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Abstract

Years after the initial development of the current routing protocols we still lack an understanding of the impact of various
parameters on the routes chosen in today’s Internet. Network operators are struggling to optimize their routing, but the
effectiveness of those efforts is limited.

In this article, we study sensitivity of routing stretch and diversity metrics to factors such as policies, topology, IGP
weights etc. using statistical techniques. We confirm previous findings that routing policies and AS size (in number of
routers) are the dominating factors. Surprisingly, we find that intra-domain factors only have marginal impact on global
path properties.

Moreover, we study path inflation by comparing against the paths that are shortest in terms of AS-level/router-level
hops or geographic distances. Overall, the majority of routes incur reasonable stretch. From the experience with our
Internet-scale simulations, we find it hard to globally optimize path selection with respect to the geographic length of the
routes, as long as inter-domain routing protocols do not include an explicit notion of geographic distance in the routing
information.
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1. Introduction

Routing in the Internet is inherently complex. It is
controlled by diverse policies, decided locally by each Au-
tonomous System (AS), but acting globally across the en-
tire system [1]. Furthermore, it depends on protocols for
routing between and within individual ASs, on the router-
level topology inside Internet domains, and on the peering
structure between ASs.

In the past, models have been suggested to verify the
correctness of routing inside an autonomous system [2],
to predict the paths between two ASs or routers [3], etc.
These models require topology information as input, typi-
cally gathered from the routing protocols themselves. The
information collected from the current routing system is
not only topologically incomplete and biased [4], but it
also does not provide detailed enough information to es-
timate the path diversity available in today’s Internet [3].
Even today, there is still no thorough understanding of
which and how routing parameters impact the diversity
and optimality of the chosen routes.
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In this article, we make an important contribution to-
wards understanding how sensitive route stretch and di-
versity metrics are to factors such as policies, number of
routers per AS, IGP weights, location of peerings, iBGP
connectivity etc. To comprehensively explore all factor set-
tings and their consequences on the routes computed by
BGP (Border Gateway Protocol), we rely on full factorial
design. One major contribution of this article is to quan-
tify sensitivity using analysis of variance (ANOVA) [5].

Given the inherent limitations of observable routing
data, we rely on simulations. Within simulations we can
control all parameters, and can compute any desired met-
ric on the simulated routes, since we created the topology
and therefore know the routing tables of each individual
router. Simulations allow us to compare paths chosen by
individual routers with paths that are globally optimal in
terms of AS-level, router-level hops, or geographical dis-
tance. To the best of our knowledge there is no work
on Internet-scale simulations, which is comparable to ours
in terms of comprehensiveness, level-of-detail in modeling
and the size of the used topologies.

The benefits of our sensitivity analysis are twofold:
First, they give insight into the relevant factors, i.e., the
ones which need to be accurately reproduced when mod-
eling routing in the Internet – is it really true that state-
of-the art routing models neglect aspects that do have an
influence on route computation? Second, both the sensi-
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tivity analysis and the simulation framework, we propose
in this article, will prove useful for evaluating and com-
paring new routing protocols and architectures, and will
provide hints on how to improve the path selection of BGP.

Surprisingly, we find that the impact of intradomain
parameters, including IGP weights or iBGP connectivity,
on global route propagation is low compared to other pa-
rameters. Note that this does not imply that individual
routes chosen by BGP are insensitive to hot-potato rout-
ing [6, 7]. Consistent with the design of BGP, we find that
routing policies and the size of ASs in terms of the num-
ber of routers are the dominating factors. Hence, future
routing models should focus on these two aspects.

Moreover, we find that the majority of routes incur
reasonable stretch in terms of AS-level/router-level hops or
geographic distance. Policies slightly increase path length.
Overall we did not manage to optimize geographical dis-
tance within the space of current configuration alternatives
in our simulations. However BGP, and in particular BGP
policies, cannot be blamed for the sub-optimality of the
current paths. BGP is a policy-routing protocol, for which
short distances have not been a design constraint. We will
face this limitation of BGP if end-to-end path quality is
to become more important in the future.

The structure of this article is as follows. We review the
Internet routing system (Section 2) and give an overview
of our experimental design (Section 3), before we present
implementation details (Section 4). Section 5 presents our
comprehensive sensitivity analysis, followed by the study
of (sub)optimality of selected routes in Section 6. Finally,
we discuss related work (Section 7) and conclude (Sec-
tion 8).

2. Background

When reviewing in this section the current routing sys-
tem, we focus on the aspects that impact the choice of
routes: the structure of the Internet in Section 2.1 and
BGP route selection and propagation in Section 2.2.

2.1. Structure of the Internet

The Internet is divided into a collection of indepen-
dently administered autonomous systems (ASs). Routing
through the Internet is accomplished on a prefix basis and
depends on protocols for routing within individual ASs.
We review the AS-level and the intra-domain topology as
well as the AS-interconnectivity at the router-level.

2.1.1. AS-level graph

The Internet has a tiered structure [8] which reflects
AS business relationships, e.g., [9, 10, 8, 11]. A few tier-1
Internet Service Providers (ISP) form the core. A larger
number of transit providers buy service from other providers,
including tier-1 providers, and provide connectivity to other
ASs. Stub ASs get their connectivity from transit or tier-1
providers.

Figure 1: Operation of a BGP router.

Each business agreement between two ASs corresponds
to an AS-level edge and implies some physical connectiv-
ity, one or multiple links, between the ASs. It is imple-
mented by imposing routing policies for these links that
determine which paths are propagated and selected [9].
Indeed, business relationships lead to constraints on path
propagation, e.g.: a path learned from a provider is not
exported to another provider. While routing policies can
be rather specialized [12], it is common to classify AS rela-
tionships into three main types: customer-provider (c2p),
peer-to-peer (p2p), siblings (s2s) [13].

