in a supervised classification
algorithm, we identify the network bricks composing the
end-to-end paths with a high accuracy (i.e., a high per-
centage of network bricks correctly identified). Moreover,
Perform 
measurement 

and collect data

Sanitize d
and calcul

statistics/fea

Fig. 2. High level view of the network

Fig. 3. The real heterogeneous networ
we perform different ‘‘identification stages” which differ
in terms of the feature set they use: concise, detailed, and
concise + detailed statistics. Moreover, in a final stage,
taking into account the relationships between the con-
sidered QoS parameters extensively discussed in litera-
ture, we show it is possible to discard all the features
related to one QoS parameter without highly affecting
the overall identification accuracy. This result appears
extremely interesting when only two out of the three
parameters are accessible or measurable or when it is
necessary to reduce the computation time. In general,
this analysis is useful to start the identification process
with a sub-set of the statistics, and it provides a clear
understanding on the relationships between the fea-
tures and identification results.

To highlight the significance of our contribution we
underline that, to the best of our knowledge, it extends
the results present in literature in that: (I) we propose a
framework for the blind identification of network bricks;
(II) we show that the concise and detailed statistics of con-
sidered QoS parameters represent a complete and robust
set of features; (III) we show that the accuracy can be
slightly improved by performing an automatic feature
selection; (IV) we present results using real measurements
from a number of heterogeneous end-to-end paths; (V)
using different sets of measures, collected over different
paths, in different time periods, and with different realiza-
tions of the same network conditions (e.g., two different
UMTS releases), we assess the universality and generaliz-
ability of the results.

We would also like to underline that all the data traces
we collected are freely available at [3]: this allows other
researchers to repeat our experiments and to extend them
in order to enrich the research in this field.
ata 
ate 
tures

Perform the 
identification/
classification

bricks identification life cycle.

k we use for the measurements.



2 Open Source operating system for PDA devices.
3 Because we work at application level, TCP packet losses are not visible.
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3. Analytical basis: a brief overview

The idea at the base of the proposed methodology is
independent of the particular classification algorithm it
uses. In this paper, as a proof of concept, we utilize two clas-
sifiers that are widely used in the networking research field.
In particular, we use the Bayesian Network (BN) classifier
and the Naive Bayesian (NB) classifier. These classifiers are
also chosen because they can be implemented with simple
algorithms. This ensures an acceptable processing time [4].

To introduce such classifiers, in this section we provide
a brief overview of the Bayesian Network and Naive
Bayesian.

3.1. Bayesian network classifier

Let S = {x1, . . . ,xn} with n P 1 be a set of variables. A
Bayesian Network over the set S is a directed acyclic graph
(called BNS) and a set of probability tables BNP =
{p(sjpa(s)js 2 S)} in which pa(s) is the set of parents of s in
BNS. A BN represents the chain rule for a joint probability
distribution

PðSÞ ¼
Y
s2S

pðsjpaðsÞÞ: ð1Þ

In general, the classification consists in assigning a set of
variables x = x1, . . . ,xn, called attribute variables, to some
other variables y = x0, called the class variable. The classifier
b :x ? y is, therefore, a function that maps each instance of
x to the related class y. The classifier learns how to achieve
its goal from a data set LS consisting of previously classi-
fied points (x,y). For this classifier, the learning stage con-
sists in finding the appropriate BN given a data set LS over
S. Once a good network structure is found, the conditional
probability tables (for each variable) can be estimated.

In order to perform a classification by using a Bayesian
Network, it is necessary to simply calculate arg maxyP(yjx)
using the distribution P(S) represented by the BN. Observ-
ing that

PðyjxÞ ¼ PðSÞ=PðXÞ / PðSÞ ¼
Y
s2S

pðsjpaðsÞÞ ð2Þ

and that all variables in x are known, no complicated infer-
ence algorithms are necessary. It is sufficient to calculate
Eq. (1) for all class values. For further details refer to [5].

3.2. Naive Bayesian classifier

Let x = {x1, . . . ,xn} be a data sample representing a reali-
zation of X = {X1, . . . ,Xn}, and let each random variable Xi be
described by m attributes {A1, . . . ,Am}, then Xi ¼
ðAðiÞ1 ; . . . ;AðiÞm Þ

T is a random vector. Let C = {c1, . . . ,ch} be the
set of classes of interest. For each observation xi in x, there
is a mapping C:x ? C indicating the membership of in-
stances xi to a class of interest. Bayesian statistical conclu-
sions about the class cj, when y is observed, are based on
the a posteriori probability p(cjjy). The Bayes rule provides

pðcjjyÞ ¼
pðcjÞ � pðyjcjÞP

cj

pðcjÞ � pðyjcjÞ
; ð3Þ

where p(cj) represents the a priory probability of class cj,
p(yjcj) represents the conditional probability of y given cj,
and the denominator is a normalizing factor representing
the average probability to observe y. The target of the
supervised Bayes classification problem is to estimate
p(yjcj), j = 1, . . . ,h given a training set x. To achieve this goal,
the Naive Bayesian classifier makes some assumptions on
p(�jcj) such as the independence of Ai, i = 1, . . . ,m and their
standard Gaussian behavior. The problem is then reduced
to the estimation of the parameters of the Gaussian distri-
bution and p(cj). Despite its simplicity, the Naive Bayesian
classifier has been shown to work better than more com-
plex methods and to be able to cope with complex situa-
tions [6].

