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Abstract

This paper proposes that the flocking behavior of birds can guide the design of a robust, scalable
and self-adaptive congestion control protocol in the context of wireless sensor networks (WSNs).
The proposed approach adopts a swarm intelligence paradigm inspired by the collective behavior
of bird flocks. The main idea is to ‘guide’ packets (birds) to form flocks and flow towards the
sink (global attractor), whilst trying to avoid congestion regions (obstacles). The direction of
motion of a packet flock is influenced by repulsion and attraction forces between packets, as well
as the field of view and the artificial magnetic field in the direction of the artificial magnetic pole
(sink). The proposed approach is simple to implement at the individual node, involving minimal
information exchange. In addition, it displays global self-* properties and emergent behavior,
achieved collectively without explicitly programming these properties into individual packets.
Performance evaluations show the effectiveness of the proposed Flock-based Congestion Con-
trol (Flock-CC) mechanism in dynamically balancing the offered load by effectively exploiting
available network resources and moving packets to the sink. Furthermore, Flock-CC provides
graceful performance degradation in terms of packet delivery ratio, packet loss, delay and en-
ergy tax under low, high and extreme traffic loads. In addition, the proposed approach achieves
robustness against failing nodes, scalability in different network sizes and outperforms typical
conventional approaches.

Keywords: Wireless Sensor Networks (WSNs), Congestion Control and Avoidance, Bird
Flocking Behavior.

1. Introduction

Over the last two decades, there has been an unprecedented research interest in the area of au-
tonomous networked systems with emphasis on Wireless Sensor Networks (WSNs) [1]. WSNs
are being deployed for several mission-critical tasks (e.g. as platforms for health monitoring,
process control, environmental observation, battlefield surveillance), and are expected to operate
unattended for extended periods of time. Typically, WSNs comprise of small (and often cheap),
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cooperative devices (nodes) which may be (severely) constrained in terms of computation capa-
bility, memory space, communication bandwidth and energy supply. In the context of WSNs,
autonomous nodes may interact (a) with the environment so as to sense or control physical pa-
rameters, and (b) with each other in order to exchange information or forward data towards one
or more sink nodes. This mass of interactions, in conjunction with variable wireless network
conditions, may result in unpredictable behavior in terms of traffic load variations and link ca-
pacity fluctuations. The network condition is worsened due to topology changes driven by node
failures, mobility, or intentional misbehavior. These stressful situations are likely to occur in
WSN environments, thus increasing their susceptibility to congestion.

The problem of congestion in general is very complex. Furthermore, differing from the gen-
eral definition of congestion, two new considerations emerged from WSNs, namely the size of the
problem changes, and the resources to solve the problem are limited. The former consideration is
mostly encountered due to differing sizes of WSNs expected to range from a few to several mil-
lion sensor nodes, while the latter issue is an intrinsic characteristic of WSNs. Additionally, the
convergent (many-to-one) nature of WSN traffic, especially in single-sink WSNs, necessitates
completely different ways of addressing congestion than in traditional end-to-end strategies.

Congestion control (CC) and avoidance includes measures taken for manipulating the traffic
within the network in order to combat congestion and avoid congestion collapse. A centralized
CC approach cannot be generally applied since it provokes several serious drawbacks [2]. Firstly,
such approach leads to excessive communication load in the network which rapidly depletes the
batteries [1]. Secondly, centralized decision making for CC results in slow reaction to changes
in network and traffic conditions [3]. Thirdly, a centralized approach does not take advantage of
the in-network processing capability of WSNs which permits simple processing and decision-
making by individual nodes [4]. Finally, in the event of communication failure, the entire system
becomes inoperational [5].

The resource limited and unpredictable nature of WSNs necessitates decentralized, robust,
self-adaptive, and scalable mechanisms. Novel CC approaches for WSNs should be simple to
implement at individual node level with minimal exchange of information.

Nature-inspired (natural) designs have inherent powerful characteristics and are often more
effective and simpler than man-made designs [6]. Natural systems usually exhibit remarkable
survivability and robustness to external stimuli and internal perturbations or loss of units, as
well as excellent scaling properties. Adaptation is one of the major strengths of bio-systems as
they must respond to the addition or removal of members, as well as to sudden changes in the
environment.

WSNs, in many ways, can be likened to social groups found in nature (e.g. bird flocks,
ant colonies). Social groups accomplish their tasks collectively (by simple neighbor-to-neighbor
interactions), in a decentralized manner, and in the absence of (external) central supervision. This
study intends to explore what can be learned from the behavioral tendencies of natural systems
for designing robust and scalable network control techniques. Drawing inspiration from the
collective behavior of social groups, local behavior between individuals can be dictated easier,
leading to emergent global behavior of minimum congestion and direction of information flow
to the sink. In this way, self-* properties, e.g. self-organization and self-adaptation, are not
implemented explicitly into individual entities, but emerge as a result of the design of the nature-
inspired CC model.

The main idea behind this study is to move packets to the sink, whilst providing congestion
control and avoidance by mimicking the obstacle avoidance behavior of bird flocks illustrated in
Fig. 1. The Flock-based Congestion Control (Flock-CC) approach is proposed, where packets
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Figure 1: The obstacle avoidance behavior of bird flocks: (a) A flock of (migrating) birds moves through an obstacle-free
environment (towards a magnetic pole); (b) an obstacle ‘forces’ the flock to split into 2 subflocks; (c) the obstacle extends
further on one side and the flock is reformed along the path bypassing the obstacle on the other side. Flocking behavior
was first simulated on a computer in 1986 by Craig Reynolds [7] with his simulation program, Boids.

are modeled as birds flying over a topological space, e.g. a sensor network. The main idea
is to ‘guide’ packets to form flocks and flow towards a global attractor (which is the sink in
WSNs), whilst trying to avoid obstacles (failing nodes and congested regions). Inspiration for
designing Flock-CC is drawn by: (a) the repulsive and attractive interactions among closely
located individuals proposed by Couzin et al. [8], (b) the orientational movement of migrating
birds towards a global attractor (poles or equator) under the influence of the magnetic field of
Earth, and (c) the limited visual perception (field of view) of individuals within the flock.

Initial attempts for the development of the Flock-CC approach are described in [9], [10],
and [11]. This paper presents and evaluates an improved Flock-CC model, which mimics more
faithfully the bird flocking paradigm, as presented by Couzin at al. [8]. The new model is sim-
pler, involving only two tunable parameters instead of three (hence easier to tune and thereafter
deploy), while it maintains comparably good performance characteristics.

Before introducing a detailed description of the Flock-CC approach, it is worth illustrating
in a simple WSN some intrinsic properties. The emergent global behavior of the Flock-CC
approach can be perceived by the visual representation of flock movements as well as on the
basis of the performance evaluation metrics. We experimented with a minimal topology (details
of the simulation environment appear in Section 4). Fig. 2(a) shows the movement of packet
flocks over a sensor network on the basis of the Flock-CC approach, mimicking the behavior of
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Figure 2: The obstacle avoidance behavior of packet flocks demonstrated through a minimal topology. Color intensity
indicates the intensity of packets visiting within a given 1-second time slot. (a) A flock of packets moves through an
obstacle-free environment towards the sink; (b) an obstacle (failing node) ‘forces’ the flock to split into 2 subflocks; (c)
after the activation of the second sender, the obstacle is supplemented by an overloaded node which causes the packet
flock coming from the back of the network to adapt and follow a less congested path to the sink (top part of the network).
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natural bird flocks of Fig. 1(a) in a non-congested and failure-free environment. In Fig. 2(b),
Flock-CC exhibits the obstacle avoidance behavior of bird flocks in a failure prone environment
and in 2(c) in an overloaded environment. In Section 4.3, extensive results reveal the significance
of the intrinsic flocking characteristics for improving the performance of WSNs.

The proposed approach primarily targets event-based WSNs used, for example, in process
control and disaster recovery missions. In event-based WSNs, packet bursts can be dynamically
and randomly initiated at any sensor node within the network since each node is expected to
report to the sink once the occurrence of a given event has been detected. It is not uncommon for
many neighbouring nodes to initiate transmission at the same time in order to report an event in
their vicinity.

The rest of this paper is organized as follows. Section 2 discusses the problem of congestion
in WSNs, presents previous work on CC for WSNs, and introduces the paradigm of swarm in-
telligence, with emphasis on the flocking behavior of birds. Section 3 deals with the proposed
flock-based model. Section 4 presents results obtained across a number of scenarios with dif-
ferent topology and traffic conditions. Section 5 draws conclusions and proposes areas of future
work.

2. Background

This section gives background information on the problem of congestion in WSNs and dis-
cusses recent CC approaches. In addition, an overview of swarm intelligence is given with
emphasis on the flocking behavior of birds.

2.1. The problem of congestion in WSNs
Congestion occurs when the traffic load injected into the network exceeds available capacity

at any point of the network. Congestion causes energy waste, throughput reduction, and increase
in collisions and retransmissions at the medium access control (MAC) layer. In addition, conges-
tion results in the increase of queueing delays and information loss, leading to the deterioration
of the offered quality of service (QoS), decrease of network lifetime and even the decomposition
of network topology in multiple components. In traditional Internet wired networks, buffer drops
are taken as an indication of congestion while congestion control is usually carried out in an
end-to-end manner (i.e. only the source-destination pair is involved) as opposed to the many-
to-one nature of information transfer, which is a characteristic of sensor networks. End-to-end
CC approaches will not be effective in such error prone environments because the end-to-end
nature may result in reduced responsiveness causing increased latency and error rates, especially
during long periods of congestion. Furthermore, simulation studies conducted by [12] and [13]
revealed that, in WSNs where the wireless medium is shared using Carrier Sense Multiple Ac-
cess (CSMA)-like protocols, wireless channel contention losses can dominate buffer drops and
increase quickly with offered load1. The problem of channel losses is worsened around hot spot
areas, as for example, in the proximity of an event, or around the sink. In the former case, conges-
tion occurs if many nodes report the same event concurrently, while in the latter case congestion
is experienced due to the converging (many-to-one) nature of packets from multiple sending
nodes to a single sink node. These phenomena result in the starvation of channel capacity in
the vicinity of senders, while the wireless medium capacity can reach its upper limit faster than

1Buffer losses are likely caused by congestion, whereas contention losses not necessarily.
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queue occupancy [14]. Thus, queue occupancy alone cannot accurately serve as an indication of
congestion. On the other hand, the study of Hull et al. [13] in a large sensor network testbed
revealed that when used alone, wireless channel-based congestion detection performs worse than
queue occupancy-based congestion detection. Therefore, congestion is expected to be effectively
detected using a combination of buffer occupancy and wireless channel load.