2.1.2. Intra-domain graph

ASs are not atomic entities, but are composed of many
routers [14, 15]. Internet Service Providers (ISP) employ
an intradomain routing protocol, such as OSPF or IS-IS,
to select paths inside their network [16]: routers exchange
link-state information and forward packets along shortest
paths, based on the sum of the link weights chosen by
the ISP. As such, the internal structure of each network
together with its choice of IGP weights impacts the BGP
routing decisions.

External BGP sessions are not established between all
routers of an AS but only on the so-called border routers.
To redistribute these routes to all routers, iBGP sessions
are used between all BGP routers on top of the router-
level topology. There are multiple ways to realize such
iBGP structure, ranging from an iBGP full mesh to route-
reflectors or confederations. The latter two are more scal-
able but reduce the visibility of routes within the AS [17]
compared to a full mesh.

2.1.3. Inter-domain connectivity

Peering agreements between ASs usually enforce mul-
tiple physical links at multiple different locations in dif-
ferent regions. This has the advantage of minimizing the
time a packet stays within an AS as long as hot-potato
routing [6, 18] is used. Multiple physical links at different
locations are also often used to increase reliability, e.g., in
the form of customer backup links. Note that these multi-
ple links between two ASs are not reflected in any AS-level
topology.

2.2. BGP path selection and propagation

In BGP, routers establish BGP sessions over which they
receive and propagate routes for destination prefixes. We
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distinguish between external BGP (eBGP) sessions over
inter-domain links and internal BGP (iBGP) sessions be-
tween the routers of a given AS. As illustrated in Figure 1,
once a route advertisement coming from a neighbor (called
peer) is accepted by the configured input filters, it is placed
in the incoming Routing Information Base (RIB-In) for the
peer, possibly after some of the route attributes have been
modified according to the local routing policies.

The BGP decision process is used to select the best
route for each prefix from among the available routes.
For this purpose the BGP decision process considers sev-
eral of the BGP route attributes, amongst others shorter
AS-paths are preferred. Later on in the decision process,
routes are ranked according to the IGP cost of the intra-
domain path towards the next-hop, preferring routes with
smaller IGP cost. Therefore, intra-domain routing proto-
cols do influence the path-selection process in BGP. Fi-
nally, if there is still more than a single route left, the
router breaks ties, for example by selecting the route to
the neighbor which has the lowest router-id (typically one
of its IP addresses).

Then the selected route is placed into the BGP routing
table. Finally, administrators may specify output filters
for each peer, which are used to decide which best routes
to propagate to a BGP neighbor and whether to change
some of their attributes.

3. Factorial design

To comprehensively explore all factor settings and their
consequences on the routes computed by BGP, we rely on
factorial design. A factorial design [5] experiment allows
to study the effect of each parameter (factor) on the eval-
uation metrics (response variables), as well as the effects
of interactions between factors on response variables. For
each factor there is a set of discrete possible values or lev-
els. A full factorial experiment explores all combinations
of these levels across all factors. We rely on simulations,
since within simulations we can control all parameters, and
can compute any desired metric on the simulated routes.
Analysis of Variance (ANOVA) provides statistic means
to describe the impact of individual factors on the met-
rics. We now provide a short introduction to ANOVA and
describe the metrics and factors for our sensitivity study.

3.1. Analysis of Variance (ANOVA)

ANOVA is an analysis of the variation present in an
experiment. It helps to determine which factors strongly
contribute to the metric variations observed across the dif-
ferent level settings. The total sum of squares SStotal mea-
sures the total, absolute variability across all the obtained
metric values xi in the sample (where x̄ denotes the aver-
age metric value):

SStotal =
∑

(xi − x̄)2 =

∑
x2
i − (

∑
xi)

2

n
.

The basic idea behind ANOVA is to partition this variabil-
ity of the whole data set into two components: Variability
across different levels of a factor SSfactors and variabil-
ity for different repetitions of the same level configuration
SSrepetitions. This can be expressed as follows:

SStotal = SSfactors + SSrepetitions

To estimate the impact of a certain factor on the response
variable, we can compute the percentage of variability, that
a certain factor explains, by dividing SSfactors by SStotal

(used in Section 5). Note that ANOVA is not restricted
to experiments with two factors. For more details on the
computation of the sum of squares, the partitioning of the
variation, the regression models etc., we refer to Jain’s
book [5].

ANOVA provides means to determine whether the frac-
tion of variance that is explained by a certain factor is sta-
tistically significant. For this purpose, we will compute in
Section 5 the F-ratios: the variation due to a factor di-
vided by the variation due to experimental error or noise.
The null hypothesis is that this ratio equals 1.0 and is re-
jected if the F-ratio is significantly large enough, i.e. the
likelihood that it is equal to 1.0 is smaller than a certain
percentage (e.g., 5%). Again, we refer the reader to Jain’s
book [5].

3.2. Metrics

We concentrate on metrics that quantify the results of
route computation, path inflation, and route diversity.

AS path length (ASLength) reflects the number of AS-
level hops of the AS path of the route.

Router-level path length (RouterLength) considers
the number of router-level hops of the selected route.

Geographic path length (GeoLength): Our topology
model includes geographic coordinates. Therefore, we can
compute the geographical distance for each path by sum-
ming up the distances of each link on the router-level path.

Number of selected paths (NumSelPaths) counts the
total number of distinct AS paths that are selected as best
routes by the routers of an AS for a single prefix.

Number of learned paths (NumLearnedPaths): Same
as NumSelPaths, but we consider all AS paths learned by
an AS.

