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Abstract—To achieve fast link failure detection in all-optical 
networks, the notion of monitoring-cycle (m-cycle) is introduced. 
The best known m-cycle construction algorithm (HST [7]) adopts 
a spanning tree-based approach. In this paper, we propose a new 
algorithm M2-CYCLE to construct a set of minimum-length m-
cycles (or m2-cycles) for more efficient link failure detection. We 
prove that the performance of M2-CYCLE is never worse than 
any spanning tree-based approach. Comparing M2-CYCLE to 
the existing algorithms, we show that it uses the least amount of 
network resources (measured by the number of cycles, cover 
length and monitoring wavelength requirement) to achieve the 
most accurate link failure detection (measured by localization 
degree). 

Keywords-All-optical networks (AONs); cycle cover; fast link 
failure detection;  monitoring-cycle. 

I.  INTRODUCTION 
With the rapid progress of optical technologies, the 

communication infrastructure continuously evolves towards 
all-optical networks (AONs). In WDM (wavelength division 
multiplexing) optical networks, hundreads of wavelengths can 
be multiplexed onto a single fiber for efficient transmission. 
Therefore, fiber-cuts cause great data loss. In order to provide 
protection or restoration, fast link failure detection is a priori. 

Link failure detection in AONs can be implemented at 
different protocol layers, e.g. physical/optical or network layer. 
In fact, most network layer routing protocols (such as OSPF 
and IS-IS) already have built-in fault detection mechanisms [1]. 
To accelerate the detection speed, cross-layer design is also 
proposed [2]. Nevertheless, such techniques can only render a 
detection time in seconds, which is much longer than the 
typical requirement of 50 ms [3] for optical recovery. 
Therefore, optical layer schemes are preferred. On the other 
hand, those schemes designed for traditional optical networks 
(e.g. SDH/SONET) cannot be transplanted to AONs because of 
the lack of electrical terminations [4-5]. 

At the optical layer, a fault can be detected by measuring 
optical power, analyzing optical spectrum, using pilot tones or 
optical time domain reflectometry (OTDR) [6-7]. This is 
carried out by a special optical device called monitor [8-10]. A 
channel-based monitoring scheme uses one monitor for each 
wavelength channel of a link, thereby requiring a very large 
number of monitors. A link-based monitoring scheme is more 
scalable, but still requires one monitor per link. 

To further reduce the number of required monitors, the 
notion of monitoring-cycle (m-cycle) [6-7] is introduced. An 
m-cycle is implemented by assigning a dedicated loop-back 
supervisory wavelength to spy on the links along it. The basic 

idea is to find a cycle cover, defined as a set of m-cycles {c1, c2, 
…, cM} that cover every link in the network, and assign a 
monitor to each m-cycle. Each link may be covered by more 
than one m-cycles. If a particular link fails, it triggers alarms in 
all the m-cycles covering this link. For a cycle cover with size 
M, an alarm code is of format [a1, a2, …, aM], where ai=1 if m-
cycle ci alarms and ai=0 otherwise. The location of the fault 
can then be identified by decoding the alarm code. For 
example, the network in Fig. 1 is covered by M=13 m-cycles. If 
link 7―10 fails, alarm code [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1] 
will be generated due to the fault detection by monitors on m-
cycles c9, c10, c12, and c13. Similarly, if the fault is detected by 
monitors on c2, c8, and c10, there must be a fault at link 7―6. 

Based on the above idea, three algorithms (HDFS, SPEM 
[6] and HST [7]) are proposed to construct m-cycles. The 
objective is to localize the fault and minimize the network 
resource consumption (monitors, wavelengths, etc). Among 
them, HST constructs m-cycles based on a carefully designed 
spanning tree, and it delivers the best performance [7]. 

