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Achieving efficient bandwidth utilization in wireless networks requires solving two impor-
tant problems: (1) which packets to send (i.e., packet scheduling) and (2) which links to
concurrently activate (i.e., link scheduling). To address these scheduling problems, many
algorithms have been proposed and their throughput optimality and stability are proven
in theory. One of the most well-known scheduling algorithms is backpressure scheduling
which performs both link and packet scheduling assuming a TDMA (Time Division Multiple
Access) MAC (Medium Access Control) layer. However, there has been limited work on
realizing backpressure scheduling with a CSMA/CA (Carrier Sense Multiple Access with Col-
lision Avoidance) MAC layer (e.g., IEEE 802.11). In IEEE 802.11 networks, it is expected that
the throughput optimality will not be achieved. In this paper, we investigate the extent of
this throughput gap between theoretical TDMA-based backpressure scheduling and an
approximation of it for IEEE 802.11 WMNs (Wireless Mesh Networks). Through extensive
testbed measurements, we verify that there is indeed a non-negligible throughput gap. We
present two main reasons behind this gap: Control inaccuracy that results from approxima-
tion of link scheduling and information inaccuracy that results from late or incorrect infor-
mation, for instance, about queue lengths or network topology. Our results show that
losses by MAC-layer collisions and backoff, which mainly occur due to control inaccuracy
plays a major role for the throughput gap. On the other hand, while losses by queue drops,
typically due to information inaccuracy, do occur, their effect can be tolerated. Neverthe-
less, both types of inaccuracies need to be mitigated in order to improve throughput.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

WMNs (Wireless Mesh Networks) promise great poten-
tial to improve Internet coverage, especially in under-
privileged regions of the world, due to their deployment
flexibility and relatively low cost [1]. However, despite their
benefits, WMNs require solving several networking chal-
lenges to operate at full capacity [2]. For one of the chal-
lenges, improving bandwidth utilization, there have been
. All rights reserved.
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numerous scheduling proposals [3–12]. One of the most
well-known algorithms is backpressure scheduling [3], which
computes a backpressure value as the queue differential of a
node and its next-hop node for every flow, and uses these
values to determine the central scheduling sequence. Theo-
retically, it has been shown that backpressure scheduling
can stabilize the network per-flow queues and hence, pro-
vides optimal throughput [4]. However, these results are
obtained under the assumption of a TDMA (Time Division
Multiple Access) MAC (Medium Access Control) protocol,
which grants access to the wireless medium in a time-
synchronized fashion. Furthermore, a typical assumption
is the availability of complete per-flow queue and link infor-
mation. Unfortunately, these assumptions do not hold in
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IEEE 802.11 WMNs (Wireless Mesh Networks), both in
theory and in practice.

Realizing backpressure scheduling in practice requires,
first, moving away from TDMA to CSMA (Carrier Sense
Multiple Access), and second, collecting information (e.g.,
next-hop queue length, physical-layer link capacity, and
network topology) to compute the backpressure values
[9–11]. Due to these challenges, there has been limited
work on backpressure scheduling in practice. One recent
work [13] implements TDMA-based backpressure schedul-
ing in IEEE 802.11 WMNs by heavily modifying IEEE
802.11. However, their implementation relies on Ethernet
connections to wireless nodes for stable control channels,
which is not a typical assumption for WMNs. Another
example, Horizon [9], monitors the next-hop queue length
by listening to the packets forwarded by the next-hop
node, where the queue length is piggybacked to the pack-
ets. For the MAC layer, Horizon uses generic IEEE 802.11
without modification. Using backpressure values as a met-
ric for multi-path routing, Horizon achieves better fairness
and throughput for multi-hop flows compared to pure
multi-path routing. Another example is DiffQ [10], which
uses backpressure values for scheduling links using IEEE
802.11e [14] at the MAC layer. DiffQ shows better fairness
among several transport-layer protocols (e.g. TCP, ATP
[15]) for multi-hop flows. These examples show the poten-
tial of realizing backpressure scheduling in practice.

In addition, there has been work on analyzing the
throughput optimality within a certain degree of realistic
settings. In [16], it is theoretically shown that the imper-
fect backpressure scheduler, due to the lack of global
knowledge, results in only a fraction of the maximal capac-
ity region. As an extent to this theoretical analysis, there
has been work on the experimental analysis of the variants
of backpressure scheduling (e.g., optimal CSMA (oCSMA)
[17–19]). In oCSMA, only the sender queue length is used
to determine the scheduling sequence, thus it does not
require message passing for information exchange. How-
ever, the throughput-optimality of oCSMA is only shown
for single-hop flow scenarios in WMNs [18] (e.g., for the
‘‘flow-in-the-middle’’ scenario, where three parallel flows
contend for the medium and hence, the flow in the middle
has a disadvantage compared to the other two flows). Their
results show that, in practice, oCSMA does not provide the
theoretical optimal throughput due to the existence of
hidden terminal nodes. In this paper, we go a step further
in illustrating the differences between theory1 and practice,
and evaluate the throughput gap under multi-hop flow
scenarios.

To analyze the throughput gap between theoretical and
practical backpressure scheduling, we rely on IEEE 802.11-
based implementation of backpressure scheduling, which
carefully deals with several system-level issues. Our evalu-
ation covers various traffic scenarios including multi-hop
flows. All experiments are carried out in GIST WMN test-
bed, which consists of 20 nodes with off-the-shelf IEEE
802.11 wireless interfaces. In each scenario, we also vary
1 Note that, in this paper, we mention theoretical-optimal throughput in
the sense that it is optimal under the assumption of TDMA-based MAC
layer.
several MAC-layer parameters to further understand the
interaction between MAC layer and backpressure schedul-
ing. Our experimental evaluation verifies the throughput
gap, which we show to emerge from both control and
information inaccuracies due to the underlying IEEE
802.11 MAC layer.