Ratio: # Learned paths / # neighbor ASs (Learned-
NeighborRatio) measures the average route diversity learned
per neighbor AS. We divide NumLearnedPaths by the
number of neighbor ASs.

Disjointness (Disjointness): For every AS, we consider
all distinct AS paths, learned by its routers and compute
their edge disjointness. For this we compute for each pair
of AS paths p1 and p2:

m = 1−
# AS edges p1 and p2 have in common

# AS edges in longer path
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We refer to the average of m over all these pairs of AS
paths as Disjointness. A value of 0 implies that all learned
AS paths are identical while a value close to 1 indicates
high edge disjointness. If an AS learns a single AS path,
we set the metric to 1. This metric is similar to the Novelty
metric used by Motiwala et al. [19] to characterize AS path
disjointness.

3.3. Factors

We rely both on Internet-scale simulations (≈ 30, 000
ASs) and on small-sized simulations (150 ASs). Each
AS can have its own router-level topology. These router-
level topologies include a location within a point of pres-
ence (PoP) for each router throughout the world. Hereby,
we keep the design choices, available to network opera-
tors [20], in mind.

Routing policies (Pol): We identify two levels: no
policy and routing policies according to AS relationships.
This allows to study the degree of AS path inflation due
to the use of routing policies [21, 22] and the impact of
policies on AS-level route diversity.

AS router size (ASsize) can vary between ASs. Tier-
1 ASs typically have more routers in their backbone part
than small transit ASs. Nevertheless, previous work [3]
found that only a few routers are necessary to account for
route diversity as seen from BGP data. Our level values
range from 1 to 5 routers or depend on the tier of the AS.

Multiple peering links between ASs (Peer) are com-
mon in the Internet and increase the diversity of routes.
[3] has shown that this factor is necessary to reproduce
path diversity observed in the Internet. Our levels for this
parameter range from 1 to 5 depending on the AS size.

IGP weights (IGP) often reflect the delay, the geo-
graphic distance or the link capacity or are chosen to min-
imize network congestion [23]. Moreover, route choices
are known to be sensitive to them [7]. Our levels for IGP
weights range from random weights to uniform weights and
even geographic distance.

iBGP topology (iBGP) can limit the visibility of routes
inside an AS. We consider iBGP full meshes as well as
route-reflector hierarchies that follow the PoP structure
as suggested by configuration guidelines [24, 25].

Border routers (Border) are not chosen arbitrarily in
practice. Rather, each AS often has a limited number of
them in specific locations. Moreover, peerings or customer-
provider links are frequently established between close by
routers, typically routers at the same location, in order
to minimize distances and costs. We use two levels: one
which tries to minimize this cost and one which selects
border routers randomly.

Note that AS-level connectivity is not a factor in our
design for two reasons. First, it is non-trivial to com-
bine other connectivity models such as randomly gener-
ated AS graphs with a notion of routing policies. Second,

it is widely agreed that the Internet has a tiered struc-
ture [8], which is unlikely to change in the foreseeable fu-
ture. Therefore, we use an AS-level map obtained from [26]
as basis for our Internet-scale simulations. For our smaller-
sized simulations, we rely on AS graphs that show similar
properties as those of the actual Internet.

4. Simulation setup and choice
of levels

Now we dive into more details about the simulation
setup and the generation of the topologies.

4.1. Simulation

Our objective is to understand how sensitive the out-
come of the routing process is to the different choices of lev-
els for the topology factors. For this purpose, we run both
Internet-scale simulations (≈ 30, 000 ASs) based on col-
lected AS-level maps from Caida [26] and small-sized

simulations (150 ASs). To study the outcome of global
route selection, we do not have to consider the BGP dy-
namics. Accordingly, we use the C-BGP simulator [27] in
order to compute the paths that routers know once the
BGP routing has converged [28].

With C-BGP it is possible to run Internet-scale

simulations with more than 30, 000 ASs and with com-
plex inter-domain structures and inter-domain peerings.
However, this takes a lot of time even if we restrict the
number of prefixes to 100 and originate one prefix per
AS for a selected set of ASs including tier-1, tier-2 and
stub ASs. We found that such complex simulations may
take up to 5 days to complete and may require more than
13GB memory1. For this reason, we decide to run these
Internet-scale simulations based on AS topologies de-
rived from CAIDA [26] data of April 2009 only for a limited
set of parameter settings, amongst others for defaultSetup
and slight variations of defaultSetup, see Section 4.2.4.

Our full factorial design results in 216 different combi-
nations of the levels of our 6 factors. For each choice of
factor levels, we generate the topology, execute the sim-
ulation, and compute the metrics. After all simulations
have been finished and analyzed, we perform the statis-
tical sensitivity analysis. Together with the 10 iterations
we run per simulation, a full factorial design would require
more than 2, 000 C-BGP simulations. Obviously, we have
to limit the size of the topology in terms of number of ASs
for our sensitivity study2 in Section 5. With regards to
the size of the topologies, they have to be large enough
to accommodate a tiered structure and allow for complex
interconnections between ASs. Yet, they need to be small
enough to allow efficient simulation of all routing tables
and all prefixes. We find that a single simulation with

1On AMD Opteron 865 multi-core machine with 32GB.
2For later discussions on “optimality” we rely on the Internet-

scale simulations.
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150 ASs (small-sized), 150 originated prefixes and some
1, 000 routers uses roughly 300 MB of memory and finishes
within few minutes.

