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Abstract

Random walks are gaining much attention from the networkeaeh community. They
are the basis of many proposals aimed to solve a variety wfonkitrelated problems such
as resource location, network construction, nodes sampditc. This interest on random
walks is justified by their inherent properties. They arey\@mple to implement as nodes
only require local information to take routing decisionds@ random walks demand little
processing power and bandwidth. Besides, they are velierdso changes on the network
topology.

Here, we quantify theféectiveness of random walks as a search mechanismerhop
replication networksnetworks where each node knows its neighbors’ ideinéigpurces,
and so it can reply to queries on their behalf. Our model fesws estimating the expected
average search time of the random walk by applying netwoduimg theory. To do this,
we must provide first the expected average search lengtk. i3 lsiomputed by means of
estimations of the expected average coverage at each dtep reindom walk. This model
takes into account theevisiting gfect the fact that, as the random walk progresses, the
probability of arriving to nodes already visited incregsshich impacts on how the net-
work coverage evolves. That is, we do not model the coveragermemoryless process.
Furthermore, we conduct a series of simulations to evaluatgractice, the above men-
tioned metrics. Our results show a very close correlatioméen the analytical and the
experimental results.
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1 Introduction

Random walksare a mechanism to route messages through a network. At each
hop of the random walk, the node holding the message forwatdsome neigh-

bor chosen uniformly at random. Random walks have interggiroperties: they
produce little overhead and network nodes require onlyl lméarmation to route
messages. In turn, this makes random walks resilient togdsaon the network
structure. Thanks to these features, random walks areldeefdifferent applica-
tions, like routing, searching, sampling and self-stahtion in diverse distributed
systems such as Peer-to-Peer (P2P) and wireless netwed®][1

Past works have addressed the study of random walks. Sorhésatsearch has
focused on the coverage problem, trying to find bounds foekpected number of
hops taken by a random walk to visit all vertices (nodes) imap@ G (Cg) [11-
14]. Results vary from the optim@ls of complete graph®(nlogn) [11] (wheren
is the number of vertices) to the worst case found in thedopigraph®(n?) [15].
Barnes and Feige in [16] generalize this bound to the exgeuienber of hops to
cover a fraction { < n) of the vertices of the network, which they foundaf 3).
Other works, for example, are devoted to find bounds on theagd number of
steps before a given nodas visited starting from node(H; ;). For example, it is
known that the upper bound fbt; ; is ®(n®) [17]. Many of these results are based
on the study of the properties of the transition maRiand adjacency matri& in
spectral form [18].

The previous results are used in several works to discugsrtiperties of random
walks in communication networks. Gkantsidis et al. [19]lgghem to argue that
random walks can simulate random sampling on P2P networkszerty that in
their opinion justifies the ‘success of the random walk mdtighen proposed as
a search tool [3] or as a network constructing method [9].mAidaet al. [20] study
the search process by random walks in power-law networKyiagihe generating
function formalism. This work seems deeply inspired by asjangs contribution of
Newman et al. [21], who study the properties (mean compasizat giant compo-
nent size, etc.) of random graphs with arbitrary degreeidigton.

This paper introduces a study of random walks fromfeedent perspective. It does
not study the formal bounds in the amount of hops to cover éteark. Instead, it
tries to estimate thefciency of the random walk as a search mechanism in com-
munications networks, applying network queuing theoryakies into account the
bounded processing capacities of the nodes of the netwarkhaioad introduced

by the search messages, that are routed using random walilstdin this load, we

1 The termtimeto refer to the number of hops of the random walk (that is)dtsth
is usual in many previous works. Thus, for exam@e, is often denoted theover time
However, in this work we will use the tertrmeto refer to thedurationof the random walk.
To avoid confusion, from now on the tertimewill only denote the physical magnitude.



need to estimate first the average search length, whichnngwomputed from the
expected average coverage: the average numbeffefatt nodes covered at each
hop of the random walk. A distinguishing feature of our wagkhat, as in the case
of Adamic et al. [20], it deals with a scenario that has notnbesry exhaustively
explored although, in our opinion, is quite interestinghe tommunications field:
one-hop replication networks

One-hop Replication One-hop replication networks (also calledkahead net-
works[22]) are networks where each node knows the identity ofeigtmbors and
so it can reply on their behalf. Hence, to find a certain noda lbgndom walk it
sufices to visit any of its neighbors. This feature is presenef@mple in social
networks, where to find some person it is usually enough tatéany of hehis
friends [20]. Also, certain proposals to improve the reseuocation process on
P2P systems [2, 23] (some based on random walks) assumetiahede knows
the resources held by its neighbors, so to discover somanas¢such as a file or
a service) it sffices to visit any of the neighbors of the node(s) holding it.

In one-hop replication networks, when the random walk sisdme nodewe say
it alsodiscoverghe neighbors of. Hence, we will use two dlierent terms to refer
to the coverage of the random walk. We denotevisited nodeghose that have
been traversed by the random walk, anddoyered nodethe visited nodes and
their neighbors. See Figure 1 for an illustrative example.

Previous Work and the Revisiting Effect There is some research work related
with the characterization of random walks in one-hop repian networks. In [24]
the authors prove that in the power-law random graph the amaiuhops for a
random walk to discover the graph is sublinear (faster tlmaspon collection, with
which the random walk is compared in [19]). Also, Manku et[aR] study the
impact of lookahead on P2P systems where searches are thubedh greedy
mechanisms. In another work, Adamic et al. [20] try to findlgteal expressions
for Cgthe cover time of a random walk in power-law networks with tiaaps repli-
cation. They detected divergences between the analytiedigtions and the ex-
perimental results. The reason for such discrepancy, aauthers point out, is the
revisiting gfect which occurs when a node is visited more than once. In small-
world networks, where a small number of nodes are conneotether nodes far
more often than the rest, it is quite common for random wadk&git often these
highly connected nodes.