In summary, we make the following contributions in
this paper:

� We perform extensive measurements (960 experiments
in total) and quantify the throughput gap in our testbed
for various traffic scenarios. In these scenarios, we look
at the impact of the flow composition (number of flows,
number of hops per flow, whether they intersect or
interfere, etc.) and the MAC-layer parameters such as
RTS/CTS on or off, using static or automatic rate control,
and different MAC-layer contention parameters.
� We show that MAC-layer collisions and backoff are the

main reason behind the throughput gap. For certain sce-
narios, however, losses due to queue drops also increase
the throughput gap. We believe mainly two factors
incur such losses: information and control inaccuracies.
Information inaccuracy stems from the lack of complete
network topology information for scheduling decisions
and control inaccuracy is the infeasibility of scheduling
packets with exact timing in IEEE 802.11 MAC layer.
� Finally, we show the impact of MAC-layer parameters

on the throughput gap. The results show that MAC-
layer contention parameters have the least impact on
the throughput gap, whereas the use of automatic rate
control and RTS/CTS has a significant impact. This indi-
cates that backpressure scheduling and certain MAC-
layer mechanisms should not operate independently
of each other.

The remainder of the paper is organized as follows.
Section 2 explains the throughput gap between theoretical
TDMA-based and practical CSMA/CA-based backpressure
scheduling. Section 3 explains how we analyze the
throughput gap and Section 4 presents the throughput
gap between the theoretical and practical backpressure
scheduling and its reasons based on the discussion in
Section 2. Finally, we conclude in Section 5.
2. Throughput gap between theoretical TDMA-based
and practical CSMA/CA-based backpressure scheduling

In this section, we first explain the throughput gap
between theoretical TDMA-based and practical CSMA/CA-
based backpressure scheduling in WMNs. Next, we present
the solutions to both problems using backpressure sched-
uling and explain how the throughput gap between them
may arise.

Backpressure scheduling requires solving both packet
and link scheduling problems. Generally, ‘‘packet schedul-
ing’’ is the problem of determining the flow sequence
among multiple flows that traverse the same link and ‘‘link
scheduling’’ is the problem of determining the link activa-
tion sequence among multiple links. Packet scheduling is
performed between the network and MAC layers, and the
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link scheduling is performed by the MAC layer. The sched-
uling problem can be solved differently according to the
different MAC-layer assumptions such as TDMA or
CSMA/CA (i.e., IEEE 802.11). In the CSMA/CA-based sched-
uling problem, each node determines which per-flow
queue should dequeue a packet whenever the MAC layer
is ready to transmit (i.e., packet scheduling). Then, the
MAC layer decides when to transmit this packet taking
into account the neighbor links (i.e., link scheduling). On
the other hand, in the TDMA-based scheduling problem,
the above scheduling is considered in larger timescales,
where the decision of packet and link scheduling becomes
equivalent to allocating link bandwidth to flows. In this
case, backpressure scheduling performs an allocation that
achieves queue length stability and it is proven that stabi-
lizing the queue lengths leads to optimal throughput by
preventing queue overflow and link under-utilization
(due to queue underflow).

The following lists the common assumptions that are
made by both scheduling problems:

� Per-flow queues: Each node maintains per-flow2 queues
for separately storing the packets from different flows.
This per-flow queue assumption could lead to higher
complexity with the growing number of flows. But it is
shown that when nodes fairly aggregate multiple flows
into smaller sets of aggregated flows and schedulers are
aware of the aggregated flows, quality of service can be
guaranteed [20].
� Static routing: We use the shortest path routes that are

determined apriori. We use this assumption to isolate
the scheduling problem from possible side effects that
can come from routing.

Based on these common assumptions, we present theo-
retical and practical scheduling in further detail in the fol-
lowing sections.
2.1. Backpressure scheduling with TDMA-based MAC layer

In this section, for TDMA-based MAC layer, we first for-
mulate the scheduling problem and then present its theo-
retical solution (i.e., backpressure scheduling) that gives
the optimal throughput. The original scheduling problem
and the related source rate control and routing problems
appear in [3,21,7].

We denote N as a set of nodes, E as a set of links and F as
a set of flows. The link e: (i, j) 2 E exists between node i and
node j if i and j are within the transmission range. The
capacity of link e is denoted as ce. Let xf

i represent the rate
packets are injected to the network at source node i of flow
f. (If node i is not a source, xf

i ¼ 0.) For convenience, we de-
note xf as the rate of flow f. The topology matrix T is a
jNj � jEj matrix where, Tn,e represents 1/ce, if link e is inci-
dent on node n, and 0 otherwise. Also, the allocated link
capacity is represented as l, which is a jEj � jFj matrix,
where lf

e represents the capacity (bandwidth) of link e that
2 We identify a flow by 5-tuple information (source and destination IP
addresses, source and destination ports, and protocol).
is allocated to flow f. The network utility of flow f with rate
xf is denoted as Uf(xf). Finally, we denote � as the constant
MAC-layer overhead.

Based on this notation, the scheduling problem is to
find x and l that maximize the sum of network utilities
Uf(xf) for all flows while satisfying capacity, flow preserva-
tion, and rate non-negativity constraints:

max
x;l

X
f2F

Uf ðxf Þ ð1Þ
subject to :
X
f2F

Tlf
6 ð1� �Þ1 ðcapacity constraintÞ;

ð2Þ

xf

i þ
X

e:ðj;iÞ2E

lf
e 6

X
e:ði;jÞ2E

lf
e; i 2 N; f 2 F

ðflow preservation constraintÞ; ð3Þ

x P 0 ðrate non-negativity constraintÞ; ð4Þ

where 1 represents the jNj-dimension column vector with
all 1s. Capacity constraint, given in Eq. (2), ensures that
the sum of flow rates passing through a node should not ex-
ceed the capacity of its links. The flow preservation con-
straint in Eq. (3), guarantees that, at each node, the
aggregate rate for incoming flows and the traffic of the node
itself should not exceed the outgoing flow rates. Finally, Eq.
(4) states that all rates x should always be non-negative.

Fig. 1 presents a simple example scenario. The schedul-
ing problem is to find the rates of the source nodes N1 and
N5, xF1 and xF2, respectively, and the schedules for links E1,
E2, E3, E5, and E8 that maximize the sum network utility
while satisfying all constraints. For instance, the capacity
constraint for the node N3 ensures that for F1 and F2, allo-
cated link capacity for E2, E3, E5, and E8 does not exceed
1 � �. Also, for F1, the flow preservation constraint for N3
means that the incoming rate of F1 into N3 should be less
than the outgoing rate.

