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a b s t r a c t

A new method, based on the maximum likelihood principle, through the numerical Expec-
tation–Maximization algorithm, is proposed to estimate traffic matrices when traffic
exhibits long-range dependence. The methods proposed so far in the literature do not
account for long-range dependence. The method proposed in the present paper also pro-
vides an estimate of the Hurst parameter. Simulation results show that: (i) the estimate
of the traffic matrix is more efficient than those obtained via existing techniques; (ii) the
estimation error of the traffic matrix is lower for larger values of the true traffic intensity;
(iii) the estimate of the Hurst parameter is slightly negatively biased.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Traffic matrices play a crucial role in network manage-
ment and provisioning. They describe the amount of bits
(packets) transmitted between every Origin–Destination
(OD) pair. Their foremost application is in network dimen-
sioning: the traffic matrix provides the load to be carried
on the network, i.e., an essential input for the algorithm
in charge of sizing transmission links. If compared to other
forms of network traffic representation (such as path
matrices or measurements on links), traffic matrices have
an important advantage, when the nodes considered in
the matrix are the original sources and final destinations:
they are invariant under changes of either the network
topology (excepting node additions or deletions) or routing
(see [1]). Traffic matrices can therefore be used to predict
link loads after changing routing or network topology.
Finally, since they provide a reference picture of the typical
traffic on the network, they can be employed in anomaly
detection procedures [2].

Direct measurement of the traffic matrix elements is
usually not feasible for several reasons. In fact, it would re-
quire: (a) the collection of flow statistics on all the routers
on the edge of the network, with a direct inspection of each
packet header; (b) the shipping of such data to a central
processing entity; (c) a processing activity to derive the fi-
nal destination router for each flow through the analysis of
the routing tables [3]. It is customary to overcome this
inconvenience by resorting to indirect estimates of the
traffic matrix elements via measurements of the traffic
on the links. Of course, this requires the knowledge of
the routing configuration.

In a network with V nodes there are N = V(V � 1) OD
pairs, but only M links, with M considerably smaller than
N. Hence, there is a one-to-many mapping relating the (ex-
pected) traffic on links to the (expected) OD traffic. In a
sense, the information produced by observations on links
is not enough to identify OD traffic. This means we are fac-
ing an incomplete information estimation problem (or,
equivalently, an under-constrained problem).

The approaches to OD traffic matrix estimation under
incomplete information are based either on optimization
techniques or on statistical inference techniques.
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Proposals based on optimization techniques rely on the
idea of reducing the space of solutions by appropriate con-
straints on OD traffic (see, for instance, [4,5]).

Proposals based on statistical inference (known as net-
work tomography techniques) are based on probabilistic
models for OD traffic, and aim at estimating appropriate
parameters via either the maximum likelihood method
[6–8] or Bayesian methods [9,10]. In [7] a functional
mean–variance relationship for OD traffic guarantees iden-
tifiability under special assumptions on the network
topology.

All the above mentioned papers assume that OD counts
are independent Gaussian random variables over OD pairs,
and independent and identically distributed (i.i.d.) within
an OD pair over successive measurements periods. More
formally they are based on the following assumptions:

(i) OD pairs are independent;
(ii) The traffic produced by a single OD pair is a station-

ary Gaussian process;
(iii) The traffic produced in different time intervals by an

OD pair is uncorrelated.

The assumption of independence between OD pairs has
been studied for real data in [11], via the correlation be-
tween the standardized residuals of the bits (packets) arri-
val process (bit/packet network traffic) of two different OD
pairs at various time aggregation levels. The data at hand
are measurements observed on one link in the Finnish uni-
versity network (Funet), and partitioned into OD traffic on
the basis of source and destination IP addresses; time
aggregation varies from 1 s to 300 s. The main conclusion
is that there is no particular evidence against the assump-
tion of independence among OD pairs.

The assumption of Gaussianity of the OD bits (packets)
arrival process is justified by (space/time) aggregation ob-
tained by superimposing independent traffic processes
(independent sources) satisfying the usual conditions of
the functional central limit theorem (see [12,13]). Such
an assumption has been considered in [7,14,15,11,16],
and validated via QQ-plots and related correlation tests
comparing the empirical distribution with a fitted Gauss-
ian distribution. The data at hand are obtained from the
traffic observed on one link, which is partitioned into OD
traffic based on source and destination IP addresses (time
aggregation from 1 s to 300 s), except in [7] where the data
are the traffic observed on the links and OD pairs of a one-
router network with 5 min time aggregation, as provided
by SNMP. The data are consistent with a Gaussian based
modeling approach under suitable (space/time)
aggregation.

The assumption of stationarity is studied in [7,14]. In [7]
the time-varying nature of network traffic is visually ob-
served in Lucent data (traffic observed on the links and
OD pairs of a one-router network with 5 min time aggrega-
tion as provided by SNMP). Stationarity of OD traffic (with
respect to mean and variance) is assumed to hold in a win-
dow lasting up to 21 five minutes time-intervals. In order
to take into account the time-varying nature of OD traffic,
in [7] it is proposed to estimate the OD traffic (via the
Expectation–Maximization algorithm) using a local i.i.d.

model within a moving data window. In [14] the assump-
tion of stationarity is considered via the correlation coeffi-
cient between packet network traffic in adjacent periods
(time aggregation from milliseconds to seconds). The main
conclusion is that stationarity can be reasonably assumed
to hold within periods of 30–90 min. The empirical studies
performed in [15,11,16] for Funet data essentially confirm
the stationarity assumption in [7] (again, a time aggrega-
tion from 1 s to 300 s is used).

Assumption (iii) (independence of traffic produced in
different time intervals by an OD pair) is considerably
more delicate and criticizable. In fact, since the seminal pa-
per [17], a number of studies based on measurements from
packet networks have shown that the arrival process of
(bits) packets is self-similar, with increments exhibiting
time correlation (long-range dependence or long memory).

In this paper we propose a new method to estimate
traffic matrices through link measurements. This method
explicitly considers the long-range dependent nature of
Internet traffic, so far neglected in all the works on traffic
matrix estimation. Our method also provides an estimate
of the Hurst parameter. We propose a blind estimate, i.e.,
our estimation procedure does not exploit any model
either for the traffic intensity values (e.g., the gravity mod-
el) or for the mean–variance relationship (e.g., the power-
law model), unlike most of the so far proposed algorithms
in the short-range dependence context. We review the sta-
tistical characteristics of traffic (both the OD traffic and
that on the transmission links) in Sections 2 and 3. In the
estimation procedure we employ the maximum likelihood
principle, applied through the numerical EM (Expectation–
Maximization) algorithm, as detailed in Section 3.2. The
validation of the method is accomplished through simula-
tion on a toy network, as reported in Sections 4 and 5.