Due to their severely constrained nature, WSNs necessitate simple, autonomous, decentral-
ized CC strategies which promise fast, effective and efficient relief from congestion. Decentral-
ized approaches are expected to be adopted in WSNs. Each node should make decisions based
only on locally available information (e.g. buffer load, channel load) since it is impractical for
the nodes to have complete information about the system state.

2.2. Conventional congestion control approaches for WSNs
Early studies in the area of sensor networks had mainly focused on more fundamental net-

working problems, e.g. medium access control [15], topology [16], routing [17], and energy
efficiency [18], largely ignoring network performance assurances. Lately, with the emergence
of mission-critical applications (e.g. health monitoring), there has been an increased interest in
performance control mechanisms [19], as for example to avoid congestion caused by the uncon-
trolled use of the scarce network resources.

Various conventional CC approaches can be found in WSNs literature based on traffic manip-
ulation (e.g. rate adaptation [12], [13], [20] multi-path routing [21], [22], [23]), topology control
(e.g. clustering formation [24]), and network resource management (e.g. power control, multiple
radio interfaces [25]). A comprehensive survey of congestion control approaches proposed for
WSNs can be found in [26].

Some conventional CC approaches [12], [13], [21], [20] are based on rate control that allevi-
ates congestion by throttling the injection of traffic in the network. However, rate control attempts
to decrease the reporting rate of nodes during (transient or persistent) congestion phenomena and
may result in the deterioration of the offered quality of service, perhaps when needed the most. In
addition, rate control cannot be efficiently used during transient congestion phenomena caused by
aperiodic and short term packet bursts (e.g. in event monitoring applications) due to the slowness
of rate-based approaches to react. Clustering is also used for controlling congestion. Custering
formation assumes special roles in the network (e.g. clusterheads), while additional mechanisms
are needed for maintaining and re-assigning roles. The problem with this approach is that areas
around clusterheads may progressively become collision hot spots. Congestion mitigation based
on power control and multiple radio interfaces seems unrealistic in WSNs since the low-cost
nodes incentive is violated. On the other hand, multi-path routing has potential to effectively
and efficiently alleviate congestion without deteriorating the offered network QoS. A congestion
aware routing (CAR) approach [22] dynamically discovers a congestion zone and routes high
priority packets inside the zone while low priority packets are routed outside the zone. One of
the problems with this approach is how to categorize traffic. Biased Geographical Routing (BGR)
[21] alleviates congestion by splitting traffic flows and performing rate control. Both studies in
[21], [22] use location information provided by the Global Positioning System (GPS) to discover
congestion regions. However, beyond the problems noted earlier for rate-based control, GPS
can work only outdoors in the absence of any obstruction, while GPS receivers are expensive
and not suitable in the construction of small cheap sensor nodes. In a similar approach, Traffic
Aware Dynamic Routing (TADR) [23], a mixed potential field is constructed using depth and
normalized queue length to route packets around the congestion areas and scatter the excessive
packets along multiple paths consisting of idle and under-loaded nodes. However, the dynamic
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conditions of the wireless medium which may cause excessive packet loss in WSNs are not con-
sidered, while the authors evaluate their scheme assuming a perfect (but practically infeasible)
MAC protocol that provides a stable radio link without causing collisions.

Conventional optimization techniques for CC could also be adopted, but these rely on com-
plex mathematical models and have proven hard to apply in the context of autonomous decen-
tralized environments, while the sensitivity of these models to the dynamic and unpredictable
environment is a challenge. Also, centralized multi-objective optimization is not practical espe-
cially in large-scale autonomous networks.

2.3. Swarm intelligence and network-oriented approaches

This study draws inspiration from nature, which has been very successful in effectively solv-
ing similar types of complex problems. Recently, nature-inspired computing has been fueled
by the emergence of a novel computational paradigm, the so-called Swarm Intelligence (SI)
paradigm [6], [27]. SI techniques are motivated by the collective behavior of social insect so-
cieties, bird flocks, bacteria and other social organisms living in decentralized, self-organizing,
and adapting environments. SI techniques reportedly provide a promising basis for computing
environments that need to exhibit these characteristics [6]. Research in SI has provided computer
scientists with powerful methods for designing distributed control and optimization algorithms.
These methods are applied successfully to a variety of scientific and engineering problems [28].
In addition to achieving good performance on a wide spectrum of ‘static’ problems, swarm-based
algorithms tend to exhibit a high degree of flexibility and robustness in dynamic environments
[28], and have even been successful in tackling multi-objective problems in ad-hoc networks
[29].

Currently, two of the most successful SI classes of algorithms are Ant Colony Optimization
(ACO) [30] and Particle Swarm Optimization (PSO) [31]. Both theories were successfully in-
volved in network-oriented studies, especially in the field of ad-hoc and mobile ad-hoc networks
(MANETs). A large number of SI-based routing approaches for MANETs can be found in [32],
while some notable examples are presented below.

Driven by the collective behavior of ants in finding paths from the colony to food, many
researchers [33], [34], and [35], developed ACO-based algorithms to solve the problem of rout-
ing in ad-hoc networks. In ACO, artificial ants build solutions by moving on a graph of nodes
and, by mimicking real ants, deposit artificial pheromone on the links (that form the route trav-
eled by each ant) in such a way that future artificial ants can build new better solutions. The
work of Di Caro et al. [33] incorporates congestion awareness in an end-to-end manner (An-
tHocNet). According to [36], AntHocNet outperformed the Ad-hoc On-demand Distance Vector
(AODV [37]2) routing protocol in terms of delivery ratio, end-to-end delay and delay variation
(jitter). An important observation was that the advantage of AntHocNet over AODV grew for
larger networks, especially in terms of overhead, suggesting that AntHocNet is more scalable
than AODV. Rajagopalan et al. [34] presented an Ad-hoc Networking with Swarm Intelligence
(ANSI) routing protocol with congestion-aware characteristics. The ANSI protocol was found
to outperform AODV in terms of packet delivery, number of packets sent, end-to-end delay, and
jitter experiencing fewer route errors as compared to AODV. Xiangquan et al. [35] developed an
ACO algorithm to optimize energy, congestion and load balancing along with providing efficient
routing in ad-hoc networks.

2AODV [37] is a conventional single-path ad-hoc routing protocol.
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Based on the aforementioned results, it seems that nature-inspired approaches are able to
outperform conventional routing algorithms in (mobile) ad-hoc networks. However, the afore-
mentioned approaches are not well suited for the unique features and application requirements
of WSNs. According to Akyildiz et al. [1] there are some important differences between ad-hoc
and sensor networks. For example, sensor nodes are limited in power, computational capacities,
and memory whereas nodes involved in ad-hoc networks may be more powerful and less con-
strained machines like laptops and PDAs. Also, the number of sensor nodes in a sensor network
can be several orders of magnitude higher than the nodes in an ad-hoc network, and can often be
densely deployed over large areas. Sensor nodes are prone to failures and are mostly statistically
deployed. On the other hand, ad-hoc nodes are usually less densely deployed in small areas.

These differences drive the necessity for novel CC strategies for WSNs, on which this study
focuses. It is worth pointing out that there are not many nature-inspired studies that have explic-
itly focused on avoiding or combating congestion in sensor networks. A notable related approach
is the ant-based multi-QoS routing protocol for sensor networks (AntSensNet) [38]. AntSensNet
combines a hierarchical structure of the network with the principles of ACO-based routing, whilst
trying to satisfy the QoS requirements of different kinds of traffic requested by the applications.
By using clustering, AntSensNet aims to avoid congestion after quickly judging the average
queue length and solving convergence problems, which are typical in ACO. However, AntSen-
sNet has some important drawbacks that increase protocol’s complexity. These are discussed at
the end of the performance evaluation section when comparing AntSensNet to Flock-CC.

2.4. The flocking behavior of birds
Social groups found in nature (e.g. ant colonies, bird flocks) carry out their tasks collectively

in order to contribute to a common goal. Even though individuals cooperate to accomplish a
given global mission in a complex world (e.g. foraging, migration, nest building, defence against
predators, etc.), an individual has only local perception of the surrounding environment and
exhibits specific behavioral tendencies which are governed by a few simple rules.

The proposed approach involves reference to artificial bird flocks consisting of individuals
with the same behavioral model (homogeneity) and with finite range of view (perception). These
individuals interact with each other as well as with the environment. The design of the interac-
tions in packet groups is influenced by the study of artificial flocks such as the ‘boid’ simulations
of Reynolds [7] and the bio-swarm model of Couzin et al. [8]. The behavior of each individual
is influenced by other individuals within its neighborhood.

The approach proposed in this article differs in two aspects from Couzin’s model: (1) The bio-
swarm model of Couzin was formulated on the metrical (continuous three-dimensional) space,
whereas the Flock-CC model is applied on a two dimensional topological (discrete) space defined
by the graph of nodes. (2) In Couzin’s model (as well as in the Reynolds’ model) individuals
form flocks and move constantly in a given finite space without any attraction to a global target
(final destination). On the other hand, in the Flock-CC packets are expected to form flocks and
move towards the sink, mimicking migratory birds behavior. The latter Flock-CC characteristic
necessitates the existence of a field of attraction towards the sink, likened to a magnetic pole.

