
M2-CYCLE: an Optical Layer Algorithm for Fast
Link Failure Detection in All-Optical Mesh Networks

Bin Wu and Kwan L. Yeung

Dept. of Electrical and Electronic Engineering
The University of Hong Kong

Pokfulam, Hong Kong
E-mail: {binwu, kyeung}@eee.hku.hk

Abstract—To achieve fast link failure detection in all-optical
networks, the notion of monitoring-cycle (m-cycle) is introduced.
The best known m-cycle construction algorithm (HST [7]) adopts
a spanning tree-based approach. In this paper, we propose a new
algorithm M2-CYCLE to construct a set of minimum-length m-
cycles (or m2-cycles) for more efficient link failure detection. We
prove that the performance of M2-CYCLE is never worse than
any spanning tree-based approach. Comparing M2-CYCLE to
the existing algorithms, we show that it uses the least amount of
network resources (measured by the number of cycles, cover
length and monitoring wavelength requirement) to achieve the
most accurate link failure detection (measured by localization
degree).

Keywords-All-optical networks (AONs); cycle cover; fast link
failure detection; monitoring-cycle.

I. INTRODUCTION
With the rapid progress of optical technologies, the

communication infrastructure continuously evolves towards
all-optical networks (AONs). In WDM (wavelength division
multiplexing) optical networks, hundreads of wavelengths can
be multiplexed onto a single fiber for efficient transmission.
Therefore, fiber-cuts cause great data loss. In order to provide
protection or restoration, fast link failure detection is a priori.

Link failure detection in AONs can be implemented at
different protocol layers, e.g. physical/optical or network layer.
In fact, most network layer routing protocols (such as OSPF
and IS-IS) already have built-in fault detection mechanisms [1].
To accelerate the detection speed, cross-layer design is also
proposed [2]. Nevertheless, such techniques can only render a
detection time in seconds, which is much longer than the
typical requirement of 50 ms [3] for optical recovery.
Therefore, optical layer schemes are preferred. On the other
hand, those schemes designed for traditional optical networks
(e.g. SDH/SONET) cannot be transplanted to AONs because of
the lack of electrical terminations [4-5].

At the optical layer, a fault can be detected by measuring
optical power, analyzing optical spectrum, using pilot tones or
optical time domain reflectometry (OTDR) [6-7]. This is
carried out by a special optical device called monitor [8-10]. A
channel-based monitoring scheme uses one monitor for each
wavelength channel of a link, thereby requiring a very large
number of monitors. A link-based monitoring scheme is more
scalable, but still requires one monitor per link.

To further reduce the number of required monitors, the
notion of monitoring-cycle (m-cycle) [6-7] is introduced. An
m-cycle is implemented by assigning a dedicated loop-back
supervisory wavelength to spy on the links along it. The basic

idea is to find a cycle cover, defined as a set of m-cycles {c1, c2,
…, cM} that cover every link in the network, and assign a
monitor to each m-cycle. Each link may be covered by more
than one m-cycles. If a particular link fails, it triggers alarms in
all the m-cycles covering this link. For a cycle cover with size
M, an alarm code is of format [a1, a2, …, aM], where ai=1 if m-
cycle ci alarms and ai=0 otherwise. The location of the fault
can then be identified by decoding the alarm code. For
example, the network in Fig. 1 is covered by M=13 m-cycles. If
link 7―10 fails, alarm code [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1]
will be generated due to the fault detection by monitors on m-
cycles c9, c10, c12, and c13. Similarly, if the fault is detected by
monitors on c2, c8, and c10, there must be a fault at link 7―6.

Based on the above idea, three algorithms (HDFS, SPEM
[6] and HST [7]) are proposed to construct m-cycles. The
objective is to localize the fault and minimize the network
resource consumption (monitors, wavelengths, etc). Among
them, HST constructs m-cycles based on a carefully designed
spanning tree, and it delivers the best performance [7].