Now, we present the theoretical backpressure schedul-
ing that solves the problem above. The solution includes 3
steps which are taken at every TDMA time slot and is shown
to converge to the throughput-optimal solution in [7].

1. Congestion price update: At each TDMA slot k, each
node i updates its price for each flow as:
pf
i ðkþ1Þ ¼ pf

i ðkÞ þ c xf
i þ

X
e:ðj;iÞ2E

lf
e �

X
e:ði;jÞ2E

lf
e

 !" #þ
; ð5Þ

where [�]+ gives only positive values (i.e., if negative va-
lue is given, it gives 0) and c is a given positive constant.
Note that pf

i ðkÞ is interpreted as congestion price, i.e.,
the sum of extra traffic against the capacity allocated
to flow f over the lifetime.

2. Backpressure value computation: Each node i collects
congestion price information from its neighbor node j
and calculates its differential as:
df
e ¼ pf

i � pf
j ; ð6Þ

where e is the link between node i and j.
3. Backpressure scheduling: We denote Fe as a set of flows

that pass link e. Based on the collected and computed



Fig. 1. Example of a WMN topology with six nodes, nine links and two flows.

J.-Y. Yoo et al. / Computer Networks 56 (2012) 2934–2948 2937
information, for each link e, the flow that has the high-
est backpressure value, f(e), is computed as:
f ðeÞ ¼ arg max
f2Fe

df
e:

After that, the allocated link capacity vector l⁄ is se-
lected such that it satisfies:

l� ¼ arg max
l

X
e

lf ðeÞ
e df ðeÞ

e

subject to

l 2 Pð�; TÞ; ð7Þ

where P(�,T) is the capacity region that contains all lf

which satisfy the capacity constraint (Eq. (2)). That is,
for each link e: (i, j), lf ðeÞ

e is offered to flow f(e).

This solution assumes full knowledge about the physi-
cal-layer link capacity and the network topology to con-
struct the matrix T. Based on this information, the
backpressure scheduler assigns how much bandwidth (l)
each flow should get, which is in turn scheduled by the
TDMA-based MAC protocol.

2.2. Backpressure scheduling with practical CSMA/CA-based
MAC layer

In this section, we present the approximation of back-
pressure scheduling for CSMA/CA. Due to the high com-
plexity of modeling CSMA/CA behavior,3 we do not
present any mathematical models and focus mainly on
how backpressure scheduling works with CSMA/CA.

IEEE 802.11 exploits DCF (Distributed Coordination
Function) as a core function for medium access. In DCF, be-
fore a node starts a transmission, it senses whether the
channel is idle for a DIFS (DCF Inter-Frame Space) duration,
plus an additional backoff time that is randomly chosen
between minimum (CWMin) and maximum (CWMax)
contention window values. Only when the channel re-
3 IEEE 802.11 employs CSMA/CA with binary exponential backoff and
there is no accurate mathematical model of binary exponential backoff
unless the model includes non-linear (such as exponential) terms in
equations. Additionally, if we consider multiple collision domains (i.e., a
typical condition in WMNs), the complexity of non-linear equations
increases [22].
mains idle for a DIFS plus backoff time, the node can initi-
ate transmission. To provide service differentiation among
traffic classes in a distributed way, IEEE 802.11e uses EDCA
(Enhanced Distributed Channel Access) which is built on
DCF. EDCA provides up to four ACs (Access Categories)
and its corresponding queues (we name them as priority
queues) as shown in Fig. 2. By assigning smaller CWMin,
CWMax, and AIFS (Arbitrary Inter-Frame Space) values to
ACs with higher priorities, EDCA differentiates the trans-
mission probability in favor of high-priority ACs in a statis-
tical sense. Note that EDCA uses AIFS rather than DIFS to
provide different initial waiting times for different traffic
classes.

The medium access parameters and priority queues are
typically implemented in hardware as the actions involv-
ing these parameters require microsecond granularity.
Even the well-known open-source WiFi MAC driver,
MadWiFi [23], does not provide much control over the
medium access parameters and priority queues. In these
circumstances, the only way to implement backpressure
scheduling is to build per-flow queues on top of IEEE
802.11e standard implementation as shown in Fig. 2. Un-
der IEEE 802.11e, practical backpressure scheduling is
approximated with the following steps:

1. Congestion price update: The congestion price pf
i in Eq.

(5) can be interpreted as the queue length for flow f at
node i, if c is taken as the packet length in bits. Then,
Fig. 2. Protocol stack of practical backpressure scheduling in IEEE 802.11e
MAC layer.
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the scheduling sequence can be similarly decided. This
is the reason why the recent implementations of back-
pressure scheduling use the queue length to control
medium access [9,10,12].

2. Backpressure value computation: To compute backpres-
sure value df

e

� �
, we need to know the per-flow queue

length of the next-hop node. This queue length can be
monitored by overhearing the packets transmitted by
the next-hop node and extracting the per-flow queue
length piggybacked in packets. This is also the method
we use in our implementation.

3. Backpressure scheduling: In theory, the flow with higher
backpressure value should be scheduled first. This can
be easily implemented in a packet scheduler (backpres-
sure scheduler in Fig. 2), since each node can compute
the backpressure values for all flows. For link schedul-
ing, since we need to operate based on IEEE 802.11e,
the backpressure values should be mapped to the prior-
ity queues as shown in Fig. 2. Note that 1-to-1 mapping
from backpressure values to priority queues would not
be possible due to the finite number of priority queues
in IEEE 802.11e. In this paper, similar to DiffQ [10], we
use a linear mapping function. We assume all per-flow
queues have the same maximum queue size and denote
this size as qmax. Then, the backpressure value df

e

� �
can

be mapped to the priority queue index k, as:
k ¼ M
qmax þ df

e

2qmax

$ %
; ð8Þ
where M is the number of priority queues.