In this paper, we propose to construct a set of minimum- 
length m-cycles (or m2-cycles) for fast link failure detection at 
optical layer. The length of a cycle is defined as the number of 
links it covers. Our algorithm is called M2-CYCLE. For 
simplicity, we focus on networks connected by single fiber 
links although a multi-fiber extension is possible. Besides, we 
assume that the network has no single-bridge link, as it can 
separate the network into two unconnected parts if it is 
removed. Note that such single-bridge links are usually 
avoided in the network design [7]. We prove that the 
performance of M2-CYCLE is never worse than any spanning 
tree-based approach, no matter how the spanning tree is 
constructed. Numerical results show that M2-CYCLE requires 
much less network resources than HST [7]. 

The rest of the paper is organized as follows. In Section II, 
we review the spanning tree-based approach, and discuss the 
performance metrics. In Section III, M2-CYCLE is presented, 
and its properties are proved in Section IV. Discussions are 
given in Section V and we conclude the paper in Section VI. 

II. SPANNING TREE-BASED M-CYCLE CONSTRUCTION AND 
PERFORMANCE METRICS 

A. Spanning Tree-Based M-cycle Construction 
HST [7] constructs m-cycles based on a spanning tree. The 

spanning tree roots at the node with the maximum degree, and 
always extends at the nodes with the maximum number of 
neighbors that are not yet included in the tree. Let node 7 in 
Fig. 1 (taken from [7]) be the root. All links incident on node 7 
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are first added to the tree. The tree then extends at node 9, and 
the corresponding links 3―9, 4―9 and 5―9 are added. This 
process continues until a spanning tree is built. Links in the 
spanning tree are called trunks (denoted by bold lines), and 
other links are called chords. HST generates an m-cycle from 
each chord, along which all other links are trunks. For example, 
the m-cycle generated from chord 5―6 is c8: 5―6―7―9―5. 

B. Performance Metrics 
To evaluate the performance of m-cycle construction 

algorithms, the following metrics are used. 
● Localization degree (DL): Ideally, there should be a one-

to-one mapping between the set of alarm codes and the set 
of links to be monitored, such that a particular alarm code 
indicates a unique link failure. However, some alarm 
codes may not be able to localize the fault to a particular 
link. 1  To measure the accuracy of the fault detection, 
localization degree DL is defined as DL=L/A, where L is 
the total number of links to be monitored, and A is the size 
of the alarm code set. Note that we only consider a single 
link failure at a time. So, A cannot be larger than L. A 
smaller DL means a better fault localization. Ideally, DL=1. 

● Number of cycles (M): Because one monitor is assigned to 
each m-cycle, obviously we want to minimize the number 
of required monitoring cycles M. 

● Cover length (LC): It is the total number of supervisory 
wavelength-links required, i.e. the total bandwidth for 
monitoring. LC =∑ i Li where Li is the length of m-cycle ci. 

● Monitoring wavelength requirement (W): Each m-cycle 
requires a dedicated wavelength channel on each link it 
covers. Let ti be the number of monitoring cycles that 
cover link i. Then, W=maxi{ti} is the (maximum) 
monitoring wavelength requirement. 

III. M2-CYCLE ALGORITHM 
To construct m2-cycles based on a given link, we can 

temporarily remove this link and then calculate all the shortest 
paths between its two end nodes. Combining each shortest path 
found with the given link, a set of m2-cycles can be obtained. 
For example, the m2-cycles based on link 7―10 in Fig. 2 are 7
―6―10―7, 7―8―10―7 and 7―9―10―7. 

M2-CYCLE algorithm is summarized in Fig. 5. It is 
designed based on the above m2-cycle construction and 
consists of two main operations: expansion and refinement. 
Expansion is to construct a base set of m2-cycles, and 
refinement is to remove/add any redundant/missing m2-cycles 
from/to the base set. 

A. Expansion: Constructing the Base Set 
Initially, all the links are marked as uncovered, and the base 

set B is null (Φ). Based on each link, m2-cycles are constructed 
and put into a list Θ in ascending order of their lengths. 