Three inherent characteristics of bird flocks are presented next. These characteristics served
as the basis for developing the Flock-CC protocol.

2.4.1. Repulsion and attraction zones and forces in bird flocks
The notion of repulsion and attraction zones in bird flocks was modeled by a seminal study of

Couzin et al. [8]. Researchers simulated the behavior of individuals as resulting from local repul-
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sion, alignment, and attractive tendencies based upon the position and orientation of individuals
relative to one another.

In Couzin’s model, N individuals with position vectors and unit direction vectors are simu-
lated in continuous three-dimensional space. In each time step, individuals assess the position
and/or orientation of neighbors within three non overlapping concentric behavioral zones de-
scribed below and shown in Fig. 3. This information is used to determine a desired direction for
each individual for the successive time step using a set of rules described next.
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Figure 3: Representation of the area around a bird placed in the center: ZoR is the zone of repulsion, ZoO is the zone of
orientation, and ZoA is the zone of attraction. The possible ‘blind area’ behind an individual is also shown. The aperture
of the field of view (FoV) is α degrees.

Each individual attempts to maintain a minimum distance from others within a ‘zone of
repulsion’ (ZoR), modeled as a sphere, centered on the individual. This behavioral rule has
the highest priority in the model. If at any time, t, more than one bird resides in the ZoR, the
individual bird in the center responds by moving away from the neighbors within this zone. If
there is no neighbor within the ZoR, the bird responds to others within the ‘zone of orientation’
(ZoO) and the ‘zone of attraction’ (ZoA). These zones are spherical, except for a blind volume
behind the individual within which neighbors are undetectable. This volume is outside of the
field of view (FoV) of the individual. The notion of the field of view is explained in the next
section. Within the ZoO, the birds align with their neighbors and within the ZoA, the birds move
towards each other. Birds cannot see too far, thus there is no interaction with neighbors located
outside the ZoA.

Motivated by Couzin’s model, the collective flocking behavior of birds is considered an emer-
gent behavior arising from a few simple behavioral rules that are followed by individuals, such
as:

1. repel from neighbors (if too close, i.e. within the ZoR) to avoid collisions,
2. attract to neighbors (if apart, i.e. within the ZoA) to maintain coherence among the mem-

bers of a flock,
3. orient and align with neighbors (within the ZoO),
4. introduce a randomness that allows for exploration of alternative paths.

8



These behavioral rules govern individual-level interactions which collectively result in the emer-
gence of group-level transitions.

2.4.2. Birds vision and the field of view
As discussed in the previous paragraph, the motion of each bird (individual) is only influ-

enced by its nearest flock mates. Therefore, vision is the most important sense for birds. The
field of view (FoV) determines the extent of the observable world that is seen by each bird at any
given moment. Depending on the placement of the eyes, different animals have different fields of
view. Some birds have a 360o degree overall FoV.

In Couzin’s model all individuals have a FoV of αo and a blind volume of (360 − α)o. Fig. 3
illustrates the blind volume of the individual in the center as a cone with interior angle (360−α)o

(behind the individual), while the remaining space surrounding the individual is the FoV. An
individual with α = 360o can respond to others in any direction within the behavioral zones.

2.4.3. Magnetic fields and orientation of birds
The aforementioned behavioral rules and the presence of the FoV do not ensure that a bird

flock will establish a flight path towards a specific attractor. In the absence of a such a (global)
attractor, bird flocks are expected to move around in (coherent) formations without a specific
destination. The existence of a global attractor was not a necessity in bird flocks simulated by
Couzin’s model. On the other hand, WSNs involve a central reference point (sink). The sink is
the final destination for all packets, thus global attraction forces are needed to ‘guide’ packets to
move towards the sink.

The orientational movement of migratory birds can serve as an excellent source of inspiration
for developing a mechanism for orientation and attractiveness to a global attractor. In accor-
dance to [39], migrating birds use the magnetic field of Earth for direction finding, either towards
magnetic poles (polewards, northern or southern) or the magnetic equator (equatorwards).

3. Flock-based congestion control (Flock-CC)

This section, firstly, presents the concept behind the Flock-CC model, explaining how the
movement of packets is modeled as a flock of birds. Secondly, the elements of the Flock-CC
model are defined on the basis of the characteristics of natural bird flocks. Thirdly, the elements
of the model are composed together to form the Flock-CC protocol.

3.1. The concept

A WSN is viewed as a virtual ecosystem, where multiple packets are generated at source
nodes and must be directed towards a dedicated sink node. The main idea of the proposed Flock-
CC model is to ‘guide’ packets to form groups or flocks, and flow towards a global attractor
(sink), whilst trying to avoid obstacles such as congestion regions and dead zones (regions with
failing nodes) as illustrated in Fig. 4.

In the Flock-CC model, each packet is analogous to a bird with dynamic position and direc-
tion updates, which ‘flies’ over the network undergoing successive hop-by-hop transitions over
discrete points in the 2D space, defined by the positions of hosting nodes. The set of sensor
nodes comprises the environment where packets move. The sequence of transitions determines
the packet’s (bird’s) trajectory from its source to the sink. Note that this model differs from
Couzin model, which is in a continuous 3D space.
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Figure 4: Packet flock moving towards sink whilst avoiding ‘obstacles’.

Conceptually, in order to make moving packets behave like a flock, the basic characteristics of
natural flocks discussed in the previous section are incorporated in the Flock-CC model. At each
hop, a packet interacts (attraction and repulsion forces) with other packets located on neighboring
nodes in the packet’s FoV. Also the packet experiences a magnetic force in the direction of the
sink (global attractor). More specifically, the proposed Flock-CC approach is governed by 4
rules. Each packet is:

• Rule 1: repelled from neighboring packets located on nodes at close distance (i.e one hop
away from packet) within the packet’s FoV,

• Rule 2: attracted to neighboring packets located on nodes at medium distance (i.e. two
hops away from packet) within the FoV,

• Rule 3: oriented and attracted to the global attractor under the influence of the environ-
mental magnetic field, and

• Rule 4: experience some perturbation that may help the packets to pick a random route
(i.e. trading exploration versus exploitation).

More detailed discussion on the implementation of these features on the Flock-CC approach
follows next.

3.2. The Flock-CC model elements

The basic elements of the Flock-CC approach are defined in this section: (a) the repulsion
and attraction zones and forces, (b) the artificial magnetic field, (c) the field of view (FoV), (d)
the desirability function, and (e) randomness. The desirability function synthesizes the first three
elements and determines the direction of movement of each packet, whilst randomness allows
for exploration.

It is worth noting here that a basic design objective was to keep the number of adjustable
parameters as small as practical in order to reduce complexity in optimizing parameter values for
different network environments and conditions.

Consider a network of N autonomous nodes, N > 0, that are able to generate packets. A finite
queue is associated with each node, while the node’s throughput is constrained by the wireless
channel capacity. A packet i and its current hosting node n ∈ {1, ..,N} (i.e. packet i is residing in
the queue of node n) are taken as points of reference in order to define and discuss repulsion and
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attraction zones, the magnetic field and the field of view. The position of node n determines the
position of the hosted packet i.

Each node n maintains four one-dimensional tables: (a) an attraction table, sn, (b) a repulsion
table, qn, (c) a transmission table, tn, and (d) an adjacency table, An. Each of these tables contains
different information for a set of neighboring nodes for which node n has an active wireless link
to. An entry snm of the attraction table of node n contains information about node m. The same
applies for all tables. The contents of each table are discussed later.

All quantities defined herein are regularly sampled at discrete time intervals of T seconds
at each sensor node. Then, the values of these quantities are broadcasted periodically (every T
seconds) to all neighboring nodes (within transmission range), using a dedicated control packet.
These periodic control packets are also used to update information about the connectivity of
neighboring nodes, and the distance (hop distance) to the sink.

Below, the five basic elements of the Flock-CC approach are defined.

3.2.1. Repulsion and attraction zones and forces
The design of the Flock-CC model was primarily motivated by the neighborhood-based

model of Couzin et al. [8]. As discussed earlier, the Flock-CC model is applied on a two di-
mensional topological (discrete) space defined by a graph of nodes. The edges in the graph
indicate the existence of wireless connection between two nodes. Each packet is allowed to
move in a hop-by-hop manner, over a set of nodes along the path to the sink.�R
0


Sink


ZoA

ZoR


n


R
1


Figure 5: Representation of a sensor network. R0 is the transmission range of node n and defines an area (zone of
repulsion) that includes all packets located on grey-shaded nodes. The outer area (zone of attraction) includes all packets
located on black-shaded nodes.

As shown in Fig. 5, the zone of repulsion is defined as a circle of radius R0, the transmission
range of node n, around packet i that includes all packets at close distance. Practically speaking,
these packets reside in the queues of the grey-shaded nodes. On the other hand, the zone of
attraction is the outer zone of Fig. 5 and includes all packets at medium distance from packet
i. In practise, these packets reside in the queues of black-shaded nodes (two hops away from
node n). The zone of orientation proposed in Couzin model is not defined in the context of the
Flock-CC approach since the collective motion, orientation and alignment of individuals arises
as a result of the artificial magnetic field presented below.
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The strength of the repulsive and attractive forces exhibited by packets on nodes one and
two hops away respectively is proportional to the number of packets located on these nodes
respectively. The number of packets on nodes one hop away (number of packets in the queue) is
obtained directly through broadcasted control packets. These control packets are seen as a means
of transferring knowledge (propagate information) within the environment (sensor network) that
is observable by a packets’ eyes.