2. The traffic model

As mentioned in Section 1, long-range dependence
(LRD, for short) plays a fundamental role in the statistical
modelling of teletraffic data. In fact, empirical evidence
shows that there is a strong correlation (slowly decaying
over time) among such data. A physical explanation for
the occurrence of self-similarity, based on weak conver-
gence results for processes that exhibit high variability,
is reported in [13]. The key result is that the superposition
of many (strictly alternating) i.i.d. (independent and iden-
tically distributed) ON/OFF sources with heavy-tailed ON
and/or OFF periods produces a Gaussian, self-similar,
aggregate traffic with long memory increments. An alter-
native model to the superposition of ON/OFF sources is
the infinite-source Poisson model. Again, the key result
in this direction reads as follows: when connections with
a single heavy-tailed ON period arrive according to a Pois-
son distribution, the resulting aggregate traffic exhibits
long-range dependence [18–20]. Due to the difficulty of
identifying the tail of distributions from limited data, in
[21] a generative model for network traffic (MHOP, i.e.,
Markovian Hierarchical ON–OFF Process) is proposed; it
produces long memory traffic without relying on heavy
tails. Self-similarity of the simulated traffic fits Bellcore
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real data (by means of many statistical techniques), and it
is argued that the multiple time-scale nature of traffic cou-
pled with transport protocol aspects makes the presence of
long-range dependence unavoidable for the Internet
traffic.

In order to explore the self-similarity of the aggregate
cumulative arrival process, some studies have analyzed
traffic at the level of individual origin (or OD pair) in Local
Area Networks (host-to-host) to validate the assumption
that ON and/or OFF periods have a heavy-tailed distribu-
tion [22,23,19]. Similar studies have been performed for
Wide Area Networks, to validate the assumption that ses-
sion durations possess a heavy-tailed probability distribu-
tion [24,19]. Other studies have analyzed directly the
cumulative arrival process in Wide Area Networks, to val-
idate the assumption that the corresponding increment
process is Gaussian with long-range dependence, through
a variety of estimates of the long memory parameter (see
[19,25]). The relevant time scales in these works are of
the order of a few seconds or less. The autocorrelation of
the cumulative aggregate (bits/packet) arrival process at
the level of OD pair has been recently analyzed at a time
scale either relevant for traffic matrix estimation or suit-
able to detect long memory (time aggregation varying
from 1 s to 300 s). In particular, the presence of long-range
dependence of traffic data is shown in [15,11] through the
analysis of the correlation between the standardized resid-
uals of the bits (packets) arrival process (bit/packet net-
work traffic) at lag k of an OD pair at various time
aggregation levels; in [26], again with a time aggregation
for 10 ms to 60 s, through wavelet analysis (as developed
in [27]); and in [14] through a visual analysis. All the above
mentioned papers show that OD traffic is characterized by
the presence of long-range dependence (with values of the
Hurst parameter H ranging between 0.65 and 0.9 for aggre-
gation time 1–300 s).

The above remarks justify the introduction of new mod-
els based on LRD in the statistical analysis of OD traffic. We
consider a network, with N Origin–Destination (OD) pairs.
The ends of each OD pair are connected by one of M trans-
mission links. In general, the topology is not a full mesh so
that M < N.

In the present paper we assume that the traffic gener-
ated by a single source can be modelled by a stationary,
Gaussian process with LRD. Furthermore, we also assume
that sources are independent. As a consequence, the traffic
generated by N sources is modelled by a stationary multi-
variate Gaussian process, with independent long-memory
components. Let Xt

i be the traffic for the OD pair i at time
t and let Xt ¼ ðXt

1;X
t
2; . . . ;Xt

NÞ
0 be the column vector of traf-

fic for all the OD pairs at time t. If we sample the network
at T time instants, we have NT realizations of the traffic
process. Our assumptions are listed below:

(i) The stochastic process Xt ; t 2 N is a stationary
Gaussian process, with

E Xt
i

� �
¼ lXi

; i ¼ 1;2; . . . ;N;

V Xt
i

� �
¼ r2

Xi
; i ¼ 1;2; . . . ;N

ð1Þ

(ii) Different OD pairs generate independent traffic

C Xt
i ;X

tþk
j

h i
¼ 0; i–j; t P 1; k P 0 ð2Þ

(iii) The auto-covariance function at lag k for any OD pair
has the form

C Xt
i ;X

tþk
i

h i
¼ r2

Xi
qXðkÞ; i ¼ 1; . . . ;N; t P 1; k P 0;

qXðkÞ ¼
1
2
ðkþ 1Þ2H � 2k2H þ ðk� 1Þ2H
h i

;

ð3Þ

where 1/2 6 H < 1 is the Hurst parameter. The basic
dichotomy is between H = 1/2 (short-range depen-
dence) and H > 1/2 (long-range dependence).

(iv) The autocorrelation matrix over T time instants is
assumed to be the same for all OD pairs. It will be
denoted by

R¼

1 qXð1Þ qXð2Þ � � � qXðT � 1Þ
qXð1Þ 1 qXð1Þ � � � qXðT � 2Þ
qXð2Þ qXð1Þ 1 � � � qXðT � 3Þ
� � � � � � � � � � � � � � �

qXðT � 1Þ qXðT � 2Þ qXðT � 3Þ � � � 1

0
BBBBB@

1
CCCCCA;

ð4Þ

(v) The auto-covariance matrix for the ith OD pair is

RXi
¼ r2

Xi
R: ð5Þ

As already mentioned in Section 1, the two assumptions
of independence and stationarity are well supported in the
literature. We have also assumed that H takes the same va-
lue for all the N OD pairs under consideration (homogeneity
hypothesis). Such an assumption relies on the consideration
that the long memory of network traffic is due to the mul-
tiple time-scale nature of traffic coupled with transport
protocol aspects.

The Gaussian model introduced in the present section is
essentially supported by the results in [13], where a special
functional central limit theorem is proved. It provides the
rational theoretical motivations to use both Gaussianity,
long-range dependence, and homogeneity of H, as well.
In particular, Theorems 1 and 2 in the above mentioned pa-
per can be interpreted as follows:

(i) Under appropriate assumptions, the mean traffic
level provides the main contribution to the observed
traffic, and the fluctuations from such level approx-
imately behave like a rescaled fractional Brownian
motion.

(ii) If a finite number of independent heterogeneous
sources, possibly with different values of the Hurst
parameter H, are superimposed, then the term with
the highest value of H tends to be dominant. In other
words, the application with the highest value of the
Hurst parameter determines the value of the Hurst
parameter for the aggregate traffic. This point is also
raised in [28]. Empirical analyses supporting the
homogeneity assumption are in [11,26].