4. Data, tools, and methodology

As introduced in Section 2, our work is carried out in
three main steps (see Fig. 2). In this section we provide
technical details regarding how these steps are performed.

Fig. 3 shows a scheme of the network on which we ap-
ply our measurement and identification approach. The net-
work comprises different heterogeneous wireless/wired
connections, as well as different devices and operating sys-
tems. The measurements are carried out considering sev-
eral possible combinations of these variables. In
particular, we perform end-to-end throughput, jitter,
delay, and packet loss measurements by varying all the
possible path characteristics (that are operating system,
end-user device, access network, transport protocol, and
traffic condition). For more information regarding the net-
work refer to [2].

For the purpose of network bricks identification, the se-
lected network scenario exhibits a wide parameter space
composed of several variables (see also Table 1) to setup,
configure, and analyze. Mixing all these variables we ob-
tain a large number of end-to-end paths. In this paper, to
show the applicability of our idea, we present results re-
lated to 62 end-to-end paths, with 20 measurements for
each path.

The details of the considered paths are reported in
Table 3. In such table the number of instances of each net-
work brick is reported. As we can see, from all the possible
end-to-end paths, in this work we consider those using
UDP and not containing Palmtop (as end-user device) or
Linux Familiar2 (as operating system). This allows us to re-
strict our attention to a reduced set of paths and to include
packet loss statistics in our set of features3. Despite this,
Table 3 allows to understand that the considered scenarios
show an high degree of heterogeneity (e.g., different kinds
of wired and wireless networks).

4.1. Measurement approach and data traces

We conduct a deep active measurement stage on the
heterogeneous network depicted in Fig. 3. This stage al-
lows us to collect data traces related to three QoS parame-
ters (that are jitter, delay, and packet loss). The collected
measures are affected by all the characteristics of the het-



Table 4
Parameters of the UDP traffic we use for collecting the QoS parameters
samples

IDT PS Generated bit rate

1/100 s 64 Bytes 51.2 kbps
1/100 s 512 Bytes 409.6 kbps
1/100 s 1024 Bytes 819.2 kbps

Table 3
Heterogeneity tree: number of instances of each network brick in the dataset we use for the identification

Protocol UDP 62
Sender OS Linux Windows

36 26
Receiver OS Linux Windows

28 34
Sender AN ADSL GPRS UMTS Ethernet WLAN Ad-Hoc WLAN infrastructure

3 8 21 12 6 12
Receiver AN ADSL GPRS UMTS Ethernet WLAN Ad-Hoc WLAN infrastructure

3 15 0 19 6 19
Bitrate [Kbps] 51.2 409.6 819.2

18 22 22
Sender EuD Workstation Desktop PC Laptop

27 6 29
Receiver EuD Workstation Desktop PC Laptop

16 3 43

4 A time interval has been left between each measurement the length of
which depends on the particular network scenario. Moreover, the 20
measurements of each scenario are not taken in sequence but rather
interleaved with the measurements related to the other scenarios.
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erogeneous end-to-end paths. This means they reflect the
effect of all the bricks together. Therefore, as shown in
the following, they allow to identify such bricks. The mea-
sures we use for this work were collected in different time
periods. The first one lays between December 2003 and
November 2004. A second set of measures was collected
between September and November of 2007. A third mea-
surement stage was conducted between January and April
of 2008. All the measurements were performed between
9:00 am and 6:00 pm. Using measures related to different
time periods allows to assess the generalizability of the re-
sults of our analysis. In such measurement stages, over
44 GB of data traces were collected (log file sizes range
from about 1 to 100 MB).

The data traces of the QoS parameters are collected with
D-ITG [7]. D-ITG is a synthetic traffic generator able to pro-
duce a number of traffic patterns by modeling packet size
(PS) and inter departure time (IDT) random processes.
Therefore, it is capable of generating realistic synthetic
traffic while logging data useful to measure the QoS
parameters.

The measurements are performed end-to-end, which
means that a source of traffic is located at one end of the
network path and a sink is located at the other end. There-
fore, the jitter, delay, and packet loss measures we obtain
are related to the entire path with no information collected
by the intermediate nodes.

In order to reduce the number of variables to be consid-
ered, we generate only Constant Bitrate (CBR) traffic (i.e.,
with constant PS and IDT). The measurements are per-
formed by using three traffic conditions named Low, Med-
ium, and High Traffic. These traffic conditions differ in
terms of IDT that are 1/100 s, 1/1000 s, and 1/10000 s,
respectively. For each IDT, different PS values, ranging from
64 to 1500 Bytes, are used.

In order to simplify the identification problem, our anal-
ysis is performed by using the Low Traffic condition
(IDT = 1/100 s) with PS equal to {64,512,1024} Bytes (see
Table 4).