On the other hand, in practise, the number of packets on nodes two hops away cannot be
obtained directly through broadcasted control packets since (black-shaded) nodes two hops away
are outside the transmission range of the current hosting node n. Thus, this number is locally
inferred at node n by measuring the number of successfully transmitted packets sent from nodes
one hop away to nodes two hops away. These packets are ‘visible’ due to the broadcasting
nature of the wireless channel. Hence, packet i is repelled from packets residing in the queues of
grey-shaded nodes and attracted to packets moving to black-shaded nodes.

3.2.2. Artificial magnetic field
In order to avoid unnecessary routing loops and to minimize packet loss, packets should be

‘guided’ to establish flight paths towards the sink. The artificial magnetic field is adopted for two
reasons: a) to provide orientation and b) attraction of packets to the sink.

The magnetic field of the Earth is responsible for guiding migratory birds to fly polewards
or equatorwards as shown in Fig. 6(a). In the same context, the sink node is seen as an artificial
magnetic pole within the sensor network and packets are expected to ‘fly sinkwards’ under the
influence of the artificial magnetic field as shown in Fig. 6(b).

Orientation to the sink is deduced from the direction of the magnetic field (that points to the
sink), while attraction to shortest paths to the sink is driven by the magnetic field strength. The
magnetic field strength is higher through the shortest path to the sink and attenuates through
longer paths. Orientation allows packets to perceive the direction of the sink, otherwise the
absence of attraction to shortest paths towards the sink causes packets to wander around (trapped
in loops between neighboring nodes). This looping behavior deteriorates the quality of service
offered by the congestion control protocol. In addition, it is impossible for a packet to feel the
attraction to shortest paths to the sink without orientating itself toward the sink.

By design, we adopt an approach which does not require geo-location, and thus avoids ad-
ditional complexity. Orientation of packets to the sink is implemented as follows: The artificial
magnetic field within the sensor network must point to the sink node. The direction of the sink is
determined on the basis of the hop distance parameter, h j(k), j ∈ {1, ..,N}, indicating the number
of hops between each node j and the sink at the kth sampling period. Each node evaluates its
hop distance parameter by adding one to the smallest hop distance of neighboring nodes. The
sink node initiates the process of evaluating the hop distance value at each node by broadcasting
(in a control packet) its zero hop distance. The hop distance parameter is gradually propagated
(over control packets) from the sink (pole) to each node into the network (environment where
packets live). It is worth pointing out that the hop distance may change due to network topology
modifications caused by node failures or displacement or other internal causes. If node n does
not hear control messages from a given neighboring node for a maximum of Tlost seconds, then
the node n assumes that the neighbor either has failed or gone out-of-range or is very busy. In
this case, the unreachable neighbor is deleted from the adjacency table of node n containing the
hop distances of all nodes one hop away. Similarly, the hop distance parameter of node n is
re-evaluated if the loss of a neighboring node influences the parameter’s value. Every change
in hop distance values will be propagated backwards within the network and all affected nodes
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Figure 6: (a) A bird flock moving polewards under the influence of the magnetic field of the Earth (black arrows). The
FoV of the bird placed in the center extends forward in the direction of the magnetic pole. (b) Packets generated in a
sensor network will move sinkwards under the influence of the artificial magnetic field (black arrows). The number on
each node indicates the hop distance from the sink (smaller numbers indicate closeness to the sink). The field of view
(FoV) of packet i (on node n) extends forward in the direction of the sink. The ZoR and ZoA around packet i are redefined
as circular zones, except for an area behind the packet i that is outside the FoV. (c) Repulsion forces exercised on packet
i from packets in the ZoR (heavy-gray-shaded packets). (d) Attraction forces exercised on packet i from packets in the
ZoA (black-shaded packets).

are expected to update their hop related parameters. A simple hop distance protocol is adopted
for this study. Note that it is anticipated that missing or incorrect hop count information will
not affect Flock-CC adversely. This together with a detailed study of an optimized hop distance
protocol, or indeed any other protocol that provides orientation and field strength, are beyond
the scope of the current study. For example, contrary to the hop distance metric, the expected
transmission count metric ETX [40] can be used as a path metric for multi-hop wireless routing.
ETX incorporates link loss ratios, asymmetry in loss ratios between the two directions, and inter-
ference among successive links. Yet other path metrics could also be considered, such as product
of per-link delivery ratios, end-to-end delay, or weighted cumulative expected transmission time
(WCETT) [41]. These techniques however increase the protocol complexity and overhead. Thus
the overall benefits may not be that obvious.

The magnetic field is visualized in Fig. 6(b), where the arrows point in the direction of
the magnetic pole. A simpler way to visualize the magnetic field is to ‘connect’ the arrows to
form ‘magnetic field lines’. The magnetic field lines pass over paths of descending hop distance.
Packets retrieve environmental information such as the direction of the artificial magnetic field
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(i.e. the hop distances of potential new hosting nodes) from their current hosting node.
Attraction to shortest paths toward the sink are implemented as follows: Besides orientation,

the artificial magnetic field creates attraction to shortest paths to the sink. When a packet with
orientation to the sink is ready to move, it has to choose between a number of potential new host-
ing nodes with different (equal or shorter) hop distances, taking into account the attraction and
repulsion forces, as synthesized in the desirability function described later. The magnetic field
guides packets to move to nodes closer to the sink where the strength of the field is higher. The
movement of packets through nodes with shorter hop distances (forward movement) provides
faster transitions to the sink and minimization of packet looping. This behavior is realized by
enforcing differentiated attraction to potential new hosting nodes. In particular, packets perceive
higher attraction to nodes closer to the sink (i.e having shorter hop distance) than to nodes at
equal hop distance. A rule-based strategy for differentiated attraction is proposed for the Flock-
CC protocol, as described in Section 3.3.

3.2.3. Field of view (FoV)
Motivated by the limited visual perception of birds, packet i cannot ‘see’ and interact with all

packets on nodes in its neighborhood, as shown in Figs. 7(a) and (b). Packet i can perceive only
a fraction of packets, i.e. those located in the FoV, on the observable world of the packet. In this
way, the number of interactions (repulsion and attraction forces) of a packet with neighboring
packets are reduced resulting in a simpler and less resource demanding Flock-CC approach.
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Figure 7: (a) Narrow FoV including nodes with shorter hop distance to the sink. (b) Wide FoV including nodes with
shorter or equal hop distance to the sink. (c) Complete 360-degree FoV.

In general, the orientation of a bird’s FoV can be set towards any direction, driving the move-
ment of the bird accordingly. However, the orientation of a bird’s FoV can be affected by the
presence of magnetic fields. Migratory birds that need to travel polewards turn the orientation
of their head, and thus their FoV, towards the pole. In the same way, the FoV of packets is in-
fluenced by the artificial magnetic field and extends forward in the direction of the sink node as
shown in Fig. 6(b).

The FoV of a packet may span from a few degrees up to 360o. In the proposed approach,
three different FoV apertures were considered, as illustrated in Fig. 7. In the case of narrow FoV,
packet i on node n (node in the middle) can ‘see’ only packets located on nodes with shorter
hop distances than node n. In the case of wide FoV, packet i can ‘see’ packets located on nodes
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with shorter or equal hop distances to the sink compared to node n. In the extreme case, the
360-degree FoV of packet i includes all nodes in the neighborhood of the packet.

Simulations carried out in [42] showed that the complete 360-degree FoV shown in Fig.
7(c), allowing packets to move in any direction exhibited poor performance. The reason was
the absence of orientation, and thus attraction to the global attractor. This caused high packet
concentration in the network, especially in the vicinity of source nodes, because packets became
trapped in loops. Eventually, the overwhelming majority of packets were lost due to collisions in
the wireless channel.

A natural way to address the problem of packet loops is to insist on using the narrow FoV
where packets are allowed to move forward only, as shown in Fig. 7(a). This natural solution
is too rigid, as it artificially excludes consideration of other nodes which are not necessarily on
the direct path, but may have higher desirability, and makes paths towards the sink ‘too narrow’,
thus increasing contention and node loading as well as minimizing the exploration of new paths.
Furthermore, if the same nodes are always considered, then a higher power drain will be observed
on these nodes and this may result in a shorter network lifetime. In addition, a problem may arise
when front nodes either become unreachable (due to failures) or seen momentarily as unreachable
(due to loss of control packets). In this case, packets reaching a dead end will be dropped.

Thus, the wide FoV of Fig. 7(b) that allows packets to be forwarded even to nodes that are
placed at equal hop distance from the sink is selected in the proposed Flock-CC protocol. Each
node n keeps the hop distances of its neighbors in its adjacency table, An.

Both the ZoR and the ZoA are redefined to involve the FoV as shown in Fig. 6(b). In this
case, the ZoR is redefined as a circular zone of radius R0, except for an area behind the packet
i (‘blind’ area) that includes packets on nodes with longer hop distance than the current hosting
node. The ZoR involves packets located in the queues of the heavy-gray shaded nodes of Fig.
6(b). Therefore, packet i is repelled from these packets as illustrated in Fig. 6(c). Each node n
keeps the queue sizes of each node in the ZoR in its repulsion table, qn.

Similarly, the ZoA is the outer circular zone of Fig. 6(b) that includes packets on nodes
at shorter or equal hop distance compared with the current hosting node (black-shaded nodes)
within the FoV. As discussed earlier, since the number of packets on (black-shaded) nodes two
hops away cannot be obtained with one broadcast message, each node n records the number
of packets successfully transmitted from each node in the ZoR towards nodes in the ZoA in
its attraction table, sn. In addition, for each sampling period T , each node n records the total
number of all packet transmission attempts3 (including retransmissions) from each node in the
ZoR towards nodes in the ZoA in its transmission table, s′n. The values of table s′n are used for
normalization as shown in the next section.