In this context the origin–destination traffic is supposed
not to be observable. The only observable quantities are
the traffic intensity values measured on the transmission
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links. Similarly as above, the (M-dimensional) vector of
traffic observed on transmission links is defined as

Yt ¼ ðYt
1;Y

t
2; . . . ;Yt

MÞ
0
:

This vector is related to the OD traffic by the relationship

Yt ¼ A � Xt ; ð6Þ

where the matrix A, of size M � N, is the routing matrix,
whose element akl is 1 if the kth transmission link carries
the traffic pertaining to the lth OD pair (we assume that
a single path is used for each OD pair). Being a linear com-
bination of OD traffic components, each link traffic compo-
nent has an expected value constant over time

lY ¼ E½Yt � ¼ AE½Xt � ¼ A

lX1

lX2

. . .

lXN

0
BBB@

1
CCCA ¼ AlX : ð7Þ

Relationship (6) highlights that each element of Yt is the
sum of some elements of Xt as determined by the routing
scheme. Each column of A corresponds to an OD pair and
indicates which links are used to carry traffic between that
OD pair.

Since the matrix A does have a rank smaller than N
(usually M), the model introduced so far is unidentifiable.
In order to make it identifiable, a mean–variance relation-
ship is usually assumed in the literature (where only short-
range dependence models are considered). In the present
paper we do not use such an assumption in the estimation
procedure, so that we aim at a blind estimate.

The model used in the present paper is essentially based
on fractional Brownian motion. As a consequence, the ran-
dom variables Xt

i s can take negative values. In order to
overcome this drawback, a multifractal wavelet model
has been proposed in the literature [29]. The basic idea is
to take a (discrete) wavelet decomposition of the process
ðXt

i ; t P 0Þ, and to directly model the corresponding wave-
let coefficients. Among several merits of such an approach,
one has to be stressed: it produces random variables Xt

i s
that only take positive values. Although interesting, and
important as well, such a multifractal model is hardly
applicable to the present case. In fact, the statistical esti-
mation of its characteristics requires the availability of a
large amount of data. Unfortunately, in realistic applica-
tions we only have one measurement per minute, and a to-
tal measurement period of one hour and a half (in case of
longer measurement periods, stationarity cannot be rea-
sonably assumed). As a consequence, for each link we
can only have at most T = 90 observations. Such a sample
size is insufficient to ensure reliable statistical estimates
for complex multifractal models. We also remark that in
concrete cases the model adopted in our paper produces
negative values with small probability. To justify this state-
ment, we first remark that the expectations lXi

s and the
variances r2

Xi
s are related by a monotone relationship:

the larger the mean lXi
, the larger the variance r2

Xi
. More

precisely, a power law r2
Xi
¼ cl1=q

Xi
(with c a suitable con-

stant) is usually considered, with q = 1 as in [6], or q = 2/
3, as in [16]. As a consequence, denoting by Nð0; 1Þ a stan-
dard normal distribution, we have

PrðXt
i > 0Þ ¼ Pr Nð0;1Þ > �lXi

=rXi

� �
¼ Pr Nð0;1Þ > �clð2q�1Þ=2q

Xi

� �
! 1

as lXi
increases, provided that q > 1/2. Since the values of

lXi
occurring in applications are usually large, we may con-

clude that in concrete cases the probability of negative val-
ues on Xt

i is usually negligible.

3. Statistical estimation of traffic parameters

In Section 2 we have shown how LRD traffic is described
by the Hurst parameter and by the expected values and
variances of the OD pairs. In this Section we concentrate
on the estimation of those parameters.

3.1. The likelihood function

As a step towards the definition of the maximum likeli-
hood estimator, we now compute the joint distributions of
the statistics of interest. Though the traffic originated by
each OD pair is independent of all other OD pairs, it is cor-
related with the traffic observed on transmission links,
namely with those transmission links that carry it. In order
to determine such a correlation, we define for each OD pair
a column vector Zi, which gathers both the traffic pertain-
ing to the ith OD pair and the traffic carried by the trans-
mission links:

Zi ¼

Xi

Y1

..

.

YT

0
BBBB@

1
CCCCA ¼

Xi

Y

� �
: ð8Þ

The random vector Zi possesses a multinormal distribution
with (M + 1)T components. Each component of Zi is corre-
lated with other components. The resulting covariance ma-
trix can be written as

MZi
¼

RXi
RXiY

RYXi
RYY

 !
; ð9Þ

where, using the form CðA;BÞ to denote the covariance
matrix of vectors A and B, the submatrices in (9) are
defined as

RXi
¼ CðXi;XiÞ;

RXiY ¼ CðXi;YÞ;
RYXi

¼ CðY ;XiÞ ¼ R0XiY
;

RYY ¼ CðY;YÞ:

ð10Þ

The expressions introduced so far may be reformulated, in
order to obtain simpler expressions. Consider first the
mixed covariance submatrix, which is equal to

RXiY ¼ E Xi � lXi

� �
Y � lY

� 	0h i
¼ ½Pð1Þi A0Pð2Þi A0 � � � PT

i A0�; ð11Þ

where lXi
¼ lXi

1; 1 is a vector composed by 1s, and
PðsÞi ðs ¼ 1;2; . . . ; TÞ are the T � N matrices having columns
composed by 0s, except the ith one:
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PðsÞi ¼ E Xi � lXi

� �
Xs � lX

� 	0h i

¼

0 � � � 0 r2
Xi
qXðs� 1Þ 0 � � � 0

0 � � � 0 r2
Xi
qXðs� 2Þ 0 � � � 0

� � � � � � � � � � � � � � � � � � � � �
0 � � � 0 r2

Xi
qXðs� TÞ 0 � � � 0

2
664

3
775: ð12Þ

The matrix RXi
is given by (5). Finally, the covariance ma-

trix of the observables is

RYY ¼ E Y � lY

� 	
Y � lY

� 	0h i

¼
AR0A0 AR1A0 � � � ART�1A0

AR1A0 AR0A0 � � � ART�2A0

� � � � � � � � � � � �
ART�1A0 ART�2A0 � � � AR0A0

0
BB@

1
CCA; ð13Þ

where Ru = E[(Xk � lX)(Xl � lX)
0
] when jk � lj = u.

After having shown that Zi does follow a multinormal
distribution with covariance matrix MZi

, we now turn to
the OD traffic statistics. Although they are not directly ob-
servable we can use the traffic as measured on the trans-
mission links to update their estimates. In particular, we
are interested in the expected value of the OD traffic con-
ditionally on the observables,

mXi
� E XijY1; . . . ;YT ; h

h i
; ð14Þ

and in the covariance matrix,

R�Xi
� E Xi �mXi

� 	
Xi �mXi

� 	0jY1; . . . ;YT ; h
h i

; ð15Þ

where h ¼ ðlX1
; . . . ;lXN

;r2
X1
; . . . ;r2

XN
;HÞ is the parameter

vector, supposed to be known, of the probability density
function of the traffic vector. The distribution of Xi, condi-
tionally on the observables, is again multinormal, with

mXi
¼ lXi

þ RXiYR
�1
YY Y � lY

� 	
; ð16Þ

R�Xi
¼ RXi

� RXiYR
�1
YY RYXi

: ð17Þ

Formulas (16) and (17) are obtained on the basis of the
well known results on the conditional distributions of mul-
tivariate Gaussian distributions [30].

