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Where distributed agents must share voluminous set membership information, Bloom fil-
ters provide a compact, though lossy, way for them to do so. Numerous recent networking
papers have examined the trade-offs between the bandwidth consumed by the transmis-
sion of Bloom filters, and the error rate, which takes the form of false positives. This paper
is about the retouched Bloom filter (RBF). An RBF is an extension that makes the Bloom fil-
ter more flexible by permitting the removal of false positives, at the expense of introducing
false negatives, and that allows a controlled trade-off between the two. We analytically
show that creating RBFs through a random process decreases the false positive rate in
the same proportion as the false negative rate that is generated. We further provide some
simple heuristics that decrease the false positive rate more than the corresponding
increase in the false negative rate, when creating RBFs. These heuristics are more effective
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Bit clearing than the ones we have presented in prior work. We further demonstrate the advantages of
Measurement an RBF over a Bloom filter in a distributed network topology measurement application. We
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finally discuss several networking applications that could benefit from RBFs instead of
standard Bloom filters.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction erroneously claiming that a key belongs to the set, it will

never return a false negative, erroneously claiming that a

Introduced in 1970 [1], it is just in the past decade that
the Bloom filter has attracted attention from the network-
ing research community [2]. A Bloom filter compactly en-
codes set information into a bit vector that can then be
queried regarding set membership. A vector of all zeroes
represents the empty set. To record a key as being in the
set, hash it to obtain an index into the vector and set the
bit at that position to one. You may use multiple hash func-
tions, in which case you set several bits to one. To query if a
key is in the set, check if all hash positions are set to one.
Though the filter will occasionally return a false positive,
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key does not belong. You may set the vector size and num-
ber of hash functions in light of the anticipated set size, to
aim for a particular trade-off between the size of the bit
vector and the false positive rate.

A prime appeal of the Bloom filter to networking
researchers comes from the bandwidth efficiencies that it
offers for the transmission of set membership information
between networked hosts [3]. We ourselves have proposed
their use for large-scale route tracing infrastructures [4].
Continuously running production systems of this sort in-
clude Archipelago [5], bimes [6], ripE TTM [7], iPlane [8], Gul-
liver [9], Ono [10], and TDMI [11]. They have in common
the placement of agents across the Internet so as to obtain
measurements from a variety of vantage points. If these
agents are to coordinate their efforts, as Archipelago agents
will do for their scamper measurements [12], then they
must communicate between each other, either directly or
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via a central server. Such communication is potentially
bandwidth-hungry, which is a problem if the agents are
expected to adhere to tight bandwidth constraints, as they
are for Ono [13, Section 5.3].

This paper describes a way for distributed route tracing
agents to coordinate to reduce their impact on end-hosts.
For each trace that an agent makes, it records the IP address
that it encounters one hop before the end host. We call this
the penultimate node. The agent encodes the set of penulti-
mate nodes in a Bloom filter, which it sends to other agents.
Another agent consults the filter while tracing: if it encoun-
ters an address already seen by the first agent, it stops trac-
ing that route and goes onto another one.

Using Bloom filters in this way allows a trade-off be-
tween filter size and coordination failures. A smaller filter
saves on the bandwidth required for coordination. A larger
filter reduces on average the rate of false positives, which
stop route tracing before the penultimate node is reached
and thereby deprive the system of potentially useful infor-
mation. Without the Bloom filter, there would be no such
flexibility. Replacing the filter with an explicit list of penul-
timate nodes would limit the infrastructure operator to
one extreme end of this trade-off: high coordination band-
width in exchange for no traces that stop too early. This,
despite the fact that some low level of coordination failures
might perhaps be tolerable.

Researchers have proposed the Bloom filter for so many
networked applications precisely to allow them to enjoy
this sort of flexible trade-off. However we can do even bet-
ter, as this trade-off is more simplistic and limiting than it
needs to be. Simplistic, because the false positive rate ex-
presses an average based on an idealized query distribu-
tion in which all keys are equiprobable, whereas actual
system performance depends on that distribution and the
identities of those keys that cause the false positives. Lim-
iting, because the system might tolerate false negatives,
but the Bloom filter does not allow us to introduce false
negatives into the trade-off.

This paper describes the retouched Bloom filter (RBF), a
modification to the standard Bloom filter that allows us
to remove selected false positives at the cost of introducing
random false negatives. We create an RBF from a Bloom fil-
ter, as Section 3 describes, by selectively changing individ-
ual bits from 1 to 0, while the size of the filter and the
query mechanism remain unchanged. As Section 3.1 shows
analytically, if we create an RBF through a purely random
process then we decrease the false positive rate, on aver-
age, in the same proportion as the false negative rate that
we generate. Simple heuristic algorithms that we present
in Section 3.1 do better than the random process and lower
the false positive rate by a greater degree, on average, than
the corresponding increase in the false negative rate. In
addition, Section 4 provides mechanisms that allow us to
selectively remove the most troublesome false positives,
further improving performance when we take the query
distribution into account.

The RBF algorithms require space that is at most a small
constant multiple of the Bloom filter’s vector size. Com-
pared to the creation of a standard Bloom filter, the RBF
algorithms also incur additional processing costs related
to key removal. These costs are a constant multiple of a

number of RBF parameters, such as the number of hash
functions and the number of false positives to remove.
The additional processing and storage requirements that
are incurred when switching from Bloom filters to RBFs
are restricted entirely to the locations at which the RBFs
are created. There is strictly no addition to the critical re-
source in our networked scenario, which is the bandwidth
consumed by communication between measurement
points. At the receiver of the RBF, queries take place using
exactly the same mechanism as for the Bloom filter, incur-
ring no additional space or time complexity.

Compared to our previous work [4], which introduced
the RBF, the algorithms in this paper are more effective.
By more carefully tracking the quantities of false negatives
generated and false positives removed at each step of an
algorithm, we achieve a greater decrease, on average, in
the false positive rate for a given increase in the false neg-
ative rate. Based on simulations, we demonstrate that our
new improved algorithms perform between 10% and 20%
better on average than the simple algorithms we previ-
ously proposed. The case study in Section 5 has been rerun
using these improved algorithms.

The work that we present here is the first that subjects
false negatives in a Bloom filter variant to either analytic or
simulation studies. In particular, our work is the first to
explicitly study the trade-off between false positives and
false negatives and it is the first to consider the efficiency
of the means employed for such a trade-off. Section 6 de-
scribes the extensive related work on Bloom filters [3,14-
20]. Some of these extensions, such as the anti-Bloom filter
[14] and the generalized Bloom filter [15], target the sup-
pression of false positives, or the removal of bits in the vec-
tor in general. Some of them (such as the variable Bloom
filter [19]) even provide a trade-off between the false posi-
tive rate and the false negative rate. Nevertheless, as we
show, these variants differ significantly from the standard
Bloom filter in that they either increase the memory cost
(i.e., increase the size of the filter) or they modify the filter
behavior when performing membership queries.

The remainder of this paper is organized as follows:
Section 2 presents the standard Bloom filter, using notation
introduced by Broder and Mitzenmacher [2]; Section 3 pre-
sents the RBF, and shows analytically that the reduction in
the false positive rate is equal, on average, to the increase
in the false negative rate even as random 1s in a Bloom fil-
ter are reset to Os; Section 4 presents improved methods
for selectively clearing 1s that are associated with the most
troublesome false positives, and shows through simula-
tions that they reduce the false positive rate by more, on
average, than they increase the false negative rate; Sec-
tion 5 describes the use of RBFs in a network measurement
application; Section 6 discusses several Bloom filter vari-
ants, compares RBFs to them and discusses other network-
ing usages of RBFs; finally, Section 7 summarizes the
conclusions and future directions for this work.