2.3. Possible reasons for the throughput gap

Now, we discuss the two possible reasons for through-
put gap. The first one is information inaccuracy that results
from the incomplete information about next-hop queue
length and network topology, which are needed for sched-
uling decisions. This is due to the approximations of steps
2 and 3 described in Section 2.2. The second one is control
inaccuracy that results from the approximation of link
scheduling using IEEE 802.11e in step 3.

Information inaccuracy may result from not having
exact information about:

� Next-hop per-flow queue lengths required to compute the
backpressure values in Eq. (6). This information is the
input to the backpressure scheduler for the scheduling
decision.
� Topology information T required to compute the capacity

constraint in Eq. (7). This information basically conveys
how the medium is shared among links (e.g., how many
links interfere with each other). Based on this, the
TDMA-based scheduler decides how much bandwidth
should be allocated to each flow to fully utilize the links.

Unfortunately, both types of information cannot be
accurately monitored due to following reasons. First,
acquiring next-hop per-flow queue length requires
message-passing between the next-hop node and the
node itself (implemented as overhearing piggybacked
information). But, this takes some time and this monitor-
ing delay may trigger per-flow queue length fluctuation
[24] and moreover, whenever there is link asymmetry,
this information would not be correctly estimated. Second,
topology information is essential to understand how link
bandwidth could be shared among flows. However, trying
to collect this information would require acquiring trans-
mission and interference relations between every node
pair and this results in a large amount of monitoring traf-
fic [25].

Control inaccuracy results from IEEE 802.11e operation.
In TDMA, a central controller coordinates the overall link
scheduling (i.e., link activation sequence) over time-syn-
chronized slots and transmits packets with an exact sche-
dule. Note that the distributed version of TDMA-based
backpressure scheduling [7] also assumes on-time trans-
missions. This is feasible because nodes are time-synchro-
nized and complete knowledge of network topology
including interference relations is assumed. However, in
practice, synchronized operation cannot be assumed and
moreover, we cannot acquire the accurate interference
information [25]. On the other hand, the channel access
in CSMA/CA is probabilistic, therefore, it is not possible to
transmit packets on time based on a pre-determined
sequence. Additionally, IEEE 802.11 has operational over-
heads such as backoff time and interframe spacings (e.g.,
AIFS in IEEE 802.11e), which are not incurred in TDMA.
3. Throughput gap analysis method

We quantitatively show the throughput gap by comparing
the theoretically optimal throughput and the experimental
throughput under various traffic scenarios ranging from a
single flow to multiple flows with different parameter
settings. In order to understand experimental throughput
performance, we run our backpressure scheduling imple-
mentation in an IEEE 802.11 WMN testbed and perform
throughput measurements. Also, we compute the theoret-
ical throughput for these experiments using the model
described in Section 2.1. To feed the model with the neces-
sary input (e.g., network topology), we use the measured
values from our testbed experiments. To distinguish the ef-
fects of the reasons behind the throughput gap, we quanti-
tatively show the wasted throughput due to different
reasons by inspecting all the delivered and dropped pack-
ets in all experiments.

Note that for some simple topologies and traffic scenar-
ios we can immediately measure the throughput gap. We
describe an illustrative example as follows. First, setup
three nodes, A, B, and C. In the first experiment, set up
two flows from B to A and from B to C and measure the
throughput of both flows. In the second experiment, setup
two flows from A to B and from C to B and measure the
throughput of both flows. The difference of the resulting
throughputs would be the throughput waste due to
MAC-layer collisions and backoffs since, in the first exper-
iment, Node B makes sure only one node is transmitting.
However, once the topology or the traffic scenario becomes
complicated, this method would be difficult to measure the
throughput gap.
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3.1. Network testbed and traffic scenarios

For the network testbed, we use GIST WMN testbed
whose deployment map is shown in Fig. 3a. GIST WMN
testbed consists of 20 wireless nodes, equipped with a
VIA Eden 1.0 GHz CPU and two Atheros-chipset-based IEEE
802.11 interfaces. As the operating system of wireless
nodes, we use Linux Voyage distribution with kernel ver-
sion 2.6.26. Also, to precisely measure the experimental
throughput performance, we use PaPMo (Packet-accurate
Protocol Monitoring) [26] that monitors the life of all pack-
ets (e.g., when and where it is generated, delivered, or
dropped) and the internal protocol state (e.g., per-flow
queue length, packet reception SINR, etc). Also, to repeat
experiments in a controlled fashion, we use OMF (Orbit
Management Framework) [27] that manages every testbed
node in a centralized fashion and automates experiment
setup and traffic generation. Note that OMF and PaPMo
use a separate management/measurement network to
operate the testbed and deliver monitoring traffic thus it
does not affect the experimental throughput [26].

To show the overall connectivity of nodes in our test-
bed, we plot the node-connectivity matrix in Fig. 3b. We
measure the node connectivity as the broadcast delivery
ratio of IEEE 802.11 using the fixed modulation rate of
36 Mbps.4 Each node takes turns and broadcasts 100
packets/s for three minutes. Black cells represent the case
when all the broadcast packets are delivered and white cells
represent the case when all packets are lost. Note that this
connectivity information is used for computing the
theoretically optimal throughput, presented in detail in
Section 3.2.
4 We choose 36 Mbps since it is the best modulation rate for overall links
in GIST WMN testbed.
For our performance evaluations, we use a number of
diverse traffic scenarios, which are listed in Table 1. These
scenarios are categorized as follows:

� Single flow: This is the most basic scenario. However,
note that a multi-hop single flow experiences intra-flow
contention (i.e., medium access contention among the
nodes in the same flow).
� Parallel flows: Two parallel flows with inter-flow con-

tention (i.e., medium access contention between the
nodes in neighboring flows).
� Overlapping flows: Two overlapping flows that run in

opposite directions. The flows do not experience expli-
cit inter-flow contentions, but intra-flow contention
from two different flows.
� Crossing flows: Two flows with cross inter-flow conten-

tion. Here, the node where the two flows cross also
needs to perform packet scheduling to decide the
sequence of flows to serve.
� Complex flows: These scenarios include 3, 4, and 5 flows.