Our Contributions Although there is a plethora of interesting results abomt ra
dom walks, we have noticed that there are situations whemermufindings are
not straightforward to apply, especially on communicatietworks with one-hop



replication. For example, in such networks, we can be isteceon studying be-
forehand the expected behavior of the random walk to evaltidtsuits the system
requirements. We characterize the random walk performbayéeur values:

e The expected coverag&iven by the expected number of visited and covered
nodes of each degrdeat each hop of the random walk.

e The expected average search lendiRpected length of searches in number of
hops, assuming that the source and destination nodes okeaoth are chosen
uniformly at random. Obtained from the coverage estimation

e The expected average search durati@xpected time to solve searches. Ob-
tained from the average search length, givenphmcessing capacitpf each
node and théoad on the network due to queries.

e The maximum load that can be injected to the netwatkout overloading it.

In this work we provide a set of expressions that model theateh of the ran-
dom walk and give estimations for the three previous pararae©ur claim is that
these expressions can be used as a mathematical tool totgredi random walks
will perform on networks of arbitrary degree distributiofhen, we do not only
address the coverage problem (i.e. to estimate the amoumddsafs covered after
each hop of the random walk), but we also apply queuing theomgodel the re-
sponse time of the system depending on the load. As we shisvaghroach allows
to compute in advance important magnitudes, such the eagheetarch duration or
the maximum load that can be managed by the network befotiegeterloaded.
Additionally, we find our model useful to study how certaiatigres of the network
impact on the performance of searches. For example we findhbdest average
search time is achieved only if the nodes with higher deghes® also greater
processing capacities.

The expressions related with the estimation of covered siatleach hop are the
most complex part of the model. They must deal both with treeloop replication
feature and the revisitinglect. However, we should remark that the model can be
trivially adapted to networks where tl@e-hop replicatiomproperty does not hold,
and the search finishes only when the node we are searchimgftarnd (see the
last paragraph in Section 2.4).

Likewise, it is easy to modify the model to a variation of tle@dom walk where
each node avoids sending back the message to the node itegdefrom at the
previous hop. We denote this routing mechanariding random walksand we
deem it interesting for two reasons. First, intuitivelyshiould improve the random
walk coverage (we have confirmed this experimentally). 8dcd can be imple-
mented in real systems using only local information, jushaspure random walk
(the sending node only needs to know from which neighbor tleesage came
from).
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Fig. 1. lllustrative example of visited and covered nodes

A feature of our proposal is that it does not require the cetephdjacency matrix
A, that in some situations could be unknown. Instead, thamkbe randomness
assumption we apply it only needs the degree distributiah@ietwork to com-
pute the metrics we are interested in. On the other handwitiik is focused on
networks with good connectivity and where the nodes degreemdependent (see
Section 2.1).

Another property of this model is that it takes into accounat tevisiting &ect by
modeling the coverage of the random walk at eachltdgpending on the coverage
at the previous hop- 1. That is, the evolution of the coverage is not assumed to be
a memoryless process, a simplification that can lead tosa®seen in [20].

The rest of the paper is organized as follows. Section 2diuites our analysis of
the coverage and average search length of random walkgy aliéim some exper-

imental evaluation. Section 3 is centered on obtaining tleeage search time of
random walks. Finally, in Section 4, we state our conclusiand propose some
potential future work.

2 Analysisof Random Walks

In this section, we analyze the behavior of random walks itrary networks.

2.1 Model and Assumptions

We will represent networks by means of undirected graphs(V, E), where ver-
ticesV represent the nodes and edges V xV are the links between nodes. There
are no links connecting a vertex to itself, or multiple edgetveen the same two
vertices. This does not simplify our model, but makes itetde real scenarios like
typical P2P networks. We denote N = nthe number of nodes in the graph and



by n, the number of nodes that have degkgge., the number of nodes that have
k neighbors}, kn. = 2|E|). For all vertices its degrdeis lower than the size of the
networkn, as in typical real world networks (such as social and puie mworks)
each node is connected to only a subset of the other vertidekueisyste. We
also denote byy the probability that some node in the network, chosen umifpr
at random, has degrédi.e., px = ng/n). The average degree of a network is given
byk = ¥, k p.. For a given network, the distribution formed by the prolities py
(for all k) is known as thelegree distributiorof such a network.

A random walk ovelG can be defined asMarkov Chain[15] processMg where
the transition matri® = [P;;] is defined as:

1 e
p, = { "0LDEE )
0 otherwise.

wherePj; is the probability of moving from nodieto nodej, andd(i) is the degree
of nodei. P allows to study the probability of visiting each node at ehop|.
This probability is expressed in theate probability vectarg = (dl, d, ..., d}),
whereq represents the probability that the random walk visits ricatenopl. This
probability evolves ag' = g~*P.

Assuming thatG is connected and finite, thévis is irreducible: any node can be
reached from any other node, and the average path lengte®etwo any nodes is
finite. Assuming also thas is non-bipartite, then we can state tihé¢ is aperiodic
and so we are able to apply tfr@indamental Theorem of Markov Chaifib].
This theorem states that in such gralgly is ergodic an exists an unique state
probability distributiorsr, denoted thestationary distribution such thattP = =,
= (my, Mo, ..., ), Wherer; is:

_ o d()
T = ﬁ (2)
Intuitively, = represents the steady stateM§. That is,n; represents the proba-
bility that the noda is visited at any hop of the random walk once the stationary
distribution has been reached. This probability is prdpogl to the degree af

d(i).

