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Abstract

Random walks are gaining much attention from the networks research community. They
are the basis of many proposals aimed to solve a variety of network-related problems such
as resource location, network construction, nodes sampling, etc. This interest on random
walks is justified by their inherent properties. They are very simple to implement as nodes
only require local information to take routing decisions. Also, random walks demand little
processing power and bandwidth. Besides, they are very resilient to changes on the network
topology.

Here, we quantify the effectiveness of random walks as a search mechanism inone-hop
replication networks: networks where each node knows its neighbors’ identity/resources,
and so it can reply to queries on their behalf. Our model focuses on estimating the expected
average search time of the random walk by applying network queuing theory. To do this,
we must provide first the expected average search length. This is computed by means of
estimations of the expected average coverage at each step ofthe random walk. This model
takes into account therevisiting effect: the fact that, as the random walk progresses, the
probability of arriving to nodes already visited increases, which impacts on how the net-
work coverage evolves. That is, we do not model the coverage as a memoryless process.
Furthermore, we conduct a series of simulations to evaluate, in practice, the above men-
tioned metrics. Our results show a very close correlation between the analytical and the
experimental results.
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1 Introduction

Random walksare a mechanism to route messages through a network. At each
hop of the random walk, the node holding the message forwardsit to some neigh-
bor chosen uniformly at random. Random walks have interesting properties: they
produce little overhead and network nodes require only local information to route
messages. In turn, this makes random walks resilient to changes on the network
structure. Thanks to these features, random walks are useful for different applica-
tions, like routing, searching, sampling and self-stabilization in diverse distributed
systems such as Peer-to-Peer (P2P) and wireless networks [1–10].

Past works have addressed the study of random walks. Some of this research has
focused on the coverage problem, trying to find bounds for theexpected number of
hops taken by a random walk to visit all vertices (nodes) in a graph1 G (CG) [11–
14]. Results vary from the optimalCG of complete graphsΘ(n logn) [11] (wheren
is the number of vertices) to the worst case found in the lollipop graphΘ(n3) [15].
Barnes and Feige in [16] generalize this bound to the expected number of hops to
cover a fraction (f < n) of the vertices of the network, which they found isΘ( f 3).
Other works, for example, are devoted to find bounds on the expected number of
steps before a given nodej is visited starting from nodei (Hi, j). For example, it is
known that the upper bound forHi, j is Θ(n3) [17]. Many of these results are based
on the study of the properties of the transition matrixP and adjacency matrixA in
spectral form [18].

The previous results are used in several works to discuss theproperties of random
walks in communication networks. Gkantsidis et al. [19] apply them to argue that
random walks can simulate random sampling on P2P networks, aproperty that in
their opinion justifies the ‘success of the random walk method’ when proposed as
a search tool [3] or as a network constructing method [9]. Adamic et al. [20] study
the search process by random walks in power-law networks applying the generating
function formalism. This work seems deeply inspired by a previous contribution of
Newman et al. [21], who study the properties (mean componentsize, giant compo-
nent size, etc.) of random graphs with arbitrary degree distribution.

This paper introduces a study of random walks from a different perspective. It does
not study the formal bounds in the amount of hops to cover the network. Instead, it
tries to estimate the efficiency of the random walk as a search mechanism in com-
munications networks, applying network queuing theory. Ittakes into account the
bounded processing capacities of the nodes of the network and the load introduced
by the search messages, that are routed using random walks. To obtain this load, we

1 The termtime to refer to the number of hops of the random walk (that is, itslength)
is usual in many previous works. Thus, for example,CG is often denoted thecover time.
However, in this work we will use the termtimeto refer to thedurationof the random walk.
To avoid confusion, from now on the termtimewill only denote the physical magnitude.
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need to estimate first the average search length, which in turn is computed from the
expected average coverage: the average number of different nodes covered at each
hop of the random walk. A distinguishing feature of our work is that, as in the case
of Adamic et al. [20], it deals with a scenario that has not been very exhaustively
explored although, in our opinion, is quite interesting in the communications field:
one-hop replication networks.

One-hop Replication One-hop replication networks (also calledlookahead net-
works[22]) are networks where each node knows the identity of its neighbors and
so it can reply on their behalf. Hence, to find a certain node bya random walk it
suffices to visit any of its neighbors. This feature is present forexample in social
networks, where to find some person it is usually enough to locate any of her/his
friends [20]. Also, certain proposals to improve the resource location process on
P2P systems [2, 23] (some based on random walks) assume that each node knows
the resources held by its neighbors, so to discover some resource (such as a file or
a service) it suffices to visit any of the neighbors of the node(s) holding it.

In one-hop replication networks, when the random walk visits some nodei we say
it alsodiscoversthe neighbors ofi. Hence, we will use two different terms to refer
to the coverage of the random walk. We denote byvisited nodesthose that have
been traversed by the random walk, and bycovered nodesthe visited nodes and
their neighbors. See Figure 1 for an illustrative example.

Previous Work and the Revisiting Effect There is some research work related
with the characterization of random walks in one-hop replication networks. In [24]
the authors prove that in the power-law random graph the amount of hops for a
random walk to discover the graph is sublinear (faster than coupon collection, with
which the random walk is compared in [19]). Also, Manku et al.[22] study the
impact of lookahead on P2P systems where searches are routedthrough greedy
mechanisms. In another work, Adamic et al. [20] try to find analytical expressions
for CGthe cover time of a random walk in power-law networks with two-hops repli-
cation. They detected divergences between the analytical predictions and the ex-
perimental results. The reason for such discrepancy, as theauthors point out, is the
revisiting effect, which occurs when a node is visited more than once. In small-
world networks, where a small number of nodes are connected to other nodes far
more often than the rest, it is quite common for random walks to visit often these
highly connected nodes.

Our Contributions Although there is a plethora of interesting results about ran-
dom walks, we have noticed that there are situations where current findings are
not straightforward to apply, especially on communicationnetworks with one-hop
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replication. For example, in such networks, we can be interested on studying be-
forehand the expected behavior of the random walk to evaluate if it suits the system
requirements. We characterize the random walk performanceby four values:

• The expected coverage. Given by the expected number of visited and covered
nodes of each degreek at each hopl of the random walk.