In this paper, we propose to construct a set of minimum-
length m-cycles (or m2-cycles) for fast link failure detection at
optical layer. The length of a cycle is defined as the number of
links it covers. Our algorithm is called M2-CYCLE. For
simplicity, we focus on networks connected by single fiber
links although a multi-fiber extension is possible. Besides, we
assume that the network has no single-bridge link, as it can
separate the network into two unconnected parts if it is
removed. Note that such single-bridge links are usually
avoided in the network design [7]. We prove that the
performance of M2-CYCLE is never worse than any spanning
tree-based approach, no matter how the spanning tree is
constructed. Numerical results show that M2-CYCLE requires
much less network resources than HST [7].

The rest of the paper is organized as follows. In Section II,
we review the spanning tree-based approach, and discuss the
performance metrics. In Section III, M2-CYCLE is presented,
and its properties are proved in Section IV. Discussions are
given in Section V and we conclude the paper in Section VI.

II. SPANNING TREE-BASED M-CYCLE CONSTRUCTION AND
PERFORMANCE METRICS

A. Spanning Tree-Based M-cycle Construction
HST [7] constructs m-cycles based on a spanning tree. The

spanning tree roots at the node with the maximum degree, and
always extends at the nodes with the maximum number of
neighbors that are not yet included in the tree. Let node 7 in
Fig. 1 (taken from [7]) be the root. All links incident on node 7

This work is supported by Hong Kong Research Grant Council
Earmarked Grant HKU 7150/04E.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

are first added to the tree. The tree then extends at node 9, and
the corresponding links 3―9, 4―9 and 5―9 are added. This
process continues until a spanning tree is built. Links in the
spanning tree are called trunks (denoted by bold lines), and
other links are called chords. HST generates an m-cycle from
each chord, along which all other links are trunks. For example,
the m-cycle generated from chord 5―6 is c8: 5―6―7―9―5.

B. Performance Metrics
To evaluate the performance of m-cycle construction

algorithms, the following metrics are used.
● Localization degree (DL): Ideally, there should be a one-

to-one mapping between the set of alarm codes and the set
of links to be monitored, such that a particular alarm code
indicates a unique link failure. However, some alarm
codes may not be able to localize the fault to a particular
link. 1 To measure the accuracy of the fault detection,
localization degree DL is defined as DL=L/A, where L is
the total number of links to be monitored, and A is the size
of the alarm code set. Note that we only consider a single
link failure at a time. So, A cannot be larger than L. A
smaller DL means a better fault localization. Ideally, DL=1.

● Number of cycles (M): Because one monitor is assigned to
each m-cycle, obviously we want to minimize the number
of required monitoring cycles M.

● Cover length (LC): It is the total number of supervisory
wavelength-links required, i.e. the total bandwidth for
monitoring. LC =∑ i Li where Li is the length of m-cycle ci.

● Monitoring wavelength requirement (W): Each m-cycle
requires a dedicated wavelength channel on each link it
covers. Let ti be the number of monitoring cycles that
cover link i. Then, W=maxi{ti} is the (maximum)
monitoring wavelength requirement.

III. M2-CYCLE ALGORITHM
To construct m2-cycles based on a given link, we can

temporarily remove this link and then calculate all the shortest
paths between its two end nodes. Combining each shortest path
found with the given link, a set of m2-cycles can be obtained.
For example, the m2-cycles based on link 7―10 in Fig. 2 are 7
―6―10―7, 7―8―10―7 and 7―9―10―7.

M2-CYCLE algorithm is summarized in Fig. 5. It is
designed based on the above m2-cycle construction and
consists of two main operations: expansion and refinement.
Expansion is to construct a base set of m2-cycles, and
refinement is to remove/add any redundant/missing m2-cycles
from/to the base set.

A. Expansion: Constructing the Base Set
Initially, all the links are marked as uncovered, and the base

set B is null (Φ). Based on each link, m2-cycles are constructed
and put into a list Θ in ascending order of their lengths.