2 Some P2P networks like Napster have a central node that fetwembers use to lo-
cate files. But those networks are not considered as pure YRB2&ss because they use a
typical server-client architecture with a centralizeddiogy to perform searches. They are
regarded to have a “P2P” behavior only in the way files areeshafhis work is rather
focused on the decentralized topologies of pure P2P neswvork



Mixing Rate and Conductance We are interested on how fast the random walk
converges tor, a magnitude that is called theixing rate[18]. We require a fast
convergence in order to be able to apply Equation 6.

The convergence rate is related with the eigenvalues ofrémsition matrixP. A
vectorX is aneigenvectorof P with eigenvaluel iff XP = AX (so for exampler
is an eigenvector oP with eigenvalue 1). It is well known [18] thd& hasn real
eigenvaluesly = 1 > A; > ... > A,1 > -1 (and in fact, ifG is non-bipartite
thena,; > —1). It is also known [25] that the convergence ratertis governed
by the second largest eigenvalue modulu®ofiaxA;, |1,_1/}. In most real world
networks we can safely assume that- |1,_1| [18,19, 25]. The following holds for
a random walk starting at nod¢18]:

POG) — 7l < \/%AL 3)

whereP" is the distribution of the state of the random walk at hopheni is the
initial state. Thus, we can expect a fast mixing for high eslof thespectral gap
1- 4.

Now, thed; value is strongly related with theonductancef the network ®g. In-
formally, the conductance measures how well ‘connectesigtiaph is. It is defined
as follows. ForS C V, the cutset o6, C(S), is the set of edges with one endpoint
in S and the other endpoint i&. The volume ofS, vol(S), is defined as the sum
of degrees of the nodes 8 i.e., voIS) = },.s d(i). Then the conductance Gfis
computed as:

IC(S)|
vol(S)

O = min (4)

vol(S)<vol(V)/2
The relationship between the conductance and the convaggegiven by the fo-
llowing expressionCheeger’s inequalify{18]:

G
- <1-11<20c. (5)

Soa good conductance leads to high mixing ratist is, the random walk state
will converge quickly to the stationary distributian The intuition behind this fact
is that in graphs with good conductance the random walk widble to move to any
region of the graph easily, whichever the origin node, andl will evolve quickly
to the equilibrium. We reason that high connectivity is teelpected in many real
world networks (specially communication networks) andvoek models [26—-28].



Therefore, we can assume that the probability that the n=ited by the random
walk has degre& at each hop of the random walR(k), is also proportional td
and can be computed as:

B d(i) B k B K pc
P = ZV 26 - "Sm T Tk ©)
d(iy=k

We will apply Equation 6 intensively for our analysis of theverage. Of course,
its correctness depends on the distance of the random wHik &tationary distri-
bution, or how fast it converges to it. Another issue to betaito account is the
possible dependencies between successive steps of thmravalk. Our analysis
estimates the average number of nodes visited and coveréet lpgndom walk at
a certain hop from the values estimated at the previous hogpn€éw estimation is
done assuming that the random walk has statistical presesimilar to the random
sampling of nodes where the probability of choosing a certaide is proportional
to ki, despite the apparent dependencies between consecutise hop

Also, the work by Gkantsidis et al. [19] shows the simil@stbetween independent
sampling and random walks, that we assume for our mean baségses. As the
authors state, in networks with good connectivity and egmamproperties (which
are strongly related td,) the random walk has a behavior close to independent
sampling, being the probability of choosing some node pribgaal to its degree.

Besides, we have performed some experiments to verify theaaess of this
hypothesis. The results, shown in Figure 2 confirm itis advasisumption. Also, we
would like to remark that the property expressed by Equaiain fact assumed
in previous works about random walks (e.g., [20, 21]) ankbddy [19].

Another important issue we have tested is how ‘fast’ the oamevalk evolves to a
state where the assumption of Eq. 6 holds. Figure 3 showshwrahdom behaves.
It can be seen that, almost immediately after hop O (staré)ydde probability of
reaching a node of degrées P(K).

We should note that the good conductance property, thaiesighat the random
walk can move from any node to any other node in few stepsadissome topolo-
gies such as cycles.

Independence of Nodes Degrees Finally, we assume that the degrees of neigh-
bors are independent. That is, given any two connected rioaled | ((i, j) € E)
and any two degree valugsandk,, thenP[d(i)=k; | d(j)=kz] = P[d(i)=ki] = px,-
This property holds in networks built by random mechanisiike, the ones used
to built the ER and small-world networks we target in our ekpents. To confirm
that the degree independence assumption is valid we hav&oraa experiments,
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(a) Erdos-Renyi networks. (b) Small-world networks.

Fig. 2. In these figures, we show the probability of a searchsange arriving at a particular
node as a function of its degree. We have used both ErdostRedysmall-world (pow-
er-law) networks formed by 5000 nodes, with dferent average node degrees (10, 20
and 30). The same experiments have been performed with netfasmed by 25000 and
100,000 nodes, and we found similar results. As it can be readiy sthe probability of a
search message arriving at a particular node is propottiorthe degree of the node.
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(a) Erdos-Renyi networlk = 30. (b) Small-world networkk = 10.

Fig. 3. These figures compare the probabil(k) of reaching a node of degr&eas defined

by the model, with the measured probability of reaching aenofddegreek at each hop

of the random walk. Both for ER and small-world networks tlkpeximental results are
averaged over threefiierent networks with the same average degree andrsizé(- 10%).

whose results are shown in Figure 4. These experiments aimea&sure if the prob-
ability of reaching a node of degr&avhen following a random walk isféected by
the degre&’ of the node the random walk was in the previous hegk(k’)). Our
results lead to the conclusion thék, k'P(k/k’) = P(K), that is,k’ does not have an
impact onk.
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(a) Erdos-Renyi networlk = 30. (b) Small-world networkk = 10.