• The expected average search length. Expected length of searches in number of
hops, assuming that the source and destination nodes of eachsearch are chosen
uniformly at random. Obtained from the coverage estimations.

• The expected average search duration. Expected time to solve searches. Ob-
tained from the average search length, given theprocessing capacityof each
node and theload on the network due to queries.

• The maximum load that can be injected to the networkwithout overloading it.

In this work we provide a set of expressions that model the behavior of the ran-
dom walk and give estimations for the three previous parameters. Our claim is that
these expressions can be used as a mathematical tool to predict how random walks
will perform on networks of arbitrary degree distribution.Then, we do not only
address the coverage problem (i.e. to estimate the amount ofnodes covered after
each hop of the random walk), but we also apply queuing theoryto model the re-
sponse time of the system depending on the load. As we show, this approach allows
to compute in advance important magnitudes, such the expected search duration or
the maximum load that can be managed by the network before getting overloaded.
Additionally, we find our model useful to study how certain features of the network
impact on the performance of searches. For example we find that the best average
search time is achieved only if the nodes with higher degreeshave also greater
processing capacities.

The expressions related with the estimation of covered nodes at each hop are the
most complex part of the model. They must deal both with the one-hop replication
feature and the revisiting effect. However, we should remark that the model can be
trivially adapted to networks where theone-hop replicationproperty does not hold,
and the search finishes only when the node we are searching foris found (see the
last paragraph in Section 2.4).

Likewise, it is easy to modify the model to a variation of the random walk where
each node avoids sending back the message to the node it received it from at the
previous hop. We denote this routing mechanismavoiding random walks, and we
deem it interesting for two reasons. First, intuitively, itshould improve the random
walk coverage (we have confirmed this experimentally). Second, it can be imple-
mented in real systems using only local information, just asthe pure random walk
(the sending node only needs to know from which neighbor the message came
from).
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Fig. 1. Illustrative example of visited and covered nodes

A feature of our proposal is that it does not require the complete adjacency matrix
A, that in some situations could be unknown. Instead, thanks to the randomness
assumption we apply it only needs the degree distribution ofthe network to com-
pute the metrics we are interested in. On the other hand, thiswork is focused on
networks with good connectivity and where the nodes degreesare independent (see
Section 2.1).

Another property of this model is that it takes into account the revisiting effect by
modeling the coverage of the random walk at each hopl depending on the coverage
at the previous hopl −1. That is, the evolution of the coverage is not assumed to be
a memoryless process, a simplification that can lead to errors as seen in [20].

The rest of the paper is organized as follows. Section 2 introduces our analysis of
the coverage and average search length of random walks, along with some exper-
imental evaluation. Section 3 is centered on obtaining the average search time of
random walks. Finally, in Section 4, we state our conclusions and propose some
potential future work.

2 Analysis of Random Walks

In this section, we analyze the behavior of random walks in arbitrary networks.

2.1 Model and Assumptions

We will represent networks by means of undirected graphsG = (V,E), where ver-
ticesV represent the nodes and edgesE ⊆ V×V are the links between nodes. There
are no links connecting a vertex to itself, or multiple edgesbetween the same two
vertices. This does not simplify our model, but makes it closer to real scenarios like
typical P2P networks. We denote by|V| = n the number of nodes in the graph and
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by nk the number of nodes that have degreek (i.e., the number of nodes that have
k neighbors,

∑

k knk = 2|E|). For all vertices its degreek is lower than the size of the
networkn, as in typical real world networks (such as social and pure P2P networks)
each node is connected to only a subset of the other vertices in the system2 . We
also denote bypk the probability that some node in the network, chosen uniformly
at random, has degreek (i.e., pk = nk/n). The average degree of a network is given
by k =

∑

k k pk. For a given network, the distribution formed by the probabilities pk

(for all k) is known as thedegree distributionof such a network.

A random walk overG can be defined as aMarkov Chain[15] processMG where
the transition matrixP = [Pi j ] is defined as:

Pi j =















1
d(i) if ( i, j) ∈ E.

0 otherwise.
(1)

wherePi j is the probability of moving from nodei to nodej, andd(i) is the degree
of node i. P allows to study the probability of visiting each node at eachhop l.
This probability is expressed in thestate probability vector, ql = (ql

1, q
l
2, ..., q

l
n),

whereql
i represents the probability that the random walk visits nodei at hopl. This

probability evolves asql = ql−1P.

Assuming thatG is connected and finite, thenMG is irreducible: any node can be
reached from any other node, and the average path length between two any nodes is
finite. Assuming also thatG is non-bipartite, then we can state thatMG is aperiodic
and so we are able to apply theFundamental Theorem of Markov Chains[15].
This theorem states that in such graphMG is ergodic an exists an unique state
probability distributionπ, denoted thestationary distribution, such thatπP = π,
π = (π1, π2, ..., πn), whereπi is:

πi =
d(i)
2|E|
. (2)

Intuitively, π represents the steady state ofMG. That is,πi represents the proba-
bility that the nodei is visited at any hop of the random walk once the stationary
distribution has been reached. This probability is proportional to the degree ofi,
d(i).

2 Some P2P networks like Napster have a central node that network members use to lo-
cate files. But those networks are not considered as pure P2P systems because they use a
typical server-client architecture with a centralized topology to perform searches. They are
regarded to have a “P2P” behavior only in the way files are shared. This work is rather
focused on the decentralized topologies of pure P2P networks
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Mixing Rate and Conductance We are interested on how fast the random walk
converges toπ, a magnitude that is called themixing rate[18]. We require a fast
convergence in order to be able to apply Equation 6.