In these scenarios, the parallel, overlapping and cross-
ing flows exist in various combinations.

3.2. Theoretical throughput computation

Here, we describe how we compute the theoretical
throughput of TDMA-based backpressure scheduling for a
given traffic scenario in our testbed. Remember that we
can obtain the theoretical throughput by solving the net-
work utility maximization problem in Eq. (1) with the con-
straints of Eqs. (2)–(4) in Section 2.1. As a solver, we use
the CVX (Convex) optimization toolkit in Matlab [28].

To solve the problem, we need to choose the utility
function and the variables that represent the network con-
nectivity and the flows. For the utility function Uf of flow f,



Table 1
Various traffic scenarios (from 1 to 5 flows) with the given routing paths.
Note that the right-most node is the source node and the left-most node is
the destination node.

A single flow (Scenario 1) N20 ? N10 ? N9 ? N16 ? N7 ? N6

A single flow (Scenario 2) N11 ? N12 ? N3 ? N2 ? N18 ? N9
? N8

Crossing flows (Scenario 3) N20 ? N10 ? N9 ? N16 ? N7 ? N6
N11 ? N12 ? N3 ? N2 ? N18 ? N9
? N8

Parallel flows (Scenario 4) N6 ? N7 ? N16 ? N9
N4 ? N3 ? N2 ? N10

Parallel flows (Scenario 5) N4 ? N3 ? N2 ? N10
N8 ? N7 ? N6 ? N15

Overlapping flows
(Scenario 6)

N11 ? N12 ? N3 ? N2 ? N18 ? N9
? N8
N9 ? N18 ? N2 ? N3 ? N12

Complex three flows
(Scenario 7)

N1 ? N12 ? N3 ? N14

N6 ? N7 ? N16 ? N9
N19 ? N10 ? N2

Complex three flows
(Scenario 8)

N20 ? N10 ? N9 ? N16 ? N7 ? N6

N12 ? N3 ? N4 ? N15
N19 ? N9 ? N16 ? N7

Complex four flows
(Scenario 9)

N1 ? N12 ? N3 ? N14

N11 ? N12 ? N3 ? N2
N4 ? N3 ? N2 ? N10
N19 ? N10 ? N2

Complex four flows
(Scenario 10)

N1 ? N12 ? N3 ? N14

N11 ? N12 ? N3 ? N2
N19 ? N9 ? N16 ? N7
N19 ? N10 ? N2

Complex five flows
(Scenario 11)

N1 ? N12 ? N3 ? N14

N10 ? N18 ? N9 ? N16 ? N7
N11 ? N12 ? N3 ? N2
N2 ? N10 ? N18 ? N9 ? N8
N19 ? N10 ? N2

Complex five flows
(Scenario 12)

N10 ? N18 ? N9 ? N16 ? N7

N19 ? N9 ? N16 ? N7
N4 ? N3 ? N2 ? N10
N8 ? N7 ? N6 ? N15
N19 ? N10 ? N2
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we use the log function which is widely used as it provides
proportional fairness [29]. We ignore the MAC-layer over-
head by setting � = 0. For the topology matrix, we use the
node-connectivity matrix shown in Fig. 3b. For each link,
we set its capacity as the product of modulation rate and
delivery ratio, where the modulation rate is 36 Mbps.

It must be noted that we do not attempt to compute the
true optimal throughput. Indeed, our computation pro-
vides an over-estimation. First, in our theoretical computa-
tion, we do not consider the concurrent transmissions in a
collision domain. Second, we use 0 for � which is not typ-
ical in the real-world MAC layer. However, by comparing
this estimation to the practical throughput, we still obtain
a valuable insight on the extent of throughput gap and dif-
ferent causes (i.e., information and control inaccuracies)
for the observed gap.

3.3. Practical throughput computation

To understand the achievable throughput in practice,
we carefully implement backpressure scheduling in our
testbed, paying attention to reducing the execution time
overhead as much as possible. Our implementation uses
Click 1.8 [30] and MadWiFi 0.9.4 [23]. Click is a well-
known tool that provides packet-level flexible programma-
bility between the transport and the MAC layer. MadWiFi
provides an implementation of IEEE 802.11e MAC layer
and has the multiple priority queues as defined in the stan-
dard [14]. We extend the number of priority queues from 4
to 8 (M = 8 in Fig. 2) to provide more fine-granularity med-
ium access control.5 We then implement a flow classifier, a
per-flow table for maintaining flow-specific information,
per-flow queues and backpressure scheduler as Click ele-
ments and place them between the original network and
MAC layers. During the validation of our implementation,
we notice that additional delays are introduced between
packet scheduling (at per-flow queues) and link scheduling
(at priority queues) due to the existence of additional
queues in Linux networking kernel. We make sure to bypass
these queues to avoid any delay, and potential queue fluctu-
ations (see Appendix A for more details).

For packet processing, the flow classifier receives pack-
ets from the network layer and classifies them according to
a unique flow identifier. Based on this identifier, packets
are stored in their corresponding FIFO (First-In First-Out)
queue. The per-flow table also maintains the per-flow
queue length of the next-hop nodes and uses it to compute
a backpressure value df

e for a given link using Eq. (6). For
backpressure scheduling, the packet scheduler runs as a
thread and checks if the MAC-layer priority queue has a
space to store a packet. Then, the packet scheduler per-
forms scheduling according to the backpressure values

df
e

� �
and pushes the packet to the corresponding priority

queue of the MAC layer. To indicate which priority queue
to insert the packet, we put the index of the corresponding
priority queue to the TOS (Type of Service) field in the IP
header. For the index computation, we use Eq. (8). Note
5 We use 8 priority queues since Atheros 5 k series support 10 hardware
queues and 2 of them are designated as beacon and UAPSD (Unscheduled
Automatic Power Save Delivery) queues.
that, in our implementation, packets in the per-flow
queues are not scheduled when the priority queues are full
to prevent priority-queue overflows.