First, we scan through Θ and find the first m2-cycle that 
traverses some uncovered links. These uncovered links form a 
set F. We then enter the inner-loop expansion iteration (Steps 
2b―2d in Fig. 5) with set F. A running set T is initialized to 
Φ. For each link in F, we find its associated m2-cycles. If an 

                                                        
1 E.g. the faults at 8―13 and 13―14 in ARPA2 in Fig. 8 have identical 

alarm codes, because any cycle covering 8―13 must also cover 13―14.  

m2-cycle covers at least one uncovered link, add it to B. At the 
same time, mark all the newly covered links as covered, and 
add them to T. Define this inner-loop iteration as a round. At 
the end of each round, we update F by setting T→F, and 
proceed to the next round with the updated F. This process 
continues until we cannot add any new m2-cycle to B. That is, 
the m2-cycles associated with each link in F do not cover any 
new uncovered links. Then by repeating the above process, we 
scan through Θ again and find the next m2-cycle that has some 
uncovered links. If none can be found, the expansion ends. 

Fig. 2 shows an example for the SmallNet. Compared with 
the result in Fig. 1, a different set of cycles are found. 

B. Refinement 1: Removing Redundant m2-cycles 
A careful study on Fig. 2 shows that, if we remove c6: 7―8

―9―7 (or c9: 7―9―10―7) from B, any link failure can still 
be identified by a unique alarm code. To identify and remove 
such redundant m2-cycles, we first construct an alarm code 
table TA from B, as in Fig. 3. For each column/m2-cycle in TA, 
we shadow it and check if there are any all-zero rows or 
identical alarm codes in the not-shadowed part. If there are all-
zero rows, it means that the corresponding links are covered 
only by this m2-cycle, and thus it is not redundant. If there are 
identical alarm codes, we check if some of them become 
different from others after removing the shadow. If yes, then 
this m2-cycle is not redundant. Otherwise, this redundant m2-
cycle is removed from B, and the corresponding column is 
deleted from TA. We then repeat this process until all m2-cycles 
in TA are checked. In Fig. 3, only c6 is removed from B. 

C. Refinement 2: Adding Missing m2-cycles 
On the other hand, the m2-cycles in B may not be sufficient 

to identify all the link failures that should be identified. In Fig. 
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c2: 2-7-8-2        c9 : 7-9-10-7 
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c4: 6-7-10-6      c11: 9-10-5-9 
c5: 7-8-10-7      c12: 3-4-9-3 
c6: 7-8-9-7        c13: 4-5-9-4 
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+ 
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c6 is removed by the 
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Fig. 2.  Expansion in M2-CYCLE (starts from c1 and the links in F 
after each round are marked in the topology.). 

Round                  B and F 
      F={1-2, 1-7, 2-7}; 

1st            B={c1, c2, c3}, F={1-2, 1-7, 2-7, 1-6, 6-7, 7-8, 8-2}; 
2nd              B={c1, c2, c3, c4, c5, c6, c7}, 

F={6-10, 10-8, 8-3, 3-2, 7-10, 7-9, 8-9}; 
3rd          B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}, 

F={6-5, 5-10, 10-9, 9-3}; 
4th          B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}, 

F={5-9, 9-4, 4-3}; 
5th          B={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13}, F={4-5}. 

Performance metrics: DL=1.000, M=13, LC=43, W=6

chord               chord                   chord 
c1: 1-2-7-1       c5: 3-4-9-3        c9 : 5-10-7-9-5 
c2: 1-6-7-1       c6: 3-8-7-9-3    c10: 6-10-7-6 
c3: 2-3-9-7-2   c7: 4-5-9-4        c11: 8-9-7-8 
c4: 2-8-7-2       c8 : 5-6-7-9-5    c12: 8-10-7-8 
                                                      c13: 9-10-7-9 
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Fig. 1.  HST for SmallNet (10 nodes, 22 links).
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4, assume m2-cycles c1 to c5 are added to B. Then, no matter 
how c6 is chosen (either 1―9―10―13―12―1 or 1―11―10
―13―12―1), all the links are covered but the faults at 1―9 
and 9―10 are still indistinguishable due to the same alarm 
code ([0, 0, 0, 0, 1, 1] or [0, 0, 0, 0, 1, 0], depending on which 
c6 is used). 