During each measurement, probing traffic is generated
for 120 seconds. This duration is chosen to correctly eval-
uate the performance of the paths, avoiding possible tran-
sient phases. Both D-ITG traffic sender (called ITGSend)
and receiver (ITGRecv) log some data in a file for each sent
and received packet, respectively. A sequence number and
two timestamps (sending and receiving time) in the ITG-
Recv log file allow to estimate the number of lost packets,
the delay, and the jitter. In particular, the samples of such
QoS parameters are evaluated by parsing such log file
using non overlapping windows of 10 ms. The width of
such time windows is the same as the sending period.
However, due to the fact that the Internet causes compres-
sions and expansions of the inter packet times, at receiver
side we can have more than 1 packet received as well as
more than 1 packet lost in each interval. The one way delay
is measured in absence of clock synchronization. In spite of
this, our identification approach is not influenced by the
lack of synchronization. In facts, before evaluating all the
statistics related to the delay, for each trace, we subtract
the minimum from all the delay values. As a consequence,
in each trace, the minimum delay is always equal to 0 and
it is not useful to discriminate the paths. Moreover, the
mean, median, maximum, and IQR values are not represen-
tative of the real values on the network. However, they are
still useful to discriminate the different paths and they are
therefore utilized as features in the classification process.
Moreover, when present the clock skew has been detected
and removed [8,9].

To avoid measure polarization due to external causes of
errors, the measurements are interleaved4. Moreover, all
the collected traces are inspected and sanitized in order to
detect and remove samples affected by errors (corrupted
log files, network anomalies, etc.).
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It is worth noting that the GPRS and UMTS connections
are provided by three principal Italian telecom operators.
Such connections are the same provided to all their custom-
ers; for this reason, the data we collect is related to what a
common user experiences. It is also worth mentioning that
the characteristics of such WWAN connections in Italy have
evolved from 2004 to 2008 thanks to the implementation of
different UMTS releases (for example the UMTS downlink
speed has grown from few hundreds of Kbps to different
Mpbs thanks to the introduction of the HSDPA [10]). Using
measures related to different standard versions, different
telecom operators, and different configurations allows to
further assess the generalizability of the obtained results.

4.1.1. Data archives
At [3] we make freely available several archives con-

taining the outcomes of the measurements we made over
real networks. Each archive contains a number of text files
with the samples of the QoS parameters. The samples are
obtained, by adopting the active measurement approach
above described, sending probe packets with a rate of
100 pps and a size equal to {64,512,1024} Bytes. More de-
tails about the traffic parameters are contained in Table 4.

Each sample is calculated using non-overlapping win-
dows of 10 ms length. The larger is such window, the less
number of samples we obtain from each trace and the
more packets each sample represents. The chosen length
(i.e., 10 ms) constitutes the best trade-off for our traces.
At [3] we provide also archives containing samples calcu-
lated on a per packet basis.

4.2. Features

Using the samples contained in each QoS parameter
trace, we calculate 13 features (see Table 2) in an off-line
fashion. They represent a small set of statistics, we divided
in concise and detailed, able to correctly identify the charac-
teristics of the considered network bricks. Detailed statistics
permit to better understand the behavior of the QoS
parameters [11,12], as explained in the following.

As for the concise statistics, we consider well known
parameters like the minimum, maximum, mean, standard
deviation, and median values. Also, we consider the inter
quantile range (IQR), defined as the difference between
the 75th and 25th percentiles. Average and standard devi-
ation are more useful when analyzed along with minimum
and maximum values. Moreover, for skewed distributions
the IQR and median value are more meaningful than the
standard deviation and the average value, respectively.
They are indeed less influenced by extreme samples.

As for the detailed statistics, we consider the entropy and
three correlation coefficients. Generally speaking, the en-
tropy is a measure of the uncertainty of a random variable.
Let X be a random variable. The entropy of X, named H(X),
is defined as

HðXÞ ¼ �
X
x2X

PðxÞ � log2PðxÞ: ð4Þ

It was used also in [13] to classify network links. To calcu-
late the probabilities we use the Scott rule [14], which al-
lows to choose the width of the bins for the samples.
As regards correlation measures, we use Pearson, Spear-
man, and Kendall correlation coefficients. The most widely
used is the correlation coefficient of Pearson (r)

r ¼

P
i2½1;n�
ðXi � XÞ � ðYi � YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2½1;n�
ðXi � XÞ2 �

P
i2½1;n�
ðYi � YÞ2

r ; ð5Þ

where X and Y represent the mean values of two random
variables X and Y, respectively. r Ranges from �1 to +1.
The correlation coefficient of Spearman (s) differs from this
one in that the calculations are done after changing the
numbers into ranks. Therefore, it can be evaluated by
means of Eq. (5) using the ranked data. Spearman correla-
tion coefficient allows to evidence also non-linear relations
between the variables.

Both these correlation coefficients are sensitive to outli-
ers and measure the ‘‘average dependencies” between ran-
dom variables. To overcome these limitations and to
properly take into account the upper tail dependencies,
we also consider Kendall correlation coefficient. Let
ðeX ; eY Þ be an independent copy of (X,Y). Two observations
(x,y) and ðex; eyÞ are then defined as a concordant pair if
ðx� exÞ � ðy� eyÞ > 0. While they are said to be a discordant
pair if ðx� exÞ � ðy� eyÞ < 0. We can then define the Kendall’s
tau (s) as in Eq. (6) that can be estimated as in Eq. (7).

sðX;YÞ ¼ PððX � eXÞ � ðY � eY Þ > 0Þ
� PððX � eXÞ � ðY � eY Þ < 0Þ; ð6Þ

esðX;YÞ ¼ #concordant pairs�#discordant pairs
#pairs

: ð7Þ

Thanks to its properties, Kendall’s tau was already used in
the study of traffic flow dependences in [15].