Our main goal is to simultaneously estimate the (ex-
pected) traffic intensity lXi

for all their OD pairs, as well
as the (common) value of the Hurst parameter. Such quan-
tities, as well as the standard deviations rXi

, are assumed
unknown. They are gathered in the (already defined) vec-
tor h ¼ ðlX1

; . . . ;lXN
;r2

X1
; . . . ;r2

XN
;HÞ. Our aim is to estimate

this vector by the maximum likelihood method. Hereafter
we provide the expression of the likelihood function.

Since the traffic generated by each OD pair at any given
time is independent of the traffic generated by all other OD
pairs, we can write the likelihood function in a product
form, where each term is the likelihood corresponding to
a different OD pair:

LXðhÞ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞTr2T

Xi
jRj

q

� exp � 1
2r2

Xi

Xi � lXi

� �0
R�1 Xi � lXi

� �" #
: ð18Þ

Next, we can evaluate the likelihood function for the
observables, i.e.,

LY ðhÞ ¼ f Y1;Y2; . . . ;YT ; h
� �

:

On the basis of the results on linear combinations of Gauss-
ian distributions [30] the likelihood function of Yt can be
obtained by integrating out the likelihood function of Xt

w.r.t. the Xt values that satisfy the relationship Yt = A �Xt,
in symbols

LY ðhÞ ¼
Z

Xt :Yt¼AXt
LXðhÞ: ð19Þ

3.2. The expectation–maximization estimation

The likelihood function obtained in Section 3.1 cannot
be maximized analytically. We therefore resort to an iter-
ative numerical procedure: the Expectation–Maximization
(EM) method. In this section we provide the details of this
procedure.

As remarked in Section 3.1, since the traffic generated
by each OD pair is independent of the traffic generated
by all other OD pairs, we can write the likelihood function
in the product form (18). This function can be maximized
by the EM algorithm [31,32]. This iterative algorithm pro-
vides a refined estimate of h at each iteration step; namely
at the kth step it provides the new estimate

hk ¼ arg max
h

Lðhk�1; hÞ; ð20Þ

where we use the logarithmic likelihood function

Lðhk�1; hÞ ¼ E ln LXðhÞ½ �jY1; . . . ;YT ; hk�1

n o
: ð21Þ

Although the model itself is not identifiable, the EM
algorithm (without any mean–variance relationship
assumption) still produces maximum likelihood estimates
of the parameters of interest [33]. The EM algorithm con-
sists of the following two steps:

(i) Computation of the expected value of the likelihood
function conditionally on the observables (expecta-
tion step).

(ii) Maximization of the likelihood function w.r.t. the
unknown parameters (maximization step).

In what follows, these two steps are described in detail.

3.2.1. The expectation step
From (21) we first obtain the following expression:

LX hk�1; hð Þ ¼ E ln LX hð Þ½ �jY1; . . . ;YT ; hk�1

n o
¼
XN

i¼1

� T
2

lnð2pÞ � T ln rXi
� 1

2
ln jRj

� �

þ
XN

i¼1

E � 1
2rX2

i

Xi � lXi

� �0
R�1

(

� Xi � lXi

� �
jY1; . . . ;YT ; hk�1

o
: ð22Þ

Now, if W is a scalar r.v., A,B are two matrices, and Tr(�) de-
notes the trace operator, then the two relationships

EðWÞ ¼ E½TrðWÞ� ¼ Tr½EðWÞ�; ð23Þ
TrðA � BÞ ¼ TrðB � AÞ; ð24Þ

hold true. Using (23), (24) in (22), the expression
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LXðhk�1; hÞ ¼
XN

i¼1

� T
2

ln 2pð Þ � T ln rXi
� 1

2
ln jRj

� �

þ
XN

i¼1

� 1
2r2

Xi

Tr R�1E Xi � lXi

� �hn

� Xi � lXi

� �0
jY1;Y2; . . . ;YT ; hk�1

io
ð25Þ

is obtained. Finally, by adding and subtracting mi =
E[XijY1,Y2, . . . ,YT,hk�1] (i.e., the expected value of Xi condi-
tionally on data (Y1,Y2, . . . ,YT,hk�1)) in the term
ðXi � lXi

ÞðXi � lXi
Þ0 we obtain the relationship

LXðhk�1;hÞ ¼
XN

i¼1

�T
2

lnð2pÞ� T lnrXi
� 1

2
ln jRj

� �

�
XN

i¼1

1
2r2

Xi

Tr R�1R�Xi

n o

�
XN

i¼1

1
2r2

Xi

Tr mXi
�lXi

� �0
R�1 mXi

�lXi

� �n o
: ð26Þ

3.2.2. The maximization step
At the generic kth step, the likelihood function

LXðhk�1; hÞ has to be maximized w.r.t. the unknown param-
eter vector h. The maximization condition is equivalent to
minimizing the following sum:

XN

i¼1

�1
2

mXi
� lXi

� �0
R�1

Xi
mXi
� lXi

� �
 �
:

This quantity is a sum of scalar terms that can be maxi-
mized separately. Since Xi is (a segment of) a stationary
process, the vector of expected values lXi

s is composed
by identical elements. Then, we can differentiate w.r.t.
any component and equate to zero the derivative to obtain
the desired updated estimate of traffic intensity:

d
dlXi

�1
2

mXi
� lXi

� �0
R�1

Xi
mXi
� lXi

� �� �
¼ 0

! d
dlXi

m0Xi
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� 2m0Xi
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h i
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! 2m0Xi
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Xi
1þ 210R�1

Xi
1lXi
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! lXi
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m0Xi
R�1

Xi
1

10R�1
Xi

1
¼

m0Xi
R�11

10R�11
8i ¼ 1; . . . ;N: ð27Þ

As far as the traffic variance is concerned, recall that the
determinant of RXi

¼ r2
Xi

R is jRXi
j ¼ ðr2

Xi
ÞT jRj. Since the log

likelihood function (26) can be written down as

LXðhk�1;hÞ ¼
XN
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by differentiating w.r.t. the traffic variance of the ith OD
pair and letting the derivatives be equal to zero, we obtain
the updated estimate

@L
@r2

Xi

¼ � T
2r2

Xi

þ 1
2r4

Xi

Tr R�1R�Xi

� �h

þ mXi
� lXi

� �0
R�1 mXi

� lXi

� �i
¼ 0

! r2
Xi
¼ 1

T
Tr R�1R�Xi

� �h

þ mXi
� lXi

� �0
R�1 mXi

� lXi

� �i
: ð29Þ

Hence, taking into account (27) and (29), the parameters
lXi

and r2
Xi

are expressed as a function of H, and, when re-
placed in the likelihood function (28), they allow us to ob-
tain the optimal value of the Hurst parameter by a
univariate maximization procedure. Although we do not
provide a formal proof, in all the cases examined the like-
lihood function is a smooth quasi-parabolic function of the
Hurst parameter, with a global maximum (i.e., a unique
solution to the maximization problem). In order to perform
the maximization task we have employed Brent’s method
(inverse parabolic interpolation) [34], since it does not re-
quire the knowledge of the derivatives of the function to be
maximized. Using the expression provided in Section 5.5 in
[35], we see that this algorithm cannot require more than

2
log2 ½ð1þ

ffiffi
5
p
Þ=2� ½log2ð0:5=eÞ�

2 function evaluations, where e is

the accuracy required, set equal to 10�4 in our case. The
complete estimation algorithm develops as reported in
Algorithm 1.