The convergence rate is related with the eigenvalues of the transition matrixP. A
vector~x is aneigenvectorof P with eigenvalueλ iff ~xP = λ~x (so for exampleπ
is an eigenvector ofP with eigenvalue 1). It is well known [18] thatP hasn real
eigenvaluesλ0 = 1 > λ1 ≥ ... ≥ λn−1 ≥ −1 (and in fact, ifG is non-bipartite
thenλn−1 > −1). It is also known [25] that the convergence rate toπ is governed
by the second largest eigenvalue modulus ofP, max{λ1, |λn−1|}. In most real world
networks we can safely assume thatλ1 > |λn−1| [18,19,25]. The following holds for
a random walk starting at nodei [18]:

|P(l)
i ( j) − π j | ≤

√

d( j)
d(i)
λl

1, (3)

whereP(l)
i is the distribution of the state of the random walk at hopl, wheni is the

initial state. Thus, we can expect a fast mixing for high values of thespectral gap
1− λ1.

Now, theλ1 value is strongly related with theconductanceof the network,ΦG. In-
formally, the conductance measures how well ‘connected’ the graph is. It is defined
as follows. ForS ⊆ V, the cutset ofS, C(S), is the set of edges with one endpoint
in S and the other endpoint in̄S. The volume ofS, vol(S), is defined as the sum
of degrees of the nodes inS, i.e., vol(S) =

∑

i∈S d(i). Then the conductance ofG is
computed as:

ΦG = min
S⊂V

vol(S)≤vol(V)/2

|C(S)|
vol(S)

. (4)

The relationship between the conductance and the convergence is given by the fo-
llowing expression (Cheeger’s inequality) [18]:

Φ2
G

2
≤ 1− λ1 ≤ 2ΦG. (5)

So a good conductance leads to high mixing rates, that is, the random walk state
will converge quickly to the stationary distributionπ. The intuition behind this fact
is that in graphs with good conductance the random walk will be able to move to any
region of the graph easily, whichever the origin node, and soit will evolve quickly
to the equilibrium. We reason that high connectivity is to beexpected in many real
world networks (specially communication networks) and network models [26–28].
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Therefore, we can assume that the probability that the node visited by the random
walk has degreek at each hop of the random walk,P(k), is also proportional tok
and can be computed as:

P(k) =
∑

i∈V
d(i)=k

d(i)
2|E|

= nk
k

∑

j jn j
=

k pk

k
. (6)

We will apply Equation 6 intensively for our analysis of the coverage. Of course,
its correctness depends on the distance of the random walk tothe stationary distri-
bution, or how fast it converges to it. Another issue to be taken into account is the
possible dependencies between successive steps of the random walk. Our analysis
estimates the average number of nodes visited and covered bythe random walk at
a certain hop from the values estimated at the previous hop. The new estimation is
done assuming that the random walk has statistical properties similar to the random
sampling of nodes where the probability of choosing a certain node is proportional
to ki, despite the apparent dependencies between consecutive hops.

Also, the work by Gkantsidis et al. [19] shows the similarities between independent
sampling and random walks, that we assume for our mean based analysis. As the
authors state, in networks with good connectivity and expansion properties (which
are strongly related toλ1) the random walk has a behavior close to independent
sampling, being the probability of choosing some node proportional to its degree.

Besides, we have performed some experiments to verify the correctness of this
hypothesis. The results, shown in Figure 2 confirm it is a valid assumption. Also, we
would like to remark that the property expressed by Equation6 is in fact assumed
in previous works about random walks (e.g., [20,21]) and backed by [19].

Another important issue we have tested is how ‘fast’ the random walk evolves to a
state where the assumption of Eq. 6 holds. Figure 3 shows how the random behaves.
It can be seen that, almost immediately after hop 0 (start node), the probability of
reaching a node of degreek is P(k).

We should note that the good conductance property, that implies that the random
walk can move from any node to any other node in few steps, discards some topolo-
gies such as cycles.

Independence of Nodes Degrees Finally, we assume that the degrees of neigh-
bors are independent. That is, given any two connected nodesi and j ((i, j) ∈ E)
and any two degree valuesk1 andk2, thenP[d(i)=k1 | d( j)=k2] = P[d(i)=k1] = pk1.
This property holds in networks built by random mechanisms,like the ones used
to built the ER and small-world networks we target in our experiments. To confirm
that the degree independence assumption is valid we have runsome experiments,
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(a) Erdos-Renyi networks. (b) Small-world networks.

Fig. 2. In these figures, we show the probability of a search message arriving at a particular
node as a function of its degree. We have used both Erdos-Renyi and small-world (pow-
er-law) networks formed by 50, 000 nodes, with different average node degrees (10, 20
and 30). The same experiments have been performed with networks formed by 25, 000 and
100, 000 nodes, and we found similar results. As it can be readily seen, the probability of a
search message arriving at a particular node is proportional to the degree of the node.
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Fig. 3. These figures compare the probabilityP(k) of reaching a node of degreek as defined
by the model, with the measured probability of reaching a node of degreek at each hop
of the random walk. Both for ER and small-world networks the experimental results are
averaged over three different networks with the same average degree and size (n = 50·104).

whose results are shown in Figure 4. These experiments aim tomeasure if the prob-
ability of reaching a node of degreek when following a random walk is affected by
the degreek′ of the node the random walk was in the previous hop (P(k/k′)). Our
results lead to the conclusion that∀k, k′P(k/k′) = P(k), that is,k′ does not have an
impact onk.
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Fig. 4. These figures compare the probabilityP(k) of reaching a node of degreek as defined
by the model, with the measured probability of reaching a node of degreek given that
the rw comes from a node of degreek′, P(k/k′). Both for ER and small-world networks
the experimental results are averaged over three different networks with the same average
degree and size (n = 105).

We should note also that this property is not fulfilled in certain graphs like those
built by preferential mechanisms where it is well-known that there is a correlation
among neighbors degrees [29]. This could lead to certain deviations in mean-based
analysis of the random walk (as our own).

In the following, we study how many different nodes are visited by a random walk
as a function of its length (i.e., of the number of steps taken) and of the degree dis-
tribution of the chosen network. Subsequently, we extend this result to also consider
the neighbors of the visited node. These metrics allow us to quantify how much of
a network is being “known” throughout a random walk progress. Then, we turn our
attention to provide an estimation of the average search length of a random walk.
In the last subsection, we validate our analytical results by means of simulations.
We assume that only the degree distributionpk and the sizen = |V| of the network
are known.