In this work all these correlation coefficients are evalu-
ated on the samples of one variable instead of two. Which
means that, in spite of Y, a shifted version of X is used (the
number of samples of which X is shifted is called lag). This
allows to evaluate how the samples of the considered var-
iable are dependent (i.e., their autocorrelation). Moreover,
they are calculated at both lag2 and lag10. In a preliminary
analysis, in which also the long range dependence proper-
ties were considered, such lag values have shown to be the
most effective for the purpose of the identification (refer to
[2] for more information).

4.3. Identification tool and procedure

Using the features previously calculated, we adopt
supervised classification algorithms to identify the network
bricks. We perform the identification by using version 3.4.9
of WEKA [16], an intuitive and complete software for solv-
ing classification and clustering problems.

For training and testing the classifiers, we use the 66%
percentage split option of WEKA. Which means that out of
the 1240 instances we have selected (20 measurements
for each of the 62 end-to-end paths), 827 are used for the
training and 413 for the tests. The classification is per-
formed for one brick at a time. Meaning that, for each net-
work brick, we first instruct the classification algorithm
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using 827 instances. This phase is called classifier training,
and it is followed by the classification phase in which we
use the other 413 instances for testing the identification
process. The two feature sets are called learning set and
test set, respectively. The former represents the attributes
the classifier uses to build its model (see Section 3). In such
phase, the classifier discovers the peculiar characteristics,
in terms of feature values, of each class. In the classification
stage, using these characteristics it attributes the elements
of the test set to a class. To perform the identification, we
instruct the classifier to consider each brick value (e.g.,
UDP for the protocol brick) as a separate class. Therefore,
looking at the classification results, we consider a network
brick instance as correctly identified if the classification
algorithm assigns it to the correct class. For each network
brick, the identification stage (training + test) takes less
than 1 second on a personal computer equipped with an
Intel P4@2GHz and 1 GB of RAM.

For assessing the impact of the particular training set on
the obtained results, the training/test process is repeated
300 times randomizing, each time, the instances in the
training and test sets. In other words, in each test 827 in-
stances are randomly selected from the 1240 in order to
train the classifier. Once it is trained, the remaining 413 in-
stances are used for the test. After all the 300 training/test
repetitions, the percentages of correctly identified in-
stances (i.e., the identification accuracy) are computed. In
Section 5 we report both the mean and the standard devi-
ation of such percentages. Looking at the mean we can ver-
ify if the identification process provides accurate results,
and how often it makes mistakes. Looking at the standard
deviation, instead, we can assess the impact of the partic-
ular training set in order to investigate about the general-
izability of the results.

5. Experimental results

5.1. Blind identification

In this section we report and discuss the results we ob-
tained. In Table 5, for each network brick the average per-
centage of correctly identified instances is reported
together with the standard deviation in parenthesis. Such
values are presented for the two considered classifiers.
Also, for each brick and for each classifier, we report three
identification results. Such three results are obtained by
using only the concise statistics, only the detailed statistics,
and the complete set of features (concise plus detailed sta-
Table 5
Identification results: percentage of identified instances

Brick Bayesian network (BN), %

Concise Detailed Concise + detai

Sender OS 91.1 (3.0) 85.6 (4.6) 90.2 (2.9)
Receiver OS 87.1 (3.3) 80.9 (4.5) 86.8 (3.5)
Sender AN 76.6 (4.9) 69.3 (5.8) 79.7 (5.2)
Receiver AN 72.8 (6.6) 68.3 (6.3) 73.8 (6.1)
Bitrate 58.8 (6.0) 65.3 (5.6) 72.2 (7.4)
Sender EuD 75.3 (5.7) 78.3 (4.9) 78.7 (5.1)
Receiver EuD 84.6 (4.4) 71.6 (5.6) 85.8 (4.1)
tistics), respectively. The components of these sets are indi-
cated in Table 2.

As we can see, the two classifiers achieve different per-
formance with the Naive Bayes classifier being less accu-
rate. We attribute this behavior to the fact that such
classifier assumes the features to be independent, which
is not the case here (as discussed in Section 5.3). Moreover,
the results from the Naive Bayes classifier are much more
dependent on the considered set of features. In facts, for
some network bricks (e.g., Sender EuD) the average percent-
ages obtained with the three sets differ of about 22%. This
is consistent with its intrisic simplicity which makes the
results more sensitive to the input data. Furthermore, for
this classifier, the detailed statistics perform better than
the concise statistics. We attribute this behavior to the fact
that the values of the latter set present more skewed distri-
butions. This constrasts with the Gaussian hypothesis of
the Naive Bayes classifier. For all these reasons the accuracy
obtained with such classifier can be as low as 39.1%. This
happens for the Bitrate for which we have three possible
choices (i.e., 51.2, 409.6, and 819.2 Kbps), and it means that
out of the 413 instances used for the test, about 251 (in
average) are not ascribed to the correct class but rather
to one of the other two. This witnesses that this classifier
is not suitable for our aim. For this reason, in the rest of this
section, our analysis is focused on the Bayesian Network
results.