To address this issue, we construct an m2-cycle based on 
link 9―10 by temporarily removing 1―9, and vice versa. If 
such two m2-cycles exist, we add the one with shorter length to 
B. (Otherwise the two faults are indistinguishable by any cycle-
based monitoring scheme.) TA is then updated by the new m2-
cycle. In Fig. 4, c7: 1―3―5―7―9―1 is added and the first c6 
is used. Then the two faults can be identified by alarm codes 
[0, 0, 0, 0, 1, 1, 1] and [0, 0, 0, 0, 1, 1, 0], respectively. 

In practice, if some links have identical alarm codes in TA, 
we use this process for possible adding of an extra m2-cycle. 

IV. PROPERTIES OF M2-CYCLE 
Theorem 1: M2-CYCLE gives a cycle cover CM to cover 

every link in the network. 
Proof: Because the network is connected and has no single-

bridge link, any uncovered link can be identified in Step 2e of 
M2-CYCLE, and then covered by adding a new m2-cycle to B. 
Note that Step 3b (removing redundant m2-cycles) cannot turn 
any covered link to an uncovered one. Consequently, every 
link in the network is covered by CM.                                       # 

Theorem 2: The number of m2-cycles generated by M2-
CYCLE will never be larger than the number of m-cycles 
generated by any spanning tree-based algorithm. 

Proof: Let G(V, E) denote the network and SO denote an 
arbitrary spanning tree in G(V, E). Assume that we have a 
blank sheet on hand called draft. Each time when we add an 
m2-cycle to the base set B, we also draw it in the draft (In other 
words, the m2-cycle is introduced to the draft). Our approach is 
to count the minimum possible number of chords that are 
introduced to the draft. So, each link in the draft is assumed as 
a trunk unless we can identify it as a chord. Since a spanning 
tree-based algorithm generates an m-cycle from each chord, we 

can thus compare the number of m2-cycles generated by M2-
CYCLE with the number of chords in the draft. 

Our proof is based on the three possible draft scenarios 
shown in Fig. 6. In particular, Figs. 6a & 6b are for the 
expansion operation and Fig. 6c targets at the refinement. 

In Fig. 6a, when we add the first two m2-cycles c1: a―b―c
―d―a and c2: e―f―g―h―i―e to the draft, there must be a 
chord on each of them. Otherwise we can find a loop in SO, 
which is impossible. In the draft, other links (except the two 
identified chords) form two separate “spanning trees” in c1 and 
c2 respectively. To distinguish such “spanning trees” in the 
draft from SO in G(V, E), we call them virtual spanning trees 
(VSTs). VSTs expand (and merge) as more m2-cycles are 
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c1    c2    c3    c4    c5    c6    c7    c8    c9    c10   c11   c12   c13 

 

1-2       1 
1-6                  1 
1-7       1         1 
2-7       1    1 
2-8             1                         1 
2-3                                        1 
3-8                                        1               1 
3-9                                                         1          1 
3-4                                                                     1 
4-9                                                                     1    1 
4-5                                                                           1 
5-9                                                               1          1 
5-10                                           1                1 
5-6                                             1 
6-10                      1                   1 
6-7                  1    1 
7-8             1              1    1 
7-9                                   1              1 
7-10                      1   1                    1 
8-9                                   1                    1 
8-10                           1 
9-10                                                 1          1 

Fig. 4.  Some m2-cycles 
may be missing from the 
base set B. 

Fig. 3.  TA for the solution in Fig. 2. A 
“1” indicates that an m2-cycle covers the 
corresponding link, and 0s are omitted. 

Fig. 5.  M2-CYCLE algorithm. 