Despite the reduced topology size, the computation of
the metrics is time-consuming, lasting roughly 30 min-
utes per simulation, due to the computation of all shortest
paths with the Floyd-Warshall algorithm3 in weighted and
non-weighted graphs. By parallelizing the processing, it is
possible to finish one set of simulations and to compute the
metrics within a few days, which is a reasonable time. For
our Internet-scale simulations, the computation of the
metrics and Dijkstra’s algorithm for the 100 destination
prefixes take up to several hours for a single simulation.

4.2. Topology generation / choice of levels

Our guideline is a comprehensive design of simulations.
Our full factorial design includes simulations configured
based on configurational practices used in today’s Inter-
net (see Section 4.2.4). But we also choose levels to cover
extreme cases. For example, as part of our sensitivity anal-
ysis, we run simulations where no policies are configured at
all. In doing so, we are able to explore the complete space
of current configuration alternatives offered by BGP.

The generation of topologies is not done in one step,
rather we follow a top-down approach with three subtasks:
generating an AS-level topology, the intra-domain topol-
ogy, and the inter-domain interconnectivity.

4.2.1. AS-level topology

For the AS-level topology, we either rely on an AS-level
map from [26] (Internet-scale) or on a small-sized

“tiered” topology with 150 ASs — 5 tier-1s, 20 tier-2s, and
125 stub ASs. While the latter does under-represent the
number of stub ASs, our goal was to include a reasonable
complex set of tier-1 as well as tier-2 ASs and to roughly
keep the proportion of transit to stub ASs as observed in
the Internet [26]. Spot checks against our Internet-scale
simulations (see Section 5.2 and 6) show that using down-
scaled topologies does not change the results drastically.

In the small-sized topology, all tier-1 ASs are fully
interconnected, while tier-2 ASs are randomly connected
to a subset of tier-1 ASs and also peer with a subset of
each other. Stub ASs are either single- or dual-homed and
connect to either tier-2 or tier-1 ASs. Note that the gen-
eration of the AS-level topology is non-deterministic. For
example, the probability for a stub AS to be dual-homed
is 50% and we randomly determine the number of tier-1
ASs to which a tier-2 AS attaches. In order to account for
the non-determinism, we decide to run 10 iterations for
each factor combination of our factorial design.

If the factor Pol is active, we configure policies accord-
ing to the tiered architecture. For example, edges be-
tween two tier-2 ASs are peer-to-peer (p2p) links, while

3Here we use an Intel Xeon Quad-Core platform with 2.4GHz
processor and 8GB of memory.

some edges between a tier-1 and a tier-2 are provider-
to-customer (p2c) links and others are p2p links. Rout-
ing policies are realized via BGP filters, communities, and
local-preference values and implement the no-export and
no-valley property of AS relationships [9].

4.2.2. Intra-domain topology

Since intra-domain topologies and link weights of ac-
tual ASs are unknown and cannot be inferred easily [14,
15], we rely on the functionality offered by IGen [29],
a structural topology generator which produces plausible
topologies using network design heuristics [20].

The level of the factor ASsize determines the number of
routers for each AS. We consider 4 levels, 3 with a constant
numbers of routers inside all ASs, i.e., 1, 2, 5. The fourth
level varies the number of routers according to the position
of the AS in the AS hierarchy, i.e., 30 routers for tier-1’s,
15 for tier-2’s and 1 per stub AS.

To be able to consider the geographic distance for the
factor IGP, each router is placed at a specific geographic
location (longitude, latitude)4. While large ASs are as-
sumed to have routers all over the world, stub ASs are only
present in a geographically limited area. Accordingly, the
routers of tier-1 ASs and some tier-2 ASs are distributed
world-wide, while other tier-2s and stub ASs are mainly
restricted to a single continent.

As next step we setup the physical links by first con-
structing Points of Presence (PoP) and then interconnect-
ing them. Each PoP corresponds to a cluster of geographically-
close nodes identified with the help of the K-Medoid algo-
rithm [30]. Within each PoP we distinguish between back-
bone nodes for connecting to other PoPs, and access nodes.
The backbone nodes within the different PoPs are inter-
connected via a clique. The access nodes are connected
to the backbone nodes within the PoP using at least two
edges. We need this complex intra-AS topology only if the
AS is composed of a significant number of nodes and the
level of the factor iBGP is “route reflector”. If the level
of iBGP is “route reflector”, we configure a set of iBGP
sessions which follow the physical topology. Otherwise we
choose a full mesh of iBGP sessions.

The 3 levels of the factor IGP are: “uniform” which
assigns uniform costs of 1 to all intra-domain links; “ran-
dom” which assigns random weights of 1 to 100; and “ge-
ographic” which assigns weights that correspond to the
geographical distance between the source and the destina-
tion.

4.2.3. Inter-domain connectivity

As next step, we need to determine the router-level
connectivity for AS-level edges. The factor Peer deter-
mines how many router-level peering links are to be used

4The locations in our simulations do not correspond to actual
locations of routers in the Internet. However, the core results of our
sensitivity study still hold for the actual Internet.
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for each AS-level edge. We again choose 4 levels, 3 with
constant numbers of links per edge, i.e., 1, 2, 5. The fourth
level varies the number of links according to the number
of routers in the incident ASs. The larger the number of
routers, the larger the number of peering links.

The factor Border determines on which routers the
peerings are placed: either randomly or according to geo-
graphic distance. The base assumption of the latter case
is that two domains prefer to connect at places which are
geographically close to each other. For this purpose, we
search among the Ni × Nj routers of AS i and j and es-
tablish the link between the geographically closest ones.

4.2.4. Default simulation

In spite of recent work on topology discovery [14, 15]
and policy inference [10, 9, 31], the actual routing policies
and the router-level topology of the Internet are largely
unknown. Yet, in order to obtain a simulation setup that
is as realistic as possible, we consider configuration prac-
tices that correspond to common design guidelines in to-
day’s Internet and try to consider insights obtained from
measurements of ISP topologies [14, 15].