First, we scan through Θ and find the first m2-cycle that
traverses some uncovered links. These uncovered links form a
set F. We then enter the inner-loop expansion iteration (Steps
2b―2d in Fig. 5) with set F. A running set T is initialized to
Φ. For each link in F, we find its associated m2-cycles. If an

1 E.g. the faults at 8―13 and 13―14 in ARPA2 in Fig. 8 have identical

alarm codes, because any cycle covering 8―13 must also cover 13―14.

m2-cycle covers at least one uncovered link, add it to B. At the
same time, mark all the newly covered links as covered, and
add them to T. Define this inner-loop iteration as a round. At
the end of each round, we update F by setting T→F, and
proceed to the next round with the updated F. This process
continues until we cannot add any new m2-cycle to B. That is,
the m2-cycles associated with each link in F do not cover any
new uncovered links. Then by repeating the above process, we
scan through Θ again and find the next m2-cycle that has some
uncovered links. If none can be found, the expansion ends.

Fig. 2 shows an example for the SmallNet. Compared with
the result in Fig. 1, a different set of cycles are found.

B. Refinement 1: Removing Redundant m2-cycles
A careful study on Fig. 2 shows that, if we remove c6: 7―8

―9―7 (or c9: 7―9―10―7) from B, any link failure can still
be identified by a unique alarm code. To identify and remove
such redundant m2-cycles, we first construct an alarm code
table TA from B, as in Fig. 3. For each column/m2-cycle in TA,
we shadow it and check if there are any all-zero rows or
identical alarm codes in the not-shadowed part. If there are all-
zero rows, it means that the corresponding links are covered
only by this m2-cycle, and thus it is not redundant. If there are
identical alarm codes, we check if some of them become
different from others after removing the shadow. If yes, then
this m2-cycle is not redundant. Otherwise, this redundant m2-
cycle is removed from B, and the corresponding column is
deleted from TA. We then repeat this process until all m2-cycles
in TA are checked. In Fig. 3, only c6 is removed from B.

C. Refinement 2: Adding Missing m2-cycles
On the other hand, the m2-cycles in B may not be sufficient

to identify all the link failures that should be identified. In Fig.

8 9

7 10

1

2

3 4

5

6
c1: 1-2-7-1 c8 : 5-6-10-5
c2: 2-7-8-2 c9 : 7-9-10-7
c3: 7-1-6-7 c10: 8-9-3-8
c4: 6-7-10-6 c11: 9-10-5-9
c5: 7-8-10-7 c12: 3-4-9-3
c6: 7-8-9-7 c13: 4-5-9-4
c7: 2-3-8-2

+ *

+
+

+

Base set of m2-cycles

c6 is removed by the
refinement operation

Fig. 2. Expansion in M2-CYCLE (starts from c1 and the links in F
after each round are marked in the topology.).

Round B and F
 F={1-2, 1-7, 2-7};

1st B={c1, c2, c3}, F={1-2, 1-7, 2-7, 1-6, 6-7, 7-8, 8-2};
2nd B={c1, c2, c3, c4, c5, c6, c7},

F={6-10, 10-8, 8-3, 3-2, 7-10, 7-9, 8-9};
3rd B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10},

F={6-5, 5-10, 10-9, 9-3};
4th B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12},

F={5-9, 9-4, 4-3};
5th B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13}, F={4-5}.

Performance metrics: DL=1.000, M=13, LC=43, W=6

chord chord chord
c1: 1-2-7-1 c5: 3-4-9-3 c9 : 5-10-7-9-5
c2: 1-6-7-1 c6: 3-8-7-9-3 c10: 6-10-7-6
c3: 2-3-9-7-2 c7: 4-5-9-4 c11: 8-9-7-8
c4: 2-8-7-2 c8 : 5-6-7-9-5 c12: 8-10-7-8
 c13: 9-10-7-9

m-cycles
1

2
10

3 4

5

6

7

8 9

Fig. 1. HST for SmallNet (10 nodes, 22 links).

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

4, assume m2-cycles c1 to c5 are added to B. Then, no matter
how c6 is chosen (either 1―9―10―13―12―1 or 1―11―10
―13―12―1), all the links are covered but the faults at 1―9
and 9―10 are still indistinguishable due to the same alarm
code ([0, 0, 0, 0, 1, 1] or [0, 0, 0, 0, 1, 0], depending on which
c6 is used).