M2-CYCLE ALGORITHM 
Input: 

A network G(V, E) without single-bridge link. 
Output:  

A cycle cover CM={c1, c2, …,cM}, and an alarm code table TA. 
Step 1: Initialization: 

Mark all the links in G(V, E) as uncovered. Initialize a base set B to 
null (Φ). Construct m2-cycles based on each link in G(V, E) and add 
them to a list Θ in ascending order of their lengths.  
Step 2: Expansion to construct the base set B: 

2a) Scan through Θ and find the first m2-cycle that has some 
uncovered links. These uncovered links form a set F. 

2b) Set Φ→T. 
2c) Pick up a link from F and find all m2-cycles based on it. If an 

m2-cycle covers at least one uncovered link, add this m2-cycle to B. 
Mark all the links newly covered by this m2-cycle as covered and add 
them to T. Repeat Step 2c) for all the links in F. Then set T→F. 

2d) Repeat 2b)-2c) until no new m2-cycle can be added to B. 
2e) Check if there are any uncovered links left in G(V, E). If yes, 

go to 2a). Otherwise go to Step 3. 
Step 3: Refinement to remove/add m2-cycles: 

3a) Construct an alarm code table TA, where each row denotes an 
alarm code for a link in G(V, E) and each column represents an m2-
cycle in B. Initialize all the entries in TA to 0. For each m2-cycle, find 
the links it covers and set the corresponding entries to 1 in TA. 

3b) For each column in TA, shadow it and check if there are all-zero 
rows or identical alarm codes in the remaining not-shadowed part. If 
some all-zero rows exist or some identical alarm codes become different 
from others after removing the shadow, then un-shadow it and check the 
next column. Otherwise delete it from TA and the corresponding m2-
cycle from B. Repeat 3b) until all the columns are checked. 

3c) Check if any two links la and lb have identical alarm codes in 
TA. If yes, temporarily remove la from G(V, E) and find an m2-cycle 
based on lb, and vice versa. If such two m2-cycles exist, add the one with 
shorter length to B. Then add it to TA by creating a new column and set 
the entries to 1 or 0 according to the links it covers.  

3d) Set B→CM. The final solution is in CM, with alarm codes in TA.

These two paths bridge 
the VST twice. 

Fig. 6.  Three possible draft scenarios. 
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added to the draft. (Also note that VSTs are not necessarily 
sub-graphs of SO, as we only use them as an aid to count the 
minimum number of chords in the draft.) Then, assume a third 
m2-cycle c3: c―d―k―j―g―c is added to the draft and it 
connects c1 and c2. This must introduce another new chord, 
otherwise we can find a loop in SO (no matter where the first 
two chords locate in c1 and c2). To minimize the number of 
chords in the draft, the expanded/merged VST remains as a 
spanning tree. In general, if an m2-cycle connects two separate 
VSTs, then this m2-cycle also introduces a new chord, and the 
expanded/merged VST remains as a spanning tree in the draft. 

We now consider the scenario in Fig. 6b, where m2-cycles 
c1: a―b―d―a, c2: c―b―d―c and c3: f―a―e―c―f are 
added to the draft one by one. Essentially, adding c2 is 
equivalent to bridging the two nodes b and d in the VST 
(formed by c1) with a new path b―c―d. To avoid any loop in 
SO and to minimize the number of chords in the draft, bridging 
b and d must introduce a new chord, and the expanded VST 
(formed by c1 and c2) remains as a spanning tree. Then, when 
c3 is added, the VST formed by c1 and c2 is actually bridged 
twice by a―e―c and a―f―c. So, c3 introduces two new 
chords instead of one. In general, each time when an m2-cycle 
is added to an existing VST, the number of chords it introduces 
is equal to the number of times that the VST has been bridged. 

Combining the scenarios in Figs. 6a & 6b, the number of 
m2-cycles constructed from the expansion operation of M2-
CYCLE does not exceed the number of chords in G(V, E). 