2.2 Number of Visited Nodes

This metric represents the average number of different nodes that are visited by a
random walk until hopl (inclusive), denoted byVl. Note that nodes may each be
visited more than once, but revisits are not counted.

To obtainVl, we first calculate the average number of different nodes of degreek
that are visited by a random walk until hopl (inclusive), denoted byVl

k. We make a
case analysis:

• Whenl = 0 (i.e., in the source node): Since the source node of the random walk
is chosen uniformly at random, then the probability of starting a random walk at
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a node of degreek is pk. Therefore,

V0
k = 1 · pk + 0 · (1− pk) = pk. (7)

• Whenl = 1 (i.e., at the first hop): Here we apply that the probability of visiting
some node of degreek at any hop is given byP(k) (Equation 6). This is based on
the assumption that the random walk behaves similarly to independent sampling
despite dependencies between consecutive hops (based on [19], see Section 2.1).
We deem this premise to be reasonable even at the first stages of the random
walk, due to the high mixing rates found in the type of networks on which we
focus our work (again, see Section 2.1). Recall that the experimental evaluation
both of this assumption (Fig. 2) and of our model (shown in Section 2.5), seem
to verify this. Thus, we have that

V1
k = V0

k + P(k)

= pk +
k pk

k
.

(8)

• When l > 1: we must take into account the probability of the random walk
arriving at an already visited node. To compute such a probability, we define the
following two values:
· Pv(k, l): This represents the probability that, if the random walk arrives at a

node of degreek at hopl, that node has been visited before. It can be obtained
as follows:

Pv(k, l) =
Vl−2

k

nk
. (9)

Note that we putVl−2
k instead ofVl−1

k because the node visited at hopl − 1
can not be visited at hopl (no vertex is connected to itself).
· Pb: This is the probability that at any given hop the random walkis moving

back to the node where it came from3 . Since any visited node has degreek
with probability P(k), then the random walk will go back through the same
link from which it came with probability 1/k. Therefore, we have:

Pb =
∑

k

P(k)
1
k
=

1

k
. (10)

Using these probabilities,Vl
k can be written as

Vl
k = Vl−1

k + P(k)(1− Pb)(1− Pv(k, l))

= Vl−1
k +

k pk

k

(

1−
1

k

) (

1−
Vl−2

k

nk

)

.
(11)

3 Here we can easily adapt the model to theavoiding random walk. If we don’t want to
consider the case of a random walk moving back to the node where it came from, it is
enough to assignPb = 0.
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Finally, taking the results obtained in Equations 7, 8 and 11, we have that the total
number of different nodes visited until hopl is

Vl =
∑

k

Vl
k. (12)

2.3 Number of Covered Nodes

This metric provides an estimation of the average number of different nodescovered
by a random walk until hopl (inclusive), denoted byCl. A node is covered by a
random walk if such a node, or any of its neighbors, has been visited by the random
walk.

To obtainCl, we first calculate the number of different nodes of degreek covered
at hopl, denoted byCl

k.

• Whenl = 0:

C0
k = pk(1+ kP(k)) +

∑

j,k

p j j P(k)

= V0
k + P(k) k.

(13)

The first term takes into account the possibility that the source node has de-
greek. The second term refers to the number of neighboring nodes (of the source
node) of degreek. If the source node has degreej (which happens with probabil-
ity p j) then, on average,j P(k) nodes of degreek will be covered, since each one
of the j neighboring nodes of the source node will have degreek with probability
P(k).

• Whenl > 0: Given a link (3,4) ∈ E, we say that it has two endpoints, which are
the two ends of the link. We denote the endpoint of the link at node3 by 3 (4),
and similarly the endpoint of the link at node4 by4 (3). We say that3 (4) hooks
ontonode3. We also say that3 (4) has beencheckedby a random walk if such
a random walk has visited node4. These concepts are graphically explained in
Fig. 5.

Now, let us denote byEl the number of endpoints checked for the first time at
hop l, and byPu(k, l) the probability that these endpoints hook onto still uncov-
ered nodes of degreek. Then,Cl

k (wherel > 0) can be written as follows:

Cl
k = Cl−1

k + Pu(k, l) El . (14)

· To obtainEl, we consider the number of different endpoints checked after hopl
to be

∑

j jV l
j. So, the number of endpoints checked for the first time at hopl is

∑

j(V
l
j −Vl−1

j ) j. However, one of the endpoints hooks onto the node the random
walk comes from (i.e., it cannot increase the amount of nodesthat are covered).
Thus:
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c(b)b(c)

b(a) c(a)

a(c)

Fig. 5. The figure shows a simple graph formed by 5 nodes (nameda, b, c, d ande) where
there is a random walk that follows the pathd−b−c−e. At each node, we represent the dif-
ferent ”endpoints” that arehookedon that node by means of small circles. For instance, the
endpointsa(b) anda(c) are said to be hooked onto nodea. In the graph, when the random
walk starts (at noded), then endpointb(d) is said to bechecked. Similarly, when it visits
nodeb, then endpointsd(b), a(b) andc(b) are said to be checked. The same mechanism
applies when the random walk visits nodesc ande.

El =
∑

j

(Vl
j − Vl−1

j )( j − 1). (15)

· To obtainPu(k, l), on one hand we consider the overall number of endpoints
hooking onto uncovered nodes of degreek just before hopl is k(nk − Cl−1

k ).
On the other hand, the overall number of endpoints is

∑

j j n j, and the overall
number of checked endpoints until hopl − 1 (inclusive) is

∑

j j V l−1
j . That is,

the number of endpoints not checked just before hopl is
∑

j j n j −
∑

j j V l−1
j .

Therefore, we can write:

Pu(k, l) =
k (nk −Cl−1

k )
∑

j j n j −
∑

j j V l−1
j

. (16)

Substituting Equation 15 and 16 into Equation 14, we have that

Cl
k =Cl−1

k +















k (nk −Cl−1
k )

∑

j j n j −
∑

j j V l−1
j















×
∑

j

(Vl
j − Vl−1

j ) ( j − 1). (17)

Finally, taking into account Equations 13 and 17, we have that the total number of
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(a) Erdos-Renyi network. (b) Small-world network.