To address this issue, we construct an m2-cycle based on
link 9―10 by temporarily removing 1―9, and vice versa. If
such two m2-cycles exist, we add the one with shorter length to
B. (Otherwise the two faults are indistinguishable by any cycle-
based monitoring scheme.) TA is then updated by the new m2-
cycle. In Fig. 4, c7: 1―3―5―7―9―1 is added and the first c6
is used. Then the two faults can be identified by alarm codes
[0, 0, 0, 0, 1, 1, 1] and [0, 0, 0, 0, 1, 1, 0], respectively.

In practice, if some links have identical alarm codes in TA,
we use this process for possible adding of an extra m2-cycle.

IV. PROPERTIES OF M2-CYCLE
Theorem 1: M2-CYCLE gives a cycle cover CM to cover

every link in the network.
Proof: Because the network is connected and has no single-

bridge link, any uncovered link can be identified in Step 2e of
M2-CYCLE, and then covered by adding a new m2-cycle to B.
Note that Step 3b (removing redundant m2-cycles) cannot turn
any covered link to an uncovered one. Consequently, every
link in the network is covered by CM. #

Theorem 2: The number of m2-cycles generated by M2-
CYCLE will never be larger than the number of m-cycles
generated by any spanning tree-based algorithm.

Proof: Let G(V, E) denote the network and SO denote an
arbitrary spanning tree in G(V, E). Assume that we have a
blank sheet on hand called draft. Each time when we add an
m2-cycle to the base set B, we also draw it in the draft (In other
words, the m2-cycle is introduced to the draft). Our approach is
to count the minimum possible number of chords that are
introduced to the draft. So, each link in the draft is assumed as
a trunk unless we can identify it as a chord. Since a spanning
tree-based algorithm generates an m-cycle from each chord, we

can thus compare the number of m2-cycles generated by M2-
CYCLE with the number of chords in the draft.

Our proof is based on the three possible draft scenarios
shown in Fig. 6. In particular, Figs. 6a & 6b are for the
expansion operation and Fig. 6c targets at the refinement.

In Fig. 6a, when we add the first two m2-cycles c1: a―b―c
―d―a and c2: e―f―g―h―i―e to the draft, there must be a
chord on each of them. Otherwise we can find a loop in SO,
which is impossible. In the draft, other links (except the two
identified chords) form two separate “spanning trees” in c1 and
c2 respectively. To distinguish such “spanning trees” in the
draft from SO in G(V, E), we call them virtual spanning trees
(VSTs). VSTs expand (and merge) as more m2-cycles are

4
5

7 3

6

9

8

1
2

10

11
12 13

c4

c3 c2

c6
c5

c7
c1

Base set of m2-cycles

c1: 1-2-3-1
c2: 3-4-5-3
c3: 5-6-7-5
c4: 7-8-9-7
c5: 1-9-10-11-1
c6: 1-9-10-13-12-1 or

1-11-10-13-12-1
c7: 1-3-5-7-9-1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

1-2 1
1-6 1
1-7 1 1
2-7 1 1
2-8 1 1
2-3 1
3-8 1 1
3-9 1 1
3-4 1
4-9 1 1
4-5 1
5-9 1 1
5-10 1 1
5-6 1
6-10 1 1
6-7 1 1
7-8 1 1 1
7-9 1 1
7-10 1 1 1
8-9 1 1
8-10 1
9-10 1 1

Fig. 4. Some m2-cycles
may be missing from the
base set B.

Fig. 3. TA for the solution in Fig. 2. A
“1” indicates that an m2-cycle covers the
corresponding link, and 0s are omitted.

Fig. 5. M2-CYCLE algorithm.

M2-CYCLE ALGORITHM
Input:

A network G(V, E) without single-bridge link.
Output:

A cycle cover CM={c1, c2, …,cM}, and an alarm code table TA.
Step 1: Initialization:

Mark all the links in G(V, E) as uncovered. Initialize a base set B to
null (Φ). Construct m2-cycles based on each link in G(V, E) and add
them to a list Θ in ascending order of their lengths.
Step 2: Expansion to construct the base set B:

2a) Scan through Θ and find the first m2-cycle that has some
uncovered links. These uncovered links form a set F.

