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Optimal Threshold Control by the Robots of Web
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Abstract

A typical Web Search Engine consists of three principal parts:
crawling engine, indexing engine, and searching engine. The present
work aims to optimize the performance of the crawling engine. The
crawling engine finds new Web pages and updates Web pages existing
in the database of the Web Search Engine. The crawling engine has
several robots collecting information from the Internet. We first calcu-
late various performance measures of the system (e.g., probability of
arbitrary page loss due to the buffer overflow, probability of starvation
of the system, the average time waiting in the buffer). Intuitively, we
would like to avoid system starvation and at the same time to minimize
the information loss. We formulate the problem as a multi-criteria opti-
mization problem and attributing a weight to each criterion we solve it
in the class of threshold policies. We consider a very general Web page
arrival process modeled by Batch Marked Markov Arrival Process and
a very general service time modeled by Phase-type distribution. The
model has been applied to the performance evaluation and optimiza-
tion of the crawler designed by INRIA Maestro team in the framework
of the RIAM INRIA-Canon research project.

1 Introduction

The problem of control by the robots (crawlers) that traverse the Web and
bring Web pages to the indexing engine that updates the data base of a
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Web Search Engine is formulated and analyzed in [13]. This problem is
formulated in [13] as the controlled queueing system. The system has a
single server with the exponential service time distribution, finite buffer of
capacity K − 1, K ≥ 2. There are N available robots and each of these
robots, when activated, brings pages to the server in a Poisson stream at
fixed rate. These N stationary Poisson processes are mutually independent
and independent of service times.

The number of active robots may be modified at any arrival or departure
epoch. When an arrival occurs, the incoming robot is de-activated at once;
the controller may then decide to keep it idle or to activate it. When a
departure occurs the controller may either decide to activate one additional
robot, if one is available, or to do nothing (i.e. the number of active robots
is left unchanged).

In [13], the problem of finding a policy that minimizes a weighted sum
of the loss rate and starvation probability (probability of the empty system)
is considered. It is solved by means of the tools of the Markov Decision
Problems theory.

As the possible generalizations of the model, which are certainly worth-
while analyzing, the following ones are mentioned in [13]:

• More general input processes, e.g., a MMPP (Markov Modulated

Poisson Process) should be considered so as to reflect more accurately
“traveling times” of robots in the network;

• Because of the obsolescence of stored documents issue, the waiting
time should be bounded, even if the buffer size is effectively infinite;

• Other cost functions could be investigated, for instance, cost functions
including response times.

In this paper, we made all the mentioned and some further generaliza-
tions.

We assume that, under the fixed number of currently active robots, the
arrival process is of the BMAP type. The BMAP is a more general process
comparing to the MMPP and allows delivering of a batch of Web pages to
be indexed while the MMPP assumes that the pages are delivered one-by-
one. It is very typical for a computer system to operate in batch mode.

We assume that the service time distribution is of the PH (Phase) type
which is much more general comparing to the exponential distribution as-
sumed in [13]. The class of phase type distributions is dense in the field of
all positive-valued distributions and practically we can deal with any real
distribution [2].

2



Since web pages can become obsolete, we bound the waiting time stochas-
tically. Waiting time of each web page in a buffer is restricted by a random
variable having PH distribution identical and mutually independent for all
Web pages. The phase type distribution has been used to model obsoles-
cence times for instance in [15].

We suppose that the cost function can have a more general form than in
[13] and include the obsolescence probability and response time.

In the next section we formulate the model and optimization problem.
Section 3 contains the steady-state analysis of the multi-dimensional Markov
chain which defines dynamics of the system under the fixed values of the
parameters defining the strategy of control. In Section 4, main performance
measures of the system are computed. In Section 5, the conditional sojourn
time distributions are calculated. In Section 6, the case of ordinary arrivals
is touched in brief. In Section 7, the theoretical results are illustrated by
numerical examples. In particular, the mathematical model is applied to the
performance evaluation and optimization of the robot designed by INRIA
Maestro team in the framework of the RIAM INRIA-Canon research project.
Section 8 concludes the paper.

2 Mathematical Model

We consider a single server system with the finite buffer of capacity K −
1, K ≥ 2. So, the total number of Web pages which can stay in the system
is restricted by the number K. Web pages are served by a server in order of
their arrivals.

Service times of Web pages are independent identically distributed ran-
dom variables having PH distribution with irreducible representation (β, S).
It means the following. Service of a Web page is defined as a time until the
continuous-time Markov chainmt, t ≥ 0, having the states (1, . . . ,M) as the
transient and state 0 as absorbing one reaches the absorbing state. An initial
state of the chain is selected in a random way, according to the probabil-
ity distribution defined by the row-vector (β, 0), where β is the stochastic
row vector of dimension M . Transitions of the Markov chain mt, t ≥ 0,

are described by the generator

(
S S0
0 0

)

where the matrix S is a sub-

generator and the column vector S0 is defined by S0 = −SeM and has all
non-negative and at least one positive components, eM is the column vector
of dimension M consisting of all 1’s. The average service time b1 is given
by b1 = β(−S)−1eM . For more details about the PH type distribution, its
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properties, special cases and applications see [11, 12].
Web pages can be delivered into the system by N available robots. The

number of active robots varies in the set {1, . . . , N}. We assume that the
process of Web pages delivering under l, l = 1, N, active robots is described
as follows. Let νt, t ≥ 0, be an irreducible continuous time Markov chain
having finite state space {0, 1, . . . ,W}. Sojourn time of the chain νt, t ≥ 0,

in the state ν has exponential distribution with a parameter λ
(l)
ν . After this

time expires, with probability p
(l)
0 (ν, ν ′) the chain jumps into the state ν ′

without generation of Web pages and with probability p
(l)
k (ν, ν ′) the chain

jumps into the state ν ′ and a batch consisting of k Web pages is generated,
k ≥ 1. The introduced probabilities satisfy conditions:

p
(l)
0 (ν, ν) = 0,

∞∑

k=1

W∑

ν′=0

p
(l)
k (ν, ν ′) +

W∑

ν′=0

p
(l)
0 (ν, ν ′) = 1, ν = 0,W , l = 1, N.

The parameters defining this flow are kept in the square matrices D
(l)
k , k ≥

0, l = 1, N, of size W̄ =W + 1 defined by their entries:

(D
(l)
0 )ν,ν = −λ(l)ν , (D

(l)
0 )ν,ν′ = λ(l)ν p0(ν, ν

′), (1)

(D
(l)
k )ν,ν′ = λ(l)ν p

(l)
k (ν, ν ′), ν, ν ′ = 0,W , k ≥ 1, l = 1, N.

Denote

D(l)(z) =
∞∑

k=0

D
(l)
k z

k, |z| ≤ 1.

The matrix D(l)(1) is the infinitesimal generator of the process νt, t ≥ 0,
under the fixed number l of active robots. The stationary distribution vector
θ(l) of this process satisfies the equations θ(l)D(l)(1) = 0,θ(l)e = 1. Here
and in the sequel, 0 is the zero row vector. The average intensity λ(l)

(fundamental rate) of the BMAP under the fixed number l of active robots
is defined by

λ(l) = θ(l) dD
(l)(z)

dz
|z=1e,

and the intensity λ
(l)
g of group arrivals is defined by

λ(l)g = θ(l)(−D
(l)
0 )e.