Making no assumptions on the data distribution, the
Bayesian Network classifier presents higher accuracy and
lower differences among the three feature sets. A minor
decrease of the performance is noticed when only the de-
tailed statistics are used (with the exception of the Bitrate
and the Sender EuD). This is due to the data discretization
performed by WEKA Bayesian Network implementation
[17] which transforms the values of the features from
continuous (i.e., 2 R) to discrete (i.e., 2N) numbers. Due
to the use of a fixed number of bins, this operation allows
an easier recognition of the values of skewed distribu-
tions, which is the case for the concise statistics (Fig. 4
contains the histogram of the relative frequencies of the
1240 realizations of the jitter IQR obtained on the 62
paths).

For the Sender OS and the Receiver OS the highest accu-
racy is obtained with the concise statistics. In spite of these
cases, the Bayesian Network achieves the best performance
with the complete set of features. For this reason, in the
following we discuss only the results related to this kind
of identification.
Naive Bayes (NB), %

led Concise Detailed Concise + detailed

86.8 (3.8) 75.8 (5.4) 86.2 (3.8)
69.4 (5.3) 75.5 (5.0) 80.2 (4.9)
46.1 (4.9) 61.0 (4.8) 65.4 (4.9)
47.2 (6.1) 62.0 (5.3) 63.9 (5.4)
39.1 (5.7) 54.6 (5.7) 53.9 (5.9)
55.3 (5.2) 77.0 (5.2) 63.1 (5.1)
51.7 (6.2) 72.9 (5.0) 59.7 (6.9)



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

IQR of the Jitter

R
el

at
iv

e 
fr

eq
ue

cy

Fig. 4. Relative frequency histogram of the IQR of the jitter.

2982 A. Botta et al. / Computer Networks 52 (2008) 2975–2987
As one would expect, some network bricks are simpler to
identify than others. For them, the number of misclassified
instances is very low. Digging into numerical details, the
best performance is achieved by the Sender OS. In this case,
the percentage of correctly identified instances is equal to
90.2%. The second most accurately identified brick is the
Receiver OS (accuracy of 86.8%), followed by the Receiver
EuD, which achieves 85.8%. The remaining network bricks
(Sender AN, Receiver AN, Bitrate, and Sender EuD) achieve
approximately the same result (i.e., accuracy
2[72.2%,79.7%]).

The obtained results show that the blind identification
of network bricks is possible and its accuracy is somewhat
dependent on the considered brick. In overall, it ranges
from 72.2% to 90.2%, therefore providing satisfying results.
The motivation at the base of such variations is primarly
the different number of choices available for the network
bricks. Indeed, the higher number of candidates are avail-
able to the classifier, the more likely it will choose the
wrong one.

However, the very good results obtained by the operat-
ing systems are also motivated by the different network
performance of Linux and Windows, which is reflected by
different values of the considered features. From a net-
work-related point of view, the identification of such brick
is surely of interest for the correct operation and manage-
ment of the network infrastructure. Different operating
systems are often related to different user behaviors and
applications. Moreover, while other techniques exist for
identifying this brick [18,19], we believe our approach is
more robust with respect to aspects such as malicious
users. For instance, let us assume that a Linux user has
bad intents. He may alter the content of specific fields of
the packets he generates, in order to emulate a Windows
user (e.g., altering the Time To Live field of the IP packets,
whose default value is differently set by Linux and Win-
dows [19]). While this could cheat a common fingerprint-
ing technique, it would not deceive our approach, which
is based on statistical indicators.

A high identification accuracy is also achieved by the
end-user devices. This is partly due to the coupling existing
between the devices and the access networks. The laptop
computers are typically connected through IEEE 802.11
or GPRS/UMTS connections, while the workstations
through the Ethernet, and the personal computers often
use ADSL or Ethernet connections. Such coupling, which
is realistic indeed, is also reflected by our testbed configu-
rations and it caused a higher impact of the bricks on the
performance which, in turn, resulted in more accurate re-
sults. The knowledge of the end-user devices can be very
useful in current heterogeneous scenarios. Different de-
vices have different capabilities such as computational
power, display size or electrical power availability. This
knowledge may be exploited to tailor services to the users
and/or to effectively exploit the available resources.

Regarding the access networks, analyzing the obtained
results we have verified that the classifier errors are very
often due to the confusion of WLAN Infrastructure with
the WLAN Ad-Hoc. This also causes a higher standard devi-
ation of the accuracy compared with the other bricks. This
behavior is due to the very similar characteristics of these
two kinds of Access Networks, which are both based on the
IEEE 802.11 specifications and achieve very close perfor-
mance (slight differences between their performance are
only due to the presence of the Access Point in the infra-
structure mode). However, we can say that the access net-
work, another important element of an end-to-end path,
can also be accurately identified. As with the previous
one, this information can be surely of interest for users
or service providers in order to properly take into account
all the characteristics of the communication scenario.

Looking at Table 5, we can also see that, for all the
bricks, the higher is the average identification accuracy,
the lower is its standard deviation. Therefore, the consider-
ations made for the average accuracy, such as the best per-
forming bricks, are also valid for the standard deviation
(i.e., for the impact of the training set). Moreover, the stan-
dard deviation value is less than 5% in average. Which also
means that the identification is not heavily affected by a
particular training set.