Fig. 4. These figures compare the probabil(k) of reaching a node of degr&eas defined
by the model, with the measured probability of reaching aenofidegreek given that
the rw comes from a node of degrke P(k/k’). Both for ER and small-world networks
the experimental results are averaged over threrdnt networks with the same average
degree and sizen(= 10°).

We should note also that this property is not fulfilled in aertgraphs like those
built by preferential mechanisms where it is well-knowntttieere is a correlation
among neighbors degrees [29]. This could lead to certairatiexs in mean-based
analysis of the random walk (as our own).

In the following, we study how many fierent nodes are visited by a random walk
as a function of its length (i.e., of the number of steps take of the degree dis-
tribution of the chosen network. Subsequently, we extersdésult to also consider
the neighbors of the visited node. These metrics allow usismtify how much of

a network is being “known” throughout a random walk progrd$en, we turn our
attention to provide an estimation of the average seardjthenf a random walk.
In the last subsection, we validate our analytical resuftsneans of simulations.
We assume that only the degree distributprand the sizen = |V| of the network
are known.

2.2 Number of Visited Nodes

This metric represents the average number fietent nodes that are visited by a
random walk until hop (inclusive), denoted by/'. Note that nodes may each be
visited more than once, but revisits are not counted.

To obtainV', we first calculate the average number dfefient nodes of degrde
that are visited by a random walk until hbfinclusive), denoted bylL. We make a
case analysis:

e Whenl =0 (i.e., in the source node): Since the source node of theoramealk
is chosen uniformly at random, then the probability of starts random walk at

10



a node of degrekis p«. Therefore,

Ve = 1-pc+ 0-(1-p) = pe (7)

e Whenl =1 (i.e., at the first hop): Here we apply that the probabilityisiting
some node of degrdeat any hop is given b¥?(k) (Equation 6). This is based on
the assumption that the random walk behaves similarly tepeddent sampling
despite dependencies between consecutive hops (base#] oseld Section 2.1).
We deem this premise to be reasonable even at the first sthgies mndom
walk, due to the high mixing rates found in the type of netvgook which we
focus our work (again, see Section 2.1). Recall that theraxjeatal evaluation
both of this assumption (Fig. 2) and of our model (shown inti®ac.5), seem
to verify this. Thus, we have that

Vi = V¢ +P(K)

k P (8)
I) + _—
“ k

e When!| > 1. we must take into account the probability of the randomkwal
arriving at an already visited node. To compute such a pribtyalwve define the
following two values:

- Py(k,1): This represents the probability that, if the random walkvas at a
node of degre& at hopl, that node has been visited before. It can be obtained
as follows:

VI—2
Pk 1) = = (9)
Nk
Note that we puw/, 2 instead ofV, ! because the node visited at hiop 1
can not be visited at hdp(no vertex is connected to itself).

- Py: This is the probability that at any given hop the random walknoving
back to the node where it came fidmSince any visited node has degiee
with probability P(k), then the random walk will go back through the same
link from which it came with probability Ak. Therefore, we have:

1 1
P, = ; P = - (10)
Using these probabilitie®], can be written as

Vi = Vit 4+ P(R)(L - Po)(1 - Py(k 1))

V)2 11
v'k-1+kTp‘(1—i)(1—L). ()
k k Nk

3 Here we can easily adapt the model to #w®iding random walkIf we don’t want to
consider the case of a random walk moving back to the nodeenh&ame from, it is
enough to assigRy, = 0.

11



Finally, taking the results obtained in Equations 7, 8 andwielhave that the total
number of diferent nodes visited until hdgs

V= ) Vi (12)
k

2.3 Number of Covered Nodes

This metric provides an estimation of the average numbeifigrént nodesovered
by a random walk until hop (inclusive), denoted b¢'. A node is covered by a
random walk if such a node, or any of its neighbors, has bestediby the random
walk.

To obtainC', we first calculate the number offtérent nodes of degrdecovered
at hopl, denoted byC,.

e Whenl =0:

C¢

p(1+KkPK) + > pj | P(K)
j#k 13)

= V¢ + P(k) k.

The first term takes into account the possibility that there®unode has de-
greek. The second term refers to the number of neighboring nodésdsource
node) of degre&. If the source node has degrg@vhich happens with probabil-
ity p;) then, on averagg,P(k) nodes of degrekwill be covered, since each one
of the j neighboring nodes of the source node will have degnegh probability
P(K).

e Whenl > 0: Given a link ¢, w) € E, we say that it has two endpoints, which are
the two ends of the link. We denote the endpoint of the linkadav by v (w),
and similarly the endpoint of the link at nodeby w (v). We say thab (w) hooks
ontonodev. We also say that (w) has beerctheckedoy a random walk if such
a random walk has visited node These concepts are graphically explained in
Fig. 5.

Now, let us denote b the number of endpoints checked for the first time at
hopl, and byP,(k, 1) the probability that these endpoints hook onto still unrcov
ered nodes of degrde Then,CL (wherel > 0) can be written as follows:

C. = Gt + PykI) E. (14)
- To obtainE', we consider the number offtiérent endpoints checked after Hop
to be}; jVJ'.. So, the number of endpoints checked for the first time atlh®p

Z,-(V} —V}‘l)j. However, one of the endpoints hooks onto the node the random
walk comes from (i.e., it cannot increase the amount of nttsare covered).
Thus:

12



d(b) fi fi e(c)

Fig. 5. The figure shows a simple graph formed by 5 nodes (nangcd, d ande) where
there is a random walk that follows the path b—c—e. At each node, we represent the dif-
ferent "endpoints” that arbookedon that node by means of small circles. For instance, the
endpointsa(b) anda(c) are said to be hooked onto nodeln the graph, when the random
walk starts (at node), then endpoinb(d) is said to bechecked Similarly, when it visits
nodeb, then endpointsl(b), a(b) andc(b) are said to be checked. The same mechanism
applies when the random walk visits nodesnde.