Algorithm 1. Estimation of traffic matrix

Set an initial estimate for the expected value and the
variance of traffic X

Set an initial estimate for the Hurst parameter
repeat

Compute for each OD pair the autocorrelation
matrix R for the current estimate of H, through
expression (4)
Compute the mean value of the OD traffic
conditioned on the traffic on links through
expression (16)
Compute the covariance matrix of the OD traffic
conditioned on the traffic on links through
expression (17)
Compute the expected value of traffic as a function
of H by expression (27)
Compute the variance of traffic as a function of H by
expression (29)
Find the value of H maximizing the likelihood
function (28) by Brent’s method ? new estimate of
H
Update estimate of expected value of traffic by
expression (27)
Update estimate of variance of traffic by expression
(29)
Update estimate of traffic on links by expression (6)

until Convergence
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3.2.3. Convergence of the EM algorithm
A fundamental property of the EM algorithm is that the

log likelihood function is a monotone non decreasing func-
tion of the iteration step k. The following result holds true
[36].

If Lðhkþ1; hkÞ is a continuous function of (hk+1,hk), then
the limit points of any instance of the EM algorithm are
stationary points of log(LY(h)) and log(LY(h)) converges
monotonically to log(LY(h*)) for some h* belonging to the
set of stationary points of log(LY(h)). Additionally, if each
saddlepoint in the set of stationary points of log(LY(h)) is
not a global maximum of Lðhk; hkþ1Þ given hk, then lo-
g(LY(h)) converges to a local maximum.

The convergence of logðLY ðhÞÞ to a maximum log LYðh�Þð Þ
does not guarantee the convergence of h to h�. Actually,
there could be many values of h� providing a maximum.

The continuity of Lðhkþ1; hkÞ is a consequence of the
multinormal nature of the likelihood function. Further de-
tails about the convergence properties of the EM algorithm
can be found in [37] (Chapters 3.4 and 3.5 in particular).

4. Simulation model

In order to evaluate the performance of the traffic esti-
mation algorithm presented in the previous sections, we
consider a toy network, already used by Vardi in his sem-
inal paper [6]. This network, reported in Fig. 1 where the
nodes are labelled by letters and the links by numbers, is
made of four nodes (hence 12 origin–destination relation-
ships), and seven unidirectional links. Alhough the net-
work is of small size, it is a significant reference since it
was adopted in the already mentioned seminal paper by
Vardi, and can be used for a direct comparison with the
performance reported in that paper. The routing matrix
(where the OD pairs listed on the columns are sorted in
lexicographic order, i.e., aa,ab,ac,ad,ba, . . .) is

A ¼

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð30Þ

For this network we evaluate the performance of our
traffic estimation algorithm by simulation. We resort to
simulation for two fundamental reasons. First of all, as
far as we know, there are no publicly available measure-
ment sets with the time resolution considered in this paper
(below 5 min): most data use the typical 5 min interval of
SNMP (Simple Network Management Protocol) which
would require a long stationarity period to get enough use-
ful measurements. Furthermore, the use of simulated
traces allows us to have a tight control on the traffic char-
acteristics, i.e., the true traffic intensity and the Hurst
parameter. In a set of real traffic traces the value of the
Hurst parameter H is unknown, and must be estimated
on the basis of the observed data. If different estimation
methods are applied to the same data set, we can only

compute the difference in the obtained estimates, without
any information about how close they are to the true value
of H. Furthermore, we would know the actual traffic inten-
sity only by a separate address analysis conducted on each
packet entering the network (an extremely demanding
task).

In this section we review the assumptions on the traffic
generated as adopted in the simulation analysis.

1. The traffic generated by each node is assumed to follow
a long-range dependence process, and the autocorrela-
tion functions obeys the relationship (3).

2. The stochastic processes associated to any two OD pairs
are stochastically independent of each other.

3. All the OD pairs have the same value of the Hurst
parameter.

4. The expected value of traffic follows a Zipf rank–size
relationship.

5. The mean–variance relationship for the traffic intensity
follows a power law.

6. The coefficient of preference, which determines how
the traffic generated by a given origin node distributes
among all the destinations, is proportional to the traffic
generated by the destination node.

It is to be noticed that only Assumptions (1)–(3) are actu-
ally used in the proposed estimation method. Assumptions
(4)–(6) are just used for the purpose of generating the syn-
thetic traffic data employed to feed the estimation algo-
rithm and could be replaced by different ones (although
they have been chosen because they are well supported
by the literature); they are not exploited in the estimation
algorithm.

We now proceed to explain and justify each of the
above assumptions.

Fig. 1. Toy network.
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Assumptions (1) and (2) have been shown in Section 2
to be well supported in the literature.

Assumption (3) is due to the fact that we do not expect
the set of applications run by customers connected to a gi-
ven node to differ significantly from those used by the cus-
tomers of a different node, or, in other words, nodes
(representing routers) are not specialized by service.
Though we do not know any thorough work devoted to
the relation between the Hurst parameter and the network
application, it is known in practice that the feedback
behaviour built in the TCP transport protocol (and hence
in all the network applications relying on it) is a determi-
nant of long-range dependence. More recently, it has been
observed that the appearance of a particular P2P protocol
(namely Blubster, a.k.a. Piolet) has been related to a varia-
tion of the measured Hurst parameter [26]. Hence, we can
expect the Hurst parameter being somewhat determined
by the mix of applications generating the observed traffic
(actually by the application exhibiting the largest H in
the mix, as reported in Section 2). Therefore it should not
be different among nodes generating roughly the same
application mix.

Assumption (4) means that, if we sort the nodes by their
average generated traffic intensity in decreasing order, we
expect that the intensity is related to the node rank (rank 1
corresponding the maximum traffic node) by the Zipf law

lOðiÞ
/ 1

ia
; i ¼ 1 . . . ;V : ð31Þ

This law, originally formulated in the context of linguistics
[38], is found in many different contexts to describe rank–
frequency relationships. The parameter a governs the
imbalance of the traffic distribution: the larger a, the larger
the differences in the traffic intensity between the highest
and the lowest ranked nodes. As far as its applications in a
telecommunications environment are concerned, Zipf law
is supported by measurements conducted on the tele-
phone network and on Internet users [39].