2. Bloom filters

A Bloom filter [1] is a vector v of m bits that codes the
membership of a subset A={ay,a,,...,a,} of n elements of
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an universe U consisting of N elements. In most papers, the
size of the universe is not specified. However, Bloom filters
are only useful if the size of U is much larger than the size
of A.

We initialize this vector v to 0, and then operate on it
using a set H={hy,h,,...,h,} of k independent hash func-
tions, each with range {1,...,m}. For each element a € A,
we set the bits at positions hi(a),ha(a),...,h(a) in v to 1.
Note that a particular bit can be set to 1 several times, as
illustrated in Fig. 1.

To check if an element b of the universe U belongs to the
set A, all one has to do is check that the k bits at positions
hy(b),hy(b),.. ., h(b) are all set to 1. If at least one bit is set
to 0, we are sure that b does not belong to A. If all bits are
set to 1, b possibly belongs to A. There is always a probabil-
ity that b does not belong to A. In other words, there is a
risk of false positives. Let us denote by Fp the set of false
positives, i.e., the elements that do not belong to A (and
thus that belong to U — A) and for which the Bloom filter
gives a positive answer. The sets U, A and Fp are illustrated
in Fig. 2. (B is a subset of Fp that will be introduced below.)
In Fig. 2, Fp is a circle surrounding A. (Note that Fp is not a
superset of A. It has been colored distinctly to indicate that
it is disjoint from A.) Fig. 3 gives an example of a false
positive.

We define the false positive proportion fp as the ratio of
the number of elements in U — A that give a positive an-
swer, to the total number of elements in U — A:

__IFyl
=g M

We can alternatively define the false positive rate, as the
probability that for a given element that does not belong to

h1(D) hi(a)

[oJo[1]oJo]1[o]o0[1]0]

hg ((L) h/2 (b)

Fig. 1. A Bloom filter with two hash functions.

Fig. 2. The false positives set.

hi(c)
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Fig. 3. An example of false positive.

the set A, the Bloom filter erroneously claims that the ele-
ment is in the set. Note that if this probability exists, it has
the same value as the false positive proportion fp. As a con-
sequence, we will use the same notation for both parame-
ters and also denote by fp the false positive rate. In order to
calculate the false positive rate, most papers assume that
all hash functions map each item in the universe to a ran-
dom number uniform over the range {1,...,m}. As a conse-
quence, the probability that a specific bit is set to 1 after
the application of one hash function to one element of A
is 1 and the probability that this specific bit is left to 0 is
1 — L. After all elements of A are coded in the Bloom filter,
the probability that a specific bit is always equal to O is

p=(1-2)" @

As m becomes large, L is close to zero and po can be
approximated by

Py~ e, (3)

The probability that a specific bit is set to 1 can thus be
expressed as

Py =1-po. (4)

The false positive rate can then be estimated by the
probability that each of the k array positions computed
by the hash functions is 1. fp is then given by

n k
foph = (1 -(1 %)k) ~(1-e#)" 5)

The false positive rate fp is thus a function of three
parameters: n the size of subset A, m the size of the filter,
and k the number of hash functions. Fig. 4 illustrates the
variation of fp with respect to the three parameters individ-
ually (when the two others are held constant). Obviously,
and as can been seen in these graphs, fp is a decreasing
function of m and an increasing function of n. Now, when
k varies (with n and m constant), fp first decreases, reaches
a minimum and then increases. There are two countervail-
ing factors: using more hash functions gives us more
chances to find a 0 bit for an element that is not a member
of A, but using fewer hash functions increases the fraction
of 0 bits in the array. As stated, e.g., by Broder and Mit-
zenmacher [2], fp is minimized when

_min2

k e (6)

for fixed m and n.

Thus the minimum possible false positive rate for given
values of m and n is given by Eq. (7). In practice, of course, k
must be an integer. As a consequence, Eq. (6) has to be
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rounded to the nearest integer and the resulting false posi-
tive rate will be a bit higher than the optimal value given in
Eq. (7)

mln2

foo G) ~ (0.6185)%. 7)

Finally, it is important to emphasize that the absolute
number of false positives is relative to the size of U - A
(and not directly to the size of A). This result seems surpris-
ing as the expression of fp depends on n, the size of A, and
does not depend on N, the size of U. If we double the size of
U — A (and keep the size of A constant) we also double the
absolute number of false positives (and obviously the false
positive rate is unchanged).

3. Retouched Bloom filters

As shown in Section 2, there is a trade-off between the
size of the Bloom filter and the probability of a false posi-
tive. For a given n, even by optimally choosing the number
of hash functions, the only way to reduce the false positive
rate in standard Bloom filters is to increase the size m of
the bit vector. Unfortunately, although this implies a gain
in terms of a reduced false positive rate, it also implies a
loss in terms of increased memory usage. Bandwidth usage
becomes a constraint that must be minimized when Bloom
filters are transmitted in the network.

This paper describes an extension to the Bloom filter,
referred to as the retouched Bloom filter (RBF).! The RBF
makes standard Bloom filters more flexible by allowing false
positives to be traded off against false negatives, which do
not arise at all in the standard case. The idea behind the
RBF is to remove a certain number of false positives by reset-
ting bits in vector . We call this process the bit clearing pro-
cess. Resetting a given bit to 0 not only has the effect of
removing a certain number of false positives, but also gener-
ates false negatives. Indeed, any element a € A such that (at
least) one of the k bits at positions hy(a),hy(a),...,h(a) has
been reset to 0, now triggers a negative answer, so becoming
a false negative.

1 AJava implementation of retouched Bloom filters and other interesting
Bloom filter variations is freely available at http://gforge.info.ucl.ac.be/
projects/filters/, under a BSD-like license.

To summarize, the bit clearing process has the effects of
decreasing the number of false positives and of generating
a number of false negatives. Let us use the labels F; and Fy
to describe the sets of false positives and false negatives
after the bit clearing process. The sets F, and Fy are illus-
trated in Fig. 5.

After the bit clearing process, the false positive and false
negative proportions are given by

FI
=g ®)
. _ Rl
fi= |AN‘ : 9)

Obviously, the false positive proportion has decreased
(as F;, is smaller than Fp) and the false negative proportion
has increased (as it was zero before the clearing). We can
measure the benefit of the bit clearing process by introduc-
ing Afp, the proportion of false positives removed by the bit
clearing process, and Afy, the proportion of elements of A
that becomes false negatives after the bit clearing process:

el = |Fs| _fo—fy
My =T =T (10)
L
M=t =F (11)
U

@,

Fig. 5. False positive and false negative sets after the selective clearing
process.
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We, finally, define y as the ratio between the proportion
of false positives removed and the proportion of false neg-
atives generated:

Afe

1=57 (12)

x is the main metric we use in this paper to evaluate the
RBF. If y is greater than 1, it means that the proportion
of false positives removed is higher than the proportion
of false negatives generated.