E'= (v -Vih(- 1. (15)
j

- To obtainPy(k, ), on one hand we consider the overall number of endpoints
hooking onto uncovered nodes of degtepist before hogd is k(n, — C.%).
On the other hand, the overall number of endpoints jg n;, and the overall
number of checked endpoints until hbp 1 (inclusive) is}’; | V}‘l. That is,

the number of endpoints not checked just before hisgy:; j nj — >3; V}‘l.
Therefore, we can write:

k (nc—C. )
2iini =i V}_l'
Substituting Equation 15 and 16 into Equation 14, we have tha

Puk,1) = (16)

k (ne—Ch) ]

S ) XMV G0 an
J

G =Ct + (
J

Finally, taking into account Equations 13 and 17, we havetti@total number of

13
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(a) Erdos-Renyi network. (b) Small-world network.

Fig. 6. In the Erdos-Renyi network most nodes have appraeinahe same number of
links. In contrast, the small-world network is heterogaredhe majority of the nodes have
approximately the same number of links but a few nodes haaegya humber of them.

nodes covered after hops

c'=>cC. (18)
k

2.4 Average Search Length

Using the previous metric, we are now able to provide an edton of the average
search length of random walks, denoted biyormally,| is given by the following
expression:

| = il P:(1), (19)
1=0

whereP¢(l) is the probability that the search finishes at hdpe., the probability
that the search is successful at hppaving failed during the previods- 1 hops).
Let us define th@robability of succesat hopl, denoted byP(l), as the probability
of finding, at that hop, the node we are searchingRgfl) can be obtained as the
relation between the number of new nodes that will be covatdtbpl, and the
number of nodes that are still uncovered at hophat is,

| _ -1
Pil) = ot (20)
Now, P¢(l) can be obtained as follows:
I-1 | _ -1
Pil) = P [ |- Pu) = S )
i=0

Therefore] can be written as
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| = }il (c'-c'h. (22)
n 1=0

2.5 Experimental Evaluation

We have run a set of experiments to evaluate the accuracy @pressions pre-
sented in the previous subsections. The results obtaimegrasented in this sec-
tion.

For our work, we consider two kinds of network: small-worldtworks (con-
structed as in [21]) and Erdos-Renyi networks (construateith [30]).

e Small-world network§21, 31]. In [32] it is shown that many real world networks
present an interesting feature: each node can be reachmdirp other node in
few hops. These networks are typically denoted small-woeltlvorks. The In-
ternet, the Web, the Science collaboration graph, etc.xampgles of real world
networks that are consistent with this property. This kihechetworks are also
specially interesting for our work because here the rengsiéffect commented
in Section 1 is strongly present due to the uneven degreebdison. We build
small-world networks using the mechanism described in,[2t]ich leads to
networks whose degree distribution follows a power-lavridiation p, ~ k™
(power-law networks).

e Erdos-Renyi (ER) random networ[30]. For two any nodesg j € V there is a
constant probabilitg that they are connected,({) € E). The resulting degree
distribution is a binomial distributiop, ~ (E)ck(l — o)™k,

See Figure 6 for an illustrative example of both kinds of reeis.
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Number of Visited and Covered Nodes Ouir first goal is to study the evolution
of the network coverage by random walks in real networks.

The experiments were run on networks of two sizes,5 -_104 andn = 10° nodes.
Networks were built using threeftierent average degreds= 10,k = 20 andk =
30. In each network we ran 4@andom walks of lengtim = |V|. The source node
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of each random walk was chosen uniformly at random. From xperements, we
obtained the average number of visited and covered nodesibbrdegrek at each
hopl. Finally, for each network, we extracted its degree distidn n, and apply

the expressions described in the previous section to geithgbion of those values,
given byV, andC,. Results are shown in Figures 7, 8, 9, and 10. For the sake of
clarity, the experimental results are shown every 2000 ho@dl figures. Model
predictions, on the other hand, are drawn as lines.

Figure 7(a) shows the evolution of the number of visited sodeER and small-
world networks of size = 5- 10* nodes, with two dferent average degrekes: 10
andk = 30. We see that, although the length of the random walks isiginto
potentially include all the nodes, only a fraction of thera gisited. This happens
because of the revisitingfect, and it is more evident when the number of hops
increases, since the probability of revisiting grows wiie humber of hops. The
revisiting dfect is stronger in small-world networks than in random neksoThe
reason is the uneven distribution of the nodes degrees Hrersome nodes with
a very high degree that will be visited once and again by thdom walk. Thus,
the chances of finding new nodes at each hop are lowered fastenall-world
networks than in ER networks. Also, we observe in Figure tha@lin networks of
smallerk the revisiting &ect is stronger. Finally, Figure 7(b) shows the impact of
the network size&n on the amount of visited nodes. As expected, a greataplies

a lesser number of revisits for the same number of hops. baa#s, the prediction
V' of the total amount of dierent nodes visited is very close to the experimental
results.

In Figure 8 we study the accuracy of the predictions of thewamhof visited nodes
of a particular degre& at each hop, V,. We draw the results and predictions of
degreek = k+ 5 andk = k-5, fork = 10,k = 20 andk = 30. Again, it can be
seen that the model predictions fit very well with the experal results, despite
the revisits and the fferent behavior observed forftérent degrees.