We then consider the refinement operation of M2-CYCLE. 
Assume that three links a―b, c―d, and e―f in Fig. 6c are 
covered by the same set of m2-cycles and thus the faults are 
indistinguishable. Let cx be the first m2-cycle that introduces 
the three links to the draft, and cy be an m2-cycle constructed 
later. Both cx and cy are obtained from the expansion operation. 
When cx is constructed, the draft only contains cx and all the 
m2-cycles constructed before cx (i.e. cy is not included yet). 
Then, we temporarily remove any one of the three links and 
construct an m2-cycle in the current draft based on one of the 
two remaining links. If such an m2-cycle cannot be found, then 
the two links remain indistinguishable in the current draft 
(such as c―d and e―f). On the other hand, if such a new m2-
cycle is obtained, e.g., e―f is temporarily removed and an m2-
cycle based on a―b can be obtained passing through some 
nodes in the original VST, then cx must have bridged the 
original VST twice and thus should have introduced two new 
chords. However, we have added only one m2-cycle cx to B. 
So, by following Step 3c in Fig. 5 and add an extra m2-cycle to 
distinguish the two faults, the number of m2-cycles still does 
not exceed the number of chords. 

For any links that remain indistinguishable, such as c―d 
and e―f, assume the refinement operation finally adds a new 
m2-cycle to distinguish them by temporarily removing e―f and 
constructing an m2-cycle based on c―d. This is possible only if 
there is an m2-cycle cy constructed later that covers some nodes 
or links between d and e (to provide a branch route). Since c―
d and e―f are still indistinguishable after cy is added, cy must 
cover either both or none of them. In both cases, cy must have 
bridged the VST twice as shown in Fig. 6c (note that cx is now 
included in the VST). So again two new chords are introduced 
by cy but only one m2-cycle cy has been constructed. If we add 

an extra m2-cycle to distinguish the two faults, the number of 
m2-cycles does not exceed the number of chords in G(V, E). 

Combining our proofs above for the three possible draft 
scenarios in Fig. 6, the number of m2-cycles generated by M2-
CYCLE will never be larger than the number of m-cycles 
generated by any spanning tree-based algorithm. In addition, 
the refinement operation of M2-CYCLE may further remove 
some redundant m2-cycles.                                                       # 

Theorem 3: Compared to any spanning tree-based m-cycle 
construction algorithm, the length of each m2-cycle and the 
cover length LC in M2-CYCLE are both smaller. 

Proof: From the expansion of M2-CYCLE, the length of 
m2-cycles constructed based on each link is minimized. In Step 
3c of the refinement, if we need to add an extra m2-cycle to B, 
it is also constructed in a minimum length manner. Note that LC 
is the sum of all the cycle lengths. Since the number of m2-
cycles in M2-CYCLE is not more than that of m-cycles in a 
spanning tree-based approach, and the length of each m2-cycle 
is minimized, obviously LC in M2-CYCLE is also smaller.     # 

Theorem 4: The monitoring wavelength requirement W is 
not more than that of any spanning tree-based algorithm. 

Proof: Let CM and CS be the solutions of M2-CYCLE and a 
spanning tree-based algorithm, respectively. Because the length 
of each m2-cycle in CM is minimized, we can enlarge some m2-
cycles in CM and turn CM into CS.2 In Fig. 7, c1: b―a―e―b, 
c2: c―b―e―f―c and c3: d―c―f―g―d are three m2-
cycles in CM. c1 is also an m-cycle in CS because it covers only 
one chord. If we replace the chord b―e in c2 by path b―a―e, 
and the chord c―f in c3 by path c―b―a―e―f, then both c2 
and c3 are turned into m-cycles. 