Fig. 6. In the Erdos-Renyi network most nodes have approximately the same number of
links. In contrast, the small-world network is heterogeneous: the majority of the nodes have
approximately the same number of links but a few nodes have a large number of them.

nodes covered after hopl is
Cl =

∑

k

Cl
k. (18)

2.4 Average Search Length

Using the previous metric, we are now able to provide an estimation of the average
search length of random walks, denoted byl. Formally,l is given by the following
expression:

l =
∞
∑

l=0

l P f (l), (19)

wherePf (l) is the probability that the search finishes at hopl (i.e., the probability
that the search is successful at hopl, having failed during the previousl − 1 hops).
Let us define theprobability of successat hopl, denoted byPs(l), as the probability
of finding, at that hop, the node we are searching for.Ps(l) can be obtained as the
relation between the number of new nodes that will be coveredat hopl, and the
number of nodes that are still uncovered at hopl. That is,

Ps(l) =
Cl −Cl−1

n−Cl−1
. (20)

Now, Pf (l) can be obtained as follows:

Pf (l) = Ps(l)
l−1
∏

i=0

(1− Ps(i)) =
Cl −Cl−1

n
. (21)

Therefore,l can be written as

14
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104; k = 10, 30.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  10000  20000  30000  40000  50000

N
um

be
r 

of
 N

od
es

Number of Hops

ER Net, n=100000, k -=20, Visited Nodes
ER Net, n=100000, k -=20, V l

ER Net, n=50000, k -=20, Visited Nodes
ER Net, n=50000, k -=20, V l

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  10000  20000  30000  40000  50000

N
um

be
r 

of
 N

od
es

Number of Hops

Small-world Net, n=100000, k -=20, Visited Nodes
Small-world Net, n=100000, k -=20, V l

Small-world Net, n=50000, k -=20, Visited Nodes
Small-world Net, n=50000, k -=20, V l

(b) Erdos-Renyi and Small-world;n = 5 ·
104, 105; k = 20.

Fig. 7. Visited nodesVl.

l =
1
n

∞
∑

l=0

l (Cl −Cl−1). (22)

2.5 Experimental Evaluation

We have run a set of experiments to evaluate the accuracy of the expressions pre-
sented in the previous subsections. The results obtained are presented in this sec-
tion.

For our work, we consider two kinds of network: small-world networks (con-
structed as in [21]) and Erdos-Renyi networks (constructedas in [30]).

• Small-world networks[21,31]. In [32] it is shown that many real world networks
present an interesting feature: each node can be reached from any other node in
few hops. These networks are typically denoted small-worldnetworks. The In-
ternet, the Web, the Science collaboration graph, etc. are examples of real world
networks that are consistent with this property. This kind of networks are also
specially interesting for our work because here the revisiting effect commented
in Section 1 is strongly present due to the uneven degree distribution. We build
small-world networks using the mechanism described in [21], which leads to
networks whose degree distribution follows a power-law distribution pk ∼ k−α

(power-law networks).
• Erdos-Renyi (ER) random networks[30]. For two any nodesi, j ∈ V there is a

constant probabilityc that they are connected ((i, j) ∈ E). The resulting degree
distribution is a binomial distributionpk ∼

(

n
k

)

ck(1− c)n−k.

See Figure 6 for an illustrative example of both kinds of networks.
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Fig. 8. Visited nodesVl
k, for k = k+ 5 andk = k− 5.
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Fig. 9. Covered nodesCl.
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Fig. 10. Covered nodesCl
k, for k = k+ 5 andk = k− 5.

Number of Visited and Covered Nodes Our first goal is to study the evolution
of the network coverage by random walks in real networks.

The experiments were run on networks of two sizes,n = 5 · 104 andn = 105 nodes.
Networks were built using three different average degrees:k = 10,k = 20 andk =
30. In each network we ran 104 random walks of lengthn = |V|. The source node
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of each random walk was chosen uniformly at random. From the experiments, we
obtained the average number of visited and covered nodes foreach degreek at each
hop l. Finally, for each network, we extracted its degree distribution nk and apply
the expressions described in the previous section to get a prediction of those values,
given byVl

k andCl
k. Results are shown in Figures 7, 8, 9, and 10. For the sake of

clarity, the experimental results are shown every 2000 hopsin all figures. Model
predictions, on the other hand, are drawn as lines.

Figure 7(a) shows the evolution of the number of visited nodes in ER and small-
world networks of sizen = 5 ·104 nodes, with two different average degreesk = 10
andk = 30. We see that, although the length of the random walks is enough to
potentially include all the nodes, only a fraction of them are visited. This happens
because of the revisiting effect, and it is more evident when the number of hops
increases, since the probability of revisiting grows with the number of hops. The
revisiting effect is stronger in small-world networks than in random networks. The
reason is the uneven distribution of the nodes degrees: there are some nodes with
a very high degree that will be visited once and again by the random walk. Thus,
the chances of finding new nodes at each hop are lowered fasterin small-world
networks than in ER networks. Also, we observe in Figure 7(a)that in networks of
smallerk the revisiting effect is stronger. Finally, Figure 7(b) shows the impact of
the network sizen on the amount of visited nodes. As expected, a greatern implies
a lesser number of revisits for the same number of hops. In allcases, the prediction
Vl of the total amount of different nodes visited is very close to the experimental
results.

In Figure 8 we study the accuracy of the predictions of the amount of visited nodes
of a particular degreek at each hopl, Vl

k. We draw the results and predictions of
degreesk = k + 5 andk = k − 5, for k = 10, k = 20 andk = 30. Again, it can be
seen that the model predictions fit very well with the experimental results, despite
the revisits and the different behavior observed for different degrees.