The variance v(l) of intervals between group arrivals is calculated as

v(l) = 2(λ(l)g )−1θ(l)(−D
(l)
0 )−1e− (λ(l)g )−2,
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while the correlation coefficient c
(l)
cor of intervals between successive group

arrivals is given by

c(l)cor =
1

v(λ
(l)
g )2

(

λ(l)g θ(l)(−D
(l)
0 )−1(D(1)(l) −D

(l)
0 )(−D

(l)
0 )−1e− 1

)

.

The introduced representation of the arrival process via the matrices

D
(l)
k , k ≥ 0, l = 1, N, unifies several possible interpretations of the process

of Web pages delivered by the fixed number of active robots:

1. The processes of Web pages delivering by all robots are independent
BMAP processes. Let the process of Web pages delivering by the lth
robot be the BMAP which is governed by the continuous time Markov

chain ν
(l)
t , t ≥ 0, having finite state space {0, 1, . . . ,Wl} and defined

by the matrices D
(l)
k , k ≥ 0, of size W̄l = Wl + 1. See [10] for more

details about the BMAP , its properties and special cases. We denote

D(l)(z) =
∞∑

k=0

D
(l)
k z

k, |z| ≤ 1.

Let us assume that the robots are arranged in such a way that the
first robot is always active, then, when a queue decreases, the second
robot can be activated, etc, the Nth robot is the most rare activated.

The matrices D
(l)
k , k ≥ 0, l = 1, N, of size W̄ =

N∏

k=1

W̄k defined

by formulae (1) are expressed via the matrices D
(l)
k , k ≥ 0, of size

W̄l, l = 1, N, describing the BMAP s in the following way:

D
(l)
0 = D

(1)
0 ⊕D

(2)
0 ⊕ · · · ⊕D

(l)
0 ⊗D(l+1)(1)⊗ · · · ⊗D(N)(1),

D
(l)
k = D

(1)
k ⊕D

(2)
k ⊕ · · · ⊕D

(l)
k ⊗ IW̄l+1

⊗ · · · ⊗ IW̄N
, k ≥ 1.

Here ⊗ and ⊕ denote Kronecker product and sum of matrices cor-
respondingly (see, e.g., [7]), IL denotes identity matrix of size L. If
the size of the matrix is clear from context the suffix can be omitted.
I0

def
= 1.

2. The common process of Web pages delivered by all robots together
is the BMAP process directed by the continuous time Markov chain
νt, t ≥ 0, having finite state space {0, 1, . . . ,W} and defined by the
matrices Dk, k ≥ 0, of size W̄ . Some set of thinning probabilities
q1, . . . , qN , 0 < q1 < · · · < qN = 1, is fixed. When l robots are
active, procedure of thinning the BMAP process with the thinning
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probability ql is applied. It means that an arbitrary arriving batch is
accepted with probability ql and is rejected with the complimentary

probability 1− ql. We denote D(z) =
∞∑

k=0

Dkz
k, |z| ≤ 1.

The matrices D
(l)
k , k ≥ 0, l = 1, N, defined by formulae (1) are ex-

pressed via the matrices Dk, k ≥ 0, describing the common BMAP
and via the thinning probability ql in the following way:

D
(l)
0 = D0ql +D(1)(1 − ql), D

(l)
k = Dkql, k ≥ 1.

3. Let the process of Web pages delivering by robots is described by
a BMMAP. The BMMAP is directed by continuous time Markov
chain νt, t ≥ 0, having finite state space {0, 1, . . . ,W}. Sojourn time
of the chain νt, t ≥ 0, in the state ν has exponential distribution with
a parameter λν . After this time expires, with probability p0(ν, ν

′) the
chain jumps into the state ν ′ without generation of Web pages and

with probability p
(l)
k (ν, ν ′) the chain jumps into the state ν ′ and a

batch consisting of k, k ≥ 1 Web pages are delivered by the lth robot.
The introduced probabilities satisfy conditions:

p0(ν, ν) = 0,

N∑

l=1

∞∑

k=1

W∑

ν′=0

p
(l)
k (ν, ν ′) +

W∑

ν′=0

p0(ν, ν
′) = 1, ν = 0,W .

The matrices D
(l)
k , k ≥ 0, l = 1, N, defined by formulae (1) are ex-

pressed via the matrices D0, D
(l)
k , k ≥ 1, l = 1, N, formed by the

probabilities p0(ν, ν) and p
(l)
k (ν, ν ′) in the following way:

D
(l)
0 = D0 +

∞∑

j=1

N∑

m=l+1

D
(m)
j , D

(l)
k =

l∑

m=1

D
(m)
k , k ≥ 1.

4. The process of Web pages delivery by all robots is the BMAP pro-
cess directed by the continuous time Markov chain νt, t ≥ 0, having
finite state space {0, 1, . . . ,W} and defined by the transition intensity

matrices D
(l)
k , k ≥ 0, l = 1, N, depending on the number of active

robots.

Interpretation 3 seems be the most attractive because it assumes that the
work of the robots can be dependent, which is quite realistic. Because the
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total amount of Web servers from which new pages should be brought is more
or less constant, reduction of the number of active robots causes the increase
of field in Internet, which is scrawled by each robot, and corresponding
change of travel time. So, the BMMAP looks to be the most realistic
model of Web pages delivery.

If a batch of delivered Web pages meets free server one Web page starts
the service immediately while the rest moves to the buffer. If the server is
busy at an arrival epoch, all Web pages of the batch are placed into the
buffer if there is enough free space in the buffer. If the number of free
places in the buffer is less than the number of Web pages in the batch,
the corresponding number of Web pages is lost. It means that we consider
so called partial admission strategy. The alternative strategies of complete
rejection or complete admission can be investigated in analogous way.

For each Web page placed into the buffer, the waiting time is restricted
by the random variable (so called obsolescence time) having PH distribu-
tion with irreducible representation (γ,Γ). It means the following. Available
waiting time of the ith Web page in the buffer is defined as a time until the

continuous-time Markov chain r
(i)
t , t ≥ 0, having the states (1, . . . , R) as the

transient and state 0 as absorbing one, reaches the absorbing state. Transi-
tion of this process into the absorbing state means that this Web page gets
out of date (obsolescence or dashout occurs). An initial state of the chain is
selected in a random way, according to the probability distribution defined
by the row-vector (γ, 0), where γ is the stochastic row vector of dimension

R. Transitions of the Markov chain r
(i)
t , t ≥ 0, are described by the genera-

tor

(
Γ Γ0

0 0

)

where the matrix Γ is sub-generator and the column vector

Γ0 is defined by Γ0 = −Γe. The average time until obsolescence g1 is given
by g1 = γ(−Γ)−1e.

If the obsolescence time expires before a Web page is picked-up from the
buffer to the server, it is assumed that this Web page immediately leaves
the buffer and is lost. The obsolescence times of different Web pages are in-
dependent of each other and identically distributed. It is worth to note that
the analysis presented below could be drastically simplified if we suggest
that the obsolescence time is exponentially distributed. However, this sug-
gestion rarely holds true in the real world systems because this suggestion
means that, with high probability, information obsoletes very quickly.

Reasonable class of strategies of control by robots is the class of the
threshold strategies defined as follows. Integers j1, . . . , jN−1 are fixed such
as −1 = j0 < j1 < · · · < jN−1 < jN = K. If the number i of Web pages in
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the system satisfies inequality jr−1 + 1 ≤ i ≤ jr, then N − r + 1 robots are
active and r − 1 robots are de-activated, r = 1, N.