Without loss of generality, we consider b―a―e―b in Fig. 
7. Assume that b―a, a―e, and b―e are covered by CM for ∆1, 
∆2, and x times, respectively. In order to transform CM to CS, 
we need to reroute some cycles from b―e to b―a―e for x-1 
times (note that each chord is covered only once in CS, and b―
a―e is the only path in the spanning tree that connects nodes b 
and e). Then, the number of cover times for each link is: 

b―a:  ∆1+(x-1) 
                                   a―e:  ∆2+(x-1)                                 (1) 

b―e:     1 
Besides b―e, other chords (such as c―f in c3) may also need 
to be rerouted across b―a―e. Let WM and WS denote the 
monitoring wavelength requirement by CM and CS. We have 

{ } )1(,max 21 −+∆∆≥ xWS .                      (2) 
Since the values of ∆1, ∆2 and x must be at least one (i.e. each 
link is covered at least once by CM), we get 

{ }21,max ∆∆≥SW  and xWS ≥ .                    (3) 

                                                        
2 In fact, a trivial difference may exist due to the removal of redundant 

m2-cycles. But it does not affect our proof. Note that the direction of the cycle 
is not important. e.g. b―a―e―b and e―a―b―e are the same in Fig. 7. 

Fig. 7.  An m2-cycle can be enlarged to get an m-cycle. 
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Formula (3) indicates that WS is not smaller than the number of 
times that b―a, a―e and b―e are covered by CM. Note that b
―a―e―b is an m-cycle in CS. In fact, we can extend this 
analysis to any cs∈CS (such as c―b―a―e―f―c). Since CS 
covers every link in the topology, from (3) we have WM≤WS.   # 

Theorem 5: The localization degree DL of M2-CYCLE is 
not larger than that in any spanning tree-based algorithm. 

Proof: In M2-CYCLE, if any two links have identical alarm 
codes, one link is temporarily removed, and an additional m2-
cycle is constructed based on the other link to distinguish the 
two faults. If this additional m2-cycle cannot be obtained, any 
cycle-based algorithm will fail to distinguish the two faults, 
including any spanning tree-based algorithm. Since a smaller 
DL means a better fault localization, DL in M2-CYCLE is not 
larger than that in any spanning tree-based algorithm.             # 

V. DISCUSSION 
Fig. 8 compares M2-CYCLE with HST [7]. Note that a 

comparison has been given in [7] to show that HST 
outperforms HDFS and SPEM [6]. For the three topologies in 
Fig. 8, M2-CYCLE achieves the same localization degree DL as 
HST, but saves 2.5%, 12.5%, 16.36% on cover length LC, and 
40%, 33.33%, 62.5% on monitoring wavelength requirement 
W. For the SmallNet in Figs. 1 & 2, one monitor is also saved. 

In Fig. 9a, M2-CYCLE returns a solution with DL=1, and all 
dashed links are covered only once using the 9 m2-cycles c1~c9. 
However, HST needs 10 m-cycles because a redundant m-
cycle c10 at the center is also included. We call such a center as 
an inside track. Fig. 9b shows that many inside tracks may 
exist in a large network, each of which introduces a redundant 
monitor. M2-CYCLE does not have this problem.  

If several nodes form a segment (i.e. they are consecutively 
connected without any bifurcation, e.g. 8―9―10―11 in 
ARPA2 in Fig. 8), then the link failures cannot be localized to 
individual links by any cycle-based monitoring scheme. To 

solve this problem, link-based monitors are needed [7]. 

VI. CONCLUSION 
Monitoring-cycle (m-cycle) provides an efficient fast link 

failure detection mechanism in all-optical networks. In this 
paper, a new algorithm M2-CYCLE was proposed to construct 
a set of minimum-length m-cycles (m2-cycles). We proved that 
M2-CYCLE outperforms the existing spanning tree-based 
approach, no matter how the spanning tree is constructed. 
Numerical results showed that M2-CYCLE minimizes the 
required network resources, and gives the most accurate fault 
detection. The performance gap to the existing spanning tree-
based algorithm increases with the network size. 
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Fig. 8.  Compare M2-CYCLE with HST [7] (the three topologies are taken from [7]). 
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