5.2. Blind identification with feature selection

In this section we provide the results we obtained when
performing the classification with a reduced set of selected
features. This analysis is performed in order to understand
how the identification accuracy changes, by using a subset
of the features. The best would be to find the same subset
for all the network bricks. This would mean that some fea-
tures are not necessary for the identification process, and it
may also be exploited for a future online implementation
saving preprocessing time by computing only the selected
statistics. However, even if the optimal subset is specific
for each network brick, this information can be used to re-
duce the time needed for the computations required by the
classification algorithms.

The selection of the features is made by using the ‘‘Cfs-
SubsetEval” algorithm of WEKA with ‘‘Best First Search” op-
tion. This algorithm searches (using the best first search)
the features that are highly correlated with the class, but
loosely correlated with each other. Applying this algorithm
to our data we obtain different sets of selected statistics for
each network brick. The quantity of the concise statistics se-
lected out of the 18, and of detailed statistics selected out of
the 21 is reported in Table 6 together with the average
accuracy obtained (the standard deviation is also reported
in parenthesis). Such table shows that the accuracy is



Table 6
Results obtained by using a subset of features automatically determined

Brick # Of selected
features

Bayesian network
(%)

Naive Bayesian
(%)

Concise Detailed

Sender OS 4 2 91.3 (2.8) 87.1 (3.4)
Receiver

OS
3 1 88.6 (3.6) 66.1 (6.6)

Sender AN 7 4 80.8 (4.7) 57.5 (5.2)
Receiver

AN
6 6 79.2 (5.6) 61.8 (6.2)

Bitrate 3 6 70.3 (5.5) 51.2 (4.5)
Sender

EuD
3 8 81.1 (4.6) 66.0 (6.1)

Receiver
EuD

4 6 87.0 (4.0) 63.0 (5.8)
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slightly increased when compared to the classification per-
formed using all the features (reported in Table 5). Never-
theless, the best performing network bricks are the same in
both cases. These results witness that a higher accuracy
can be obtained by using a reduced set of features com-
posed of both concise and detailed statistics. However, it
is not possible to find a subset which is optimal for all
the network bricks.

In details, as a first consideration, we can observe a cer-
tain correlation between the number of selected features
and the achieved accuracy. In particular, excluding the bi-
trate, the less features are necessary the more accurate are
the results. This means that increasing the number of fea-
tures causes more confusion among the instances.

Moreover, looking in more detail, we can observe that
very few features are necessary to identify the sender
and receiver operating systems. And, the packet loss statis-
tics are not comprised into such subsets, which means that
they are not necessary for the classification. The packet
loss features are instead necessary for the identification
of the sender and receiver access networks. In particular,
for this QoS parameter, the lag-2 correlation coefficient of
Pearson is present in both the feature subsets. This is re-
lated to the fact that with the injected bitrate (i.e., from
51.2 to 819.2 Kbps) and packet rate (i.e., 100 pps) only
the access networks (such as GPRS and UMTS) can be
responsible for an observable packet loss. Looking at the
results of the end-user devices identification, we have ver-
ified that both the selected subsets of features contain the
mean, IQR, r(10) (i.e., the lag-10 correlation coefficient of
Pearson), and s(2) (i.e., the lag-2 correlation coefficient of
Kendall) of the delay; while they contain the r(2), r(10)
and the entropy of the jitter. Again, in the two subsets no
common statistics of the packet loss are present.

Summarizing, we can state that the packet loss statis-
tics are the less frequent in the selected subsets. This
behavior is due to the fact that the considered traffic con-
dition does not cause noticeable packet loss, except with
narrow-band connections such as the GPRS. This implies
that most of the statistics of the packet loss are very close
to 0 and, with the exception of the access network, they are
not useful to discriminate the bricks. Moreover, we have
noticed that the median values of the delay and the jitter
are the most frequently selected statistics. Such parame-
ters are the most significant for the network bricks identifi-
cation. Other frequently selected statistics are the
autocorrelation coefficients of the delay and jitter samples.
This last result witnesses that the QoS parameter samples
present non-trivial autocorrelation structures as also
pointed out in [2]. Finally, we observe that the different
subsets of selected features contain different non-common
statistics such as the correlation coefficient of Kendall and,
in more general terms, both concise and detailed statistics.
This means that set of statistics we consider represents a
complete and robust set of features, as anticipated in Sec-
tion 2.

5.3. Blind identification with the statistics of two QoS
parameters

In this section we present the results of the classifica-
tion performed with the features of two out of the three
QoS parameters. We repeated the classification by using
the 13 features (concise + detailed statistics) of only two
out of the three previously considered QoS parameters
(i.e., the classification uses 26 features instead of 39). This
analysis is meant to assess what happens to the identifica-
tion accuracy when just two QoS parameters are accessible
or measurable. Clearly, the investigation is also motivated
by the fact that delay, jitter, and packet loss are in some
way related to each other. In facts, the relationships be-
tween the QoS parameters are extensively studied in
literature.

Regarding the packet loss and delay, a number of works
have shown the dependencies between them [20–24]. In
particular, in [23] the authors analyzed the correlation be-
tween packet loss and delay considering that loss events
occur in sequence. While in [24] a Hidden Markov Model
able to jointly model packet loss and delay over heteroge-
neous network paths is presented.