Assumption (5) is expressed by the relationship

r2
Xi
¼ k � lc

Xi
; i ¼ 1; . . . ;N: ð32Þ

It was put forward in the seminal paper [7] and is sup-
ported by several measurements campaigns [40,11,41].

Assumption (6) is common in teletraffic studies, e.g., in
Chapter 13 in the reference book [1]. In the context of traf-
fic matrix estimation, it was proposed in a general form,
known as the Gravity model, in [42], and adopted in a
number of traffic matrix estimation studies, see, e.g.,
[43,44]. If we indicate by lOk

the traffic intensity generated
by the kth node, we can then associate each OD pair to the
endnodes forming that pair. For the generic OD pair with
traffic intensity Xi, we can denote its origin node as Ol

and its destination node as Om. The expected traffic inten-
sity for that OD pair is then

lXi
¼ lOl

lOmPV
k¼1lOk

; i ¼ 1; . . . ;N: ð33Þ

As a consequence of Assumptions (4) and (6), the resulting
matrix of expected traffic intensities is asymmetric.

Finally, the long-range dependent traffic traces are gen-
erated by using the Choleski method [45]. This method,
though computationally heavy, is exact and has become
the reference method for such a task [46].

5. Simulation results

In this section we provide the results of the simulation-
based evaluation. Namely, we report the errors obtained in
the estimate of the Hurst parameter and the expected traf-
fic intensity for the OD pairs.

5.1. Simulation parameters

In our simulation we have employed the following set
of parameter values:

– H = 0.6, 0.8.
– Zipf parameter a = 1.
– Traffic intensity of the heaviest OD pair = 100 (the unit

of measure here is not relevant).
– Number of sample observations (traffic traces length)

T = 30, 50, 70, 90.
– Parameter of the power-law relationship between mean

and variance k = 1 and c = 1.5.

The stopping rule for the search of the optimal Hurst
parameter has been based on the relative updating step:
the search is stopped as soon as the new estimate differs
less than 2% from the previous estimate. Although this
may somewhat reduce the accuracy of the results, it also
reduces the simulation time to reasonable values.

5.2. Hurst parameter estimation

The first quantity of interest is the Hurst parameter.
Though this parameter is not the main goal of our estimat-
ing task (we are trying to estimate the traffic matrix), the
capability to provide reliable estimates of H is an impor-
tant measure of how well our estimating procedure cap-
tures the long-range dependent nature of the process at
hand. The results obtained for the Hurst parameter are
shown in Table 1. The values reported are the mean values
of the estimates as gathered over a block of 500 simulation
runs. We can observe a slight underestimation of that
parameter in all cases. Estimates are better for small values
of the Hurst parameter. However, the bias is progressively
reduced when longer traffic traces are used. Trebling the
trace length reduces the relative error roughly by a factor
of three both when H = 0.6 (from 9.7% to 3.7%) and when
H = 0.8 (from 13.1% to 4.4%), as can be seen in Fig. 2.

Table 1
Estimated Hurst parameter.

T H = 0.6 H = 0.8

30 0.542 0.695
50 0.564 0.738
70 0.576 0.755
90 0.578 0.765
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5.3. Traffic intensity estimation

We now turn to our main goal, i.e., the estimation of the
traffic matrix itself. Here we report the relative estimation
error for the cases listed in Section 5.1 as resulting from the
average of the errors occurring over a block of 500 simula-
tion runs. Rather than reporting the average error over all
the OD pairs we perform the analysis for each OD pair
separately. In fact, our aim is to obtain small relative errors
especially for the largest traffic OD pairs. As a consequence,
we focus on the largest traffic OD pairs, e.g., on those mak-
ing up 90% of the whole traffic [43]. In Figs. 3–6 we report
the error as a function of the actual traffic intensity value.
The error is first erratic and then decays with the traffic
intensity, achieving values lower than 15%. The average er-
ror over all the OD pairs is in the range 13.9–21.7%. The OD
pairs making up 90% of the overall traffic volume are those
whose traffic intensity is above 11.12 (when the traffic
intensity of the heaviest OD pair is 100). For those OD pairs
the average error is roughly in the same range. Better esti-
mates are in both cases achieved for the smallest values of
the Hurst parameter. The trace length seems to have a neg-
ligible effect on the quality of estimates. As previously re-
marked, we do not have a benchmark to compare our
results, since no other traffic matrix estimation methods

have been proposed for LRD traffic. However, the figures
reported in [43] for the overall average error in short-range
dependent traffic for the three methods considered there
(projection method, constrained optimization, and maxi-
mum likelihood estimation) lie in the 29–110% range.

In order to perform a comparison with methods that
ignore the presence of long-range dependence in the
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Fig. 2. Estimation error on the Hurst parameter.
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Fig. 3. Estimation error on traffic intensity (T = 30).
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Fig. 4. Estimation error on traffic intensity (T = 50).
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Fig. 5. Estimation error on traffic intensity (T = 70).

20 40 60 80 100
Traffic intensity

5

10

15

20

25

30

35

40

R
el

at
iv

e 
es

tim
at

io
n 

er
ro

r [
%

]

H=0.6 - T=90
H=0.8 - T=90

Fig. 6. Estimation error on traffic intensity (T = 90).
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observed traffic, we have also applied EM algorithm not
including the Hurst parameter H to estimate the expected
OD traffic for LRD data. In other words, although traffic data
are generated by a LRD process, the parameter H (and hence
the time-dependence structure) is neglected. The EM algo-
rithm used for this purpose is detailed in Algorithm 2.

Algorithm 2. LRD-unaware estimation of traffic
matrix

Set an initial estimate for the expected value and the
variance of traffic X

repeat
Compute for each OD pair the (identity)
autocorrelation matrix R (expressions (4), with
H = 0.5)
Compute the mean value of the OD traffic
conditioned on the traffic on links through
expression (16)
Compute the covariance matrix of the OD traffic
conditioned on the traffic on links through
expression (17)
Compute the expected value of traffic by expression
(27)
Find the values of the variances of the OD pairs
maximizing the likelihood function (by Nelder and
Mead’s method [47]) ? new estimate of the
variances of the OD pairs
Update estimate of traffic on links by expression (6)

until Convergence

We report the results for the values H = 0.6 and H = 0.8;
in both cases the trace length T = 30 is used. On the average
our LRD-aware algorithm performs better in both cases, as
can be seen in Table 2. Those results also confirm that the
estimation is better for small values of the Hurst parame-
ter, roughly by 6 percentage points.