3.1. Randomized bit clearing

This section analytically examines the effect of ran-
domly resetting bits in the Bloom filter, whether these bits
correspond to false positives or not. We call this process
the randomized bit clearing process. Section 4 will discuss
more sophisticated approaches to selecting the bits that
should be cleared. However, performing random clearing
in the Bloom filter enables us to derive analytical results
concerning the consequences of the clearing process. In
addition to providing a formal derivation of the benefit of
retouched Bloom filters, it also gives a lower bound on
the performance of any smarter selective clearing ap-
proach (such as those developed in Section 4).

We again assume that all hash functions map each ele-
ment of the universe U to a random number uniform over
the range {1,...,m}. Once the n elements of A have been
coded in the Bloom filter, there is a probability po for a gi-
ven bit in » to be 0 and a probability p, for it to be 1. As a
consequence, there is an average number of p;m bits set to
1 in v. Let us study the effect of resetting to 0 a randomly
chosen bit in ». Each bit set to 1 in » has a probability p%m
of being reset and a probability 1 — p%m of being left at 1.

The first consequence of resetting a bit to 0 is to remove
a certain number of false positives. If we consider a given
false positive x € Fp, after the reset it will not result in a po-
sitive test any more if the bit that has been reset belongs to
one of the k positions hq(x),hx(x),...,h(x). Conversely, if
none of the k positions have been reset, x remains a false
positive. The probability of this latter event is

n=(1- ﬁ)' (13)

As a consequence, after the reset of one bit in 2, the false
positive rate decreases from fp (given by Eq. (5)) to f; = for1.
The proportion of false positives that have been eliminated
by the resetting of a randomly chosen bit in »is thus equal
to1l—rq:

Afp=1-r1. (14)

The second consequence of resetting a bit to 0 is the
generation of a certain number of false negatives. If we
consider a given element a € A, after the reset it will result
in a negative test if the bit that has been reset in v belongs
to one of the k positions hi(a),hy(a),. ..,h(a). Conversely, if
none of the k positions have been reset, the test on a re-
mains positive. Obviously, the probability that a given ele-
ment in A becomes a false negative is given by 1 — r; (the
same reasoning holds):

Aszlfﬁ. (15)

We have demonstrated that resetting one bit to 0 in v
has the effect of eliminating the same proportion of false
positives as the proportion of false negatives generated.
As a result, ¥ =1. It is however important to note that
the proportion of false positives that are eliminated is rel-
ative to the size of the set of false positives (which in turns
is relative to the size of U — A, thanks to Eq. (1)) whereas
the proportion of false negatives generated is relative to
the size of A. As we assume that U — A is much bigger than
A (actually if |Fp| > |A]), resetting a bit to 0 in v can eliminate
many more false positives than the number of false nega-
tives generated.

It is easy to extend the demonstration to the reset of s
bits and see that it eliminates a proportion 1 — ry of false
positives and generates the same proportion of false nega-
tives, where r, is given by

w1 _mim)k' (16)

As a consequence, any random clearing of bits in the
Bloom vector v has the effect of maintaining the ratio y
equal to 1.

4. Selective clearing

Section 3 introduced the idea of randomized bit clearing
and analytically studied the effect of randomly resetting s
bits of », whether these bits correspond to false positives
or not. We showed that it has the effect of maintaining
the ratio y equal to 1. This section refines the idea of ran-
domized bit clearing by focusing on bits corresponding to
elements that trigger false positives. We call this refined
process selective clearing.

4.1. Objectives

Section 2 explained that Bloom filters might trigger
false positives (i.e., a key is erroneously claimed as belong-
ing to the filter), forming the set Fp. In practice, it is likely
that not all false positives will be encountered. In addition,
some false positives, which we call troublesome keys, might
be encountered more frequently than others. We record
troublesome keys in a set called B, with B C Fp (see Fig. 2).

The purpose of selective clearing is to remove from the
filter elements belonging to B. To this end, we proposed in
our previous work four different algorithms: Random Selec-
tion, Minimum FN Selection, Maximum FP Selection, and Ra-
tio Selection [4]. These each employ heuristics aimed at
being more effective than randomized bit clearing.

Random Selection randomly selects, for each trouble-
some key to remove, a bit amongst the k available to reset.
Random Selection differs from random clearing (see Sec-
tion 3) by focusing on a set of troublesome keys to remove,
B, and not by randomly resetting any bit in », whether it
corresponds to a false positive or not. Minimum FN Selec-
tion aims at minimizing the false negatives generated by
each selective clearing. Maximum FP Selection aims at
maximizing the quantity of false positives to remove. Fi-
nally, Ratio Selection combines Minimum FN Selection
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Algorithm 1 Improved Minimum FN Selection

Require: ¢, the bit vector and 7, the ElementList
vector
Ensure: v and 7,4 updated, if needed

1 procedure MiNiMUMFNSELECTION (2,4, B)
N 2 U+ CREATE (A)
3 for All b; € B do
4 if MEMBERSHIPTEST (b;, 7) then
Fig. 6. Example of an ElementList vector. 5: index — MININDEX (b;, 1)
6: BITCLEARING (4, index)
. L . . . 7 Y{index] — 0

and Maximum FP Selection into a single algorithm. Ratio 3 end if

Selection aims to minimize the false negatives generated o- end For

while maximizing the false positives removed. 1('). end procedure

Except for Random Selection, all selective clearing algo- 1 1:

rithms make use of one or two counting vectors during the 1 2: procedureleast(4)

selective clearing process. To keep the algorithms simple, 1 3: ElementListVector v

these counting vectors are not updated with each iteration 1 4: for all a; < A do

of each algorithm. The cost of this simplicity comes in 15: for 1.=1 to k do

terms of an over-estimation, for the heuristic, in assessing ) Jh dad

the number of false negatives that it introduces in any gi- }S ‘:l[ t{(a,')].a (a:)

ven iteration. This over-estimation grows as the algorithm 18: enednforor

PTOSIesses. . . I ; 19; return v

Section 4.2 describes three improved heuristic selective e e parene
clearing algorithms that keep up-to-date the quantity of 5 1:

false negatives generated and false positives removed at
each step of the algorithms. This is done using a data struc-
ture that we call such an ElementlList vector, illustrated in
Fig. 6. It is somewhat similar to the fast hash tables devel-
oped by Song et al. [16]. The vector has the same length as
the bit vector. It contains thus m cells. Each cell is a pointer
to a list of elements recorded in that position in the bit vec-
tor. These elements, depending on the selective clearing
algorithm, can belong to A or B.

The additional cost of our improved algorithms come
from the spatial complexity of each algorithm. Compared
to the simple algorithms, our improved selective clearing
algorithms need more space to store the associated Ele-
mentList vectors. Recall also that any additional processing
and storage related to the creation of RBFs from Bloom fil-
ters are restricted to the entity creating the RBFs. Once an
RBF is created, we only work with the bit vector, as stan-
dard Bloom filters do.

4.2. Improved algorithms

All algorithms discussed in this section assume that the
function MemBersHIPTEST is defined. It takes two arguments:
the key to be tested and the bit vector. This function re-
turns true if the element is recorded in the bit vector (i.e.,
all the k positions corresponding to the hash functions
are set to 1). It returns false otherwise.