3.2.4. Desirability function
The repulsive and attractive forces (exercised by packets one and two hops away respec-

tively) are synthesized by the decision making process which is invoked by the hosting node of
each packet. The synthesis of repulsive and attractive forces is captured through a desirability
function. The decision making process results in selecting the most desired next hop node on
the basis of avoiding or minimizing congestion phenomena on next hop nodes. The desirability

3We consider CSMA-like MAC protocols (e.g. IEEE 802.11) which employ a retransmission scheme to increase the
reliability of the lossy wireless channel. A lost or erroneous packet is not retransmitted forever, but is dropped after a
limited number of unsuccessful retransmission attempts.
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function is evaluated once every sampling period and is used for each packet sent within this
period.

An M-dimensional desirability vector,
−→
D(k), is used where M ≤ N, is the number of potential

new hosting nodes at the kth sampling period. The potential new hosting nodes are the nodes in
the transmission range of the current hosting node n within the FoV. Each element, Dnm(k), of
the vector

−→
Dn(k) represents the desirability for each node m,m ∈ {1, ..,M} measured at node n.

The desirability Dnm(k) of every node m in the FoV is evaluated once every sampling period k (at
the start of this period) and is used for each packet sent from its hosting node within this period.
The desirability of each node m evaluated at node n is given by:

Dnm(k) = snorm
nm (k) − qnorm

nm (k), (1)

where

snorm
nm (k) =

{ snm(k)
s′nm(k) if s′nm(k) > 0;
ξ otherwise,

(2)

where ξ ∈ [0, 1] is the spreading variable (discussed later), snm(k) is the number of successfully
transmitted packets from node m to nodes two hops away from node n, s′nm(k) is the total number
of all packet transmission attempts at each node m, and

qnorm
nm (k) =

qnm(k)
Qm

, (3)

where the function qnorm
nm (k) is the number of packets in the queue of node m, qnm(k), divided by

the queue capacity of each node m, Qm.
The function snorm

nm (k) can be seen as a measure of quality of the wireless channel loading
around node m as perceived from node n. The parameter snorm

nm (k) ranges from 0 to 1 and repre-
sents the normalized attraction force exercised on packet i by packets that moved (successfully
transmitted) from each node m to nodes two hops away from packet i’s current hosting node (i.e
these packets are now within the ZoA). When snm(k) → 1, the channel around node m is not
congested and a large percentage of packets are successfully transmitted (few packet retransmis-
sions are observed). As snm(k) → 0, the channel is congested and a small percentage of packets
are successfully transmitted, after a large number of retransmissions.

An idle node m, i.e. with zero total transmission attempts (s′nm(k) = 0) does not provide
any evidence of the wireless channel quality in the vicinity of the node. Therefore, it cannot
be said whether this node is either highly attractive, i.e. snorm

nm (k) = 1, or highly repulsive, i.e.
snorm

nm (k) = 0. The spreading variable ξ is introduced as the normalized attraction force exercised
by each node l that was previously idle (s′nl(k) = 0). High values of ξ result in packet spreading
since packets are attracted to idle nodes (most probably at the borders of the flock), whereas
small ξ values lead to coherent flock motion (low spreading). These observations as well as
further explorations of ξ values are presented in Section 4.

The function qnorm
nm (k), with 0 ≤ qnorm

nm (k) ≤ 1, is the percentage of queue occupancy at node
m and represents the normalized repulsion force exercised on packet i by packets residing in the
queue of each node m (i.e. these packets are now within the ZoR). When qnm(k) → 0, the queue
is empty or nearly empty. On the other hand, as qnm(k)→ 1, node m is considered congested due
to high queue occupancy.

In the simple case, after evaluating the desirability of each node m, with −1 ≤ Dnm(k) ≤ 1,
a packet can be forwarded from node n to node m∗, where the node m∗ is a node within the FoV
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with the highest desirability. Even though the above approach allows for exploitation of existing
good paths, it does not allow for exploration. Therefore to this basic approach we add the last
flocking behavior characteristic, namely randomness.

3.2.5. Randomness
Randomness (or perturbation) is that part of nature which allows for exploration, and perhaps

identification of better paths. Randomness also addresses the problem of always transiting to the
same (highly desirable) new hosting nodes within a sampling period (recall that desirabilities are
evaluated once every sampling period k), which can cause high queue occupancy on popular new
hosting nodes. The next section includes a detailed description of how randomness is involved
in the Flock-CC approach during the process of selecting a new hosting node.

3.3. The Flock-CC protocol

All the elements discussed above are composed together to form the Flock-CC protocol. Ev-
ery time a packet is about to be sent, the decision making process is invoked by the current
hosting node to determine the new hosting node. The decision process employs three stages:
(a) selection of direction (forward, sideways, backwards4) using the notion of the FoV and the
magnetic fields, (b) sorting of all nodes in the selected direction in descending order by their de-
sirability, and (c) probabilistic, biased (proportional to desirabilities) selection of the new hosting
node.

The position of the sink plays an important role in evaluating the direction of movement of
a packet. Under the influence of the magnetic field, a packet turns its FoV towards the sink and
perceives the attraction of this artificial pole. The Flock-CC protocol uses a simple rule-based
strategy of providing global attraction to the sink through differentiation of attraction to nodes in
the FoV. This strategy chooses the set of potential new hosting nodes among nodes placed in the
FoV using the following rules, given in decreasing order of priority:

1. Choose all nodes placed closer (smaller hop distance) to the sink. If there is at least one
node among them with available buffer space then the packet moves forward.

2. If all nodes closer to the sink either have no available buffer space or are seen to be un-
reachable, choose all nodes placed at equal hop distance to the sink. If there is at least one
node among them with available buffer space then the packet moves sideways.

3. Otherwise, the packet moves backwards.

The least priority rule allows a packet to move backwards to a node outside of the FoV in
the extremely rare situation where all front and side nodes are either unreachable or lack buffer
space.

The proposed rule-based strategy is quite similar to the rule-based process followed in Couzin’s
model [8] when determining the desired direction of each individual. This process was discussed
in Section 2.4.1.

After choosing the set of potential new hosting nodes, the selected nodes are sorted in de-
scending order based on their desirabilities. To implement randomness, the new hosting node is
selected using a probabilistic selection. In order to provide a fair way of selection, the probability

4When a wide FoV is used, it is impossible for a packet to move backwards i.e. to nodes that are not observed by a
packets’s ‘eye’. However, this restriction can be relaxed under the extremely rare situation where all front and side nodes
are either unreachable or lack buffer space.
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of selecting a node can be made proportional to either the desirability of that node, or the rank of
the desirability of that node in the descending order of desirabilities.

In the Flock-CC approach, randomness is invoked whenever a packet is ready to choose its
new hosting node. Randomness can be implemented on the basis of selection methods used in
genetic algorithms [43], for example, roulette wheel selection or rank based selection. Selection
methods are used for randomly selecting members from the population of chromosomes with
probability proportional to their fitness.

The behavior of the Flock-CC protocol was tested for both roulette wheel selection and rank
based selection. Results showed that the rank based selection prevailed over roulette wheel
selection. Thus, rank based selection was adopted in the final model of the Flock-CC protocol.
Rank based selection ranks each individual i based on its fitness, fi, and a new fitness value, f ′i , is
assigned according to the rank the individual receives. Individuals in Flock-CC are the potential
new hosting nodes, M, and desirability is seen as the fitness of each potential new hosting node.
The weakest (in terms of desirability) potential new hosting node receives a new fitness value
of 1, the second worst receives a value of 2, etc. and the fittest individual receives a value of J,
where J = M is the number of individuals in the population. The probability pi of an individual
to be selected is equal to the new fitness of the individual divided by the total new fitness of all
the individuals, as follows:

pi =
f ′i∑J

j=1 f ′j
. (4)

4. Performance evaluation

This section evaluates the performance of the Flock-CC protocol using a number of sce-
narios with different topologies, traffic loads and instantaneous network conditions (number of
idle/source nodes, position of source nodes, failing nodes).

Performance evaluations have focused on tuning the parameters T and ξ, on demonstrating
the effectiveness of the Flock-CC protocol in mimicking the bird flocking behavior, in combat-
ing congestion, and showing the superiority of the protocol against related CC protocols. The
Flock-CC protocol was evaluated on the basis of the performance measures presented in the
next section. It is worth noting again that by design the behavior of the tunable parameters is
well understood, and these were kept at a minimum. More specifically, the evaluations in three
directions are:

1. Parameter selection: The first step was to experiment with the Flock-CC parameters: the
spreading variable ξ and the sampling period variable T .

2. Demonstration of emerging behavior, self-adaptation, robustness against failing nodes and
scalability: The second step highlights the aforementioned properties of the Flock-CC
protocol using both visual representations and the performance measures.

3. Comparative evaluation: Finally, the Flock-based protocol was compared against related
(nature-inspired and conventional) congestion control approaches.

Results were collected from simulation studies conducted using the ns-2 network simulator [44].
The relevant simulation scripts can be found in [42].
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4.1. Evaluation setup

4.1.1. Topologies
The evaluation topologies consist of a considerable number of nodes which are deployed

either in a 2D lattice, or in a random manner, over an area of 400 × 800 m2. A 300-node lattice
topology is shown in Figs. 8(a) and (b). Lattice topologies of 200 and 400 were also considered.

Active nodes, Scenario 1

Active nodes, Scenario 2


Active nodes,

Dead nodes,


(a)
 (b)
 Scenario 3


20 nodes
 20 nodes


15
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Figure 8: A 300-node evaluation topology with 3 scenarios of operation: (a) Scenarios 1 and 2 with 10 active nodes but
different source node placement, (b) Scenario 3 with 10 active nodes and node failures (after 40s). Short description of
each scenario is given below.