Note that the described threshold strategies are popular in literature in
controlled queues, see, e.g., [1, 3, 5, 6, 14]. For some systems, it is proven
that the optimal strategy in the class of all Markovian strategies belongs to
the class of threshold strategies. For some other systems such a result is not
proven, but the optimal strategy is sought in the class of threshold strategies.
Advantage of such strategies is their intuitive justification and relative sim-
plicity of implementation in real-life systems. Numerical examples presented
in the paper [13] for a partial case of our model confirm that the thresh-
old strategies are optimal in the class of all Markovian strategies, although
authors cannot prove this fact. Our system is much more complicated and
we also cannot prove optimality of the optimal threshold strategy in wider
classes of strategies. We just try to find an optimal threshold strategy and
believe that it is optimal or sub-optimal in wider classes as well.

We also mention that the description of the given above threshold strat-
egy suits only for the case when N ≤ K. While the numerical examples
presented in [13] address, e.g., the case N = 16 and K = 5. However, if we
look at the optimal strategy given by Figure 2 in [13], we see that the opti-
mal number of the active robots varies between 4 and 14 with 4 switching
points where two or three robots are activated or de-activated. Because, in
contrast to [13], we do not assume that each active robot generates a sta-
tionary Poisson process of arrivals at a fixed rate but we assume that each
robot generates a batch Markovian arrival process, we see that our strategy
suits for the case N > K as well. We could achieve this formally by allowing
non-strict inequalities: −1 = j0 ≤ j1 ≤ · · · ≤ jN−1 ≤ jN = K in fixing the
thresholds. So, speaking below about a robot we may think about a virtual
robot as a group of several available real robots which are activated and
de-activated simultaneously.

We will solve the problem of choosing the optimal threshold strategy.
The cost function is assumed to be of the following form:

J = λ(clossPloss + cobsPobs) + aV̄ (1) + crobNact + cstarPstar (2)

where λ is the mean number of pages delivered into the system by robots
during a unit of time (fundamental rate of the arrival process), Ploss is prob-
ability of arbitrary page loss due to the buffer overflow, Pobs is probability of
arbitrary page obsolescence during waiting in a queue, Pstar is probability
of starvation of the system, V̄ (1) is the response time (average sojourn time
of Web pages which are not lost or deleted due to obsolescence), Nact is the
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average number of active robots, closs, cobs, a, crob, cstar are the correspond-
ing non-negative cost coefficients. The values of the cost coefficients can be
set up by experts in the domain. Alternatively, the cost coefficients can be
viewed as Lagrange multipliers in the constrained problem and can be found
from the dual problem formulation.

It is clear that if the average number of active robots is increasing then
the three first summands in (2) are increasing while the last summand,
charge for starvation of the system, is decreasing. The last charge is im-
portant because starvation means that the indexing machine is idle and so
freshness of the data base suffers.

The problem of minimization of the cost criterion (2) is not trivial. To
solve this problem, we will use so called direct approach. To this end, we will
calculate the stationary distribution of the system state under an arbitrary
fixed set of thresholds (j1, . . . , jN−1). It will allow us to calculate the main
performance measures of the system and the value J of the cost criterion as
a function J(j1, . . . , jN−1). Problem of finding the optimal set (j∗1 , . . . , j

∗
N−1)

is then easy solved on computer, e.g., by enumeration.

3 Stationary distribution of the number of Web

pages in the system

Let some set of thresholds (j1, . . . , jN−1) be fixed. We are interested in the
stationary distribution of the process it, t ≥ 0, where it is the number of Web
pages in the system at the epoch t, it = 0,K. This process is non-Markovian.
To investigate this process, we will consider the following multi-dimensional
continuous time Markov chain

ξt = {it, νt,mt, r
(1)
t , . . . , r

(it−1)
t }, t ≥ 0,

where νt is the state of the directing process of arrival process at epoch t,
νt = 0,W ; mt is the state of the process which directs a service at epoch t,

mt = 1,M ; r
(i)
t is the state of the process, which directs a obsolescence of

the ith Web page in a queue at epoch t, r
(i)
t = 1, R, i = 0,K − 1.

We assume that the Web pages in the buffer are numerated in order of
their arrival into the system. If a batch of Web pages arrives to the system,
the accepted Web pages are numerated in a uniform random manner. When
a Web page is picked up to the service or is deleted from the queue because
its admissible waiting time expires, the rest of Web pages is immediately
enumerated correspondingly.
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Denote
p(0, ν) = lim

t→∞
P{it = 0, νt = ν},

p(1, ν,m) = lim
t→∞

P{it = 1, νt = ν,mt = m}, (3)

p(i, ν,m, r1, . . . , ri−1) =

lim
t→∞

P{it = i, νt = ν,mt = m, r
(1)
t = r1, . . . , r

(i−1)
t = ri−1}, i ≥ 2.

Because the state space of the the Markov chain ξt, t ≥ 0, is finite and due
to assumption about irreducibility of the processes defining arrival, service
and obsolescence processes, limits (3) exist.

Enumerate the states of the Markov chain ξt, t ≥ 0, in the lexicographic
order and form the probability row vectors pi, i = 0,K, of probabilities
corresponding to the state i of the first component of the process ξt, t ≥ 0.
Denote also p = (p0, . . . ,pK).

Let Q be the infinitesimal generator of the Markov chain ξt, t ≥ 0, and
Qi,i′ be the block of the generator Q consisting of enumerated in lexico-
graphic order intensities of transition of the Markov chain ξt, t ≥ 0, from
the states with the value i of the component it to the states with the value
i′ of this component, i, i′ ≥ 0. Dimension of the block Qi,i′ is defined by
(W̄MaiRbi)× (W̄Mai′Rbi′ ) where al = min{l, 1}, bl = max{(l − 1), 0}, l =
0,K.

Lemma. Non-zero blocks Qi,i′ of the infinitesimal generator Q of the
Markov chain ξt, t ≥ 0, are defined by

Q0,j =







D
(N)
0 , j = 0,

D
(N)
j ⊗ β ⊗ γ⊗(j−1), j = 1,K − 1,

(D(N)(1)−
K−1∑

r=0
D

(N)
r )⊗ β ⊗ γ⊗(K−1), j = K,

Qi,i−1 =

{
IW̄ ⊗ S0, i = 1,
IW̄ ⊗ Bi−1, i > 1,

Qi,i =

{

D
(χ(i))
0 ⊕Ai−1, i = 1,K − 1,

D(χ(i))(1)⊕Ai−1, i = K,

Qi,i+l =







D
(χ(i))
l ⊗ IMRi−1 ⊗ γ⊗l, l = 1,K − i− 1, i < K − 1,

(D(χ(i))(1)−
K−i−1∑

r=0
D

(χ(i))
r )⊗ IMRi−1 ⊗ γ⊗l, l = K − i, i < K,

i > 0.
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Here

Bi = S0β ⊗ eR ⊗ IRi−1 + IM ⊗ Γ⊕i
0 , Ai = S ⊕ Γ⊕i, i = 0,K − 1,

γ⊗l def= γ ⊗ . . .⊗ γ
︸ ︷︷ ︸

l

, Γ⊕l def= Γ⊕ . . . ⊕ Γ
︸ ︷︷ ︸

l

, Γ⊕l
0

def
= Γ0 ⊕ . . .⊕ Γ0

︸ ︷︷ ︸

l

, l ≥ 1,

and the value χ(i), which corresponds to the number of active robots when
i Web pages stay in the system, is calculated by χ(i) = N − ψ(i) where the
value ψ(i), ψ(i) = 0, N − 1, is defined by relations

jψ(i) + 1 ≤ i ≤ jψ(i)+1, i = 0,K.