22: procedure BITCLEARING (V,index)
23: ElementList el = v.get (index)
24: for All x; c el do

25: REMOVE (X;, V)

26: end for

27: end procedure

The first algorithm, Improved Minimum FN Selection, is
formally defined in Algorithm 1 and aims, for any trou-
blesome key to remove, at selecting a bit amongst the
k available the one that will generate the minimum
amount of false negatives. It makes use of an ElementList
vector, v4, each cell containing the list of elements
belonging to A that are recorded in the corresponding cell
of v, the bit vector. For each troublesome key to remove
that was not previously cleared, we choose amongst the
k bit positions the one that we estimate will generate
the minimum number of false negatives. This minimum
is given by the miNninDEx procedure using the ElementList
vector 74 and running through the list of elements stored
in indicated positions. When the minimum index has
been returned by miNiNDEX, the Improved Minimum FN
Selection algorithm call the BitcLearRING procedure that will
remove from v, all the elements recorded in this mini-
mum index.

Table 1

Individual performance of selective clearing when removing 5% (S = 0.05) of false positives.
Algorithm |B| |B| |B| + |B| |A|
Random 932+9 1934 £37 2826 +46 1070 £10
Improved Minimum FN 939+5 1919+ 36 2858 + 40 788+8
Improved Maximum FP 943 +6 3275+38 4218 +43 1043 +11
Improved ratio 937+6 3082 +£45 4020 £ 51 843+ 6
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The algorithmic complexity of the Improved Minimum
FN Selection is O(k x (JA| +|B|)). Indeed, the algorithm
starts by creating 4 (procedure in O(k x |A])) and, next,
for each troublesome key belonging to B, it calls MEMBERSHIP-
TesT. In the case of a positive return MEMBERSHIPTEST, it looks
for the minimum index and, then, performs the bit clear-
ing. Note that the algorithmic complexity of the cumulated
calls of BiTcLEARING cannot be worst than the algorithmic
complexity of createcv (clearing the ElementList vector is
not harder, in a complexity sense, than creating it). Based
on this, we see that the algorithmic complexity of Im-
proved Minimum FN Selection is O(max (k x |A|, 2k x |B|)),
which leads to O(k x (JA| + |B|)).

Algorithm 2 Improved Maximum FP Selection

Require: v, the bit vector and v, the ElementList
vector

Ensure: v and v updated, if needed

1 procedure MAXIMUMEP (2,A, B)

2 Ug «— CREATE (B)

3 for all b; < B do

4 if MEMBERSHIPTEST (b;, v) then

5: index « MAXINDEX (b;)

6 BITCLEARING (g, index)

7 ylindex] — 0

8 end if

9 end for

10: end procedure

The second algorithm, Improved Maximum FP Selection,
is given in Algorithm 2. For any troublesome key to re-
move, it selects a bit amongst the k available that will re-
move the largest number of false positives. This is done
using the maxinpex function along with the ElementList vec-
tor, v, that records the troublesome keys registered in the
bit vector ». When the maximum index is found by the
MAXINDEX procedure, the BiTcLEARING procedure is called in or-
der to maintain 7 up-to-date.

3.0 T T T T T
oo Improved Ratio

a4 Improved Minimum FN

x> Improved Maximum FP

Do
ot
T

1.0k L L L L 17
0.0 0.2 0.4 0.6 0.8 1.0

B

Fig. 7. Performances of improved selective clearing algorithms.

The algorithmic complexity of the Improved Maximum
FP Selection is O(k x |B|). The reasoning for the running
time of Improved Maximum FP Selection is identical to Im-
proved Minimum FP. The only difference stands in the fact
that the create procedure concerns the set B.

Algorithm 3 Improved Ratio Selection

Require: 7, the bit vector, vz and 74, the ElementList
vectors and r, the ratio vector

Ensure: v, 74, 3 and r updated, if needed

1 procedure raTio (7,A,B)

2 U < CREATE (A)

3 U < CREATE (B)

4: COMPUTERATIO ()

5: forall b; € Bdo

6: if MEMBERSHIPTEST (b;, v) then

7 index « miNraTIO (b;)

8 BITCLEARING (4, index)

9: BITCLEARING (7p,index)
10: ylindex] — 0

11: r[index] — 0

12: COMPUTERATIO ()

13: end if

14: end for

15: end procedure

16:

17: procedure COMPUTERATIO
18: fori=1tomdo

19: if ¢[i] A vg[i].size () > O then
200 il - il

21: end if

22: end for

23: end procedure

Our last algorithm, called Improved Ratio Selection (see
Algorithm 3), combines Improved Minimum FN Selection
and Maximum FP Selection into a single algorithm. Im-
proved Ratio Selection provides an approach in which we
try to minimize the false negatives generated while maxi-
mizing the false positives removed. Improved Ratio Selec-
tion therefore takes into account the risk of collision
between hashed keys of elements belonging to A and
hashed keys of elements belonging to B. Further, the ratio
vector, r, containing the ratio of the number of elements re-
corded in a given cell of 74 to the number of elements re-
corded in a given cell of 75 is also maintained up-to-date.
This is achieved by calling the ratio procedure each time
a false positive is removed from the bit vector.

The algorithmic complexity of Improved Ratio Selection
is O(k x (|A| +|B|) + m). The reasoning for the running time
of Improved Maximum FP Selection is identical to Im-
proved Minimum FP, the factor m coming from the com-
PUTERATIO procedure.

4.3. Simulation analysis
4.3.1. Methodology

We conducted an experiment with an universe U of
2,000,000 elements (N =2,000,000). These elements, for

Please cite this article in press as: B. Donnet et al., Improving retouched Bloom filter for trading off selected false positives against false
negatives, Comput. Netw. (2010), doi:10.1016/j.comnet.2010.07.003



http://dx.doi.org/10.1016/j.comnet.2010.07.003

8 B. Donnet et al. / Computer Networks xxx (2010) XxX—Xxx

the sake of simplicity, were integers belonging to the range
[0; 1,999,9999]. The subset A that we wanted to summa-
rize in the Bloom filter contains 10,000 different elements
(n=10,000) randomly chosen from the universe U.

The bit vector v we used for simulations is 100,000 bits
long (m = 100,000), ten times larger than |A|. The RBF used
five different and independent hash functions (k=5).
Hashing was emulated with random numbers. We simu-
lated randomness with the Mersenne Twister MT19937
pseudo-random number generator [21]. Using five hash
functions and a bit vector ten times bigger than n is ad-
vised by Fan et al. [3]. This permits a good trade-off be-
tween membership query accuracy, i.e, a low false
positive rate of 0.0094 when estimated with Eq. (5), mem-
ory usage and computation time.

For our experiment, we defined the ratio of troublesome
keys compared to the entire set of false positives as

_ Bl
|Fel

We considered the following values of g: 1%, 2%, 5%, 10%,
25%, 50%, 75% and 100%. When p=100%, it means that
B = Fp and we want to remove all the false positives.

Each data point in the plots represents the mean value
over fifteen runs of the experiment, each run using a new
A, Fp, B, and RBF. We determined 95% confidence intervals
for the mean based on the Student t distribution.

We performed the experiment as follows: we first cre-
ated the universe U and randomly affected 10,000 of its
elements to A. We next built Fp by applying the following
scheme. Rather than using Eq. (5) to compute the false po-
sitive rate and then creating Fp by randomly affecting posi-
tions in v for the false positive elements, we preferred to
experimentally compute the false positives. We queried
the RBF with a membership test for each element belong-
ing to U — A. False positives were the elements that belong
to the Bloom filter but not to A. We kept track of them in a
set called Fp. This process seemed to us more realistic be-
cause we evaluated the real quantity of false positive ele-
ments in our data set. B was then constructed by
randomly selecting a certain quantity of elements in Fp,
the quantity corresponding to the desired cardinality of
B. We next removed all troublesome keys from B by using
one of the improved selective clearing algorithms, as ex-
plained in Section 4.2. We then built Fy, the false negative
set, by testing all elements in A and adding to Fy all ele-
ments that no longer belong to A. We also determined Fj,
the false positive set after removing the set of troublesome
keys B.