Regarding the delay and jitter, a clear analytical depen-
dence exists between them. In particular, in this work the
jitter samples are calculated using the following formula

j0 ¼ jd1 � d0j; j1 ¼ jd2 � d1j; . . . ; jk ¼ jdkþ1 � dkj; ð8Þ

where jk is the kth jitter sample and dk is the one way delay
experimented by the kth received packet. This formula is
compliant with the definition given in [25].

Regarding the packet loss and jitter, due to the fact that
they are both related to the delay, it is easy to guess that
some relationship between them exists. Studies in litera-
ture, especially concerning real time applications and het-
erogeneous networks, investigate such relation. For real
time traffic, packet loss and jitter represent two main
causes of problems, therefore they are often jointly moni-
tored and innovative schemes are proposed to cope with
both of them at the same time. For instance, in [26] the
authors conducted a research to determine the best packet
size for VoIP traffic and found that a high traffic load can
cause packet loss and jitter, and also that jitter values lar-
ger than a threshold may cause packet loss. In a similar
context, the authors of [27] found that jitter degrades per-
ceptual quality nearly as much as packet loss does. For het-
erogeneous scenarios, instead, these two parameters are
considered as features to be exploited in order to improve



Table 7
Results of the identification based on two QoS parameters

Brick Packet loss and jitter (%) Packet loss and delay (%) Delay and jitter (%)

BN NB BN NB BN NB

Sender OS 89.7 (3.3) 85.3 (3.6) 89.9 (3.0) 85.0 (3.7) 90.2 (2.9) 86.7 (3.6)
Receiver OS 84.7 (4.1) 79.6 (6.6) 83.8 (4.0) 81.8 (4.7) 87.5 (3.3) 72.2 (6.3)
Sender AN 70.8 (5.4) 56.4 (5.1) 73.3 (6.2) 55.4 (4.4) 83.1 (4.5) 65.9 (5.4)
Receiver AN 66.7 (7.8) 50.5 (4.5) 72.5 (5.4) 61.7 (5.2) 76.9 (6.1) 59.9 (4.5)
Bitrate 61.9 (6.2) 50.1 (5.4) 68.1 (5.7) 54.9 (6.0) 71.0 (6.6) 54.1 (5.5)
Sender EuD 78.3 (4.8) 62.6 (5.0) 77.5 (5.3) 71.8 (5.0) 77.8 (5.6) 63.0 (4.8)
Receiver EuD 77.5 (6.7) 57.2 (7.2) 84.5 (4.3) 62.2 (6.3) 85.5 (4.1) 58.7 (7.7)
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the performance. In [28] Wu and Chen, in order to cope
with scarce TCP performance over wireless links, propose
a scheme to adapt the sending rate to packet loss and jitter
ratios.

According to the results shown in Table 7, the identifi-
cation based on only two QoS parameters is still possible.
With respect to the identification performed by using the
features of three QoS parameters (see Table 5), the overall
identification accuracy is indeed almost preserved. This
confirms that such QoS parameters are dependent and that
we can exploit these dependencies in our framework. Table
7 also shows that these dependencies differently influence
the network bricks.

In particular, we can observe that, for the Sender OS and
Receiver OS network bricks, the identification results for the
three QoS parameter pairs slightly differ. This means that
the classifier gives almost the same importance to the three
parameters. In general, for all the bricks, we can state that
the average accuracy decreases mainly when the delay fea-
tures are not taken into account. An accuracy decrease is no-
ticed also when the jitter features are discarded. This means
that the least important of the three parameters is the pack-
et loss. This was also confirmed by the previous analysis and
it is due to the fact that the considered bitrate and packet
rate do not cause significant losses on the network paths.
While this can be seen as a drawback of the chosen traffic
rate, it is worth underlining that a higher amount of injected
traffic would mean more intrusive measurements, which is
not desirable in a real operational network.

Concluding, we can state that with the current imple-
mentation of the identification process, there is a trade-off
between the number of useful statistics and the intrusive-
ness of the related measurement process. However, we can
leave the final decision to the users according to their
application requirements.

6. Related work

Inferring network properties from end-to-end measure-
ments represents an important and challenging task. Our
approach falls in the general field of edge-assisted network
management and control. Previous work has devoted con-
siderable attention to the use of (active or passive) mea-
surements from end-hosts both to infer network
properties or performance and for network management.
In particular, active measurements can be used for real
time performance assessment and diagnosis [29] as well
as for inferring network properties [30,31]. Whereas, pas-
sive measurements (e.g., routing updates) can be used to
detect, localize, and diagnose problems with path perfor-
mance or Internet routing [32,33]. More recently, a new
framework for Internet management and control – called
4D (decision, dissemination, discovery and data) – has
been proposed [34]. In the 4D framework, traffic control
is moved from routers and switches to end-to-end mecha-
nisms, which rely on packet delay and loss information to
adjust traffic intensity. In addition, if multiple paths are
available, end-to-end loss/delay information can be used
to optimally route traffic from source to destination
[35,36]. To pursue these goals new architectures and ap-
proaches, often based on the peer-to-peer paradigm, are
proposed for collecting and sharing network measures
among end hosts [37–40].