In lattice topologies, neighboring nodes were placed at the same distance (25 ·
√

2m) from each
other, in such a way that each node has at most 8 neighboring nodes one hop away. In this way,
a dense topology was developed with uniform node placement. The lattice topology was used in
the overwhelming majority of scenarios so as to better understand and evaluate the behavior of
the flock-based mechanism. In order to experiment with more realistic topologies, nodes were
also deployed in a random manner, as described later.

All nodes were homogeneous and identical in hardware and software setup. The radio prop-
agation range of each node was 50m. A two-ray reflection propagation model was used which
accounts for the effect of multipath and fading. The radio model assumes that the radio can lock
onto a sufficiently strong signal in the presence of interfering signals. The control packet size
and the data packet size were set to 10 and 50 bytes respectively. The CSMA-based IEEE 802.11
MAC protocol, provided in the ns-2 simulator, with an exponential backoff policy was adopted,
having RTS/CTS packet exchanges disabled for energy saving and low signalling overhead pur-
poses. Two transmission rates of 2 Mbps and 250 Kbps were used. In the former case, the queue
size of each node was set to 50 packets, while in the latter case it was set to 15 packets.

4.1.2. Scenarios
The Flock-CC protocol was evaluated under four distinct congestion scenarios to best under-

stand the protocol’s behavior and dynamics in responding to the different congestion conditions
(persistent and transient hotspots) that could be found in sensor networks. Each scenario corre-
sponded to events occurring in different locations, involving different sets of source nodes. The
first three scenarios were related to the 2D lattice topology, while the fourth scenario involved
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random topologies. All scenarios were tested on topologies of 300 nodes (scenarios 1 − 3 are
illustrated in Fig. 8), while scenario 1 was additionally tested on topologies of 200 and 400
nodes.

In all scenarios, three different traffic loads were considered: low, high and extreme. At
high MAC transmission rates (2 Mbps), each sender node was allowed to generate constant bit
rate (CBR) traffic of either 25 (low load), or 35 (high load), or 45 (extreme load) pkts/s when
triggered by an event. These three cases were considered as slightly congested, congested, and
heavily congested network conditions, respectively. In each scenario, all nodes were sending at
the same rate. The corresponding traffic rates for the transmission rate of 250 Kbps was 10, 15
and 20 pkts/s.

Each scenario, using different combinations of parameter values, was executed 30 times and
the mean values of the metrics over all scenarios are presented below. In selected figures, the
mean values are supplemented with 95% confidence intervals. When dealing with non-normal
distributions, ‘confidence intervals’ are used as a measure of variability instead of using the
standard deviation. A 95% confidence interval contains the middle 95% of the numbers in a list.

The first scenario (scenario 1) emulated persistent congestion phenomena and involved a set
of 10 closely placed black shaded source nodes shown in the middle bottom part of Fig. 8(a).
The same setting was used in the larger topologies. In many real-world WSNs applications, it
is quite common to have source nodes closely placed to each other being activated almost at
the same time when an external event (e.g. a disaster-related event such as fire, earthquake) is
detected. In these cases, persistent hotspots are created in the vicinity of source nodes.

The second scenario (scenario 2) emulated transient congestion phenomena. Initially, the
front set (1) of 5 grey shaded source nodes of Fig. 8(a) (close to the sink) were sending packets.
In this way, a small, transient congestion hotspot (of heavily loaded queues and wireless channel)
was created around and in front of source nodes towards the sink. In order to demonstrate the
ability of the packets to manoeuvre around the hotspot, the bottom set (2) of 5 grey shaded source
nodes started sending packets at t = 50s. At t = 70s, the upper set of nodes (1) stopped sending
packets.

The third scenario (scenario 3) emulated an extreme scenario of node failures. The black
shaded source nodes located in the bottom part of the network of Fig. 8 (b) were initially sending
packets (as in the first scenario), while bold circled nodes in the middle of the network failed at
t = 40s. The aim was to demonstrate the ability of the packets to manoeuvre around the dead
zone. The shape of the dead zone (involving failed nodes) was chosen so as to demonstrate the
ability of the algorithm to manoeuvre around areas where packets can get trapped and as such
cannot move forward.

Finally, the fourth scenario (scenario 4) was used to demonstrate the ability of the Flock-CC
protocol to also perform well when the underlying sensor network infrastructure is random. This
scenario involved two randomly generated uniform topologies with 10 closely placed source
nodes and 1 sink node. The sink was randomly selected from nodes in the network. The two
random topologies were: (a) a sparse topology of 175 nodes where the average node degree5

was 4.72 and (b) a dense topology of 300 nodes where the average node degree was 8.85. An
indicative figure of the random topology used can be found in [42].

All scenarios were used for parameter selection and comparative evaluations among all ap-
proaches. Additionally, the second scenario was used to evaluate the emerging behavior and

5The node degree is the number of connections the node has to other nodes in the network.
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the self-adaptive behavior of the Flock-CC model. Furthermore, the third scenario was chosen to
demonstrate the robustness of the Flock-CC protocol against failing nodes, even under extremely
undesirable situations.

4.1.3. Variables
The spreading variable ξ was chosen to range from 0 to 1 to allow experimenting with zero

spreading to full spreading of the flock. The time between successive control packets, T (sam-
pling period), was assigned the values 0.5, 1.0, 1.5 and 2.0s in all approaches. The selection of T
to be less than or equal to 2s was guided by the desire to maintain responsiveness to changes in
the network state. It was also desirable to avoid overwhelming the network with control packets,
thus T should not be very low, hence T ≥ 0.5 was also selected. Tlost was set at 3T .

4.1.4. Related approaches for comparison
From the perspective of network layers, the Flock-CC approach provides multi-path routing

and congestion control capabilities for WSNs. Flock-CC was compared to five protocols that
can be adopted during a congestion crisis period: (a) a conventional congestion-free multi-path
routing protocol based on shortest paths (baseline scenario), (b) a typical congestion-aware rout-
ing protocol that routes packets over multiple paths, choosing each time the least congested next
hop node in terms of queue length (among nodes involved in the shortest paths to the sink), (c) a
well known single-path routing protocol for adhoc networks, AODV [37], (d) an ant-based algo-
rithm for multi-path reactive and proactive routing in mobile ad-hoc networks which is based on
ideas from Ant Colony Optimization, AntHocNet [33], and (e) an ant-based multi-QoS routing
protocol, AntSensNet [38]. These strategies/protocols are summarized in Table 1.

Table 1: Congestion control strategies for comparative analysis.

Strategy Congestion detection Routing
scheme

Flock-based Queue loading, Multi-path
Congestion Control (Flock-CC) MAC layer collisions

and retransmissions
No Congestion Control (NCC) None Single-path

shortest paths
Congestion-Aware Queue occupancy Multi-path
Routing (CAwR)

AODV [37] None Single-path
AntHocNet [33] MAC layer activity Multi-path
AntSensNet [38] MAC layer activity Multi-path

4.1.5. Measures of performance
Three performance measures for congestion control approaches were taken into account: the

packet delivery ratio (PDR), the end-to-end delay (EED), and the energy tax. Packet delivery
ratio is defined as the ratio of the total number of packets received by the sink to the total number
of packets transmitted by source nodes, without taking into account retransmissions. End-to-end
delay is defined as the time taken for a packet to be transferred from a source node to the sink.
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The energy tax metric calculates the average energy consumption per node per delivered packet,
measured in mJoules/delivered packet at the sink.

4.2. Parameter selection
This section evaluates the performance of the Flock-CC protocol and provides parameter se-

lection guidelines. Only topologies of 300 nodes are discussed in this section. Results regarding
larger topologies are presented later.

The Flock-CC protocol development was investigated in several stages (detailed results and
conclusions can be found in [42]). The notions of the FoV, the magnetic field and randomness
were progressively added to the protocol. Each element contributed a significant improvement
in the performance of the Flock-CC protocol. In the absence of orientation and attraction to the
sink (no FoV and magnetic field), packets were wandering around in the network and got trapped
in routing loops. Eventually, the overwhelming majority of packets were lost due to collisions
in the wireless channel. The introduction of the FoV and the magnetic field caused a steep rise
in PDR of approximately 55% (in scenario 1). Increasingly, the introduction of perturbation
provoked further increase in PDR of up to 10% (scenario 1).

More specifically, perturbation was realized on the basis of two random selection techniques:
roulette wheel selection and rank based selection. Rank based selection was shown to outperform
roulette wheel selection, exhibiting slightly higher PDR values (1 − 3%) compared to the rank
based selection across all three scenarios, for almost every value of T and ξ. Thus, the rank based
selection was incorporated in the Flock-CC protocol.

Below, we present the results and discuss the performance of the final model of the Flock-CC
protocol involving all flocking characteristics.

4.2.1. Packet delivery ratio (PDR):
Fig. 9 illustrates the PDR for all three scenarios of Fig. 8 with respect to parameters T and ξ.

The results presented here consider sending nodes generating traffic at the rate of 35 pkts/s (high
traffic load, i.e. the network can be considered congested). Similar observations apply for low
(25pkts/s) and extreme (45 pkts/s) traffic loads, thus the figures were omitted.