Proof of the lemma is implemented by analyzing the probabilities of
transition of the multi-dimensional Markov chain ξt, t ≥ 0, under the fixed
set of thresholds (j1, . . . , jN−1) during an interval of infinitesimal length. It
is rather transparent and is omitted.

It is well-known that the vector p of stationary probabilities satisfies the
following equilibrium equations

pQ = 0, pe = 1. (4)

Dimension of the vector p is equal to W̄ (1+M RK−1−1
R−1 ). It can be rather

high. For instance, if W̄ =M = R = 2 this dimension is equal to 2K+1 − 2.
For K = 10 this equals to 2046. So, direct solution of equations (4) by
”brute force” can be very time and computer memory demanding.

Effective and numerically stable algorithm for computing the blocks
pi, i = 0,K, of the vector p, which exploits a structure of generator Q
and is presented in [9], consists of the following steps:

1. Compute the matrices Gi, i = 0,K − 1, from the backward recursion

Gi = (−Qi+1,i+1 −

K−i−1∑

l=1

Qi+1,i+1+lGi+lGi+l−1 . . . Gi+1)
−1Qi+1,i,

i = K − 1,K − 2, . . . , 0.

2. Compute the matrices Qi,l from the backward recursions

Qi,K = Qi,K , i = 0,K,

Qi,l = Qi,l +Qi,l+1Gl, i = 0, l, l = K − 1,K − 2, . . . , 0.
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3. Compute the matrices Fl, l = 0,K, by recursion

F0 = I, Fl =

l−1∑

i=0

FiQ̄i,l(−Q̄l,l)
−1, l = 1,K.

4. Compute the vector p0 as the unique solution to the following system
of linear algebraic equations:

p0Q0,0 = 0, p0

K∑

l=0

Fle = 1.

5. Compute the vectors pi, i = 1,K, by formula

pi = p0Fi, i = 1,K.

Thus, the problem of computing the stationary distribution pi, i = 0,K, of
the considered queueing system under the arbitrary fixed set of the thresh-
olds (j1, . . . , jN−1) can be considered solved.

4 Main Performance Measures of the System

As the main performance measures of the system we consider the values
λ, Ploss, Pobs, Pstar, Nact which appear in cost criterion (2).

Calculation of the values Pstar, Nact is the easiest.
Theorem 1. Probability Pstar of the system starvation (idle state of the

indexing machine) is calculated by

Pstar = p0eW̄ . (5)

Average number Nact of active robots is calculated by

Nact =

N∑

n=1

nϕn, (6)

where probability ϕn that n robots are active at an arbitrary epoch is com-
puted by

ϕn =

jN+1−n∑

i=jN−n+1

pieW̄MaiRbi , n = 1, N. (7)
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Theorem 2. Probability Ploss of an arbitrary Web page loss due to the buffer
overflow is calculated by

Ploss = 1−
1

λ

N−1∑

n=0

jn+1∑

i=jn+1

pi

K−i∑

k=0

(k −K + i)(D
(N−n)
k ⊗ IMaiRbi )e, (8)

where the average intensity λ of the input flow is computed by

λ =

N−1∑

n=0

jn+1∑

i=jn+1

pi

∞∑

k=1

k(D
(N−n)
k ⊗ IMaiRbi )e. (9)

Proof. It follows from the formula of total probability that

Ploss = 1−

K∑

i=0

∞∑

k=1

P
(k)
i PkΦ

(i,k), (10)

where P
(k)
i is probability that there are i Web pages in the system at an

epoch of arrival of a batch consisting of k Web pages, Pk is probability that
arbitrary Web page arrives in the batch consisting of k Web pages, Φ(i,k)

is probability that the arbitrary Web page will be accepted into the system
conditional that it arrives in the batch consisting of k Web pages and i Web
pages present in the system at the epoch of arrival.

It can be shown that the listed probabilities are calculated by

P
(k)
i =

pi(D
(N−n)
k ⊗ IMaiRbi )e

N−1∑

m=0

jm+1∑

r=jm+1
pr(D

(N−m)
k ⊗ IMarRbr )e

, (11)

jn + 1 ≤ i ≤ jn+1, n = 1, N − 1,

Pk =

N−1∑

n=0

jn+1∑

i=jn+1
pik(D

(N−n)
k ⊗ IMaiRbi )e

N−1∑

n=0

jn+1∑

i=jn+1
pi

∞∑

l=1

l(D
(N−n)
l ⊗ IMaiRbi )e

, (12)

Φ(i,k) =

{
1, k ≤ K − i,
K−i
k
, k > K − i,

(13)

i = 0,K, k ≥ 1.
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By substituting expressions (11) - (13) into formula (10) we get formulae
(8), (9). The theorem is proven.

Theorem 3. Probability Pobs of an arbitrary Web page obsolescence is
calculated by

Pobs =
1

λ

K∑

i=2

pi(IW̄ ⊗ IM ⊗ Γ
⊕(i−1)
0 )e. (14)

Probability Psuccess of an arbitrary Web page successful service in the system
is calculated by

Psuccess =
1

λ

K∑

i=1

pi(IW̄ ⊗ S0 ⊗ IRi−1)e. (15)

The statement of the theorem is clear because the right hand side of (14)
represents the ratio of the obsolescence rate and arrival rate into the system.
The right hand side of (15) represents the ratio of the rate of successfully
served in the system Web pages and arrival rate into the system.

5 Sojourn Time Distribution

Let V (x), V1(x), and V2(x) be distribution functions of sojourn time of an
arbitrary Web page in the system under study, an arbitrary Web page, which
will get successful service, and arbitrary Web page, which will be deleted
from the system due to its obsolescence, and v(u), v(1)(u) and v(2)(u) be
the corresponding Laplace-Stieltjes transforms:

v(u) =

∞∫

0

e−uxdV (x), v(k)(u) =

∞∫

0

e−uxdVk(x), k = 1, 2, Re u > 0.

Theorem 4. Laplace-Stieltjes transforms v(u), v(1)(u) and v(2)(u) are
calculated by

v(u) = v(1)(u)Psuccess + v(2)(u)Pobs + Ploss, (16)

v(1)(u) =
1

Psuccess

K−1∑

i=0

∞∑

k=1

pi,kv
(1)
i,k (u), (17)

v(2)(u) =
1

Pobs

K−1∑

i=0

∞∑

k=1

pi,kv
(2)
i,k (u), (18)
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where

pi,k =
1

λ
pik(D

(χ(i))
k eW̄ ⊗ IMaiRbi ),

the column vectors v
(m)
i,k (u), i = 0,K − 1, k ≥ 1, m = 1, 2, are computed by

v
(m)
i,k (u) =

min{k,K−i}
∑

l=1

Ci,l
1

k
v
(m)
i+l−1(u), m = 1, 2, (19)

Ci,l = βδi,0 ⊗ IMaiRbi ⊗ γ⊗(l−δi,0),

the vectors v
(m)
i (u), i = 0,K − 1, m = 1, 2, are computed recursively by

v
(1)
0 (u) = (uI − S)−1S0, (20)

v
(1)
i (u) = (uI −Ai)

−1B̂i−1v
(1)
i−1(u), i = 1,K − 1,

v
(2)
0 (u) = 0, v

(2)
i (u) =

i−1∑

l=0

l−1∏

k=0

(uI −Ai−k)
−1B̂i−k−1×

×(uI −Ai−l)
−1(IM ⊗ IRi−l−1 ⊗ Γ0)e, i = 1,K − 1, (21)

where
B̂i = Bi ⊗ IR, i = 0,K − 1.