2b) Set Φ→T.
2c) Pick up a link from F and find all m2-cycles based on it. If an

m2-cycle covers at least one uncovered link, add this m2-cycle to B.
Mark all the links newly covered by this m2-cycle as covered and add
them to T. Repeat Step 2c) for all the links in F. Then set T→F.

2d) Repeat 2b)-2c) until no new m2-cycle can be added to B.
2e) Check if there are any uncovered links left in G(V, E). If yes,

go to 2a). Otherwise go to Step 3.
Step 3: Refinement to remove/add m2-cycles:

3a) Construct an alarm code table TA, where each row denotes an
alarm code for a link in G(V, E) and each column represents an m2-
cycle in B. Initialize all the entries in TA to 0. For each m2-cycle, find
the links it covers and set the corresponding entries to 1 in TA.

3b) For each column in TA, shadow it and check if there are all-zero
rows or identical alarm codes in the remaining not-shadowed part. If
some all-zero rows exist or some identical alarm codes become different
from others after removing the shadow, then un-shadow it and check the
next column. Otherwise delete it from TA and the corresponding m2-
cycle from B. Repeat 3b) until all the columns are checked.

3c) Check if any two links la and lb have identical alarm codes in
TA. If yes, temporarily remove la from G(V, E) and find an m2-cycle
based on lb, and vice versa. If such two m2-cycles exist, add the one with
shorter length to B. Then add it to TA by creating a new column and set
the entries to 1 or 0 according to the links it covers.

3d) Set B→CM. The final solution is in CM, with alarm codes in TA.

These two paths bridge
the VST twice.

Fig. 6. Three possible draft scenarios.

c1

a
Draft

c3

(a)

b

cd
j k

c2

e

f
g

i

h

c1

c2

a
Draft

c3

(b)

b

c

d e f

(c)

VST

cx

a

Draft cy

b
c

d e

f

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

added to the draft. (Also note that VSTs are not necessarily
sub-graphs of SO, as we only use them as an aid to count the
minimum number of chords in the draft.) Then, assume a third
m2-cycle c3: c―d―k―j―g―c is added to the draft and it
connects c1 and c2. This must introduce another new chord,
otherwise we can find a loop in SO (no matter where the first
two chords locate in c1 and c2). To minimize the number of
chords in the draft, the expanded/merged VST remains as a
spanning tree. In general, if an m2-cycle connects two separate
VSTs, then this m2-cycle also introduces a new chord, and the
expanded/merged VST remains as a spanning tree in the draft.

We now consider the scenario in Fig. 6b, where m2-cycles
c1: a―b―d―a, c2: c―b―d―c and c3: f―a―e―c―f are
added to the draft one by one. Essentially, adding c2 is
equivalent to bridging the two nodes b and d in the VST
(formed by c1) with a new path b―c―d. To avoid any loop in
SO and to minimize the number of chords in the draft, bridging
b and d must introduce a new chord, and the expanded VST
(formed by c1 and c2) remains as a spanning tree. Then, when
c3 is added, the VST formed by c1 and c2 is actually bridged
twice by a―e―c and a―f―c. So, c3 introduces two new
chords instead of one. In general, each time when an m2-cycle
is added to an existing VST, the number of chords it introduces
is equal to the number of times that the VST has been bridged.

Combining the scenarios in Figs. 6a & 6b, the number of
m2-cycles constructed from the expansion operation of M2-
CYCLE does not exceed the number of chords in G(V, E).