We can have a deeper look at the error, by examining
the difference in the estimation error as a function of the
true traffic intensity, as shown in Figs. 7 and 8 (the differ-
ence is positive when the error of the LRD-unaware algo-
rithm is larger than the error of the LRD-aware
algorithm). The difference between the performance of
the two algorithms is larger than it could appear through
averages, which are not very different from each other. In
fact, the LRD-unaware algorithm may perform better for
some traffic values but exhibits larger errors on the more
relevant OD pairs characterized by large traffic values.
Actually, the difference, in favour of the LRD-aware algo-
rithm, may be larger than 2 percentage points when
H = 0.6 and larger than 6 percentage points when H = 0.8.

Finally, we consider the performance of our algorithm,
specifically designed to handle the presence of LRD, when

the traffic is instead short range dependent. Namely, we
submitted to our algorithm a set of synthetically generated
traffic traces with H = 0.5. The resulting estimation error is
reported in Fig. 9. The average error is 13.96%. Both the
average value and the dependence on the OD pair true traf-
fic intensity are similar to the performances observed in
the presence of LRD. In addition, the average error on the

Table 2
Average error on traffic intensity (%).

H = 0.6 H = 0.8

LRD-aware algorithm 15.69 21.70
LRD-unaware algorithm 16.03 22.30
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Fig. 7. Difference in the estimation error on traffic intensity (H = 0.6).
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Fig. 8. Difference in the estimation error on traffic intensity (H = 0.8).
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Fig. 9. Estimation error on traffic intensity in the absence of LRD (T = 30)
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estimate of H is quite smaller than the case of actually
present LRD, since the variance of the estimates is reduced.
We can then conclude that the LRD-aware algorithm per-
forms equally well in the absence of LRD and can therefore
be considered as a traffic matrix estimation algorithm of
general application.

6. Conclusions

We have proposed a method for the estimation of the
traffic matrix in the case of long-range dependent traffic,
based on the maximum likelihood principle and on the
numerical EM procedure. As a by-product the method
also provides an estimate of the Hurst parameter. The
method has been applied to the same toy network con-
sidered in previous seminal papers. The estimate of the
Hurst parameter is slightly negatively biased, but such
bias can be reduced to a few percentage points by using
longer traffic traces. The estimates of traffic intensity are
better for the largest traffic OD pairs, for which the rela-
tive error gets below 15%. Both the estimates (of the
Hurst parameter and of the traffic intensity) are better
for the lowest values of the Hurst parameter. Though
no direct benchmarks exist, the errors lie below the
range obtained with previous techniques for short-range
dependent traffic. The comparison of the proposed LRD-
aware estimation algorithm with the corresponding EM-
based LRD-unaware algorithm when fed by LRD traffic
shows that the LRD-aware algorithm exhibits lower esti-
mation errors, especially on the more relevant OD pairs
(those with larger traffic values). In addition, the method
here proposed is completely blind, i.e., does not exploit
any model either for the traffic intensity values (e.g.,
the gravity model) or for the mean–variance relationship
(e.g., the power-law model), contrary to most of the so
far proposed algorithms in the short-range dependence
context.
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Appendix A. Computational cost

An important issue in the practical application of the
EM algorithm to the estimation of the traffic matrix is
its computational cost. In this appendix we report an
evaluation of the cost of each EM cycle in Algorithm 1.
We employ the big O notation, which we recall briefly
hereafter. The cost f(x) of an algorithm, expressed as a
function of a parameter x is f(x) = O(g(x)) (g(x) being a ref-
erence, simpler function) if and only if there exists a po-
sitive real number L and a real number x0 such that
jf(x)j 6 Ljg(x)j for all x > x0. In the following, when using
results from algorithmics, we will use well established re-
sults, though they may provide conservative bounds for
the computational cost. Since some matrices may be re-
used during the course of the algorithm, we assume that
the useful matrices are stored for later reuse. This saves

computational resources but employs a trade-off between
computational and memory resources. After the evalua-
tion of the computational cost we include an evaluation
of the memory resources needed to store the matrices
to be reused.

We neglect the initialization steps, since they are per-
formed just once, and consider simply the steps that are
iterated in the EM algorithm. Each EM cycle consists of
the following three main computational tasks:

1. Maximization of the likelihood function through Brent’s
algorithm.

2. Updating of the estimate of expected value of traffic.
3. Updating of the estimate of the variance of traffic.

Now we consider each main phase and decompose it down
to its most elementary steps. Then we proceed to evaluate
the computational cost of each elementary step and to
recombine all of them so to arrive at the computational
cost of the main phases.

The maximization of the likelihood function, per-
formed through Brent’s algorithm, requires at most
Oðlogð1=eÞ2Þ evaluations of the likelihood function, as
recalled in Section 3.2.2. We now analyse the cost of
each evaluation of the likelihood function. By recalling
expression (26), this task consists in turn of the follow-
ing computational subtasks (we retain just those rele-
vant for the purpose of evaluating the computational
cost):

1.1 Computation of the determinant of correlation
matrix jRj.
1.1.1 Computation of correlation matrix R as per

expression (4).
1.2 Computation of TrfR�1R�Xi

g.
1.2.1 Computation of the inverse of correlation

matrix R�1.
1.2.2 Computation of the covariance matrix R�Xi

conditioned on the observables as per expres-
sion (17).

1.3 Computation of TrfðmXi
� lXi

Þ0R�1ðmXi
� lXi

Þg.
1.3.1 Computation of mXi

� lXi
¼ RXiYR

�1
YY ðY � lYÞ.

1.3.2 Transposition of mXi
� lXi

¼ RXiYR
�1
YY ðY � lYÞ.

We start the analysis of the computational cost from the
bottom, i.e., from the computational tasks that lie at the
lowest level in the decomposition just sketched.

A.1. Task 1.1: Computation of the determinant of the
correlation matrix R

The correlation matrix is a square matrix of size T, so
that it has T2 elements, but is a Toeplitz matrix, so that
its unique elements are T and its computational cost is
O(T). After we have the correlation matrix, we can extract
its determinant. By resorting to LU decomposition (the
decomposition of a matrix in the product of a lower trian-
gular matrix and an upper triangular one [48]), the pertain-
ing computational cost is O(T3). Hence, the overall cost of
Task 1.1 is O(T3).
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A.2. Task 1.2: Computation of TrfR�1R�Xi
g

This task involves in turn inverting the correlation ma-
trix first and then obtaining R�Xi

.
Leiserson et al. [49] provide both the naive algorithm

and Strassen’s algorithm for matrix inversion, whose costs
are respectively O(T3) and O(T2.81). In the spirit of consider-
ing conservative bounds we assume in the following that
the cost of inverting a matrix is represented by the third
power of its size.

The computation of the conditional covariance matrix
R�Xi
¼ RXi

� RXiYR
�1
YY RYXi

is much more complex, since it re-
quires the addition of two terms. The former is RXi

¼ r2
Xi

R
and, being simply the multiplication of a Toeplitz matrix
of size T by a scalar, requires a computational cost O(T).
The latter term is the product of three matrices:
RXiY ; R�1

YY , and RYXi
.