δi,l is Kronecker delta: δi,l =

{
1, i = l,
0, i 6= l.

Proof. To prove the theorem, we use the method of collective marks
(method of catastrophes). We interpret the parameter u as an intensity
of some imaginary stationary Poisson flow of catastrophes. So, v(u) has
the meaning of probability that no catastrophe arrives during the sojourn
time of an arbitrary Web page, v(1)(u) is probability that no catastrophe
arrives during the sojourn time of an arbitrary Web page conditional that
this Web page will get service successfully, and v(2)(u) is probability that
no catastrophe arrives during the sojourn time of an arbitrary Web page
conditional that this Web page will be deleted from the system due to its
obsolescence.

So, formula (16) evidently stems from the formula of total probability.
It is obvious that sojourn time of the arbitrary (tagged) Web page does

not depend on the arrival process after the tagged Web page arrival epoch.
Thus, in analysis we can ignore transitions of the directing process of the
arrival process after the epoch of the tagged Web page arrival.
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Formulae (17) and (18) also follow from the formula of total probability.
Here row vector pi,k defines probability of an arbitrary Web page arrival
at the moment when there are i Web pages in the system in a batch of
size k and probability distribution of the directing processes of service and

obsolescence at this moment. Column vector v
(m)
i,k (u) defines probability of

no catastrophe arrival during the conditional sojourn time of a tagged Web
page who arrives at the moment when there are i Web pages in the system
in a batch of size k under the fixed value of the directing processes of service
and obsolescence at the arrival epoch. For m = 1 condition is that the
tagged Web page will get service successfully. For m = 2 condition is that
the tagged Web page will be deleted from the system due to its obsolescence.

Relation (19) is based again on the formula of total probability. The
matrix Ci,l defines probability distribution of installation, upon the arrival
epoch of a tagged Web page, of the initial states of the directing process of
service (if i = 0, i.e., the system was empty at the arrival epoch) and of the
directing processes of obsolescence of the Web pages, which arrive at the
same batch as the tagged Web page and are placed in a buffer before the
tagged Web page, and of this Web page. Recall that we assume that if the
batch consists of k Web pages then the tagged Web page will be the lth in
the batch, l = 1, k, with probability 1

k
, k ≥ 1.

The vector v
(m)
i (u) defines probability of no catastrophe arrival during

the conditional sojourn time of a tagged Web page who sees i Web pages
in the system before him in a queue and the corresponding states of the
directing processes of service and obsolescence after the moment of arrival.

Recurrent formulae (20) for the vector Laplace-Stieltjes transforms v
(1)
i (u)

is clear if we take into account that: (i) v
(1)
0 (u) is the vector Laplace-Stieltjes

transform of the service time distribution, (ii) (uI −Ai)
−1 defines probabil-

ity that no catastrophe arrives during the time interval between the epoch
of a tagged Web page arrival, at which the number of Web pages in a queue
before the tagged Web page is equal to i, and the epoch when the number
of Web pages in a queue before the tagged Web page is decreased to i − 1,
(iii) the matrix B̂i defines transition of the directing processes of service and
obsolescence of the Web pages at the epoch of decreasing.

Formulae (21) for the vector Laplace-Stieltjes transforms v
(2)
i (u) takes

into account reasonings (ii),(iii) presented above as well as consideration that
no catastrophe should arrive until the obsolescence moment of a tagged Web
page and that l, l = 0, i− 1, Web pages can depart from the system until
the obsolescence moment. The theorem is proven.

Corollary 1. Average sojourn time (response time) V̄ of an arbitrary

16



Web page, average sojourn time V̄ (1) of an arbitrary Web page who will get
successful service, and average sojourn time V̄ (2) of an arbitrary Web page
who will be deleted from the system due to its obsolescence are computed
by

V̄ = V̄ (1)Psuccess + V̄ (2)Pobs, (22)

V̄ (1) =
1

Psuccess

K−1∑

i=0

∞∑

k=1

pi,kw
(1)
i,k , (23)

V̄ (2) =
1

Pobs

K−1∑

i=0

∞∑

k=1

pi,kw
(2)
i,k , (24)

where the column vectors w
(m)
i,k = −

dv
(m)
i,k

(u)

du
|u=0, i = 0,K − 1, k ≥ 1, m =

1, 2, are computed by

w
(m)
i,k =

min{k,K−i}
∑

l=1

Ci,l
1

k
w

(m)
i+l−1, m = 1, 2, (25)

the vectors w
(m)
i , i = 0,K, m = 1, 2, are computed by

w
(1)
0 = −S−1eM , w

(1)
i = −(Ai)

−1

[

v
(1)
i (0) + B̂i−1w

(1)
i−1

]

, i = 1,K − 1,

v
(1)
0 (0) = eM , v

(1)
i (0) = −(Ai)

−1B̂i−1v
(1)
i−1(0), i = 1,K − 1,

w
(2)
i = −

i−1∑

l=0

(−1)l
[ l−1∑

m=0

m−1∏

k=0

(Ai−k)
−1B̂i−k−1×

×(Ai−m)
−2B̂i−m−1

l−1∏

k=m+1

(Ai−k)
−1B̂i−k−1+

+

l−1∏

k=0

(Ai−k)
−1B̂i−k−1(Ai−l)

−1

]

(Ai−l)
−1(IMRi−l−1 ⊗ Γ0)eM ,

i = 1,K − 1.

Proof of corollary evidently follows from the well-known expression for the
mean value of a random variable via the derivative of the Laplace-Stieltjes
transform of its distribution function.

Note that expressions for higher order moments and variance on sojourn
time distribution can be also easily derived based on equations (16)-(18).
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6 Case of the Ordinary Arrival Process

Consider the special case when Web pages arrive not in batches, but one-

by-one. It means that D
(l)
k = 0, k ≥ 2, l = 1, N. In this case the generator

Q of the Markov chain ξt, t ≥ 0, is the three block diagonal matrix which in
turn means that this chain is a finite space Quasi-Birth-and-Death-Process.
Thus, in this case the algorithm for solving equilibrium equations (4) for
the vector p of stationary probabilities and formulae for some performance
measures simplify. The algorithm has the form

1. Compute the matrices Gi, i = 0,K − 1, from the backward recursion

Gi = [−(Qi+1,i+1 +Qi+1,i+2Gi+1)]
−1Qi+1,i, i = K − 2,K − 3, . . . , 0,

with the terminal condition

GK−1 = −(QK,K)
−1QK,K−1.

2. Compute the matrices Fi, i = 0,K, by recursion

F0 = I, Fi = Fi−1Qi−1,i[−(Qi,i +Qi,i+1Gi)]
−1, i = 1,K.