For the next-hop per-flow queue length monitoring,
each node monitors the upstream node queue length sim-
ilar to DiffQ [10]. The IPv4 header contains 13 bits FO
(Fragmentation Offset) field.6 When a node forwards a
packet to the next-hop node, the node piggybacks the per-
flow queue length of the corresponding flow in the FO field.
The previous-hop node promiscuously listens to the med-
ium and records the FO field of packets based on their flow
IDs. Again, during tests, we observe the order of forwarding
packets could be mixed at the priority queues of the MAC
6 We assume that all nodes use IPv4 and there is no fragmentation of
packets at the network-layer and the FO field is always zero.



Table 2
Common parameters used in all experiments.

Parameter Value

Maximum queue length, qmax 250 packets
Source rate control threshold, Tq 100 packets
Maximum priority queue length 10 packets
Packet size, PS 1500 bytes
Frequency 5.26 GHz
Transmit power 18 dBm

Table 3
IEEE 802.11e extended link access priority parameters.

Priority 7 6 5 4 3 2 1 0

AIFS (linear increasing set) 2 3 3 3 6 6 6 7
AIFS (expon. increasing set) 2 3 4 5 6 7 8 9
CWMin (linear increasing set) 1 2 3 4 5 5 5 5
CWMin (expon. increasing set) 2 3 4 5 6 7 8 9
CWMax (linear increasing set) 3 3 4 5 7 8 9 10
CWMax (expon. increasing set) 4 5 6 7 8 9 10 11

Table 4
Parameters that we combinate.

Parameter Value

Modulation rate Static 36 Mbps/automatic
(SampleRate)

RTS/CTS On/off
Medium access parameters (AIFS,

CWMin, and CWMax)
Linear/exponential
increasing sets (Table 3)
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layer. This results in errors in the monitoring order and leads
to the computation of wrong backpressure values. To filter
out-of-order packets, we introduce sequence numbers and
used the ID field in the IPv4 header as the sequence number.
(For more details, see Appendix A.) Note that this monitoring
also incurs delayed information due to monitoring delay, but
we leave this as information inaccuracy since the monitor-
ing delay inevitably happens.

For source rate control, we implement threshold-based
source rate control similar to [10] as follows. Whenever the
per-flow queue at source node becomes smaller than some
pre-defined threshold, Tq, the source node sends more
packets to fill up the per-flow queue to the threshold.
Although our source rate control is implemented as a heu-
ristic manner, we have validated that, in selected scenarios
(see Table 1), the performance of our source rate control
marginally differs to the one in appeared at [7], whose sta-
bility property has been proved in theory. Note that the
source rate control at [7] deals with log utility function
which is the limited case of general source rate controls.
This source rate control can prevent the per-flow queue
overflows at source node but the intermediate nodes are
still vulnerable to queue overflows.

3.4. Quantifying throughput gap

To quantify the throughput gap, we denote the total
number of bits carried over the network by all flows using
the theoretical TDMA-based backpressure scheduling as
Ttheory (bits). Also, we denote the throughput for practical
CSMA/CA-based backpressure scheduling as Tpractical (bits).
We expect the throughput gap to be a result of wasted bits
because of queue losses (Dq), collisions (Dc), MAC-layer
overhead (Do) (e.g., IFS times, and ACKs that are not used
in TDMA), and MAC-layer backoff (Db). We assume that
the following relationship holds:

Ttheory ¼ Tpractical þ Dq þ Dc þ Do þ Db: ð9Þ
We believe the primary cause behind Dc and Db is control
inaccuracy (approximated link scheduling) and Dq is infor-
mation inaccuracy (especially in the case of topology infor-
mation). Essentially, if a node does not strictly control the
time of packet transmissions, more than two nodes could
concurrently transmit in a collision domain, which leads
to a collision, which also leads to unnecessary backoff. Sim-
ilarly, Dq quantifies the information inaccuracy, since a
node might overflow the next-hop queue, if it does not have
exact knowledge of the neighbor topology or the queue
length of the next-hop node, and sends faster than it should.

Finally, from Eq. (9), we derive the throughput gap,
d(0 6 d 6 1), as:

d ¼ Ttheory � Tpractical

Ttheory
¼ Dq þ Dc þ Do þ Db

Ttheory
: ð10Þ

We additionally define:

Wq ¼
Dq

Ttheory
; Wc ¼

Dc

Ttheory
; Wo ¼

Do

Ttheory
; and Wb ¼

Db

Ttheory
:

ð11Þ

We denote ds to represent the d for a scenario s. Similarly,
Ws

q; Ws
c; Ws

o, and Ws
b represent the corresponding values

for scenario s.
We next explain how we compute Dq, Dc, Do and Db.

� Computing Dq: We compute Dq by counting all the
dropped packets and multiplying the hop counts that
the dropped packets traveled. More specifically, we
denote the number of dropped packets due to per-flow
queue overflow at node i for flow f as qlf

i . We denote
H(i, f) as the hop count of node i to the source node of
flow f and R(f) as the set of nodes that construct the
route of flow f. PS denotes packet size. Hence, Dq is:
Dq ¼
X
f2F

X
i2Rðf Þ

PS � qlf
i � Hði; f Þ

� Computing Dc: To compute Dc, we count all the dropped
packets due to collisions and compute the lost bits by
multiplying with packet size, PS. Additionally, we divide
the lost bits by the number of nodes affected by each
collision. The reason is that only one packet among col-
liding packets can be received successfully by the recei-
ver, regardless of how many packets are involved in the
collision. We define clf

i as the number of dropped pack-
ets due to MAC-layer collisions and SC(p) as the number
of interfering nodes for each packet p. Then, we can
derive Dc as:
Dc ¼
X
f2F

X
i2Rðf Þ

PS �
Xclf

i

p¼1

1
SCðpÞ

:

Since it is very hard to measure SC(p) for each packet, we
approximate this as the number of interfering nodes of a
node i.



Table 5
d over all scenarios by varying modulation rate, RTS/CTS on/off, and medium access parameters (linear/exponential increasing sets are shown as L and E,
respectively). All values (except Wb) are given as (average, the standard deviation).