Figure 9 gives the results of the experiments run to study thecoverage of the random
walk. Figure 9(a) shows how the coverage grows faster in small-world networks
than in ER networks for networks of the same average degreek. This contrasts
with the amount of visited nodes, that behave in the oppositeway (see previous
paragraphs). The reason is the presence of well-connected nodes, that are quickly
visited during the first hops of the random walk and increase considerably the cov-
erage because of the high amount of neighbors they have. For example, after 4000
hops, the random walk has covered about half of the small-world network with
k = 10, while in the ER network of the samek the random walk only has covered
close to 30% of the nodes. Moreover, we can see that the network average degree
has also an important impact on the coverage. In both kind of networks the cover-
age grows faster when the average degree is higher. Besides,we observe that the
difference of the coverage for both networks decreases more quickly for a higherk.
Figure 9(a) confirms the importance of the average degree, comparing the results
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Fig. 11. Avoiding Random Walk, Visited and Covered NodesVl andCl.

for networks of different size andk. In addition, Figure 9(b) compares the results of
the coverage for ER networks of different sizes and average degrees. As it could be
expected, the networks of smaller size require less hops to be covered. We observe
also that the average degree has an important influence on thecoverage difference.
The greater the average degree, the faster the coverage of both networks converges.
In all cases, theCl values given by the model predict very well how the coverage
behaves and evolves.

Figure 10 allows to check the precision of the coverage predictions for differentk
values,Cl

k. As before, the values provided are very close to the experimental results,
although the behavior of the coverage changes strongly depending on the kind of
network and average degree.

Finally, we check the model accuracy for random walks that avoid the previous
node, theavoiding random walk. As stated in Section 2.2, the avoiding random
walk can be easily implemented by our model just by settingPb = 0 (see Equa-
tion 10). Results are shown in Figure 11. There we compare thecoverage of pure
and avoiding random walks in ER and small-world networks of sizen = 105 nodes
and average degreek = 10. Figure 11(a) confirms that, as expected, the avoiding
random walk is able to visit a greater number of different nodes, as the revisiting
effect is, to a certain degree, lessened. However, Figure 11(b)shows that this has
little impact on the network coverage. We find that there is only a small increase
on the amount of covered nodes when using avoiding random walks, for both kind
of networks. Nonetheless, in all cases theVl andCl values given by the model are
very close to real results.

Average Search Length For the experiments regarding the average search length
we used networks whose sizes ranged from 104 to 2·105 nodes. In each experiment
we ran 104 searches, averaging the obtained results. At each search, two nodes (one
corresponding to the source and the other to the destination) were chosen uniformly
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Fig. 12. Average Search Lengthl.

at random. Starting from the source, a random walk traversedthe network until the
destination node was found (i.e., a neighbor of the destination is visited).

The first thing to note is that the average search length growslinearly with the
network size in both ER and small-world networks. Besides, the average degreek
has an important effect on the results. The bigger thek, the shortest the searches are.
The reason is that a higherk implies that at each hop more nodes of the network are
discovered. Also, it can be observed in Figure 12 that the average search length is
greater in ER networks than in small-world networks. This can be explained if we
take into account that random walks, on average, cover more nodes in small-world
networks than in ER networks (see Figures 9).

As in the previous experiments, Figure 12 also shows that ourexperimental results
regarding the average search length correspond very close to the analytical results
that were obtained.

At this point, we would like to note that, given the assumptions we made in our
analytical model, it seems that the very good match achievedwith the experimental
results could only occur if these assumptions are correct. As a matter of fact, we
have verified, in practice (see Figs. 2 and 4), that the type ofnetworks we consider
in this paper, indeed, fulfill our assumptions.

On the other hand, it is clear that if we take into account networks that do not fulfill
some of our assumptions, then a certain mismatch should be expected. For instance,
networks built by preferential mechanisms are known not to preserve the indepen-
dence of degrees of neighbors [29]. Therefore, we should notaim for a very close
correspondence between analytical and experimental results. We have performed
the same experiments we ran for random and small-world networks regarding the
average search length, but this time with networks built using the preferential at-
tachment mechanism proposed by Barabási [31]. Now, we haveobserved that, as
expected, in preferential networks our experimental results do not correspond very
close to the analytical results (see Fig. 13(a)). Instead, the model seems to be con-
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Fig. 13. Average Search Lengthl, not pure random networks.

sistently pessimistic. Also, the error continuously growswith the network size.

Finally, we have tested the model against Toroidal networksof different average
degreesk = 10 (5 dimensions) andk = 16 (8 dimensions). Our intention is to ana-
lyze networks which are not random at all. Results, which areshown in Fig. 13(b),
show a very clear mismatch among the results predicted by themodel and the actual
performance of the random walk.

3 Duration of Searches by Random Walks

In this section, we present the second part of our model. Herewe provide useful
expressions that allow to predict the performance of randomwalks as a search tool,
which is the main goal of this work. These expressions rely onthe same estimation
of the average search length (like the one described in the previous section), that is
combined with Queuing Theory [33]. As a result, given the processing capacities
and degrees of nodes, we are able to compute two key values:

• The load limit: the searches rate limit that the network can handle before satura-
tion.

• The average search time: the average time it takes to complete a search, given
the global load.

Also, we show how these expressions can be used to analyze which features a net-
work should have so random walks have a better performance (i.e., searches are
solved in less time). In particular, we focus on studying therelationship between
degree and capacity distributions, showing that the minimum search time is ob-
tained when nodes of higher capacities are also those of higher degrees.

In our analysis, networks are assumed to beJackson networks[33]: the arrival of
new searches into the network follows a Poisson distribution and the service at each
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node is a Poisson process.