B (17)

4.3.2. Results

We first evaluate each algorithm individually. Next we
will compare our improved algorithms to the previous ver-
sions [4].

Our individual evaluation is based on the four following
metrics:

e |B|, the number of troublesome keys to remove.
e |B'|, the number of additional false positive keys

removed. This is thus the side effect of performing
selective clearing.

e |[B+B|, summarizes the two previous metrics, giving
the total number of false positives removed.

e |A'|, the quantity of keys that become false negatives
after selective clearing.

Table 1 shows the performance of each selective clear-
ing algorithm considering the four metrics when we re-
move 5% (i.e., f=0.05) of the false positives from the
filter. Results given are an average over fifteen runs. The
confidence interval around the mean is also provided.

As indicated by the column labeled “|B'|”, the side effect
of removing false positives strongly differs between the
algorithms. Indeed, Improved Maximum FP and Improved
Ratio remove more than 3,000 additional false positives
compared to a lower 2,000 for other algorithms. This
behavior is expected by definition of Improved Maximum
FP as it tries to maximize the amount of false positives re-
moved at each step of the algorithm.

When considering the amount of false negatives gener-
ated by removing false positives, we note that Improved
Minimum FN and Improved Ratio act better. This is ex-
pected by definition of Improved Minimum FN (i.e., mini-
mizing the amount of false negatives generated at each
step).

To summarize results provided in Table 1, one can say
that Improved Ratio performs best by trying to combine
in a single algorithm Improved Minimum FN and Improved
Maximum FP. Indeed, the side effect of removing addi-
tional false positives at each step is high, while Improved
Ratio keeps the amount of false negatives generated rea-
sonably low.

Fig. 7 deeper evaluates the performance of our im-
proved selective clearing algorithms. It plots y, defined
by Eq. (12), in function of g, defined in Eq. (17). The confi-
dence intervals are plotted but they are generally too tight
to be visible.

In the fashion of simple selective clearing algorithms
presented in our previous work [4], whatever the algo-
rithm considered, the y ratio is above 1, meaning that
the advantages of removing false positives overcome the
drawbacks of generating false negatives, if these errors
are considered equally grave. Thus, as expected, perform-
ing selective clearing provides better results than random-
ized bit clearing. Another general tendency is that,
whatever the algorithm, the performance slightly de-
creases when f increases but still remains largely above
one.

If we look now at each algorithm in particular, we no-
tice that Improved Ratio does best. This is easily under-
standable as, by definition, it combines the advantages of
both Improved Minimum FN and Improved Maximum FP,
i.e, it tries to minimizes the false negatives generated
while, at the same time, maximizing the false positives
removed.

Fig. 8 proposes a comparison between simple and im-
proved selective clearing algorithms. The vertical axis pre-
sents the relative difference between the y for simple and
improved algorithms. It is given by:

Relative difference — Zimproved ~ Ksimple. (18)

Xsimple
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Fig. 8. Relative difference between simple and improved selective
clearing.

From Fig. 8, we see that, with respect to our perfor-
mance criteria, our improved selective algorithms do be-
tween 10% and 20% better (in general) than simple
algorithms previously proposed. We believe that the cost
associated to this performance increase, i.e., a slight in-
crease in memory usage when creating the filter, is negligi-
ble compared to the benefits. Further, once the RBF has
been created, the standard behavior of a Bloom filter is
maintained. The complexity takes place only during the fil-
ter construction process.

Finally, given the results discussed in this section, we
advice the use of the Improved Ratio Algorithm as it pro-
vides the best performance.

5. Case study
5.1. Tracing paths with a red stop set

Retouched Bloom filters can be applied across a wide
range of applications that would otherwise use Bloom fil-
ters (see Section 6.2). For RBFs to be suitable for an appli-
cation, two criteria must be satisfied. First, the
application must be capable of identifying instances of
false positives. Second, the application must accept the
generation of false negatives, and in particular, the mar-
ginal benefit of removing the false positives must exceed
the marginal cost of introducing the false negatives.

This section describes the application that motivated
our introduction of RBFs: a network measurement system
that traces routes, and must communicate information
concerning the IP addresses at which to stop tracing. Sec-
tion 5.2 evaluates the impact of using RBFs in this
application.

Maps of the Internet at the IP level are constructed by
tracing routes from measurement points distributed
throughout the Internet. The skitter system [22], which
has provided data for many network topology papers,
launches probes from 24 monitors towards almost a mil-
lion destinations. However, a more accurate picture can

potentially be built by using a larger number of vantage
points. pives [6] heralds a new generation of large-scale
systems, counting, at present 8,700 agents distributed over
five continents. As some of us have pointed out [23], one of
the dangers posed by a large number of monitors probing
towards a common set of destinations is that the traffic
may easily be mistaken for a distributed denial of service
(DDoS) attack.

One way to avoid such a risk would be to avoid hitting
destinations. This can be done through smart route tracing
algorithms, such as Donnet et al.’s Doubletree [23]. With
Doubletree, monitors communicate amongst themselves
regarding routes that they have already traced, in order
to avoid duplicating work. Since one monitor will stop
tracing a route when it reaches a point that another mon-
itor has already traced, it will not continue through to hit
the destination.

Doubletree considerably reduces, but does not entirely
eliminate, DDoS risk. Some monitors will continue to hit
destinations, and will do so repeatedly. One way to further
scale back the impact on destinations would be to intro-
duce an additional stopping rule that requires any monitor
to stop tracing when it reaches a node that is one hop be-
fore that destination. We call such a node the penultimate
node, and we call the set of penultimate nodes the red stop
set (RSS). Fig. 9 illustrates the RSS concept, showing penul-
timate nodes as grey discs.

A monitor is typically not blocked by its own first-hop
node, as it will normally see a different IP address from
the addresses that appear as penultimate nodes on incom-
ing traces. This is because a router has multiple interfaces,
and the IP address that is revealed is supposed to be the
one that sends the probe reply. The application that we
study in this paper conducts standard route traces with
an RSS. We do not use Doubletree, so as to avoid having
to disentangle the effects of using two different stopping
rules at the same time.

How does one build the red stop set? The penultimate
nodes cannot be determined a priori. However, the RSS
can be constructed during a learning round in which each
monitor performs a full set of standard traceroutes, i.e.,

end-host end-host

5 5

— —
end-host end-host

Fig. 9. Red stop set (dashed line).
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until hitting a destination. Monitors then share their RSSes.
For simplicity, we consider that they all send their RSSes to
a central server, which combines them to form a global
RSS, that is then redispatched to the monitors. The moni-
tors then apply the global RSS in a stopping rule over mul-
tiple rounds of probing.

Destinations are only hit during the learning round and
as a result of errors in the probing rounds. DDoS risk
diminishes with an increase in the ratio of probing rounds
to learning rounds, and with a decrease in errors during the
probing rounds. DDoS risk would be further reduced were
we to apply Doubletree in the learning round, as the num-
ber of probes that reach destinations during the learning
round would then scale less than linearly in the number
of monitors. However, our focus here is on the probing
rounds, which use the global RSS, and not on improving
the efficiency of the learning round, which generates the
RSS, and for which we already have known techniques
[24].