RTS/CTS MAC Rate d Wq Wc Wo Wb

Off E Auto 0.64, 0.06 0.03, 0.01 0.43, 0.08 0.03, 0.01 0.15
Off L Auto 0.64, 0.06 0.03, 0.01 0.43, 0.08 0.03, 0.01 0.15
On E Auto 0.68, 0.04 0.00, 0.00 0.08, 0.02 0.10, 0.01 0.50
On L Auto 0.68, 0.04 0.00, 0.00 0.08, 0.01 0.10, 0.01 0.50
Off E 36 0.47, 0.08 0.01, 0.01 0.19, 0.04 0.07, 0.01 0.20
Off L 36 0.48, 0.08 0.01, 0.01 0.19, 0.04 0.07, 0.01 0.21
On E 36 0.49, 0.06 0.00, 0.00 0.08, 0.02 0.12, 0.02 0.29
On L 36 0.49, 0.07 0.00, 0.00 0.08, 0.02 0.13, 0.02 0.28
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Fig. 4. ds using medium access parameters with exponential increasing set.

7 Note that [10] uses the linear increase approach.
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� Computing Do: To compute Do, we add up the SIFS, DIFS,
MAC-layer ACK frame transmission, and physical-layer
preamble times of all dropped and transmitted packets.
� Computing Db: As we need multiple 5 GHz-supporting

spectrum analyzers to measure backoff time accurately
with a micro-second granularity, we do not measure Db

directly but estimate it based on the others. Therefore,
to compute Db, we subtract Tpractical, Dq, Dc, and Do from
Ttheory (see Eq. (9)). It is important to note that since
every term has a measurement noise, this computation
aggregates all the noise values in Db. We leave more
accurate calculation of Db as future work.

4. Throughput gap analysis results

4.1. Experiment setup

In every experiment, each node uses static routing to
minimize effects from routing dynamics. Table 2 denotes
the common parameters of all our experiments. We setup
the maximum per-flow queue length (qmax) to 250, which
is large enough to avoid per-flow queue overflow drops
due to minor queue length fluctuations [24]. We set the
source rate control threshold, Tq, to 100. We set the
maximum priority queue length (i.e., MadWiFi driver queue)
to 10, the smallest value that does not hurt the throughput
performance due to system overhead. It is preferable to set
this value as small as possible since additional queuing de-
lays could result in fluctuations of per-flow queues [24].

Note that there are 8 priority queues in the MadWiFi
driver. Each priority queue exploits different medium ac-
cess parameters (AIFS, CWMin, and CWMax) and these
medium access parameters may significantly affect the
throughput performance. For a complete experimental
analysis, we would need to experiment all possible combi-
nations of these parameters. To avoid this but still observe
the impact of these parameters, we use the approaches of
exponentially and linearly increasing these parameters.
Exponential (or linear) increase means that as the priority
of the queues increases, we exponentially (or linearly) in-
crease the medium access parameters.7 The corresponding
medium access parameters are shown in Table 3. Note that
the values in the table are the exponent of 2. We use the
combination of all parameters shown in Table 4. Thus, for
each scenario and parameter settings, we perform eight
experiments. We repeat each experiment 10 times.
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Fig. 5. Throughput wastes with exponential increasing medium access parameters.
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4.2. Average throughput gap result over all scenarios

We perform overall 960 experiments and our experi-
ment traces are public [31]. The average d values of the
overall scenarios are shown in Table 5. We also take a
more detailed look at the throughput gap based on Wq,
Wc, Wo, and Wb results. For this, we inspect all the
dropped packets due to MAC-layer collisions and per-flow
queue overflows monitored by PaPMo [26]. Note that, for
Wb, we do not present standard deviation since it is com-
puted by using averages of others as mentioned in
Section 3.4.

In overall, we observe that d is higher than 47% for all
possible combinations of parameters. We also observe that
d increases when automatic rate control is used. This is
intuitive because automatic rate control tries to find the
best rates and adapts modulation rates based on packet
drops. However, the rate control algorithm does not have
information about the causes of packet drops and might
reduce the rate unnecessarily. For example, in case of
MAC-layer collisions, the modulation rate should not be
decreased. Therefore, in our experiments, automatic rate
control achieves worse throughput than the static 36 Mbps
setting, which is the best rate based on our measurements.
Also, the packet transmission time with different modula-
tion rates changes the overlapping probability of packets
and hence, the collision probability among senders. This
is easily seen by increasing Wc with automatic rate control
and no RTS/CTS in Table 5.

On the other hand, RTS/CTS does not seem to affect d.
Note that even though turning on RTS/CTS saves some
bandwidth by mitigating the hidden terminal problem
[32] and reduces collisions, the overhead of RTS/CTS can-
cels the saved bandwidth. This again can be observed by
increasing Wo and Wb when RTS/CTS is on, while Wc signif-
icantly decreases in this case (see Table 5). Finally, the
medium access parameters show negligible throughput
performance difference.
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In summary, the results show that Wc is significantly
higher than Wq. Furthermore, Wb also shows non-negligi-
ble throughput waste, even though its computation is not
accurate. Nevertheless, based on these results, we conjec-
ture that control inaccuracy has more impact on the
throughput gap then the information inaccuracy. However,
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4.3. Throughput gap results of individual scenario

When we consider scenarios individually, we observe
diverse throughput gap as shown in Fig. 4. Interestingly,
ds is not correlated to the number of flows (the scenarios
with higher index have more flows). This is surprising since
lower throughput is expected as more nodes compete to
send traffic. However, in our experiments, for some scenar-
ios with one or two flows, we observe relatively high d
(such as Scenarios 2, 3 and 6). Similarly, for some scenarios
with 3, 4, and 5 flows (Scenarios 8, 10, and 12), we can ob-
serve relatively low ds. Looking deeper, we observe that a
particular set of nodes (Node 2, 3, 11, 12, and 18) are most
commonly involved in the scenarios with high throughput
gap (Scenario 2, 3, 6, 9, and 11). From this, we conjecture
that this set of nodes forms multiple hidden terminal
conditions (e.g., Node 2 is hidden to Node 11 and Node 3
is hidden to Node 18 as also seen from 0% delivery ratio be-
tween these nodes in Fig. 3b). This affects the throughput
significantly by incurring many collisions. This is also
clearly seen in Fig. 5a, which plots Ws

c values for each sce-
nario. The scenarios with high throughput gap also have
high Ws

c values when the RTS/CTS is off. On the other hand,
using automatic rate control, which also uses slower rates, a
higher number of collisions is observed due to the potential
increase in overlapping times between two senders.