3. Compute the vector p0 as the unique solution to the following system
of linear algebraic equations:

p0(Q0,0 +Q0,1G0) = 0, p0

K∑

l=0

Fle = 1.

4. Compute the vectors pi, i = 1,K, by formula

pi = p0Fi, i = 1,K.

Formula for loss probability Ploss is given by

Ploss =
1

λ
pK(D

(1)
1 ⊗ IMRK−1)e,

where

λ =

N−1∑

n=0

jn+1∑

i=jn+1

pi(D
(N−n)
1 ⊗ IMaiRbi )e.
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Laplace-Stieltjes transforms v(1)(u) and v(2)(u) are computed by

v(1)(u) =
1

λPsuccess

K−1∑

i=0

pi(D
(χ(i))
1 eW̄ ⊗ IMaiRbi )Ci,1v

(1)
i (u),

v(2)(u) =
1

λPobs

K−1∑

i=0

pi(D
(χ(i))
1 eW̄ ⊗ IMaiRbi )Ci,1v

(2)
i (u).

Average sojourn times V̄ (1) and V̄ (2) are computed by

V̄ (1) =
1

λPsuccess

K−1∑

i=0

pi(D
(χ(i))
1 eW̄ ⊗ IMaiRbi )Ci,1w

(1)
i ,

V̄ (2) =
1

λPobs

K−1∑

i=0

pi(D
(χ(i))
1 eW̄ ⊗ IMaiRbi )Ci,1w

(2)
i .

7 Numerical example

To demonstrate feasibility of the developed algorithms for calculating the
stationary state distribution of the system under the fixed parameters of
the control strategy and calculating the optimal set of these parameters,
let us consider numerical examples. First we suppose that the system can
have any number of active robots between one and four at any time moment
(N = 4) and the buffer capacity is equal to 5 (K = 5).

We assume that the arrival process is formed according to Model 4 from
Section 2. Namely, when r robots are activated the BMAP -input is de-

scribed by the matrices D
(r)
k , k ≥ 0, r = 1, N , given by
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D
(1)
0 =

(
−10 2
0 −0.5

)

, D
(1)
1 =

(
0.05 3
0.29 0.005

)

,D
(1)
2 =

(
0.05 4.9
0.2 0.005

)

,

D
(2)
0 =

(
−5.65 1.1

0 −0.85

)

,D
(2)
1 =

(
−0.01 2.5
0.25 0

)

, D
(2)
2 =

(
−0.02 0.5
0.25 0

)

,

D
(2)
3 =

(
0.02 1.5
0.1 0.25

)

, D
(3)
0 =

(
−2.48 0.48
0.48 3.48

)

,

D
(3)
1 =

(
1.5 0
0 2.25

)

, D
(3)
2 =

(
0.5 0
0 0.75

)

,

D
(4)
0 =

(
−1.45 0.45
0.6 −2.6

)

, D
(4)
1 =

(
0.25 0
0 0.5

)

,

D
(4)
2 = D

(4)
3 =

(
0 0
0 0

)

, D
(4)
4 =

(
0.75 0
0 1.5

)

.

The intensities λ(r) of the BMAP when r robots are active, r = 1, N,
are computed by

λ(1) = 1.28, λ(2) = 2.41, λ(3) = 3.125, λ(4) = 4.64.

The coefficients of correlation c
(r)
cor and the intensities of batches arrival λ

(r)
g

are the following: c
(1)
cor = −0.218, c

(2)
cor = −0.111, c

(3)
cor = 0.02, c

(4)
cor = 0.035,

λ
(1)
g = 0.853, λ

(2)
g = 1.208, λ

(3)
g = 2.5, λ

(4)
g = 1.43.

Let the PH distribution of service time be defined by the row vector

β = (0.4 0.6) and sub-generator S =

(
−3 1
2 −3

)

. The mean service time is

equal to 0.657.
Let the PH distribution of a Web page obsolescence time be described

by the row vector γ = (0.3 0.7) and sub-generator Γ =

(
−0.6 0.4
0.1 −0.3

)

. The

mean time until obsolescence is equal to 5.
Let the cost coefficients be fixed by closs = 5, cobs = 10, a = 2, crob = 20,

cstar = 300. We have chosen the cost coefficients in this way to obtain com-
mensurable optimal values in the optimal solution and non-trivial optimal
policy.

Note that in this example we fixed the cost coefficients based on some
heuristic reasonings or common sense. In general, the right choice of the cost
coefficients is the important and difficult task. It requires good knowledge
of the real world system, which is described by the mathematical model

20



under study, and clear understanding what is the most undesirable for the
concrete system (loss of the delivered Web pages, obsolescence of a page,
starvation of the system, long waiting in the queue, keeping to many robots
be active, etc), what is less important. So, the help of experts is required
for the right choice of the cost coefficients. If such a choice does not seem be
possible, some alternative formulation of optimization problem, e.g., multi-
criteria problem or problem with constraints may be considered. In the latter
approach the cost coefficients are Lagrange multipliers in the constrained
problem and can be found from the dual problem formulation.

Let us find the optimal strategy of control by the system under the
fixed above values of the system parameters and the cost coefficients. The
thresholds j1, . . . , jN−1 in the problem formulation are fixed such as −1 =
j0 < j1 < · · · < jN−1 < jN = K, i.e., the thresholds cannot coincide and the
use of all N modes of operation (the number of the mode is characterized
by the number of the active robots) is mandatory. It is intuitively clear
that actually it can happen that the optimal strategy does not need to use
some modes of operation at all. So, to find the optimal strategy, we have
to compare the values of the optimal values of the cost criterion when all N
modes are used, when N − 1 modes are used while 1 mode is ignored, . . . ,
two modes are used while N − 2 modes are ignored, when only one mode is
used (i.e., the number of the active robots is not varied).

Let us denote by Cr the value of the cost criterion when exactly r robots
are always active, r = 1, 4. The values Cr, r = 1, 4, are given by C1 = 149.91,
C2 = 110.0, C3 = 89.405, C4 = 130.312. So, if there is no possibility
to control the number of robots, and one has to decide how many robots
should permanently work, the best choice is to have permanently three active
robots.

Next we consider the threshold type strategies for controlling the number
of active robots. Table 1 contains the optimal value of the cost criterion for
various combinations of the used modes and the optimal threshold strategy
for each such a combination.

Table 1: The Value of the Optimal Cost Criterion for various threshold
strategies
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possible numbers of active robots
Optimal
thresholds

Optimal value
of the cost
criterion

1 – 149.91
2 – 110.0
3 – 89.40
4 – 130.31

2 or 1 2 103.54
3 or 1 2 63.54

4 or 1 1 74.47
3 or 2 2 76.21
4 or 2 1 86.13
4 or 3 0 94.14

3 or 2 or 1 2,2 63.54
4 or 2 or 1 1,2 73.69
4 or 3 or 1 0,2 80.50
4 or 3 or 2 0,2 80.50

4 or 3 or 2 or 1 0,2,2 67.52

Let us explain the entries of the table. For instance, the highlighted
line corresponds to the control with one threshold at two. When the queue
length does not exceed two, there are three active robots and when the
queue length exceeds two, the number of active robots decreases to one. As
another example, the control corresponding to the last line of the table has
the following structure: when the system is empty, four robots are active;
when the queue length is greater than zero and smaller than three, three
robots are active; when the queue length exceeds two, only one robot is
active.