For the remainder of this article, we will frequently re-
fer to defaultSetup, a choice of factor levels that is as close
as possible to actual configurations in the Internet. Ac-
cordingly, such a setting uses AS business relationships,
has route reflectors inside large ASs and considers geo-
graphic locality when determining inter-domain connec-
tions and assigning IGP weights. The tier-1 and tier-2 ASs
are reproduced with multiple routers, belonging to differ-
ent route reflector clusters. In addition to small-sized

simulation setups with 150 ASs, we also run Internet-scale
simulations for defaultSetup, see Section 5.2 and Section 6.

5. Sensitivity analysis

After identifying our metrics and factors, we now ex-
amine the results of the sensitivity analysis.

5.1. ANOVA

We perform small-sized simulations for all possible
combinations of factors and levels as outlined in Section 3.
We then rely on the ANOVA technique, see Section 3.1, to
identify those factors that strongly contribute to the vari-
ations of the metrics observed across the different choices
of levels.

While the outcome of simulations with C-BGP is deter-
ministic, a certain non-determinism is involved in the setup
of our topologies, see Section 4.2.1. For example, when
generating the underlying AS-level topology we only en-
force certain properties such as a tiered structure but ran-
domly determine the actual interconnection of ASs. Like-
wise, our factors only describe how many routers and what
strategy to use for selecting border routers, but not which
exact border routers to use for implementing the peering

between two ASs. To capture such non-determinism, we
run 10 iterations per factor combination. If we keep the
values of levels constant, we observe only marginal differ-
ences in the results from one simulation to another. Spot-
checks with even more than 10 iterations do not change
this picture. Hence, we regard 10 repetitions per factor
combination as sufficient to determine those factors that
significantly impact route propagation. Additionally, con-
fining ourselves to 10 iterations, allows to complete simu-
lations for all our 216 different combinations of factors and
levels within a reasonable time. Note that the variability
in the results for repetitions of a given simulation setup is
captured in the residual values.

To explore whether differences in the metrics are caused
by the configuration factors or by statistical noise (due to
running multiple simulation instances for each factor com-
bination) we partition the variance observed for each met-
ric into its components using sum of squares. Moreover,
we check for statistical significance, relying on F-tests, see
Section 3.1.

The influence of the 6 factors on each of the 8 metrics
is shown in Figure 2, while Table 1 presents the corre-
sponding numbers and F-values. The percentage values
represent the fraction that a certain factor contributes to
the total variance of the metric. Hence, a high percentage
suggests that a given metric is very sensitive to that factor.

We point out that the values in each row of Table 1
do not always add up to 100%. For example, the fraction
of variance for NumSelPaths (first row of Table 1) which
can be explained by our 6 factors and the residuals is only
84.1%. The remaining 15.9% are due to interactions. Such
interactions occur when it is not possible to distinguish
the impact of two or more factors. In the above example
the value of the metric NumSelPaths is sensitive to the
combination of two factors: routing policies (Pol) and the
size of ASs (ASsize). However, we find that the impact
of such “intertwined” factors is low when compared to the
impact of each individual factor.

We also observe that the residual values for the ma-
jority of our metrics are rather small (less than 4%), see
Table 1. This suggests that the error or statistical noise of
our setup is low compared to the variation across different
factor configurations. This supports our choice of the fac-
tors. The factors indeed impact route computations more
than the statistical variations. Nevertheless, for Disjoint-

ness and ASLength, we observe higher residual values with
16.2% and 20.6%, respectively. This is not that surpris-
ing as both metrics strongly depend on the AS-level graph
which is chosen non-deterministically (see Section 4.2.1).

From Figure 2 we immediately notice that the major-
ity of our metrics are dominated by two factors: rout-
ing policies and the number of routers inside each AS.
NumLearnedPaths are mostly affected by policies (96.5%).
For NumSelPaths, 25.2% of the total variation can be at-
tributed to policies and 54.3% to the numbers of routers
per AS. This is not too surprising given that policies deter-
mine which paths among those learned are preferred and

6



Figure 2: Contribution of individual factors to total variation (sum of squares).

Pol ASsize iBGP IGP Peer Border Residual
% F % F % F % F % F % F %

NumSelPaths 25.2 104 54.3 104 0.0 0 0.0 0 0.9 252 1.0 919 2.7
NumLearnedPaths 96.5 105 0.5 420 0.0 0 0.0 1 0.6 529 0.1 142 0.9
LearnedNeighborRatio 95.9 105 0.9 885 0.0 0 0.0 0 0.5 446 0.1 611 0.8
Disjointness 44.4 6434 21.2 1025 0.0 1 0.0 1 1.3 65 1.6 228 16.2
ASLength 79.4 9023 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 20.6
RouterLength 3.1 104 74.5 105 15.2 104 0.0 5 2.9 4181 0.1 397 0.5
GeoLength 3.0 1786 0.1 2450 3.00 1867 0.2 54 2.0 329 0.05 104 4.0

Table 1: ANOVA – percentage of variation explained by individual factors (“%”) and statistical significance (F-Value, “F”) for all factors
and metrics.

the AS size limits the number of distinct AS paths that
can be selected as best.

The two metrics that quantify the length of the selected
routes in terms of AS-level and router-level hops, display a
different behavior. RouterLength is dominated by ASsize

which explains 74.5% of the total variation. The AS-level
length of the selected routes is only sensitive to whether
policies are used or not. We note that the length of the
router-level paths is impacted by the choice of the intra
AS topology, i.e., if the topology has a full mesh of iBGP
sessions or a route reflector hierarchy (15.2%). Finally,
the observed variation for GeoLength is not due to a sin-
gle factor but rather needs to be explained by all factors
and in particular their interactions. Overall, the absolute
variation for GeoLength is low compared to other metrics,
which is also supported by our findings of Section 6.3.