We then consider the refinement operation of M2-CYCLE.
Assume that three links a―b, c―d, and e―f in Fig. 6c are
covered by the same set of m2-cycles and thus the faults are
indistinguishable. Let cx be the first m2-cycle that introduces
the three links to the draft, and cy be an m2-cycle constructed
later. Both cx and cy are obtained from the expansion operation.
When cx is constructed, the draft only contains cx and all the
m2-cycles constructed before cx (i.e. cy is not included yet).
Then, we temporarily remove any one of the three links and
construct an m2-cycle in the current draft based on one of the
two remaining links. If such an m2-cycle cannot be found, then
the two links remain indistinguishable in the current draft
(such as c―d and e―f). On the other hand, if such a new m2-
cycle is obtained, e.g., e―f is temporarily removed and an m2-
cycle based on a―b can be obtained passing through some
nodes in the original VST, then cx must have bridged the
original VST twice and thus should have introduced two new
chords. However, we have added only one m2-cycle cx to B.
So, by following Step 3c in Fig. 5 and add an extra m2-cycle to
distinguish the two faults, the number of m2-cycles still does
not exceed the number of chords.

For any links that remain indistinguishable, such as c―d
and e―f, assume the refinement operation finally adds a new
m2-cycle to distinguish them by temporarily removing e―f and
constructing an m2-cycle based on c―d. This is possible only if
there is an m2-cycle cy constructed later that covers some nodes
or links between d and e (to provide a branch route). Since c―
d and e―f are still indistinguishable after cy is added, cy must
cover either both or none of them. In both cases, cy must have
bridged the VST twice as shown in Fig. 6c (note that cx is now
included in the VST). So again two new chords are introduced
by cy but only one m2-cycle cy has been constructed. If we add

an extra m2-cycle to distinguish the two faults, the number of
m2-cycles does not exceed the number of chords in G(V, E).

Combining our proofs above for the three possible draft
scenarios in Fig. 6, the number of m2-cycles generated by M2-
CYCLE will never be larger than the number of m-cycles
generated by any spanning tree-based algorithm. In addition,
the refinement operation of M2-CYCLE may further remove
some redundant m2-cycles. #

Theorem 3: Compared to any spanning tree-based m-cycle
construction algorithm, the length of each m2-cycle and the
cover length LC in M2-CYCLE are both smaller.

Proof: From the expansion of M2-CYCLE, the length of
m2-cycles constructed based on each link is minimized. In Step
3c of the refinement, if we need to add an extra m2-cycle to B,
it is also constructed in a minimum length manner. Note that LC
is the sum of all the cycle lengths. Since the number of m2-
cycles in M2-CYCLE is not more than that of m-cycles in a
spanning tree-based approach, and the length of each m2-cycle
is minimized, obviously LC in M2-CYCLE is also smaller. #

Theorem 4: The monitoring wavelength requirement W is
not more than that of any spanning tree-based algorithm.

Proof: Let CM and CS be the solutions of M2-CYCLE and a
spanning tree-based algorithm, respectively. Because the length
of each m2-cycle in CM is minimized, we can enlarge some m2-
cycles in CM and turn CM into CS.2 In Fig. 7, c1: b―a―e―b,
c2: c―b―e―f―c and c3: d―c―f―g―d are three m2-
cycles in CM. c1 is also an m-cycle in CS because it covers only
one chord. If we replace the chord b―e in c2 by path b―a―e,
and the chord c―f in c3 by path c―b―a―e―f, then both c2
and c3 are turned into m-cycles.

Without loss of generality, we consider b―a―e―b in Fig.
7. Assume that b―a, a―e, and b―e are covered by CM for ∆1,
∆2, and x times, respectively. In order to transform CM to CS,
we need to reroute some cycles from b―e to b―a―e for x-1
times (note that each chord is covered only once in CS, and b―
a―e is the only path in the spanning tree that connects nodes b
and e). Then, the number of cover times for each link is:

b―a: ∆1+(x-1)
 a―e: ∆2+(x-1) (1)

b―e: 1
Besides b―e, other chords (such as c―f in c3) may also need
to be rerouted across b―a―e. Let WM and WS denote the
monitoring wavelength requirement by CM and CS. We have

{ })1(,max 21 −+∆∆≥ xWS . (2)
Since the values of ∆1, ∆2 and x must be at least one (i.e. each
link is covered at least once by CM), we get

{ }21,max ∆∆≥SW and xWS ≥ . (3)

2 In fact, a trivial difference may exist due to the removal of redundant

m2-cycles. But it does not affect our proof. Note that the direction of the cycle
is not important. e.g. b―a―e―b and e―a―b―e are the same in Fig. 7.