As it is seen from Table 1, the optimal strategy assumes that only two
among four available operation modes (modes with one and three active
robots) should be used. The optimal value C∗ of the cost criterion is equal
to 63.54. It is evident that C∗ gives the relative profit R more than 28%
comparing to the case without control. The value of R is computed as

R =

(

1−
C∗

min{C1, C2, C3, C4}

)

∗ 100%.

The dependence of the cost criterion on the threshold when the strategy
of control uses only two modes, for all possible combinations of the modes,
is shown on Figure 1.
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Figure 1: Dependence of the cost criterion on the threshold

The obtained results illustrate the necessity of the input control and pos-
sibility to reduce the cost of the system operation by means of the threshold
type control.

Now let us vary the buffer size K from 1 to 100. Table 2 contains the
optimal criterion value for the cases with and without control (C∗ and Cr,
r = 1, 4), the optimal threshold j∗ and the relative profit R for different
buffer capacity K. Note that in all cases the optimal control only uses
the modes with one and three active robots. The results for K > 30 are
approximately the same as for K = 30.
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Table 2: Variable Buffer Size K

K j∗ C∗ C1 C2 C3 C4 R, %

1 0 147.5 244.7 233.4 187.2 258.8 21.0
2 1 96.8 199.2 174.0 128.8 194.4 24.8
3 2 79.1 172.6 140.3 105.4 160.0 24.9
4 2 68.3 158.1 121.7 94.7 140.6 27.85
5 2 63.5 149.9 110.0 89.4 130.3 28.9
6 3 60.8 144.7 102.3 86.7 124.1 29.8
7 3 59.3 141.6 97.2 85.5 120.5 30.6
8 3 58.4 138.5 93.7 85.0 118.3 31.2
9 3 57.8 137.9 91.3 84.9 117.1 31.8
10 3 57.5 137.0 89.7 85.0 116.5 32.3
20 3 57.2 137.0 86.3 87.2 120.0 33.7
30 3 57.2 137.0 86.3 87.4 123.6 33.7

Let the mean service time b1 be varied by means of the matrix S mul-
tiplication by the value s which varies from 0.1 to 15. Table 3 contains the
value s, the mean service time b1, the optimal set of possible numbers of
active robots, the optimal value of the threshold, the optimal cost criterion
value and the value of the cost criterion when only one of the modes is in
use (when the number of active robots is fixed), and the relative profit R.
Note that when s is equal to or grater than 15, i.e. b1 is less than 0.04, no
dynamic control is required.

Now we vary the mean time g1 until obsolescence by the same way as it
was done for the mean service time. Table 4 shows obtained results. Note
that in the optimal set of modes only one and three active robots are used
in all considered cases.

Consider the effect of the service time variation on the cost criterion
value given that the mean service time b1 is constant and equals to 0.657.
Let the matrix S of service time distribution have the form

S =

(
−α1 0
0 −α2

)

and vector β = (0.9 0.1).
The variance of service time is calculated as

vars = 2βS−2e− (β(−S)−1e)2.

To maintain the mean service time b1, the entries α1 and α2 of matrix S
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must be related through the formula b1 = β(−S)−1eM as

α2 =
0.1α1

b1α1 − 0.9
.

Note that α1 should be grater than 1.369 to keep α2 positive.
Let us vary the value of α1 from 1.521 to 9. The service time variation

vars takes the values from 0.431 to 5.798. In the case α1 = 1.521 service
time distribution is exponential one. In the optimal set of operation modes
only one and three active robots are used. Figure 2 shows dependence of the
cost criterion value on the threshold under different values of service time
variation (α1 ∈ {1.521, 3, 5, 7, 9}).
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Figure 2: Dependence of the cost criterion on service time variation

But when α1 becomes larger than 4 (vars > 3.415), not the modes with
one and three active robots but the modes with one and four active robots
are the optimal set of exploited modes. Figure 3 shows the dependence of
the cost criterion when only optimal set of modes is in use. In the figure,
two lower curves correspond to the modes with one and three active robots
and other curves correspond to the modes with one and four active robots.

Now let us vary the variance of time until obsolescence in the same way.
Let the matrix G have the form

G =

(
−α1 0
0 −α2

)
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Figure 3: Dependence of the cost criterion on service time variation

and γ = (0.9 0.1). To maintain the average time until obsolescence g1 = 5,
the value α2 is related to α1 as

α2 =
0.1α1

g1α1 − 0.9
.

We vary α1 from 0.2 to 7. Thus the variation takes the values from 25 to
449. Note that in the case α1 = 0.2, we get the time until obsolescence
distributed exponentially. The optimal strategy consists of modes with one
and three active robots in all considered cases. Figure 4 shows dependence
of the cost criterion value on variation of time until obsolescence (α1 ∈
{0.2, 0.5, 1, 3, 7}). Note that as the variation grows the optimal threshold
decreases from 2 to 0.

Now let us consider the example based on real data obtained from the
robot designed by INRIA Maestro team in the framework of RIAM INRIA-
Canon Research Project. Data about the information delivery process by
the robot to the data base was presented in the form of the text file which
contained more than 65 000 timestamps defining epochs of information de-
livery.

This data was processed in the following way.

• Inter-arrival times were computed.

• The obtained sample was censored: very long intervals, which actually
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Figure 4: Dependence of the cost criterion on variation of time until obso-
lescence

correspond to the periods when the crawling process was stopped due
to some reason, are deleted from the sample.

• The obtained sample was transformed into two samples in such a way
as the very short inter-arrival times were deleted from the initial sam-
ple and the corresponding information about the number of succes-
sively deleted intervals was placed into another sample. As the result
of these manipulations, we stated that the arrival process is the batch
arrival process. One sample defines the intervals between the epochs
of batches arrival, the second sample defines the number of the in-
formation units in the corresponding batch. By information units we
mean either the principal part of a Web page (e.g., Web page main
html file) or its embedded resources (e.g., image and audio files).

• Based on the second sample, distribution of the number of the infor-
mation units in a batch was computed as follows. The size of a batch
varies in the interval [1, 8] and probabilities dk that the batch size is
equal to k = 1, 2, . . . , 8 are the following: d1 = 0.040445227, d2 =
0.18404232, d3 = 0.26405114, d4 = 0.5057307, d5 = 8.8163983 · 10−4,
d6 = 7.7143486 ·10−4 , d7 = 0.0018734847, d8 = 0.00220405. The mean
batch size is equal to 3.263389905223716.

• Based on the first sample, we computed estimation of the mean value
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of an interval between arrivals of batches as 212.03, estimation of the
variance of such an interval as 51352.38 and the estimations of lag-
k correlation of inter-arrival times for k equal to 1, 2, . . . , 6 are given
by 0.622; 0.574; 0.555; 0.537; 0.523; 0.507. Thus, the flow defined
by a sample under study has slowly decreasing correlation. In this
situation, it is reasonable to apply method by Diamond and Alfa [4]
oriented to such flows.

• As the result, the process of the arrival of the batches was defined by
the MAP which is characterized by the matrices

D0 =

(
−0.0038 0

0 −0.0066

)

,

D1 = A, A =

(
0.0037 6.58 · 10−5

1.3 · 10−4 0.0064

)

.

• Based on this MAP of batches and information about the batch size
distribution, the BMAP of Web pages is constructed. It is defined by
the matrices D0 and Dk = dkA, k = 1, 8.