The first of these is RXiY , which requires the computa-
tion of T matrices Pj

i (where j = 1, . . . ,T) and T multiplica-
tions by the matrix A

0
, see expression (11). Each matrix Pj

i

is obtained by extracting T values from the correlation ma-
trix, hence its computational cost is O(T). The size of matrix
A
0
(obtained once and for all outside the EM cycle) is N �M.

The cost of the product Pj
iA
0 is given by the three sizes in-

volved, namely O(TMN). Since we have T of these products
(and the cost of obtaining the matrices Pj

i is largely domi-
nated by the cost of the products), the cost for each RXiY

is O(T2MN). If we consider the cost for all the N pairs, we
end up with a cost O(T2MN2).

Now we come to R�1
YY . The matrix RYY is a Toeplitz ma-

trix, of size MT, which requires the computation of T ele-
ments of the ARiA

0
kind. The computation of each Ri has

a cost O(N), since it is a diagonal matrix of size N. Since
we have to compute T of them, their overall cost is
O(TN). Each product ARiA

0
has a cost O(MN2), and, since

we have to perform again T of them, their overall cost is
O(TMN2). The computation of RYY has then a cost
O(TMN2). Finally, the inversion of RYY has a cost O(T3M3)
(the third power of the matrix’s size). Since in our case
N > M, the overall cost of obtaining R�1

YY is dominated by
the cost of obtaining RYY in the first place, i.e., O(TMN2).

The third matrix to be computed is RYXi
, which is simply

the transpose of the already computed RXiY . The cost of
transposition is given by the number of elements of the
matrix. Since the size of RXiY is TxTM, the cost of obtaining
each RYXi

is O(T2M). The total cost for all the N pairs is then
O(T2MN).

Having the three terms, we can now evaluate the com-
putational cost of the product RXiYR

�1
YY RYXi

. The multiplica-
tion of the first two terms involves a matrix of size T � TM
and a matrix of size TMxTM. The product cost is then
O(T3M2). Then we multiply a matrix of size T � TM
(RXiYR

�1
YY ) by a matrix of size TM � T. The cost of this second

product is O(T3M). The cost of the first product dominates
that of the second, so that the overall cost of the three-
term-product is O(T3M2). Again, the total cost for all the
N pairs is O(T3M2N).

We have now all the elements needed to get R�Xi

through the sum RXi
� RXiYR�1

YY RYXi
. This sum involves

two square matrices of size T, so that its cost is O(T2). That
task, performed over all the N pairs, has a cost O(T2N).

Finally, the product R�1R�Xi
involves two square matrices

of size T, and its computational cost is O(T2), which turns
into O(T2N) when we consider all the N pairs. The trace
extraction has a cost O(T), which turns O(TN) over all the
N pairs.

The dominant cost for Task 1.2, i.e., over all the opera-
tions leading to TrfR�1R�Xi

g is then O(T3M2N) + O(T2MN2),
for which we can safely set the upper bound O(T3MN2).

A.3. Task 1.3: Computation of TrfðmXi
� lXi

Þ0R�1ðmXi
� lXi

Þg

By recalling expression (16) we have mXi
� lXi

¼ RXiY

R�1
YY ðY � lYÞ. For this task we can assume that the product

RXiYR
�1
YY as well as the inverse R�1 are already available,

since we used them in Task 1.2. We are left with comput-
ing (Y � lY).

According to expression (7) we have lY = AlX, which is a
product of an MxN matrix and a composite NT-vector. The
multiplication requires a cost O(TMN). The sum (Y � lY) re-
quires instead a cost O(TM).

The product RXiYR�1
YY ðY � lYÞ involves a matrix of size

T � TM and a vector of size TM, so that its computational
cost is O(T2M).

The transposition of mXi
� lXi

involves just the rear-
rangement of indices for a cost O(T).

Finally, the double product ðmXi
� lXi

Þ0R�1ðmXi
� lXi

Þ
has a cost O(T2).

The overall cost of Task 1.3 is then O(T2M) + O(TMN).
Since the three subtasks of Task 1 have respectively the

costs OðT3Þ; OðT3MN2Þ, and OðT2MÞ þ OðTMNÞ, the overall
cost of the maximization of the likelihood function is
OðT3MN2 logð1=eÞ2Þ.

A.4. Task 2: Updating of the estimate of expected value of
traffic

We can use expression (27) to evaluate the computa-
tional cost of updating the expected value of traffic. The
computational tasks associated to such evaluation are the
following:

2.1 Transposition of the vector mXi
.

2.2 Multiplication mXi
R�1.

2.3 Sum of the elements of mXi
R�1.

2.4 Sum of the elements of R�1.

Since mXi
is a vector of T elements, its transposition

requires a cost O(T). Its multiplication by a square matrix
of size T has a cost O(T2) and the sum of the resulting prod-
uct has again a cost O(T). As to Task 2.4, we are summing a
matrix of T2 elements, so that we have a cost O(T2). Since
we have to perform such tasks for each OD pair, all the fig-
ures have to be multiplied by N.

The overall cost of updating the estimate of the ex-
pected value of traffic is then O(T2N).

A.5. Task 3: Updating of the estimate of the variance of traffic

In order to estimate r2
Xi
¼ 1

T ½TrðR
�1R�Xi

Þ þ ðmXi
� lXi

Þ0

R�1ðmXi
� lXi

Þ� (the traffic variance) we recall expression
(27). Here all the basic elements are already available,
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since we computed them when searching for the optimal
value of the Hurst parameter. The operations to be per-
formed are (we neglect those operations that are not sig-
nificant for the evaluation of the computational cost).

3.1 Computation of the product R�1R�Xi
.

3.2 Extraction of TrðR�1R�Xi
Þ.

3.3 Transposition of mXi
� lXi

.
3.4 Computation of the product ðmXi

� lXi
Þ0R�1ðmXi

�lXi
Þ.

Task 3.1 consists in the product of two square matrices of
size T, hence it has a cost O(T3). The extraction of its trace
(Task 3.2) has a cost O(T), since it consists in summing T
elements. The transposition (Task 3.3) has a cost O(T), since
that is the size of the vector to be transposed. The double
product involved in Task 3.4 has a cost O(T2), since now a
vector of size T and a square matrix of size T are involved.

The overall cost of Task 3 is then O(T3).
The overall computational cost is then O(T3MN2 log(1/

e)2), i.e., that of Task 1, since it dominates the costs of the
other tasks.

We now consider the memory resources needed to
store matrices that may be reused during the execution
of the algorithm. The most important example is given
by the updating of the estimates of the expected value
and the variance of traffic, which require the use of matri-
ces already computed during the execution of the maximi-
zation of the likelihood function.

We provide for each of such matrices its size and its
number (some matrices have to be computed for each
OD pair). Such data are gathered in Table A.1, together with
the overall number of elements needed for each matrix. By
summing the number of elements over all the matrices we
obtain the following number of elements E = T2

(2 + M2 + MN + N) + 3TN.
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