The communication cost for sharing the RSS amongst
monitors is linear in the number of monitors and in the
size of the RSS representation. It is this latter size that
we would like to reduce by a constant compression factor.
We therefore propose encoding the RSS information in
Bloom filters. Note that the central server can combine
similarly constructed Bloom filters from multiple moni-
tors, through bitwise logical or operations, to form the fil-
ter that encodes the global RSS.

The cost of using Bloom filters is that the application
will encounter false positives. A false positive, in our case
study, corresponds to an early stop in the probing, i.e., be-
fore the penultimate node. We call such an error stopping
short, and it means that part of the path that should have
been discovered will go unexplored. Stopping short can
also arise through network dynamics, when additional
nodes are introduced, by routing changes or IP address
reassignment, between the previously penultimate node
and the destination. In contrast, a trace that stops at a pen-
ultimate node is deemed a success. A trace that hits a des-
tination is called a collision. Collisions might occur because
of a false negative for the penultimate node, or simply be-
cause routing dynamics have introduced a new path to the
destination, and the penultimate node on that path was
previously unknown.

As we show in Section 5.2, the cost of stopping short is
far from negligible. If a node that has a high betweenness
centrality (Dall’'Asta et al. [25] point out the importance
of this parameter for topology exploration) generates a
false positive, then the topology information loss might
be high. Consequently, our idea is to encode the RSS in
an RBF.

As described earlier, there are two criteria for being able
to profitably employ RBFs, and they are both met by this
application. First, false positives can be identified and re-
moved. Once the topology has been revealed, each node
can be tested against the Bloom filter, and those that regis-
ter positive but are not penultimate nodes are false posi-
tives. The application has the possibility of removing the
most troublesome false positives by using one of the selec-
tive algorithms discussed in Section 4. Second, a low rate of
false negatives is acceptable and the marginal benefit of

removing the most troublesome false positives exceeds
the marginal cost of introducing those false negatives.
Our aim is not to eliminate collisions; if they are consider-
ably reduced, the DDoS risk has been diminished and the
RSS application can be deemed a success. On the other
hand, systematically stopping short at central nodes can
severely restrict topology exploration, and so we are will-
ing to accept a low rate of random collisions in order to
trace more effectively. These trade-offs are explored in
Section 5.2.

5.2. Evaluation

5.2.1. Methodology

In this section, we evaluate the use of RBFs in a tracero-
uting system based on an RSS. We first present our meth-
odology and then, discuss our results. Note that we discuss
other networking applications of RBFs in Section 6.2.

Our study is based on skitter data [22] from January
2006. This data set was generated by 24 monitors located
in the United States of America, Canada, the United King-
dom, France, Sweden, the Netherlands, Japan, and New
Zealand. The monitors share a common destination set of
971,080 IPv4 addresses. Each monitor cycles through the
destination set at its own rate, taking typically three days
to complete a cycle.

For the purpose of our study and in order to reduce
computing time to a manageable level, we work from a
limited set of 10 skitter monitors, all the monitors sharing
a list of 10,000 destinations, randomly chosen from the ori-
ginal set.

We compare the following three RSS implementations:
list, Bloom filter and RBF. The list would not return any er-
rors if the network were static, however, as discussed
above, network dynamics lead to a certain error rate of
both collisions and instances of stopping short.

For the RBF implementation, we consider j3 values (see
Eq. (17)) of 1%, 5%, and 25% when removing the most trou-
blesome keys. We employ the Improved Ratio Selection
algorithm, as defined in Section 4.2. For the Bloom filter
and RBF implementations, the hashing is emulated with
random numbers. We simulate randomness with the
Mersenne Twister MT19937 pseudo-random number gen-
erator [21].

To obtain our results, we simulate one learning round
on a first cycle of traceroutes from each monitor, to gener-
ate the RSS. We then simulate one probing round, using a
second cycle of traceroutes. In this simulation, we replay
the traceroutes, but apply the stopping rule based on the
RSS, noting instances of stopping short, successes, and
collisions.

5.2.2. Results

Fig. 10(a) compares the success rate, i.e., stopping at a
penultimate node, of the three RSS implementations. The
horizontal axis gives different filter sizes, from 10,000 to
100,000, with an increment of 10,000. Below the horizontal
axis sits another axis that indicates the compression ratio
of the filter, compared to the list implementation of the
RSS. The vertical axis gives the success rate. A value of 0
would mean that using a particular implementation
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Fig. 10. RBF performance in comparison to other RSS implementations.

precludes stopping at the penultimate node. On the other
hand, a value of 1 means that the implementation succeeds
in stopping each time at the penultimate node.

Looking first at the list implementation (the horizontal
line), we see that the list implementation success rate is
not 1 but, rather, 0.7812. As explained in Section 5.2, this
can be explained by the network dynamics such as routing
changes and dynamic [P address allocation.

With regards to the Bloom filter implementation, we
see that the results are poor. The maximum success rate,
0.2446, is obtained when the filter size is 100,000 (a com-
pression ratio of 2.5 compared to the list). Such poor re-
sults can be explained by the troublesomeness of false
positives. Fig. 11 shows, in log-log scale, the troublesome-
ness distribution of false positives. The horizontal axis
gives the troublesomeness degree, defined as the number
of traceroutes that stop short for a given key. The maxi-
mum value is 10%, i.e., the total number of traceroutes per-
formed by a monitor. The vertical axis gives the number of
false positive elements having a specific troublesomeness
degree. The most troublesome keys are indicated by an ar-
row towards the lower right of the graph: nine false posi-
tives are, each one, encountered 10,000 times.
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Fig. 11. Troublesomeness distribution.

We now concentrate on the RBF implementation of the
RSS and, in particular, on the stopping short rate illustrated
on Fig. 10(b). In this case, the advantages of an RBF over a
standard Bloom filter are very interesting, in particular for
quite large bit vector size and large g (i.e., f = 25%). Indeed,
for bit vector size larger than 60 x 10® and a g of 25%, the
performance of an RBF is very close to the list implementa-
tion. Note again that a list might encounter stopping short
due to network dynamics.

This decrease in the stopping short rate would not have
any sense if the success rate when using an RBF also drops.
In Fig. 10(a), we see that the RBF does better than the
Bloom filter. In addition, in the fashion of the stopping
short rate, the performance is close to the list implementa-
tion, particularly for large vector size and large g (i.e.,
B =25%). Indeed, when g = 0.25, for compression ratios of
4.2 and lower, the success rate approaches that of the list
implementation. Even for compression ratios as high as
25.6, it is possible to have a success rate over a quarter of
that offered by the list implementation.

Fig. 10(c) shows the cost in terms of collisions. Colli-
sions could arise under Bloom filter and list implementa-
tions only due to network dynamics. One startling
revelation of this figure is that for mid-range values of g,
such as = 5%, the RBF collision cost is lower than the col-
lision cost for the list implementation, whatever the com-
pression ratios. On the contrary, for a large g value (i.e.,
25%) and a strong compression rate, the collision cost is
higher than the list implementation. This is somewhat ex-
pected as removing troublesome false positives (i.e., reduc-
ing the stopping short rate) through selective clearing
when the bit vector strongly populated will generate a
higher false negative rate (i.e., increasing the collision
rate).