3.1 Searches Length and Load on Nodes

Our first step is to set the relationship between the average searches length and the
system load. Each search is processed, on average, 1+ l times (once at the source
node, and once at each step of the random walk). Using this, wecan express the
total load on all the nodes of the system,λ, as

λ = (1+ l) γ, (23)

whereγ is the load injected in the system by new searches, that we assume to
be known. Note thatλ is composed of the new generated searches (γ), plus the
searches that move from one node to another, denoted byγ′. Hence,

l =
γ′ + γ

γ
− 1 =

γ′

γ
. (24)

To compute the load on each particular nodej, λ j, let us take into account that the
probability that a random walk visits a node is proportionalto the node’s degree
(see Section 2). This implies that, for each nodej ∈ V, the load on nodej due to
search messages, denotedγ′j, is proportional to its degreekj. As a result, we have
that there is a valueτ such thatγ′j = τ kj, for all j. Hence,γ′ =

∑

j γ
′
j = τ d, where

d is the sum of all degrees in the network (i.e.,d =
∑

k nk k). Therefore,

τ =
l γ
d
. (25)

Assuming that all nodes generate approximately the same number of new searches
(γ/n), we can compute the average load at nodej as

λ j = τ kj +
γ

n
= γ















l k j

d
+

1
n















. (26)

where the first term represents the load due to search messages, and the second
term to the searches generated at nodej. Note that any other search generation rate
model can be implemented just by changing the termγ/n.
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3.2 Average Search Duration

In order to obtain the average search duration,Tr , we useLittle’s Law [33], which
states that

r = γ × Tr , (27)

wherer is the average number ofresidentsearches in the network (i.e., searches
that are waiting or being served), andγ is the average number of searchesgenerated
per unit of time (i.e., the arrival rate of searches). Observe thatγ is assumed to be
known. Hence, the challenge to computeTr is to obtainr. Let r j be the number of
resident searches in nodej. Then,r =

∑

j r j.

To obtainr j, we applyLittle’s Law again, this time individually to each nodej:

r j = λ j × T j
r , (28)

whereT j
r is the average search time at nodej andλ j is the averageload at nodej,

which includes both searches generated at nodej and searches due to messages
from other nodes. Next we use that, byJackson’s Theorem[34] (recall we assume
the network to be a Jackson network), each nodej can be analyzed as a single
M/M/1 queue with Poisson arrival rateλ j and exponentially distributed service time
with meanT j

s (which can be computed from the node capacity, that we assumeto
be known). Then:

T j
r =

T j
s

1− ρ j
, (29)

whereρ j is the utilization rate andT j
s is the average service time at nodej. As

ρ j = λ j T j
s, we can write

T j
r =

T j
s

1− λ j T j
s

. (30)
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Once we haveλ j andT j
r , we can combine them to obtain

Tr =
r
γ

=

∑

j r j

γ

=
1
γ

∑

j

λ j T j
r

=
1
γ

∑

j

λ j T j
s

1− λ j T j
s

=
∑

j

T j
s

(

l k j

d +
1
n

)

1− T j
s γ

(

l k j

d +
1
n

)

=
∑

j

















n d

T j
s

(

kj l n + d
) − γ

















−1

.

(31)

That is, we have provided an expression that computes theaverage search time
using the topology, the average service times of nodes, and the search arrival rate.

3.3 Load Limit

Implicitly, in our previous results it has been assumed thatno node is overloaded
(i.e.,λ j < 1/T j

s for all j). Otherwise, the network would never reach a stable state.
Thus, a key value for any network is itsload limit: the minimum search arrival rate
(γ) that would overload the network, denoted byγo. Clearly,γo = minj{γ

j
o} being

γ
j
o the minimum search arrival rate that would overload nodej.

From Equation 26, we have that

λ j = kj
l γ
d
+
γ

n
. (32)

Also, since no node must be overloaded, it must be satisfied that

λ j <
1

T j
s

. (33)

Combining Equation 32 with Equation 33 we have that, for eachj, the following
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Table 1
Capacity distributions

Percentage
of nodes

Processing
capacity

20% 1

45% 10

30% 100

4.9% 1,000

0.1% 10,000
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Fig. 14. Average Search Times. For the analytical values (Tr ), we used Equation 31,
taking into account thatT j

s follows an exponential distribution with averageλ j (i.e.,
T j

s ∼ Exponential(λ j)), whereλ j can be computed as the relation between the number
of resources known and their processing capacity.

must hold:

γ <
d n

T j
s (kj l n + d)

. (34)

Therefore, the load limit for nodej is

γ j
o =

d n

T j
s (kj l n + d)

, (35)

and

γo = min
j















d n

T j
s (kj l n + d)















. (36)

3.4 Experimental Evaluation
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Average Search Duration In this subsection, we present the results of a set of
experiments addressed to evaluate, in practice, the accuracy of our model for the
average search time. As in the previous experiments (Section 2.5), we conducted
extensive simulations over ER and small-world networks. All networks are made
up of 104 nodes.

In each experiment, nodes generate new searches following aPoisson process with
rateγ/n, whereγ is the global load on the network. When a node starts a search for
a resource, it first checks whether it already knows that resource (i.e., if the node
itself or any of its neighbors hold the resource). If so, the search ends successfully.
Otherwise, a search message for the requested resource is created and sent to some
neighbor node chosen uniformly at random. When a node receives a search mes-
sage, it also verifies whether it knows the resource. If so, the search is finished.
Otherwise, the search is again forwarded to another neighbor chosen uniformly at
random. The experimental results are obtained by averagingthe results that were
obtained.

We used six different global loads (γ): 0.15×γo, 0.3×γo, 0.45×γo, 0.6×γo, 0.75×γo

and 0.9× γo, whereγo is the minimum arrival rate that would overload the network
(see Section 3.3). The distribution of the nodes search processing capacitiesci is
derived from the measured bandwidth distributions of Gnutella [35] (see Table 1).
Capacities are assigned so that nodes with a higher degree are given a higher ca-
pacity. All nodes are assumed to have the same number of resourcesw = 10, 000.
Each resource is held by one node, and all resources have the same probability of
being chosen for search. The processing time at each nodei follows an exponential
distribution with an average service time computed asT i

s = w ki/ci. This average
is computed dividing the amount of resources checked for each search (the total
amount of resources known,w(k + 1), minus the resources of the node the search
message came from,w) by the node’s capacity.

For each load, we measured the average search times experimentally for each net-
work. Results are shown in Fig. 14. It can be seen that, as expected, the average
search time always increases with the load, undergoing a higher growth when it
approaches the maximum arrival rate. Furthermore, our experimental results show
a very close correspondence with the analytical results that were obtained.

Load Limit We have computed theγo values for random and small-world net-
works with different average degrees. For each kind of network and average degree
five networks were built with the capacity distribution presented in Table 1. Our
goal was to observe the variation of theγo for networks of the same type andk, and
also to study the difference among theγo values depending on the network kind and
average degree.