In summary, we find that the two most dominant fac-
tors for our metrics are routing policies and the number
of routers per AS. While some of the other factors are
statistically significant, their overall contribution to the
variance is nevertheless small. In particular, intra-domain
factors, including IGP weights or iBGP connectivity only
have weak impact on global path properties.

5.2. Impact of individual factors

While the ANOVA technique helps us to understand
which factors are responsible for the observed variations,
they do not tell us how different parameter settings impact
a certain metric. For example, we have not yet quantified
how policies limit the number of paths that are learned by
the routers of an AS. Therefore, we now explicitly study
the impact of routing policies, intradomain configuration,
and interdomain connectivity and we investigate potential
differences between tier-1, tier-2 and stub domains. The
approach we adopt is to rely on a single instance of de-
faultSetup as a reference, vary one factor at a time and
then check for differences. Contrary to the preceding sec-
tion, we now use Internet-scale simulations based on
AS-level maps obtained from CAIDA [26], see also Sec-
tion 4.1. As will be shown in the following sections, our
findings confirm the results of the general sensitivity anal-
ysis in Section 5.1. Table 2 presents the mean values for
three of our metrics – NumLearnedPaths, Disjointness and
RouterLength– across all ASs and all routes, respectively.

5.2.1. Impact of policies

If we repeat the same simulation but do not enforce
AS relationships (“no policies”), the number of distinct
AS paths learned by the routers of an AS increases from
2.58 to 6.84.

7



defaultSetup no policies full mesh random IGP 1 peering 2 peering random border
weights link links router

NumLearnedPaths 2.58 6.84 2.59 2.59 2.56 2.62 2.62
Disjointness 0.81 0.83 0.81 0.81 0.81 0.81 0.81
RouterLength 11.67 7.80 8.72 11.80 12.34 10.65 11.43

Table 2: Impact of policies, intradomain configuration and interdomain connectivity (mean values across all routers ). Standard deviation is
around 4.5 for NumLearnedPaths, around 0.2 for Disjointness and around 5.4 for RouterLength metrics.

On the one hand, this can be seen as confirmation of
the wide-spread belief that policies significantly restrict
route diversity. On the other hand, the value of the Dis-

jointness metric only slightly increases after removing poli-
cies from the simulation. We conclude that BGP does not
necessarily propagate alternative, disjoint paths for rout-
ing. This can be seen as motivation for proposals such as
path splicing [19].

For the metrics RouterLength andASLength (not shown
in Table 2), we observe that ignoring routing policies gen-
erally leads to shorter routes. Without policies the average
distance in AS-level hops (router-level hops) is 5.67 (7.80)
per selected route versus 4.30 (11.67) without routing poli-
cies. Although policies lead to longer selected routes, the
consequent stretch is not dramatic, confirming previous
results [21, 22, 32].

5.2.2. Impact of intradomain configuration

The ANOVA results indicate that intra-domain design
choices, e.g., iBGP full mesh versus route reflector hier-
archy (iBGP) or the strategy for assigning IGP weights
(IGP) have a comparatively low impact on the results of
route propagation and computation. Nevertheless, we find
that 70% of all route decisions in defaultSetup are reached
based on other steps of the BGP decision process than
local-preference and shortest AS path, confirming previ-
ous findings [6, 33]. To investigate, we now compare de-

faultSetup against a simulation where we replace the route
reflector hierarchies inside large domains with a full mesh
(factor iBGP) and another simulation where we assign
IGP weights randomly rather than applying geographic-
aware weights (factor IGP), see Table 2.

Varying only the settings of the two factors iBGP and
IGP in defaultSetup does only induce minor changes in
the values of our metrics. The only exception is the met-
ric RouterLength. Here we observe that the average num-
ber of hops per route decreases from 11.67 to 8.72 when
replacing the route reflector hierarchy with a full mesh.

Given these results, we conclude that it is not manda-
tory for studying inter-domain route propagation to em-
phasize intra-domain aspects such as assignment of IGP
weights or the topological structure of a domain. This rel-
ative unimportance of intra-domain aspects is surprising
given their importance for the BGP decision process.

5.2.3. Impact of interdomain connectivity

Finally, we quantify the impact of the two factors Peer
and Border on our metrics. In addition to defaultSetup,

where the number of peering links between two ASs de-
pends on the size of the neighboring ASs, we run a sim-
ulation where we realize each AS-level edge with 1 or 5
peerings. We find only minor differences for the met-
rics NumLearnedPaths, Disjointness and RouterLength,
see Table 2. In terms of RouterLength, the average num-
ber of router hops increases from 11.67 in defaultSetup to
12.34 with only one peering link per AS-level edge, but
decreases to 10.65 for five peering links: If there are many
peering links per AS-level edge, each router can choose be-
tween many egress routers. Consequently, the likelihood
that a packet can be forwarded over a direct link to the
neighboring AS increases.

Note however that irrespective of how the IGP weight
assignment is done, geographic-aware for defaultSetup or
via random assignment (factor Border), the average num-
ber of router-level hops only slightly changes.

In summary, path diversity is almost always insensitive
to the realization of the AS-level edges (factor Peer and
Border): Neither the selection of border routers nor the
number of peering links per AS-level edge have a dominat-
ing impact.