In closing, we emphasize that the construction of B and
the choice of troublesome false positives is important.
However, this choice is not only application-specific: the
way the application considers an element as being more
troublesome than another has also an impact. To leverage
that choice, we must be able to associate a weight to each
element. Since that instant, we are able to formulate a cri-
terion: we want to remove x% of the whole false positives
mass. From this percentage in terms of mass, we can easily
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deduce a percentage in terms of number. For instance, in
this section, the weight associated to an IP address was
its frequency and to remove 25% of the false positives
mass, we had to remove only 35 keys.

6. Related work

Early suggestions of applications for Bloom filters were
for dictionaries and databases. Bloom’s original paper [1]
describes their use for hyphenation. Another dictionary
application is for spell-checkers [26,27]. For databases,
they have been suggested to speed up semi-join operations
[28,29] and for differential files [30,31]. Bloom filters can
also find an appropriate usage in approximating member-
ship checking of password data structures [32].

In this section, we first position our RBF regarding the
state of the art (Section 6.1). We next explore networking
usages in which RBF might find also a suitable usage
(Section 6.2).

6.1. Others extensions of Bloom filters

There is a considerable literature on Bloom filters, and
their applications in networking, that we discuss in Sec-
tion 6.2. In a few instances, suggested variants on Bloom
filters do allow false negatives to arise. However, these
variants do not preserve the size and the membership test
behavior of the standard Bloom filter, as RBFs do. Nor have
the false negatives been the subject of any analytic or sim-
ulation studies. In particular, the possibility of explicitly
trading off false positives for false negatives has not been
studied prior to the current work, and efficient means for
performing such a trade-off have not been proposed.

First is the anti-Bloom filter, which was suggested in
unpublished work [14]. An anti-Bloom filter is composed
of a standard Bloom filter plus a separate filter in which
false positives from the main filter are recorded. When
queried, a negative result (i.e., the key does not belong to
the subset A) is generated if either the main filter does
not recognize a key or the anti-filter does. The anti-Bloom
filter requires more space than the standard filter, but the
space efficiency has not been studied. Nor have studies
been made of the impact of the anti-filter on the false po-
sitive rate. Further, it is not clear what would happen with
false positives generated by the additional filter. Indeed,
the anti-filter acts as a standard Bloom filter and is, thus,
subject to false positives.

In some sense, the anti-Bloom filter follows the same
objective as the RBF, i.e., getting rid of some of the false
positives. However, the set up mechanism strongly differs.
The cost of removing false positives is expressed in terms
of generated false negatives in the RBF, while an anti-
Bloom filter comes with additional space. Further, once
the RBF is constructed, the standard behavior of a Bloom
filter (for membership test) is kept, while it is not the case
for anti-Bloom filter.

The objective pursued by a Bloomier filter [20] is not
anymore to simply determine whether a given key belongs
to A or not. Rather, it proposes to associate a value to each
element of A and the membership test allows one to also

retrieve this value (if the test is positive). A Bloomier filter
is made of as many Bloom filters as different possible val-
ues. For instance, if the only permitted values are0 and 1, a
Bloomier filter uses a pair of Bloom filters Sy and Ty con-
taining, respectively, all values mapping to 0 and all values
mapping to 1.

When performing a membership test, if both filters
replies negatively, one is sure that the key is not in the
map. If one filter, let say So, responds positively and
the other negatively, then the key is probably in So and
the associated value is 0. However, a problem arises when
both filters respond positively. As a only single value can
be associated to any key, one of the filters is lying, i.e., gen-
erating a false positive.

In such a case, one has to consider a second layer of fil-
ters, S; and T;. S; contains values mapping to 0 and being
false positives in To, while T; contains values mapping to 1
and being false positives in So. If this layer also produces a
false positive, then one recursively applies the same
scheme to a third layer, and so on.

However, if a given filter, let say Sq replies positively to
a membership query, there is still a probability that it cor-
responds to a false positive. This case is not addressed by
the Bloomier filter while it is the core of our RBF. Further,
even if a Bloomier filter is a more general Bloom filter (in
the sense it allows one to associate a value to each element
in the subset A), when it is reduced to a simple standard
Bloom Filter (i.e., the same value is associated to each ele-
ment belonging to A), it does not act as an RBF. Indeed, it
does not allow one to remove selected false positives and
trade off false positives and false negatives.

Fan et al.’s CBF replaces each cell of a Bloom filter’s bit
vector with a four-bit counter, so that instead of storing a
simple 0 or a 1, the cell stores a value between 0 and 15
[3]. This additional space allows CBFs to not only encode
set membership information, as standard Bloom filters
do, but to also permit dynamic additions and deletions to
that information. One consequence of this new flexibility
is that there is a chance of generating false negatives if
counters overflow. Fan et al. suggest that the counters be
sized to keep the probability of false negatives to such a
low threshold that they are not a factor for the application
(four bits being adequate in their case). Note that recent
work improves the upper bound for counter overflow
probability in CBFs [33]. The possibility of trading off false
positives for false negatives is not entertained.

Bonani et al.’s d-left CBF is an improvement on the CBF
[17]. As with the CBF, it can produce false negatives. It can
also produce another type of error called “don’t know”.
Bonani et al. conduct experiments in which they measure
the rates for the different kinds of errors, but here too there
is no examination of the possibility of trading off false
positives against false negatives. The d-left CBF is more
space-efficient than the CBF. But CBFs themselves require
a constant multiple more space than standard Bloom fil-
ters, and the question does not arise of comparing the
space efficiency of d-left CBFs with that of standard Bloom
filters, as they serve different functions.

Song et al. propose an extension to the CBF, called the
extended Bloom filter (EBF), in order to support exact
address prefix matching for routing [16]. An array is
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associated to the CBF. Each cell of this array contains the
list of keys that are recorded in the corresponding cell in
the CBF. Song et al. propose several techniques to reduce
the memory cost of the EBFs. The EBFs are designed to
achieved higher lookup performance within high-speed
routers.

With the EBFs, the false positives are removed by add-
ing information to the CBFs. With the RBFs, by contrast,
no information is added to remove the false positives.
The cost of these removals is expressed in terms of false
negatives generated for the RBFs and in terms of increased
memory usage for the EBFs.

The variable Bloom filter (VBF) [19] introduced by Lu
et al. is basically a standard Bloom filter (i.e., an m bit vec-
tor and k hash functions) but with slightly different inser-
tion and querying phases. During a key insertion, only ¢,
with t < k, bits are set to 1 in the vector. Consequently, a
key x will be declared as belonging to the filter if at least
t bits amongst the k are set to 1 in the vector. In addition,
a VBF allows one to remove keys from the filter. The idea is
to reset d bits (with d < t) to zero. By acting so, a VBF is
supposed to reduce the risk of false negatives when remov-
ing a key. However, Lu et al. do not provide theorical de-
tails on false positive and false negative rates of VBFs.

A VBF shares with an RBF the fact that it allows bits to
be reset. However, a VBF pursues the goal of removing ele-
ments belonging to A while an RBF aims at removing trou-
blesome false positives. Another difference with RBFs is
that the resetting scheme in a VBF is less efficient than ours
as it does not take into account the risk of raising false
negatives.