In scenarios 1, 2 and 3, the highest value of PDR (around 82%, 93% and 78% respectively)
was observed for ξ = {0.5, 0.75}. Significant performance deterioration was exhibited for low
spreading values, ξ = {0, 0.25}. In the first scenario, poorer performance was also observed for
high spreading, ξ = 1, but not at the same scale. At low ξ values, weak attraction was exercised
by each idle node, even if these nodes were able to accommodate incoming traffic load. Since
idle nodes are usually found at the borders of the packet flock, low ξ values ‘force’ packet flocks
to move in a coherent formation. In this case, a number of available paths were left unexploited
while other (popular and perhaps, shorter paths to the sink) faced overloading, thus resulting in
low PDR. On the other hand, at very high ξ values (close to 1), each idle node was exercising
strong attraction (causing high packet spreading towards the border of the flock). In this case,
two problems may occur: (a) There is no evidence of the channel quality in the vicinity of each
idle node, thus if the channel is busy a high number of losses may arise. (b) A large number of
packets are attracted to the borders of the flock (left and right), where the majority of idle nodes
reside. At the same time, packets are also attracted to the sink due to the inherent attraction of
the magnetic field. Thus, packets ‘flying’ at the borders of the flock collide with ongoing packets
‘flying’ through the center of the flock, resulting in a low PDR. The slight problem with high
ξ values was more pronounced in the first scenario, where packet spreading was apparent on a
larger scale.
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Figure 9: Packet delivery ratio (PDR), Flock-CC with all flocking characteristics, all scenarios (high traffic load).

An interesting observation is that, for scenarios 1 and 2, PDR reached around 82% for T =
1s, while it exhibited slight decrease for T = 1.5s and T = 2s. On the other hand, for the
third scenario (faling nodes), the PDR reached 78% for T = 0.5s (regardless of the value of ξ)
with steep decreasing trends of 10 − 11% as T approached 2s. For low T values where control
packets were broadcasted quite frequent, the Flock-CC mechanism was kept updated regarding
the network state. Frequent updates are of prime importance in scenarios with failing nodes. This
of course happens at the cost of higher energy expenditure-overhead, however with a reduced
number of retransmissions expected.

In scenario 2, lighter congestion phenomena occurred compared to scenarios 1 and 3 due to
the low number of closely located sending nodes. Traffic load injected into the network in the
two small hotspots of scenario 2 did not overload the network resources as much as the injected
traffic load in the hotspot of scenarios 1 and 3.

4.2.2. Packet loss:
In scenario 1 (Fig. 10), the number of collisions dominated the number of buffer overflows

for all values of T and ξ, while the overwhelming majority of packets were lost within the hotspot
area. Quite often, due to the shared wireless medium, packets collide before reaching the receiver
node. Thus, buffers are less often filling up. The coherent packet movement (through popular
nodes in the shortest paths) observed at low ξ values resulted in high number of overflows.
Increasingly, the high number of overflows led to larger number of retransmissions, and thus
increased number of collisions. On the other hand, the effect of packet spreading which occurs
for high ξ values resulted in a slight increase of collisions.

For scenario 1, the lowest total packet loss was observed at ξ = {0.5, 0.75}. As shown in Fig.
9, these two ξ values consistently achieved the best performance in terms of PDR. The reason for
the efficiency of these two ξ values is found in the balanced way of packet movement between
coherent formation and spreading. The attraction to idle nodes is strong enough to exploit their
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Figure 10: Buffer overflows and collisions, scenario 1, high load.

resources (buffer space, channel capacity) without causing overconsumption.
Another observation in scenario 1 is that, the increase of T provoked an increase in the num-

ber of buffer overflows and a reduction in the number of collisions. Recall that the desirability
function is evaluated once every sampling period and packets to be sent within this period chose
the most desirable node. At high T values, where the desirability function was evaluated infre-
quently, packets tended to choose with high probability the same new hosting node over a longer
time period leading to overloading (high queue occupancy) of the chosen node. On the other
hand, at low T values, packets spread more frequently to different new hosting nodes eliminating
buffer overloading but causing an increase of channel collisions around the chosen nodes.

Fig. 11 shows buffer overflows and collisions in scenario 3 where major node failures were
simulated. Here, the number of collisions was slightly higher than the number of buffer overflows
for all values of T and ξ, while it is worth noting that the majority of packets were lost around
failing nodes. In addition, it can be observed that the influence of ξ values on both overflows
and collisions was the same as in scenario 1. On the other hand, scenario 3 shows a steep rise in
the numbers of both overflows and collisions as T is approaching 2s. In scenarios with failing
nodes, as the time between successive control packets grew and the evaluations of desirabilities
were performed in a slower pace, the offered quality degraded sharply. The reason is attributed
to the phenomenon described in the previous paragraph.

Overall, scenario 3 exhibited higher number of buffer overflows and lower number of colli-
sions than scenario 1 for almost all values of T and ξ. This is because in scenario 1 packets were
spread in the network throughout the duration of the scenario causing higher collision rates. On
the other hand, in scenario 3, the incidence of node failures led packets to find alternative paths
to the sink by bypassing the ‘dead’ zone as shown in Fig. 15. In this case, the movement of
packets through the new paths to the sink was necessarily cohesive due to the new topology,
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Figure 11: Buffer overflows and collisions, scenario 3, high load (major node failures).

which resulted in this particular example. Thus, packets reaching a diagonal position from the
sink had only one (highly attractive) node in their FoV placed closer to the sink. The attraction
of packets to nodes along the diagonal led to narrow packet movement and thus, high number of
buffer overflows and a lower number of collisions.

4.2.3. End-to-end delay (EED):
The Flock-CC protocol achieved the lowest EED (≈ 335ms) for ξ = 0.75 and T = 0.5s. It

is worth noting that EED was calculated using packets successfully delivered at the sink, thus
in the cases of high packet loss, EED could not be accurately calculated. Hence, results for
ξ = {0, 0.25} (coherent packet movement leading to high number of buffer overflows and long
delays) were omitted. The significantly low number of losses (especially for low T values) led to
fewer retransmissions, and thus faster transitions of packets to the sink. The rise in T values was
accompanied by an increase in packet loss leading to increased retransmissions and thus larger
delays.

4.2.4. Energy tax:
Results concerning the energy tax spent per delivered packet confirmed the intuitive reason-

ing (made earlier) that frequent updates at low T values led to higher energy tax. The highest
energy tax per delivered packet was spent for T = 0.5s while slightly less energy was con-
sumed for T = 1.0 − 2.0s. However, the difference was marginal reaching up to only 1.5µJ per
delivered packet. The energy gain was not significant because at high T values large number
of buffer overflows were observed resulting in higher number of retransmissions which in turn
spent much energy. The changes in energy tax values were fairly insensitive to ξ, but the values
ξ = {0.25, 0.5, 0.75} exhibited better behavior.

25



4.2.5. Concluding remark:
Taking all the results of this section into consideration, a good compromise value for ξ is

0.75. The value of T can be set to T = 0.5s since the gain from minimizing buffer overflows
(observed at T = 0.5s) is larger than the gain from minimizing energy expenditure (observed
at T = 2s). Nevertheless, if slight energy gains are of utmost importance, parameter T can be
set to higher values, e.g. equal to 1.0s. Alternatively, an adaptive mechanism can be used to
dynamically adjust the value of T according to changes in the network state. Further experimen-
tation regarding other networking conditions and random topologies are presented next, and set
of simple guidelines for tuning parameter values is given at the end of this section.

4.2.6. Low data rate WSNs:
The applicability of the Flock-CC protocol on low data rate WSNs (e.g. 250 Kbps) was also

evaluated on the basis of scenario 1 to 3. Low, high and extreme traffic loads were considered.
The results were similar to those obtained with high data rates of 2 Mbps (see Fig. 9). The most
significant difference was that in low data rate WSNs the overwhelming majority of packet losses
were attributed to collisions. Due to the low transmission rates, buffers were occasionally filling
up, and rarely leading to overflows.
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Figure 12: Packet delivery ratio (PDR) and end to end delay (EED), scenario 4 (random dense topology), 25 pkts/s.

4.2.7. Random topologies:
The performance of the Flock-CC protocol was also evaluated on sparsely and densely de-

ployed random topologies (scenario 4). The results for the dense topology in terms of PDR and
EED are illustrated in Fig. 12.

The traffic load transmitted from each sender was 25 pkts/s (low load). Due to the high
density of nodes (average node degree= 8.85), the PDR was around 10% lower compared to the
grid topology of scenario 1 (node degree= 8). As expected, the reduction in PDR was expected
due to the extremely high number of collisions. The highest PDR was achieved for ξ = 0.5 and
T = 2s, while acceptable levels of PDR were achieved for ξ = {0.75, 1} and T = 1 − 2s. The
same combination of values led to a low EED. The decrease in the number of collisions as T

26



approached 2 was reflected in the increasing trends of PDR and the decreasing trends of EED.
There was a concurrent, but slight increase in the number of overflows which did not have a
major influence on PDR and EED.
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Figure 13: Packet delivery ratio (PDR) and end to end delay (EED), scenario 4 (random sparse topology), 25 pkts/s.

Results for the sparse topology are shown in Fig. 13. As can be seen, the PDR was reduced
by up to 20% compared to the dense topology while the EED exhibited increases of up to 0.5s.
The poor performance experienced in the sparse topology was attributed to the limited network
resources that led to the steep increase of buffer overflows. More specifically, in the sparse
topology, buffer overflows increased at almost 10 times regardless of the values of T and ξ. This
behavior was expected, since the sparse placement of nodes forced packets to move through a
small number of paths to the sink. Therefore, the traffic load injected into these paths could
not be accommodated by the limited buffer capacity of nodes in these paths. This is of course
a design and dimensioning issue, and for example increasing buffer capacity can improve the
performance in terms of PDR at the expense of longer delays (higher EED).