Results, which are shown in Figure 15, differ for random and small-world networks.
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The first thing to note is that small-world networks can handle a greater load than
random networks.

Small-world networks present variations of theγo values even for networks of the
same average degree. Despite this variation, it is clear that the load limit tends to
grow with thek. The reason is that a greaterk implies a smaller global load for
the same rate of queries injected to the system. Recall that the total load is given
by (1+ l)γ (Equation 23) and that higher average degrees lead to lesseraverage
searches lengthsl (Figure 12(b)). Hence, it is possible to perform more queries
before overloading the network.

Erdos-Renyi networks however behave in a very different manner. They present
very little variations of theγo values. And, more surprising, there is a small decrease
of the load limit when thek grows. This contrasts with the behavior of small-world
networks. As it is shown in Figure 12(a), larger average degrees imply smaller
average searches lengths and so a smaller global load. However, theγo that can be
handled by the network does not change accordingly to this. The reason seems to be
that in ER networks the load is more evenly distributed amongnodes. This implies
that low capacity nodes have to handle an important amount ofsearches. Besides,
a greater average degree impacts on the average services timesTs of these nodes,
as they know, and so they have to process, more resources per search. Hence, these
nodes keep being the bottleneck of the network despite the smaller average search
length, preventing the system to be able to handle a greater load.

However, it is important to recall that these results are also due to the capacity distri-
bution used, and how it was distributed among the nodes. In small-world networks,
if we assign low capacities to high degree nodes we can expectthem to become
bottlenecks of the network that force smallγo values. In ER networks, adding more
high capacity nodes could change theγo tendency so it would grow with the average
degree. Exploring all these phenomena is beyond the scope ofthis paper.

3.5 Optimal Relationship between Degree and Capacity Distributions

In this section we show that, when there is a full correlationbetween thecapacity
of a node (i.e., the number of searches a node can process per time unit) and its
degree, this leads to a minimal value of the average search timeTr .

Let us first state the relation we assume between the capacitycj and the average
service timeT j

s of a nodej. We assume that the first is a parameter that does not
depend on the degree or the number of resources known by the node, and only de-
pends on the processor and network connection speeds. We assume that the second
is a strictly increasing function of the node’s degreef (kj). We assume that a node’s
service time is directly proportional to its degree and inversely proportional to its
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Fig. 15. Load limitγo. Five different networks are created for each network type (ER or
small-world) and average degreek. The resultingγo are shown grouped byk.

capacity as follows:

T j
s =

f (kj)

cj
. (37)

Let us now consider a pair of nodesi, j ∈ V, such thatkj > ki (so f (kj) > f (ki)),
and two possible positive capacitiesc1 andc2, such thatc1 > c2. We show that, if
no other degree or capacity assignment changes, havingcj = c1 andci = c2 gives
a smaller average search time,Tr , than the average search timeT′r with reverse
assignmentc′j = c2 andc′i = c1.

Using Eq. 37, we obtain the following possible average service times:

T j
s,1 =

f (kj)

c1
; T i

s,1 =
f (ki)
c2

; T j
s,2 =

f (kj)

c2
; T i

s,2 =
f (ki)
c1
, (38)

in which Ts,1 are the service times obtained with the first capacity assignment and
Ts,2 are the service times obtained with the second. From the above equations, we
have

T j
s,1T

i
s,1 =

f (ki) f (kj)

c1 c2

= T j
s,2 T i

s,2,

(39)

and

T i
s,1 − T i

s,2 = f (ki)
c1 − c2

c1 c2

< f (kj)
c1 − c2

c1 c2

= T j
s,2 − T j

s,1.

(40)
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Let λi andλ j be the loads oni and j. Sinceki < kj, thenλi < λ j. Hence, from this
and Eq. 40, we find that

λi T i
s,1 + λ j T j

s,1 < λi T i
s,2 + λ j T j

s,2. (41)

To compute the valuesTr andT′r , we use Eq. 31

Tr =
1
γ

















r i + r j +
∑

h,i,h, j

rh


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; (42)

T′r =
1
γ
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



, (43)

wherer i andr j are obtained with the first capacity assignment andr ′i andr ′j with
the second. Observe thatrh remains the same for any nodeh that is neitheri nor
j, because its degree, load, and capacity are just the same forboth cases. Hence, if
r i + r j < r ′i + r ′j thenTr < T′r .

From Eqs. 28 and 30, we obtain that

r i + r j =
λi T i

s,1

1− λi T i
s,1

+
λ j T j

s,1

1− λ j T j
s,1

=
−2 λi λ j T i

s,1 T j
s,1 + λi T i

s,1 + λ j T j
s,1

1+ λi λ j T i
s,1 T j

s,1 − (λi T i
s,1 + λ j T j

s,1)
,

(44)

and

r ′i + r ′j =
λi T i

s,2

1− λi T i
s,2

+
λ j T j

s,2

1− λ j T j
s,2

=
−2 λi λ j T i

s,2 T j
s,2 + λi T i

s,2 + λ j T j
s,2

1+ λi λ j T i
s,2 T j

s,2 − (λi T i
s,2 + λ j T j

s,2)
.

(45)

Finally, applying Eqs. 39 and 41, we conclude that

r i + r j < r ′i + r ′j , (46)

and hence
Tr < T′r . (47)

This proves that, for a given degree distribution, the best performance will be ob-
tained by assigning the largest capacities to the nodes withthe largest degrees. Note
that we have found a condition that is necessary in order to attain the minimum
possibleTr , once the degree distribution has been set. However, different degree
distributions can obtain very differentTr values.
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4 Conclusions

In this paper, we have presented an analytical model that allows us to predict the
behavior of random walks. Furthermore, we have also performed some experiments
that confirm the correctness of our expressions.

Some work can be carried out to complement our results. For instance, several
random walks can be used at the same time, a situation that could be used to further
improve the efficiency of the search mechanism. These random walks could run
independently or, in order to cover separated regions on thegraphs, coordinate
among them in some way.
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