5.2.4. Tier-1 vs. tier-2 vs. stub ASs

We briefly explore if there are any significant differ-
ences between tier-1, tier-2, and stub domains. Once more,
we rely on the Internet-scale simulation of defaultSetup
as basis and compute the results of our metrics separately
for each type of AS.

Figure 3a) shows the cumulative distributions of the
number of distinct paths, learned by the routers of tier-1,
tier-2 and stub domains (NumLearnedPaths). We observe
that path diversity is highest for tier-1 ASs (mean: 81.8),
followed by tier-2s (mean: 9.8) and stubs (mean: 2.2).
This is mainly due to the AS-level connectivity of today’s
Internet. While stub ASs5 are only connected to a small
number of upstream ASs, tier-1 and tier-2 domains have
peerings with many neighbors.

Figure 3b) shows for tier-1, tier-2 and stub domains
the distribution of path lengths in terms of router-level
hops. In general, tier-1 ASs can use shorter paths towards
destinations. While tier-1 domains have paths with an
average of 9.3 router hops, stub (tier-2) domains have a
mean path length of 11.6 (12.8) hops. Given that we rely
on a Internet-scale topology from Caida [26], it is not

5a considerable fraction of them is still only single-homed.

8



(a) Number of learned paths per AS (NumLearnedPaths) (b) Number of router-level hops (RouterLength)

Figure 3: Differences between tier-1, tier-2 and stub ASs for defaultSetup.

surprising that AS path lengths are comparable to those
reported by Huston et. al [32]. Again, tier-1 ASs have
shorter paths towards the destination. Overall, the differ-
ences observed among the types of ASs are consistent with
what we would intuitively expect.

6. Path Inflation

After the general sensitivity analysis we now ask: How
“good” are the computed routes in terms of their length?
The metrics we use are AS-level (ASLength) and router-
level hops (RouterLength), as well as geographical distance
(GeoLength). These path properties contribute to the de-
lay that a packet sees when routed along a path.

The key idea is to compare for a given source and des-
tination against the route that is globally shortest in terms
of AS-level hops (Section 6.1), router-level hops (Section 6.2)
or geographical distance (Section 6.3). Such shortest routes
can be determined by applying Dijkstra’s algorithm. Note
that we again rely on Internet-scale simulations based
on collected AS maps from [26], see also Section 4.1.

6.1. AS-level path stretch

The AS-level path stretch is determined by comparing
the number of AS hops of the selected AS path with the
minimal path length in terms of AS hops that connects the
same pair of routers. This is done for more than 3 million
pairs of source and destination ASs. While we take the
length of the selected AS path directly from the simulation
results, we use Dijkstra’s algorithm to obtain the shortest
paths from the more than 30, 000 source ASs to the 100
destination prefixes in our Internet AS graph [26].

Figure 4 shows the distribution of the stretch factor, i.e.
number of simulated AS hops divided by the optimal AS
path length. While the stretch ratio averages 1.3, we ob-
serve for almost half of the source/destination pairs a sim-
ulated path with same length as the optimal path. There

Figure 4: AS-level path stretch for defaultSetup.

exists only one case with a stretch factor of 8.6 Overall,
the observed AS-level stretch is reasonable. We point out
that the observed AS-level path stretch is exclusively due
to the use of AS relationship policies, which imply “pref-
erence” rules and the “no-valley” property [13].

6.2. Router-level path stretch

Contrary to AS-level paths, router-level paths may in-
cur stretch for two reasons: Routing policies and ASs with
multiple routers/intradomain configuration. Both aspects
are investigated in this section. The general approach for
analyzing the router-level path stretch is similar to Sec-
tion 6.1. Again, we rely on defaultSetup and our AS-level
topology from CAIDA [26].

Figure 5a) shows the distribution of router-level path
lengths for 4 different setups. We compare defaultSetup

against a setup (i) where we ignore routing policies, (ii)
where we replace the route reflector hierarchy with a full
mesh of iBGP sessions and (iii) where we have both no

6Note that we rely here on the Internet-scale topology from
Caida [26]. Such outliers have already been reported in the past.
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(a) Length of router-level paths (b) Router-level stretch of defaultSetup

Figure 5: Optimality of router-level paths in terms of router-level hops.

policies and a full mesh instead of a route reflector hierar-
chy. Apart from that the defaultSetup remains unchanged.

The general observation is that the longest router-level
paths occur for the setup with policies, using a route re-
flector hierarchy, followed by “with policies/full mesh” and
“no policies/hierarchy”. If we replace the intra-domain
structure by a full mesh and if we remove policies, the
length of the routes selected in our simulation decreases
from 11.7 to 7.8.

The router-level stretch factor, i.e., number of router-
level hops in simulated path divided by the optimal path
length is shown in Figure 5b). Overall, the majority of
the routes in our simulations experience moderate stretch,
with an average stretch of 2.1. There are only very few
extreme cases with a stretch ratio of more than 2.4 (3rd

quantile).
These observations clearly demonstrate that both poli-

cies as well as having ASs with multiple routers impact
the length of the paths of the best routes. With regards
to the intradomain configuration, we observe that routes
incur stretch if ASs consist of multiple routers. In such
a case, packets may have to visit more hops in order to
traverse a transit AS domain. Routing policies can cause
BGP to prefer longer AS paths over a shorter one, if local-
preference values are applied. Hence, we observe a cor-
relation between the number of AS-level and router-level
hops of a path in our simulation. Moreover, we find for
more than 5% of the routes in defaultSetup that local-
preference values are used as final criterion to select a best
route among the set of learned ones. While this looks
like a small percentage, it is actually significant as such
routing decisions are then potentially propagated to many
neighbors. This underlines the impact of policies on the
“optimality” of router-level paths.