Figure 9 gives the results of the experiments run to studgakierage of the random
walk. Figure 9(a) shows how the coverage grows faster inlsmvald networks
than in ER networks for networks of the same average degr@éis contrasts
with the amount of visited nodes, that behave in the oppogite (see previous
paragraphs). The reason is the presence of well-conneotsgbnthat are quickly
visited during the first hops of the random walk and increasesiclerably the cov-
erage because of the high amount of neighbors they havexgorpte, after 4000
hops, the random walk has covered about half of the smalldwatwork with
k = 10, while in the ER network of the sankghe random walk only has covered
close to 30% of the nodes. Moreover, we can see that the rlewerage degree
has also an important impact on the coverage. In both kinétfeorks the cover-
age grows faster when the average degree is higher. Besidash)serve that the
difference of the coverage for both networks decreases mordyfaca higherk.
Figure 9(a) confirms the importance of the average degreepaong the results
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for networks of diferent size an#l. In addition, Figure 9(b) compares the results of
the coverage for ER networks offfrent sizes and average degrees. As it could be
expected, the networks of smaller size require less hops tmered. We observe
also that the average degree has an important influence @ovtkeage dterence.
The greater the average degree, the faster the coveragthafdtavorks converges.

In all cases, th€' values given by the model predict very well how the coverage
behaves and evolves.

Figure 10 allows to check the precision of the coverage ptiedis for diferentk
vaIuesCL. As before, the values provided are very close to the exgariatresults,
although the behavior of the coverage changes stronglyndiépg on the kind of
network and average degree.

Finally, we check the model accuracy for random walks thaidcathe previous
node, theavoiding random walkAs stated in Section 2.2, the avoiding random
walk can be easily implemented by our model just by setipg= 0 (see Equa-
tion 10). Results are shown in Figure 11. There we comparedfierage of pure
and avoiding random walks in ER and small-world networksizé s = 10° nodes
and average degrde= 10. Figure 11(a) confirms that, as expected, the avoiding
random walk is able to visit a greater number dfelient nodes, as the revisiting
effect is, to a certain degree, lessened. However, Figure Sh(ys that this has
little impact on the network coverage. We find that there ity @small increase
on the amount of covered nodes when using avoiding randoswair both kind

of networks. Nonetheless, in all cases YHeindC' values given by the model are
very close to real results.

Average Search Length  For the experiments regarding the average search length
we used networks whose sizes ranged frorht@@- 10° nodes. In each experiment
we ran 10 searches, averaging the obtained results. At each seaxchptles (one
corresponding to the source and the other to the destinatienre chosen uniformly
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Fig. 12. Average Search Length

at random. Starting from the source, a random walk travetteedetwork until the
destination node was found (i.e., a neighbor of the destinas visited).

The first thing to note is that the average search length gtimearly with the
network size in both ER and small-world networks. Besides,average degrde
has an importantfiect on the results. The bigger thethe shortest the searches are.
The reason is that a highkeimplies that at each hop more nodes of the network are
discovered. Also, it can be observed in Figure 12 that theageesearch length is
greater in ER networks than in small-world networks. This ba explained if we
take into account that random walks, on average, cover namesiin small-world
networks than in ER networks (see Figures 9).

As in the previous experiments, Figure 12 also shows thaexperimental results
regarding the average search length correspond very addbe &analytical results
that were obtained.

At this point, we would like to note that, given the assumpsiave made in our
analytical model, it seems that the very good match achiewttthe experimental
results could only occur if these assumptions are corresta Anatter of fact, we
have verified, in practice (see Figs. 2 and 4), that the typeetforks we consider
in this paper, indeed, fulfill our assumptions.

On the other hand, it is clear that if we take into account peta/that do not fulfill
some of our assumptions, then a certain mismatch shoulddeeted. For instance,
networks built by preferential mechanisms are known notésgrve the indepen-
dence of degrees of neighbors [29]. Therefore, we shoul@inofor a very close
correspondence between analytical and experimentaltse$Mé have performed
the same experiments we ran for random and small-world mksaegarding the
average search length, but this time with networks builhgishe preferential at-
tachment mechanism proposed by Barabasi [31]. Now, we bbserved that, as
expected, in preferential networks our experimental tegid not correspond very
close to the analytical results (see Fig. 13(a)). Instdaenodel seems to be con-
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Fig. 13. Average Search Lendtot pure random networks.

sistently pessimistic. Also, the error continuously gravth the network size.

Finally, we have tested the model against Toroidal netwofkdifferent average
degreek = 10 (5 dimensions) ankl = 16 (8 dimensions). Our intention is to ana-
lyze networks which are not random at all. Results, whichsh@vn in Fig. 13(b),
show a very clear mismatch among the results predicted bytitel and the actual
performance of the random walk.

3 Duration of Searches by Random Walks

In this section, we present the second part of our model. Wererovide useful
expressions that allow to predict the performance of randaiks as a search tool,
which is the main goal of this work. These expressions relthersame estimation
of the average search length (like the one described in #aqus section), that is
combined with Queuing Theory [33]. As a result, given thecpssing capacities
and degrees of nodes, we are able to compute two key values:

e Theload limit: the searches rate limit that the network can handle betdtga
tion.

e Theaverage search time¢he average time it takes to complete a search, given
the global load.

Also, we show how these expressions can be used to analyzé features a net-
work should have so random walks have a better performaree gearches are
solved in less time). In particular, we focus on studyingriéationship between
degree and capacity distributions, showing that the mininsearch time is ob-
tained when nodes of higher capacities are also those oéhagyrees.

In our analysis, networks are assumed taJaekson networkf33]: the arrival of
new searches into the network follows a Poisson distribugind the service at each
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node is a Poisson process.