Although these research works use interesting tech-
niques and provide useful results, when compared to our
proposal they differ significantly in how the data measured
at the end hosts is used. Our approach may help end-hosts
(or intermediate systems) to identify pieces of networks,
opening the way to a wide variety of research studies that
aim to provide greater control over the entire end-to-end
network paths. Some scenarios could be the following:
adaptive and network-aware applications [41–44], reactive
and intelligent routing [45,46], overlay networks [47–50],
source-routing [51].

Regardless of the final target of our approach, the fol-
lowing represent the closest related works. In [52], the
authors propose a passive approach to detect bottlenecks
in network paths. The work in [53] presents results on
detecting shared congestion of flows by means of end-to-
end measurements. The authors of [54] propose inference
techniques to estimate the loss rates of network links. Such
techniques are based on measures collected on a server. In
[55 and 56], approaches aiming to estimate links capacity
along a path via end-to-end measurements are presented.

Taking into account the final target of the identification
of path elements, our approach is very similar to that pre-
sented in [57]. In this work an iterative Bayesian technique,
based on passive measurements, is used for identifying
802.11 traffic. Differently from [57], we use an active ap-
proach to collect our measures. Such an approach has been
used also in [13]. In this work, the authors classify the ac-
cess networks in three classes and show how it is possible
to recognize the class elements using the outcomes of an
active probing tool. However, differently from these last
two works, we are able to identify many elements instead
of the access networks only. Finally, several works use TCP/
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IP fingerprinting to detect host characteristics. As an exam-
ple, [18] uses a Bayesian classifier to passively detect the
host operating system, whereas in [19] techniques for OS
fingerprinting are presented. Compared to the previous,
our proposal provides a more complete and integrated ap-
proach: using the method described in this paper we are
indeed able to identify all the components of an end-to-
end path (from access networks to end-user devices, from
protocols to end-user operating systems) in a single stage.

As for the limitations, our approach does not explicitly
take into account all the issues at the base of developing
a software platform that works in an online fashion. The
development of such tool requires, in fact, several aspects
to be considered (e.g., intrusiveness of the measurement
process, scalability, etc.). However, at present we would
rather assess the feasibility of identifying end-to-end path
components by looking at QoS parameter statistics. More
precisely, our approach aims at providing some experi-
mental basis to show that a blind identification of different
network bricks is possible and that our approach is general
enough to be applied in several network scenarios.
5 We do not consider SCTP (Stream Control Transmission Protocol) for
the same reason of TCP.
7. Conclusions and issues for research

The automated discovery of network elements (in this
paper we called them network bricks) is of great impor-
tance for the network administrators in order to get a bet-
ter knowledge of their networks and, consequently, for
improving the network management, configuration and
control activities (e.g., intelligent routing, networks and
services overlay scenarios, etc.). Nevertheless, it can be uti-
lized by the end-users to efficiently tune the parameters of
their adaptive applications. For instance, in a general end-
to-end communication scenario, the knowledge of the ac-
cess network at receiver side (e.g., ADSL or UMTS) helps
in setting up efficient control and management activities
(e.g., peer selection in peer-to-peer applications, rate adap-
tion in streaming applications, etc.).

In this paper we introduced the problem of (blind) iden-
tification of network bricks over heterogeneous wired-wire-
less networks. The presented results confirm that our idea
of blind identification of network bricks is feasible. Consid-
ering the large variety and heterogeneity of the utilized
measures we have also shown that results of the identifica-
tion have a high degree of universality. We presented re-
sults using different sets of features and we showed that
a complete set of statistical features performs better than
a partial set in overall. In addition, over the complete set
(concise plus detailed), automatic selection techniques per-
mit to reduce the number of features to be considered for
the identification, without affecting the accuracy. Finally,
we showed that a blind identification is possible also with
a smaller set of QoS parameters. It represents a per se re-
sult, also useful when only a limited set of QoS parameters
is available (or measurable).

As for the ongoing work, we can divide it into three
main categories:

� increasing the number of available data sets: we are per-
forming additional measurements over new heteroge-
neous paths (comprising real and operational
heterogeneous wired-wireless networks [58] as well as
geographical heterogeneous testbeds [59]). In these
new measurements we are also considering both other
typologies of traffic sources (VBR, bursty traffic, etc.),
more similar to Internet traffic, and other transport
protocols (e.g., Datagram Congestion Control Protocol5).
This will allow to further improve the number of consid-
ered bricks.

� looking at the online implementations of the identification
process: as said in the end of Section 6, a limitation of our
current implementation is related to the fact that it
operates in an offline fashion. It requires, in fact, the data
traces to be previously collected and preprocessed. In
the present work we were interested in testing the
applicability and suitability of our idea of identification.
Therefore, we have still to investigate the implications
related to developing our approach in an online fashion.
This change of modus operandi requires several aspects
to be investigated (e.g., intrusiveness of the measure-
ment process, scalability, etc.).

� working on new identification/classification algorithms:
we are both considering other identification/classifica-
tion algorithms and multi-classifier approaches. As for
the former, we are testing a large number of classifiers
to better understand if more appropriate algorithms
exist. For testing new algorithms we are also considering
what we learned in this study regarding the relations
among the bricks and among the QoS parameters. As
regards the latter, we are considering more classifiers
working at the same time and using approaches coming
from the decision theory such as Dempster-Shafer the-
ory [60] and Behavior Knowledge Space (BKS) method
[61].
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