Similarly, Fig. 5b depicts Ws
q values for each scenario.

Looking at individual scenarios, we see that the throughput
waste due to the per-flow queue overflow is not negligible
for some scenarios. For instance, in Scenario 9 with RTS/
CTS off and automatic rate control, Ws

q is around 10%. Fur-
thermore, when we use RTS/CTS, we do not observe many
packet drops due to per-flow queue overflow. We suspect
this behavior as RTS/CTS changes the transmission oppor-
tunity regarding the neighbor topologies (by using RTS/
CTS, the sender transmits when the receiver is also idle).

In Fig. 5c, we depict Ws
o values for each scenario. As

shown in Fig. 5c, RTS/CTS incurs huge overhead due to
the additional transmission times of RTS and CTS frames.
Also, we plot the throughput waste conjectured by backoff
time in Fig. 5d. Although we cannot guarantee the accuracy
of Ws

b values, we can roughly observe that Ws
b values are

not negligible.
Next, we present the throughput of individual flows in

Fig. 6. We can see that, for some scenarios, a flow takes
all the network bandwidth that should be shared with
the other flows (see Fig. 6f). Also, for Flow 8 ? 15 in Sce-
nario 12 (Fig. 6l), even though the theoretically optimal
throughput is around 3 Mbps, the experimental through-
put result is larger. It means that although in theory, the
backpressure scheduler with log as utility function pro-
vides proportional fairness [29], in practice it may not be
possible to achieve this due to the information and control
inaccuracies.8

To sum up, a significant throughput gap between theo-
retical TDMA and practical CSMA/CA exists. Major reasons
behind this throughput gap are packet drops due to MAC-
8 This fairness problem also comes from the poor approximation of
source rate control.
layer collisions, backoffs and per-flow queue overflows
which result from the two inaccuracy problems.
5. Conclusion

In this paper, we quantitatively show the throughput
gap when a backpressure scheduler uses theoretical TDMA
or practical CSMA/CA. Our thorough experimental analysis
results show a significant throughput gap due to control
and information inaccuracies. To operate IEEE 802.11
WMNs more efficiently, we need to reduce this gap. Re-
cently, there has been various work on throughput-optimal
CSMA/CA scheduling algorithms [34,35]. We consider that
the throughput gap between this theoretical CSMA/CA
scheduling algorithms and practical scheduling algorithms
could be smaller, which we consider as future work.
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Appendix A. Implementation issues of backpressure
scheduling

The two main issues we have faced during our imple-
mentation of backpressure scheduling are: (1) dealing with
the hidden queues in Linux networking kernel and (2) next-
hop queue length monitoring. The hidden queues in Linux
networking kernel causes additional queuing delay be-
tween the per-flow queue in Click and the priority queue
at the MAC layer. This additional queuing delay results in
time difference between the operations of packet and link
scheduling, and leads to a significant fluctuation in the per-
flow queues [24]. To resolve this issue, we by-pass the hid-
den queues by modifying Linux networking kernel and
MadWiFi. Fig. A.7 shows the function-call map of Linux
networking kernel. At top left, user-space function send is
the entry point to the networking kernel. It passes through
all the IP operations and reaches the device driver (de-
picted with solid line). As observed, there are two hidden
queues shown as circles: (1) the IP buffer for optimal frag-
mentation [33] and (2) the Qdisc which is formally known
as the interface queue. These hidden queues have an effect
on the performance due to additional queuing delay. To
avoid this, we by-pass the hidden queues as depicted in
dotted line of Fig. A.7. This ensures that there are only
two queues: per-flow queues at the network layer and pri-
ority queues at the MAC layer.

The monitoring of next-hop queue length also experi-
enced some problems since we use multiple priority
queues at the MAC layer and the packet order might
change due to using multiple priority queues. For instance,
consider the case when packets get queued at different pri-
ority queues at the MAC layer. Here, there is a possibility
that a packet which falls into a high priority queue can
be dequeued faster than earlier packets in a lower priority



Fig. A.7. Linux networking kernel and MadWiFi function call map where hidden queues are depicted as gray colored circles.
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queue. This results in out-of-order packets. Since the queue
length information is piggybacked on data packets, nodes
may not monitor the queue lengths in the right order,
which leads to computing backpressure values for the
wrong period, and hence, results in untimely scheduling
decisions. To filter out-of-order packets, we use sequence
numbers. The sequence number is increased each time a
packet is transmitted. At the monitoring node, if the
sequence number is larger than the previously monitored
sequence number, then the sequence number is recorded
and the queue length is updated. If the sequence number
is less than the previously recorded sequence number,
the monitoring packet is discarded. In our implementation,
the ID field in the IPv4 header is used as the sequence
number.

To validate our implementation, we ran an experiment
where we generated 2-hop UDP traffic from Node 1 to
Node 3 and observe the delay between send function in
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userspace send and ath_hardstart function in MadWiFi
(see Fig. A.7).

Fig. A.8 plots the distribution of this delay. We can ob-
serve that the significant portion of the packets are less de-
layed (around 3 ms faster) if we by-pass the hidden
queues, which can affect the proper operation of backpres-
sure scheduling [24]. We also plot the queue length of the
intermediate node (Node 2) and the monitored queue
length by the source node (Node 1) over time in Fig. A.9.
When sequence numbers are not used, shown in
Fig. A.9a, there exists sharp drops in monitored queue
length which is not representative of Node 2’s actual queue
length (see Fig. A.9b). These sharp drops lead to the wrong
backpressure value calculations, and possibly cause sharp
fluctuations in the queue evolution. Note that using se-
quence numbers eliminates such sharp drops (see
Fig. A.9c). However, these solutions do not solve the root
cause of the information inaccuracy in the queue length
as also seen from comparing Fig. A.9c and d. It just miti-
gates the issue of out-of-order per-flow queue length
monitoring.
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