To estimate a Web page service time distribution, the following informa-
tion about the size of an arbitrary information unit delivered by a crawler
(content size) in the used data base was exploited: the mean content size
is equal to 49207.0356 bytes, the mean squared content size is equal to
2.0527E+11, and the mean cubed content size is equal to 2.5773E+18.
Based on this information, the service time distribution of a Web page was
described, up to some normalizing constant defined by the content process-
ing rate (in our application the processing rate is constant), by the hyper-
exponential distribution which is the partial case of the PH distribution
defined by the vector β = (0.0057 0.9943) and by sub-generator

S =

(
−0.0014 0

0 −0.2409

)

.

The mean service time is 8.2. The squared coefficient of variation of the
service time distribution is equal to 86.03. Because the exponential distri-
bution has the squared coefficient of variation equal to 1, is is clear that this
distribution can not be considered as a good approximation of the service
time distribution.

We assume that the system has four available operation modes. The
buffer capacity is K = 20.
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When the r robots are activated, the BMAP -input is described by the

matrices D
(r)
k ,

D
(r)
k = rDk, k = 0, 8, r = 1, 4,

where the matrices Dk, k = 0, 8, are defined above. The intensities λ(r) of
the BMAP when r robots are used, r = 1, 4, are as follows: λ(1) = 0.0153,
λ(2) = 0.0307, λ(3) = 0.046, λ(4) = 0.061.

The distribution of a Web page obsolescence time is exponentially dis-
tributed with parameter 0.0005, i.e., the mean time until obsolescence is
equal to 2000.

The cost criterion coefficients are taken as closs = 200, cobs = 250, a = 3,
crob = 20, cstar = 600.

The cost criterion values Cr when r, r = 1, 4, robots are always activated
are given by C1 = 666.28, C2 = 657.07, C3 = 639.03 and C4 = 621.25. When
all four modes of operations are exploited the optimal cost criterion value is
563.51 and the optimal set of thresholds is [2,2,2], i.e., the optimal strategy
assumes that four robots should be active until the number of Web pages
in the system does not exceed 2. When the number of Web pages in the
system exceeds 2, three robots should be deactivated and only one robot
should be active.

Table 5 contains the optimal values of the cost criterion for the different
combinations of operation modes.

Table 5: The Values of the Optimal Cost Criterion for the Fixed
Combination of Operation Modes
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possible numbers of active robots
Optimal
thresholds

Optimal value
of the cost
criterion

1 – 666.28
2 – 657.07
3 – 639.03
4 – 621.25
1,2 0 624.97
1,3 0 591.72
1,4 2 563.51

2,3 1 622.81
2,4 2 593.29
3,4 3 609.66
1,2,3 0,0 591.72
1,2,4 2,2 563.51
1,3,4 2,2 563.51
2,3,4 2,2 593.29
1,2,3,4 2,2,2 563.51

The relative profit of operation mode control exceeds 9% comparing to the
case when no control is applied and all four robots are always active.

8 Conclusion

In this paper we provide performance evaluation and optimization of the
crawling part of a Web search engine. We model the crawler with a finite
buffer, monotonically controlled arrival rate (controlled number of crawling
robots), and with stochastically bounded waiting time. The system is con-
sidered under rather general assumptions about the arrival process, service
and obsolescence time distributions. Stationary distribution of the system
state, sojourn time distribution and main performance measures of the sys-
tem are calculated under any fixed set of thresholds defining the control
strategy. This allows us to reduce the problem of optimal control to mini-
mization of a known function of several integer variables.

Numerical results are presented. They show that the dynamic input con-
trol can give essential profit. Effects of buffer size changes and changes of
average service and obsolescence times and their variances are investigated.
In particular, we illustrate that the assumption about the exponential dis-
tribution of service and obsolescence times can give poor estimation of the
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system performance measures and optimal values of the thresholds when
actually these times have high variation.

The model has been applied to the performance evaluation and opti-
mization of the crawler designed by INRIA Maestro team in the framework
of the RIAM INRIA-Canon research project.
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Table 3: Variable Mean Service Time

s b1
numbers of
active robots

j∗ C∗ C1 C2 C3 C4 R, %

0.1 6.57 1,3 0 53.1 58.58 80.67 104.74 131.84 9.35
0.2 3.29 1,3 1 45.08 59.45 72.77 94.16 122.04 24.17
0.3 2.19 1,3 1 42.93 68.51 72.02 89.42 118.55 37.34
0.4 1.64 1,3 1 43.33 80.36 74.27 86.7 117.45 41.66
0.5 1.31 1,3 1 45.28 93.09 78.34 85.15 117.77 42.2
0.7 0.94 1,3 2 51.17 117.98 89.66 84.65 121.17 39.55
0.9 0.73 1,3 2 58.88 140.09 103.05 87.14 126.89 32.43
1 0.66 1,3 2 63.54 149.91 110 89.4 130.31 28.93
3 0.22 1,3 3 160.48 244.04 211.44 182.29 204.54 11.96
5 0.13 1,4 1 217.02 272.19 254.87 243.01 251.25 10.7
7 0.09 1,4 1 250.83 285.26 276.93 274.4 279.31 8.59
9 0.07 1,4 0 272.76 292.74 290.05 292.8 297.61 5.96
11 0.06 1,4 0 288.23 297.59 298.7 304.77 310.39 3.15
13 0.05 1,4 0 299.92 300.97 304.82 313.15 319.78 0.35
15 0.04 1 – 309.061 303.47 309.37 319.33 326.96 0
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Table 4: Variable Mean Time until Obsolescence

s g1 j∗ C∗ C1 C2 C3 C4 R, %

0.01 500 3 52.07 130.02 92.47 81.28 118.93 37.16
0.1 50 3 52.41 132.22 94.24 81.99 119.99 36.08
0.2 25 2 53.83 134.55 96.17 82.79 121.17 34.98
0.3 16.7 2 55.1 136.78 98.05 83.6 122.34 34.09
0.4 12.5 2 56.36 138.9 99.88 84.41 123.51 33.23
0.5 10 2 57.6 140.93 101.67 85.24 124.67 32.43
0.7 7.1 2 60.02 144.74 105.12 86.9 126.95 30.93
0.9 5.6 2 62.38 148.25 108.42 88.57 129.21 29.57
1 5 2 63.54 149.91 110 89.4 130.31 28.93
3 1.67 1 83.6 173.68 135.36 105 149.91 20.38
5 1 1 95.64 187.76 152.48 117.52 165.21 18.62
10 0.5 1 116.47 206.98 178.08 138.25 191.33 15.75
20 0.25 0 131.1 223.17 201.46 158.66 218.9 17.37
30 0.17 0 136.67 230.45 212.45 168.67 233.25 18.97
40 0.13 0 139.97 234.54 218.83 174.63 242.04 19.85
50 0.1 0 142.15 237.18 222.99 178.58 247.97 20.4
60 0.083 0 143.72 239.03 225.91 181.39 252.25 20.77
70 0.071 0 144.9 240.38 228.08 183.5 255.47 21.04
80 0.063 0 145.81 241.42 229.75 185.13 257.99 21.24
90 0.056 0 146.55 242.24 231.08 186.44 260.01 21.4
100 0.05 0 147.16 242.91 232.15 187.51 261.67 21.52
200 0.025 0 150.08 245.97 237.19 192.58 269.62 22.07

]
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