Fig. 7. An m2-cycle can be enlarged to get an m-cycle.

a
b

c
d

e f g

c2 c1 c3

G(V, E)
∆1

∆2
x

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Formula (3) indicates that WS is not smaller than the number of
times that b―a, a―e and b―e are covered by CM. Note that b
―a―e―b is an m-cycle in CS. In fact, we can extend this
analysis to any cs∈CS (such as c―b―a―e―f―c). Since CS
covers every link in the topology, from (3) we have WM≤WS. #

Theorem 5: The localization degree DL of M2-CYCLE is
not larger than that in any spanning tree-based algorithm.

Proof: In M2-CYCLE, if any two links have identical alarm
codes, one link is temporarily removed, and an additional m2-
cycle is constructed based on the other link to distinguish the
two faults. If this additional m2-cycle cannot be obtained, any
cycle-based algorithm will fail to distinguish the two faults,
including any spanning tree-based algorithm. Since a smaller
DL means a better fault localization, DL in M2-CYCLE is not
larger than that in any spanning tree-based algorithm. #

V. DISCUSSION
Fig. 8 compares M2-CYCLE with HST [7]. Note that a

comparison has been given in [7] to show that HST
outperforms HDFS and SPEM [6]. For the three topologies in
Fig. 8, M2-CYCLE achieves the same localization degree DL as
HST, but saves 2.5%, 12.5%, 16.36% on cover length LC, and
40%, 33.33%, 62.5% on monitoring wavelength requirement
W. For the SmallNet in Figs. 1 & 2, one monitor is also saved.

In Fig. 9a, M2-CYCLE returns a solution with DL=1, and all
dashed links are covered only once using the 9 m2-cycles c1~c9.
However, HST needs 10 m-cycles because a redundant m-
cycle c10 at the center is also included. We call such a center as
an inside track. Fig. 9b shows that many inside tracks may
exist in a large network, each of which introduces a redundant
monitor. M2-CYCLE does not have this problem.

If several nodes form a segment (i.e. they are consecutively
connected without any bifurcation, e.g. 8―9―10―11 in
ARPA2 in Fig. 8), then the link failures cannot be localized to
individual links by any cycle-based monitoring scheme. To

solve this problem, link-based monitors are needed [7].

VI. CONCLUSION
Monitoring-cycle (m-cycle) provides an efficient fast link

failure detection mechanism in all-optical networks. In this
paper, a new algorithm M2-CYCLE was proposed to construct
a set of minimum-length m-cycles (m2-cycles). We proved that
M2-CYCLE outperforms the existing spanning tree-based
approach, no matter how the spanning tree is constructed.
Numerical results showed that M2-CYCLE minimizes the
required network resources, and gives the most accurate fault
detection. The performance gap to the existing spanning tree-
based algorithm increases with the network size.

REFERENCES
[1] M. Goyal, K. K. Ramakrishnan, and W.-C. Feng, “Achieving faster

failure detection in OSPF networks”, IEEE ICC’03, 2003.
[2] C. Assi, Y. Ye, A. Shami, S. Dixit and M. Ali, “A hybrid distributed

fault-management protocol for combating single-fiber failures in mesh-
based DWDM optical networks”, IEEE Globecom’02, 2002.

[3] T. Y. Chow, F. Chudak and A. M. Ffrench, “Fast optical layer mesh
protection using pre-cross-connected trails”, IEEE/ACM Trans. on
Networking, vol. 12, no. 3, pp. 539-548, JUN 2004.

[4] Y. Kobayashi, Y. Tada, S. Matsuoka, N. Hirayama, and K. Hagimoto,
“Supervisory systems for all-optical network transmission systems”,
IEEE Globecom’96, pp. 933-937, 1996.

[5] C. Mas and P. Thiran, “A review on fault location methods and their
applications in optical networks”, Optical Network Magazine, vol. 2, no.
4, 2001.

[6] H. Zeng, C. Huang, A. Vukovic and M. Savoie, “Fault detection and
path performance monitoring in meshed all-optical networks”, IEEE
Globecom 2004.