Finally, Laufer et al. propose an extension to the stan-
dard Bloom filter called the generalized Bloom filter (GBF)
[15]. With the GBF, one moves beyond the notion that ele-
ments must be encoded with 1s, and that Os represent the
absence of information. A GBF starts out as an arbitrary
vector of both 1s and 0s, and information is encoded using
two sets of hash functions, one being used for resetting bits
(i.e., turning a bit to zero) and the other for setting bits (i.e.,
turning a bit to one). As a result, the GBF is a more general
binary classifier than the standard Bloom filter. One conse-
quence is that it can produce either false positives (as a
standard Bloom filter does) and false negatives. This latter
case might occur when a bit, previously set, is reset during
the insertion of a subsequent element.

RBFs differ from GBFs in that the false negatives arise
through the explicit removal of selected false positives.
Further, an RBF, once constructed, preserves the behavior
of a standard Bloom filter. We note that the techniques
used to remove false positives from standard Bloom filters
could be extended to remove false positives from GBFs.

6.2. Other networking usages of RBFs

Bloom filters have been widely used in networking
applications, as stated by Broder and Mitzenmacher [2].
In this section, we discuss two networking usages of Bloom
filters, overlays (Section 6.2.1) and packet processing (Sec-
tion 6.2.2), in which RBFs might possibly find a suitable
usage.

6.2.1. Overlays and peer-to-peer

For a node in a peer-to-peer file sharing system, keeping
a list of objects stored at all other nodes might be costly in
terms of memory, but keeping Bloom filters for all other
nodes might be an attractive alternative. This was pro-
posed by Cuenca-Acuna et al. for their PlanetP system [34].

PlanetP meets the two criteria for the use of RBFs. First,
the application can identify false positives. A node, through
is own experience with the inability to locate certain files
at the expected nodes, can determine that the keys corre-
sponding to those files yield false positives. Second, false
negatives are tolerated because not every node that stores
a given object need be identified. In a file sharing system,
the same object is typically stored at multiple locations,
and so the failure of one node to recognize some of the
locations for some of the objects should not pose a great
problem, provided the rate of such errors remains within
reasonable bounds. The communications savings that
come from eliminating some false positives might well
outweigh the costs of missing some locations.

Byers et al. [35] propose an application for distributing
large files to many peers in overlay networks. They suggest
that peers may want to solve approximate set reconciliation
problems. The idea is to allow a peer A to send to a peer B
objects that B does not have. Encoding the sets of objects as
Bloom filters allows for data compression. B will send A its
Bloom filter. Testing its own set, element by element,
against this Bloom filter allows A to know the set of objects
B does not have, and send them to B. Because of false pos-
itives, not all objects that B needs will be sent, but most
will.

Approximate set reconciliation clearly meets the second
criterion for using RBFs. A low rate of false negatives in the
RBF furnished by peer B would result in peer A sending a
small number of elements that B already possesses. It is
easy to imagine that the system designers would be willing
to pay this communications overhead price in order to en-
sure that B gets more of the elements that it is missing.

A question arises, however, for the first criterion. How
does peer B identify the false positives in the Bloom filter
that it sends out? For this, it would need to know the keys
for the objects that it is missing. For some applications, this
would not be possible. But we could easily imagine many
applications where the keys are known. For instance, B
might know the contents of a music catalog, but not have
many of the songs in that catalog. It could identify the false
positives in its RBF by testing the keys in the catalog one by
one.

Rhea and Kubiatowicz [36] describe a probabilistic
algorithm for routing peer-to-peer resource location que-
ries. Each node in the network keeps an array of Bloom fil-
ters, called an attenuated Bloom filter, for each adjacent
edge in the overlay topology. In the array for each edge,
there is a Bloom filter for each distance d, up to a maxi-
mum value, so that the dth Bloom filter in the array keeps
track of resources available via d hops through the overlay
network along that edge. If it is deemed probable that the
resource that is being searched for is present, the query is
routed to the nearest neighbor. This scheme would require
the addition of feedback to identify false positives. If false
positives could be identified, they could be removed. This
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might be worthwhile, as false negatives do not invalidate
the system. The array of Bloom filters could be replaced
by an array of RBFs, bringing about a decrease in the false
positive rate at the cost of a comparatively small increase
in the false negative rate.

6.2.2. Network packet processing

Dharmapurikar et al. [37] propose the use of Bloom fil-
ters for detecting predefined signatures in packet payloads.
They propose an architecture of W parallel Bloom filters,
each Bloom filter focusing on strings of a specified length.
If a string is found to be a member of any Bloom filter, it is
then declared as a possible matching signature. To avoid
the risk of false positives, each matching signature is tested
in an analyzer which determines if the signature is truly a
member of the set A or not. In other words, the analyzer
contains all elements of A. Bloom filters are only used to
discard elements not belonging to A.

At least one of the two criteria for using the RBFs is met
in the process described by Dharmapurikar et al. The ana-
lyzer offers the opportunity to identify false positives. The
application should obtain a gain in terms of processing
time by removing from the filters those false positives.
The second criterion is application-specific. If a small rate
of false negatives may be tolerated, then RBFs are suitable.

7. Conclusion

The Bloom filter is a lossy summary technique for test-
ing set membership. It has attracted considerable attention
from the networking research community for its band-
width efficiencies. This paper has described the retouched
Bloom filter (RBF), an extension that makes Bloom filters
more flexible by permitting selected false positives to be
removed at the expense of introducing some false nega-
tives. The key idea is to remove each false positive by reset-
ting a carefully chosen bit in the bit vector that makes up
the filter. Compared to a standard Bloom filter, an RBF
introduces a modification in the filter construction, but
keeps intact both the bit vector size and the membership
test procedure.

We analytically demonstrated that the trade-off be-
tween false positives and false negatives is at worst neu-
tral, on average, when randomly resetting bits in the bit
vector, whether these bits correspond to false positives
or not. We also proposed three algorithms for deleting false
positives. The costs associated with these algorithms are
constant multiples of the spatial and time complexity re-
quired to build a standard Bloom filter. We evaluated these
algorithms through simulation and showed that RBFs cre-
ated in this manner will, on average, increase the false neg-
ative rate by less than the amount by which the false
positive rate is decreased. The algorithms in this paper
are more effective than similar algorithms that we pre-
sented in an earlier version of this work [4].

This paper described a distributed network measure-
ment application for which RBFs can profitably be used.
In this case study, route tracing agents, rather than
conducting traceroutes all the way to each destination, at-
tempt to terminate each measurement at the penultimate

node, in this way reducing their impact on end-hosts and
reducing the likelihood that measurements will trigger
intrusion detection alerts. The agents share information
on the set of penultimate nodes that each has discovered.
We compared three different implementations for repre-
senting this set information: list, Bloom filter, and RBF.
Using filters reduces the bandwidth requirements, but
the false positives can significantly reduce the amount of
topology information that the system gleans. We demon-
strated that using an RBF, in which the most troublesome
false positives are removed, will increase the coverage
compared to a standard Bloom filter implementation,
while retaining the bandwidth efficiencies. The RBF imple-
mentation is less effective than the standard Bloom filter
implementation at protecting destinations. However, as
we note, the application needs only to reduce impact, not
eliminate it entirely, and the RBF enables this.

In future work, we hope to demonstrate techniques to
apply the RBF concept earlier in the construction of the fil-
ter. At present, we allow the Bloom filter to be built, and
then remove the most troublesome false positives. It
should be possible to avoid recording some of these false
positives in the filter to begin with. We also aim at model-
ing a notion of mass associated with elements stored in the
filter in order to better apply the concepts discussed in this
paper.
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