3.1 Searches Length and Load on Nodes

Our first step is to set the relationship between the averagelses length and the
system load. Each search is processed, on averagktifnes (once at the source
node, and once at each step of the random walk). Using thisawesxpress the
total load on all the nodes of the systeinas

A= (1+Dy, (23)
wherey is the load injected in the system by new searches, that weres$o

be known. Note thafl is composed of the new generated searchgsplus the
searches that move from one node to another, denotetl bience,

T=22Y 1.2 (24)
y

To compute the load on each particular ngge;, let us take into account that the
probability that a random walk visits a node is proportiottathe node’s degree
(see Section 2). This implies that, for each nqde V, the load on nodg due to
search messages, denotedis proportional to its degrelg. As a result, we have
that there is a value such thaty; = 7 kj, for all j. Hence)y’ = };v| = 7 d, where
dis the sum of all degrees in the network (ig= >, nk k). Therefore,

T = %7 (25)

Assuming that all nodes generate approximately the saméeuof new searches
(y/n), we can compute the average load at npds

y Tki 1
/1j=Tkj+ﬁ=’)/[Fj+ﬁ]. (26)

where the first term represents the load due to search messagkthe second
term to the searches generated at npdéote that any other search generation rate
model can be implemented just by changing the tefm
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3.2 Average Search Duration

In order to obtain the average search duratignwe usel.ittle’s Law [33], which
states that

r=vyxT, 27)

wherer is the average number oésidentsearches in the network (i.e., searches
that are waiting or being served), apd the average number of searclgeserated
per unit of time (i.e., the arrival rate of searches). Obse¢haty is assumed to be
known. Hence, the challenge to compiites to obtainr. Letr; be the number of
resident searches in nogieThen,r = 3 ;r;.

To obtainr;, we applyLittle’s Law again, this time individually to each nogde

ry = /lj X Trj, (28)

whereT/ is the average search time at ngdend.; is the averagéoad at nodej,
which includes both searches generated at noded searches due to messages
from other nodes. Next we use that, Iackson’s Theorenf84] (recall we assume
the network to be a Jackson network), each npadan be analyzed as a single
M/M/1 queue with Poisson arrival ratgand exponentially distributed service time
with meanT! (which can be computed from the node capacity, that we assome
be known). Then:

: (29)

wherep; is the utilization rate and! is the average service time at nogeAs
pj = 4; T, we can write

= % (30)



Once we hava, andT/, we can combine them to obtain

T Lli1_ 4 T) (31)

] (n_d_ )
ATl Tn+a) )

That is, we have provided an expression that computestbeage search time
using the topology, the average service times of nodes lensarch arrival rate.

3.3 Load Limit

Implicitly, in our previous results it has been assumed timahode is overloaded
(i.e.,4; < 1/T¢ for all j). Otherwise, the network would never reach a stable state.
Thus, a key value for any network is itsad limit: the minimum search arrival rate
(y) that would overload the network, denotedyy Clearly,y, = min;{ys} being

v$ the minimum search arrival rate that would overload npde

From Equation 26, we have that

k-|7+

Y
Also, since no node must be overloaded, it must be satisfad th
1
LE

Combining Equation 32 with Equation 33 we have that, for epdhe following
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Table 1

Capacity distributions
Percentage || Processing
of nodes capacity
20% 1
45% 10
30% 100
4.9% 1,000
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Fig. 14. Average Search Times. For the analytical valug$, (ve used Equation 31,
taking into account thaf follows an exponential distribution with averagg (i.e.,

TS ~ Exponentialg;)), whered; can be computed as the relation between the number
of resources known and their processing capacity.

must hold: d
y < —2n (34)
T! (kj In+d)
Therefore, the load limit for nodgis
- dn
L — 35
Yo T (ki Tn+d) (35)
and
. dn
e = T {Tg(k,-lmd)} (36)

3.4 Experimental Evaluation
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Average Search Duration In this subsection, we present the results of a set of
experiments addressed to evaluate, in practice, the agcafaour model for the
average search time. As in the previous experiments ($e2tl), we conducted
extensive simulations over ER and small-world networks$.n&tworks are made
up of 1¢ nodes.

In each experiment, nodes generate new searches follovRogsaon process with
ratey/n, wherey is the global load on the network. When a node starts a search f
a resource, it first checks whether it already knows thatureso(i.e., if the node
itself or any of its neighbors hold the resource). If so, tharsh ends successfully.
Otherwise, a search message for the requested resoureatsdand sent to some
neighbor node chosen uniformly at random. When a node rese@\search mes-
sage, it also verifies whether it knows the resource. If se,séarch is finished.
Otherwise, the search is again forwarded to another nergtiimsen uniformly at
random. The experimental results are obtained by averdagagesults that were
obtained.

We used six dierent global loadsy): 0.15xy,, 0.3Xy,, 0.45Xy,, 0.6Xv,, 0.75Xy,
and 09 x y,, wherey, is the minimum arrival rate that would overload the network
(see Section 3.3). The distribution of the nodes searchegeicg capacities is
derived from the measured bandwidth distributions of Glteu{85] (see Table 1).
Capacities are assigned so that nodes with a higher degregvan a higher ca-
pacity. All nodes are assumed to have the same number ofroesou= 10, 000.
Each resource is held by one node, and all resources havartieemobability of
being chosen for search. The processing time at eachiriotiews an exponential
distribution with an average service time computedas- w k/c;. This average

is computed dividing the amount of resources checked foin saarch (the total
amount of resources knoww(k + 1), minus the resources of the node the search
message came frow) by the node’s capacity.