Again, we study the BGP decision process and find
that criteria such as “hot-potato routing” are frequently
used as decision criteria – in some ASs for more than 60%
of the decisions. This underlines the importance of intra-

domain routing structures on inter-domain routing and ex-
plains why the router-level path stretch is sensitive to the
choice of the use of a full mesh or a route reflector hierar-
chy. Nevertheless, BGP path choice as a whole is mostly
insensitive to intra-domain factors such as IGP weights
(see Section 5.1).

6.3. Geographical path stretch

In general, geographic properties have only indirect im-
pact on BGP routing decisions. For example, IGP weights
may be chosen to prefer routes with geographically short
distances. Given that the geographic distance and the de-
lay that packets experience on the path are correlated, we
now study the geographical path stretch.

Again, we rely on defaultSetup and run Internet-scale
simulations based on this choice of levels. Since we as-
signed routers to geographic locations in our topologies,
We can compute the geographic distance of each route, by
adding up the distances of the individual links it traverses
to reach its destination. To determine the geographically
shortest paths from more than 30, 000 source ASs to our
100 prefixes, we apply Dijkstra’s algorithm on a weighted
router-level graph, where weights correspond to the dis-
tances between adjacent routers.

Figure 6a) shows the cumulative distribution of the ge-
ographic stretch ratio, i.e., the geographic length of simu-
lated path divided by length of the geographically short-
est path, for the more than 3 million pairs of source and
destination ASs. The results suggest that most routers
incur a stretch ratio that is comparable to that of the
router-level stretch: The average geographic stretch is 2.9
(average router-level stretch: 2.1), while for 25% of the
source/destination pairs, we observe a stretch ratio of more
than 3.3 (router-level: 2.4). Since BGP route decisions are
based on the BGP-level topology and on routing policies
that do reflect business goals rather than geographical dis-
tances, we can even observe paths with a stretch ratio of
100.
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(a) Distribution of geographical stretch (b) Distribution of geographical lengths

Figure 6: Optimality of routes in terms of geographical length.

We now check how routing policies as well as different
strategies for IGP weight assignment impact the geograph-
ical stretch of the selected routes. To find out, we modify
the strategy for assigning IGP weights or remove rout-
ing policies, but otherwise we keep the simulation setup
identical. Figure 6b) shows the cumulative distribution of
the geographical length of the selected routes. The four
curves display the results for defaultSetup, which assigns
IGP weights to reflect geographical distances, for modified
simulations where random IGP weights are applied or no
policies are configured, and for the “optimal” lengths.

At first glance, we infer from Figure 6b) that the curves
for all our simulations are considerably below the curve for
the “optimal” lengths. This implies that neither removing
policies nor changing the strategy for IGP weight assign-
ment significantly shortens the geographical lengths of the
selected paths. The simulation run closest to the “opti-
mal” curve is the configuration where we ignore routing
policies. Comparing different IGP assignments, the setup
of defaultSetup, where IGP weights reflect the geograph-
ical distance, performs only slightly better than random
IGP weights.

Overall, it seems hard to globally optimize route propa-
gation and selection with respect to the geographic length
of the selected routes7. The reason is that BGP has been
designed to support flexible routing policies for implement-
ing business objectives. If the geographical length of paths
is to be globally optimized, routing policies of individual
ASs need to be consistent and need to optimize the same
objective: Geographically short routes and not routes that
agree with existing business agreements.

7Yet, IGP weights or other routing policies are effective means to
locally optimize routing for a specific objective within an AS.

7. Related Work

Previous work, e.g., [22, 21, 34] has mainly focused on
the impact of policies on the properties of the selected
routes. For example, Gao et al. [34] have studied the ex-
tent to which routing policies inflate AS paths. Other
work, e.g., [35] investigates how the routing system and its
mechanisms affect the end-to-end performance of the se-
lected paths, Finally, there exist several approaches for the
measurement [14, 15] and generation of router-level topolo-
gies, e.g. [36, 37]. For their analysis they rely on tracer-
oute measurements and use round-trip time, loss rates,
and bandwidth to judge the optimality of paths.

Overall, we do not only confirm the results of [22, 21,
34, 35], but rather we substantiate them. Existing work
only relies on paths visible from measured data while it is
widely agreed that measurement-based approaches are in-
herently limited regarding observability, e.g., [38]. In con-
trast, our completely controlled simulation environment
provides a comprehensive picture of path choices for the
given setup. Moreover, any sensitivity analysis requires
means to vary parameters, something which can only be
achieved via simulation in our case. In this respect, we
claim that our results are not simply pure speculations as
results on path stretch in previous work [22, 21, 34].

8. Conclusion

In this article we study the sensitivity of routing stretch
and diversity metrics to factors such as policies, topol-
ogy, IGP weights etc. We rely both on Internet-scale and
smaller-sized simulations, and use statistical techniques to
quantify sensitivity. We confirm previous findings that
routing policies and AS size (in number of routers) are
the dominating factors. Surprisingly, we find that intra-
domain factors only have marginal impact on global path
properties.
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Our results reveal that it is hard to improve the global
properties of route selection by purely tweaking BGP at-
tributes or changing iBGP graphs, etc. This is consistent
with inter-domain routing design, that mainly supports
the flexible implementation of routing policies, but not the
propagation of optimal paths. Improving global properties
of Internet paths will require more than tuning BGP.

Our work is an important step towards understanding
which and how parameters impact the optimality of inter-
domain routing. This is crucial for a wide variety of tasks,
e.g., for building scalable and meaningful models of rout-
ing, for designing or improving routing protocols etc. Both
our sensitivity analysis and our simulation framework will
prove useful for the evaluation and comparison of routing
protocols and architectures.
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