[7] H. Zeng, C. Huang and A. Vukovic, “Spanning tree based monitoring-
cycle construction for fault detection and localization in mesh AONs”,
IEEE ICC’05, 2005.

[8] Y. Hamazumi, M. Koga, K. Kawai, H. Ichino and K. Sato, “Optical path
fault management in layered networks”, IEEE Globecom’98, vol. 4, pp.
2309-2314, Nov. 1998.

[9] C.-S. Li, and R. Ramaswami, “Automatic fault detection, isolation, and
recovery in transparent all-optical networks”, IEEE J. of Lightwave
Tech., vol. 15, no. 10, pp. 1784-1793, Oct. 1997.

[10] S. Stanic, S. Subramaniam, H. Choi, G. Sahin and H.-A. Choi, “On
monitoring transparent optical networks”, Int’l Conf. on Parallel
Processing Workshops, pp. 217-223, Aug. 2002.

G(V, E)

Fig. 9. Many inside tracks may exist in a large network.
(a) (b)

c2 c3
c4 c5 c6

c7
c8

c9

c10

c1

Inside tracks

c1: 1-2-3-1
c2: 10-13-12-14-10
c3: 10-13-9-14-10
c4: 1-3-6-5-4-1
c5: 6-11-9-13-12-6
c6: 8-9-11-6-5-7-8
c7: 8-9-11-6-3-2-8
c8: 4-10-14-12-6-5-4

c1: 1-2-3-1
c2: 1-4-5-6-3-1
c3: 4-10-13-12-6-5-4
c4: 7-8-2-3-6-5-7
c5: 8-9-13-12-6-3-2-8
c6: 9-11-6-12-13-9
c7: 9-14-12-13-9
c8: 10-14-12-13-10

DL=1.105, M=8, LC=39, W=3

HST

M2-CYCLE

NSFNET ARPA2

c1: 4-5-6-3-2-1-4
c2: 7-8-1-2-3-6-7
c3: 13-14-12-11-10-9-8-13
c4: 15-16-14-12-11-10-9-

8-1-2-3-6-15
c5: 20-21-18-17-11-12-14

-16-19-20

c8 : 5-15-6-5
c9 : 7-12-8-7
c10: 8-11-2-8
c11: 9-10-2-8-9
c12: 9-11-2-8-9
c13: 12-13-2-8-12
c14: 12-14-6-3-2-8-12

c1: 1-9-8-2-1
c2: 1-10-2-1
c3: 3-13-2-3
c4: 4-5-6-3-4
c5: 4-13-2-3-4
c6: 6-7-8-2-3-6
c7: 6-12-8-2-3-6

Bellcore

c1: 1-2-3-6-5-4-1
c2: 1-2-3-6-7-8-1
c3: 6-15-16-14-13-8-7-6
c4: 13-14-12-11-10-9-8-13
c5: 16-19-20-21-18-17-11-

12-14-16

DL=2.500, M=5, LC=35, W=2

c1: 1-2-10-1
c2: 1-10-9-1
c3: 2-11-8-2
c4: 11-8-9-11
c5: 2-3-13-2
c6: 3-13-4-3
c7: 5-6-15-5

c8 : 6-7-12-6
c9 : 7-12-8-7
c10: 12-6-14-12
c11: 13-12-8-2-13
c12: 12-13-3-6-12
c13: 3-6-5-4-3
c14: 2-11-9-10-2

DL=1.077, M=14, LC=46, W=3

DL=1.105, M=8, LC=40, W=5 DL=2.500, M=5, LC=40, W=3 DL=1.077, M=14, LC=55, W=8

Fig. 8. Compare M2-CYCLE with HST [7] (the three topologies are taken from [7]).

13

11

14

10

12

1

2

3

4

6

7

8
9

5

NSFNET: 14 nodes, 21 links

ARPA2: 21 nodes, 25 links Bellcore: 15 nodes, 28 links

1

2

3

4

5

6

7

8 9 10

13

15

11

12

14

16

17 18

19

21

20

10
9

7

8

5

1

2

3

4

11

13
12

14

15
6

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