For each load, we measured the average search times exptiinér each net-
work. Results are shown in Fig. 14. It can be seen that, ascteghethe average
search time always increases with the load, undergoing laehigrowth when it
approaches the maximum arrival rate. Furthermore, ourrerpatal results show
a very close correspondence with the analytical resultsibee obtained.

Load Limit We have computed thg, values for random and small-world net-
works with diferent average degrees. For each kind of network and aveeageal
five networks were built with the capacity distribution peated in Table 1. Our
goal was to observe the variation of thefor networks of the same type akdand
also to study the dierence among thg, values depending on the network kind and
average degree.

Results, which are shown in Figure 15ffdr for random and small-world networks.
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The first thing to note is that small-world networks can haraligreater load than
random networks.

Small-world networks present variations of thegvalues even for networks of the
same average degree. Despite this variation, it is cleathledoad limit tends to
grow with thek. The reason is that a greateimplies a smaller global load for
the same rate of queries injected to the system. Recallltkabtal load is given
by (1 + I)y (Equation 23) and that higher average degrees lead to lagseage
searches lengthis(Figure 12(b)). Hence, it is possible to perform more querie
before overloading the network.

Erdos-Renyi networks however behave in a veryedent manner. They present
very little variations of the/, values. And, more surprising, there is a small decrease
of the load limit when thé grows. This contrasts with the behavior of small-world
networks. As it is shown in Figure 12(a), larger average eegimply smaller
average searches lengths and so a smaller global load. ldgwiesy, that can be
handled by the network does not change accordingly to this réason seems to be
that in ER networks the load is more evenly distributed amuodges. This implies
that low capacity nodes have to handle an important amousgarches. Besides,
a greater average degree impacts on the average serviessTtjof these nodes,
as they know, and so they have to process, more resourcesgrehsHence, these
nodes keep being the bottleneck of the network despite tlalemaverage search
length, preventing the system to be able to handle a gresdr |

However, itis important to recall that these results are dige to the capacity distri-
bution used, and how it was distributed among the nodes. &llamorld networks,

if we assign low capacities to high degree nodes we can expent to become
bottlenecks of the network that force smajlvalues. In ER networks, adding more
high capacity nodes could change théendency so it would grow with the average
degree. Exploring all these phenomena is beyond the scapesqfaper.

3.5 Optimal Relationship between Degree and Capacity Distions

In this section we show that, when there is a full correlabetween theapacity
of a node (i.e., the number of searches a node can processneeunit) and its
degree, this leads to a minimal value of the average seangti.

Let us first state the relation we assume between the capgaityd the average
service timeT! of a nodej. We assume that the first is a parameter that does not
depend on the degree or the number of resources known by tlee and only de-
pends on the processor and network connection speeds. Weea#sat the second

is a strictly increasing function of the node’s degfék;). We assume that a node’s
service time is directly proportional to its degree and ise#y proportional to its
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Fig. 15. Load limity,. Five diferent networks are created for each network type (ER or
small-world) and average degrkeThe resultingy, are shown grouped b

capacity as follows:

T) = %(’) (37)

Let us now consider a pair of nodeg € V, such thak; > ki (so f(kj) > f(k)),
and two possible positive capacitiesandc,, such that; > c¢,. We show that, if
no other degree or capacity assignment changes, hayiage; andc; = c; gives
a smaller average search timg, than the average search tim¢ with reverse
assignmencl:’j = Cy andc = ¢;.

Using Eq. 37, we obtain the following possible average sertimes:

K)o 1) 1K)
Cy ’

f(k)
= TJ 5 T, =

Ta1= (38)
in which Ty, are the service times obtained with the first capacity assegr and
Ts. are the service times obtained with the second. From theeadguations, we

have

. f(k) f(k;
T - (k) f(k)
st G C (39)
= T, TL,
and
i i
T - T (k) = cl Cz
< f(ky) & CZ’Z (40)
= Tiz—Tél.
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Let A; and; be the loads onand j. Sincek; < kj, thena; < 4;. Hence, from this
and Eg. 40, we find that

/1i Tisl + /lj Til < /1i Tisz + /lj TiZ' (41)

To compute the valueb andT/, we use Eq. 31

1
Tr:—ri+rj+Zrh; (42)
Y ha e
’ 1 ’ ’
Tr:—ri+rj+Zrh, (43)
Y ha e

wherer; andr; are obtained with the first capacity assignment gnahdr! with
the second. Observe thgtremains the same for any notidhat is neitheli nor
j, because its degree, load, and capacity are just the sarnetfocases. Hence, if
N+rj<ri+ r] thenT, < T/.

From Egs. 28 and 30, we obtain that

AT . 3T
1-4Ty 1-4T),

2T T AT+ T
LA TL T - T4 T

li+r;=
(44)

and

AT . AT

Pl-aT, 1-4T,
2T, T+ AT+ T,
L4 Ay T, T, = (4 T, + 4 TL)

(45)

Finally, applying Egs. 39 and 41, we conclude that
r+rp <ri+ri, (46)

and hence
T < T/ 47

This proves that, for a given degree distribution, the bestgpmance will be ob-
tained by assigning the largest capacities to the nodeshétlargest degrees. Note
that we have found a condition that is necessary in orderténathe minimum
possibleT,, once the degree distribution has been set. Howevgerdnt degree
distributions can obtain very filerentT, values.
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4 Conclusions

In this paper, we have presented an analytical model thavalus to predict the
behavior of random walks. Furthermore, we have also peédrsome experiments
that confirm the correctness of our expressions.

Some work can be carried out to complement our results. FRstamce, several
random walks can be used at the same time, a situation thiatlsewused to further
improve the éiciency of the search mechanism. These random walks could run
independently or, in order to cover separated regions orgtaphs, coordinate
among them in some way.
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