4.2.8. Recommended setting of ξ and T:
The results for dense and sparse topologies suggest that a good compromise value for pa-

rameter ξ should be in the range 0.5 to 0.75. The upper value seems more preferable since it
was found to be effective and efficient in scenarios with grid topologies with low and high MAC
transmission rates. For the rest of this study, the value of ξ is set to 0.75. On the other hand,
the value of T can be set according to the network characteristics. In a controlled environment
(e.g. a predefined topology) like a grid topology, for network devices with characteristics as in
the simulations, the value of T can be set to 0.5s (as discussed above), or follow an adjustable
approach: Initialize T to 2s. If a failure (unreachable node) is sensed (see discussion for Tlost),
then T should be reduced to 0.5s for fast recovery, while ξ can be left unchanged. After a given
period of time with no other node failures sensed, the node can reset T either directly or progres-
sively to 2s for energy saving purposes. Since the energy gains from this adjustable approach
are marginal, the study of this approach is left for future work. Also, it has to be noted that the
adjustable approach increases complexity on each node. For the rest of this study, the value of
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Figure 14: Emergent behavior: Visual representation of moving packets in scenario 2 (high load). The number of
packets visiting each node within a 1-second time slot snapshot is indicated inside every node. Darker colors indicate
higher number of packets.

T is set to 0.5s. Note that in random topologies, the value of T can be increased to 2s for max-
imizing PDR and minimizing energy consumption at the same time. More conclusive results
can be extracted by evaluating the Flock-CC approach on a real testbed, which will increase the
confidence in the recommended parameters robustness under real implementations.

4.3. Emergent behavior of group-level transitions
This section investigates the emergent behavior of the collective motion of packet flocks

through the network using the scenarios 1 − 3. The emergent behavior can be perceived: (a) di-
rectly by the visual representation of flock movements and (b) indirectly on the basis of the per-
formance evaluation metrics. The visual representations of Figs. 14 and 15, using the Flock-CC
protocol, depict the sink node in the upper side of each figure, while active nodes are highlighted
by bold circles.

Evaluation results based on scenario 2 and high traffic load demonstrated the obstacle avoid-
ance behavior of packet flocks. Fig. 14(a) depicts the bird-like motion of packets generated by
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Figure 15: Emergent behavior: Visual representation of moving packets in the presence of failing nodes in scenario 3
(high load) The number of packets visiting each node within a 1-second time slot snapshot is indicated inside every node.
Darker colors indicate higher number of packets.
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the front set of the five dark grey shaded nodes. In line with the flocking behavior, packets were
spread in the network, but not too much, choosing a number of paths to the sink. Fig. 14(b)
shows that after the activation of the bottom set of source nodes, the new flock of packets splits
apart into two separate groups in order to avoid colliding with packets generated from the front
set of source nodes. The direction of motion of the two sub-flocks is highlighted by transparent
arrows. Furthermore, when the front set of nodes stopped transmitting, the two sub-flocks re-
joined to a single, more coherent flock moving over the area that used to be a congestion region
Fig. 14(c).

Fig. 15 shows the emergent behavior of moving packets before and after node failures in
scenario 3. The emerging reorganization of moving packets after node failures is shown in Fig.
15(b), where the single flock of packets splits into two smaller compact groups, both of which
‘fly’ around the ‘dead’ zone. For visualization purposes, an extension to the third scenario was
made. At some point after failure, the center failed node became alive, thus creating a potential
new path down the middle. The adaptive motion of packets through three alternative paths to the
sink is shown in Fig. 15(c). After the reactivation of the node in the middle, the magnetic field
lines passing through the ‘hole’ helped packets perceive the newly created shortest path leading
to the sink. Network resources inside the ‘horse-shoe’ area and close to the ‘hole’ were incapable
of accommodating the whole generated traffic load. In the case of a routing protocol forwarding
packets on shortest paths, congestive phenomena would be expected to arise inside the ‘horse-
shoe’ area towards the ‘hole’. However, under the Flock-CC protocol, packets moving through
the ‘horse-shoe’ area exhibited both repulsive as well as attractive forces, readjusting the flows
both through the ‘horse-shoe’, as well as around it, in an adaptive dynamic fashion.

This section focused on the ability of moving packets to mimic the obstacle avoidance be-
havior of bird flocks. Visual representations demonstrated the self-adaptiveness of the proposed
approach to changing traffic (Fig. 14) and network conditions (Fig. 15). In particular, it was
shown that packets were dynamically moving apart to avoid queue and channel loading phenom-
ena or node failures (thus causing traffic spreading among available paths to the sink) and moving
back together once the congested or faulty situations elapsed. As a side effect, the network energy
expenditure was ‘fairly’ shared among nodes along these paths, resulting in increased network
lifetime. If packets were routed via a single path, or were spread among multiple paths in an
unbalanced manner, some of these paths could progressively become over-utilized, causing an
unbalanced network energy expenditure.

Fig. 16 visualizes the packet movement in scenario 3 (at high traffic load) when one or more
of the flocking behavioral rules outlined in Section 3.1 were removed from the Flock-CC model.
The objective here is to emphasize the need of these simple rules and demonstrate that the emerg-
ing behavior is achieved by the set of all the behavioral rules. The first experiment excludes only
randomization (rule 4). The second experiment excludes only local interactions i.e. repulsion
and attraction forces (rules 1 and 2). The third experiment excludes both randomization and lo-
cal interactions. Note that visual representations concerning the third experiment were omitted
since they were almost identical to the second experiment. Figs. 16(a) and (d) illustrate the
packet movement before node failures. The feature of exploration, which emerges from the ran-
domized selection of new hosting nodes, allows for traffic distribution through alternative paths
to the sink. This feature was apparent in Fig. 15(a), where the full Flock-CC model involving
all flocking characteristics was used. On the other hand, as shown in Fig. 16(a), the exclusion of
randomization eliminated packet spreading. The problem was worsened by removing only local
interactions as illustrated in Fig. 16(d). Local interactions form the flock and also allow packets
‘exploit’ previously idle nodes (using attraction forces) and avoid congested nodes (using repul-
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Figure 16: Lack of emergent behavior: The effect of flocking characteristics on packet flocks movement in scenario 3
(high load) when there is: (a)-(c) no randomness (rule 4), (d)-(f) no local interactions (rules 1 and 2).

sive forces). When these forces were omitted, packet paths became too coherent, thus causing
deterioration of PDR and EED. The effects on performance measures is discussed below.

Figs. 16(b), (c) and (e), (f) illustrate the packet movement after node failures in scenarios
with no randomization, or local interactions respectively. In scenario with no randomization,
packets found the alternative path to the sink faster than the scenario with no local interactions.
As can be seen in Fig. 16(b), 7 sec. after node failures, a few packets found the way to move
at the left hand side of the ‘dead zone’. This happens due to the higher tendency of packets to
spread as a result of the attraction and repulsion forces. As shown in 15(b), in the full Flock-CC
model, the reaction to failures was more effective since 7 sec. after node failures the packets
found both alternative paths to the sink.

The emergent behavior was also perceived through performance evaluation metrics. Fig.
17 compares the full Flock-CC model involving all flocking characteristics against the three
subvariants of the Flock-CC model described above.

Fig. 17 shows that the full Flock-CC model exhibited the highest PDR, especially for the
scenarios 1 and 3. The exclusion of randomization from the Flock-CC model led to the deterio-
ration of PDR. In scenario 1, the reduction was ranging from 9% for T = 0.5s to 17% for T = 2s,
whereas in scenario 3 the reduction was from 5% to 11%. In scenario 2, where light congestion
phenomena occurred, there was no significant deterioration of quality in the absence of ran-
domization. Traffic distribution through perturbation was highly effective especially in scenarios
with large hotspot areas (scenarios 1 and 3). Thus, the gain (low buffer overflows and collisions)
from path exploration (rule 4), emerging from the randomized selection of new hosting nodes, is
significant.

Further PDR deterioration occurred by removing only local interactions. For scenario 1, the
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Figure 17: Emergent behavior: The effect of flocking characteristics on packet delivery ratio (PDR).

reduction was around 15%, for scenario 2 the reduction was from 3% to 5% and for scenario 3 the
reduction was from 8% to 10%. Clearly, the gain from local interactions among packets is even
higher than what is achieved with randomization. In particular, a steep decrease in the numbers
of buffer overflows and collisions emerges due to the social activity between neighboring packets
(rules 1 and 2).

As expected, the exclusion of both randomization and local interactions led to further dete-
rioration of the PDR. Furthermore, the exclusion of the magnetic field (rule 3) and the FoV had
devastating effects on PDR. Results are omitted due to the extremely low values of PDR, which
even fell to 1% − 2% (scenario 1, high load).

Results concerning EED evaluations exhibited similar behavior to PDR as shown in Fig. 18.

4.4. Robustness in failure prone environments
Sensor nodes are prone to failures, mainly due to fabrication process problems, environ-

mental factors (disasters), enemy attacks, and battery power depletion. The proposed approach
exhibits robustness against node failures due to the inherent tendency of individuals to follow
other flockmates that manoeuvre to avoid obstacles such as failing nodes. The third scenario was
used to demonstrate the robust nature of the flock-based approach.

Fig. 15 shows network snapshots before and after node failures. It is apparent that the Flock-
CC approach displayed outstanding flocking behavior in the presence of numerous node failures
(selected in a horse-shoe orientation, which after failures traps packets), and exemplified all of
the characteristics of a bird flock in terms of obstacle avoidance and manoeuvring around the
zone of dead nodes.

4.5. Scalability
The Flock-CC protocol scalability refers to the ability of the protocol to support WSNs ex-

pansion to include more nodes that might be anticipated during the initial network design stage.
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Figure 18: Emergent behavior: The effect of flocking characteristics on end-to-end delay (EED).

This section presents the results obtained when testing Flock-CC on different sizes of networks
consisting of 200, 300 and 400 nodes. In each case, a grid topology was used, having a set of 10
source nodes closely placed in the middle bottom part of the network.

As can be seen in Fig. 19, there was a slight rise of PDR values with the increase of network
size. The Flock-CC protocol is shown to perform better in large scale networks compared to
small scale networks (since diversity increases). As the number of nodes in a network scales up,
the amount of available resources increases and packets are able to spread widely through the
network, thus minimizing packet losses, primarily due to buffer overflows. On the other hand,
in small scale networks packets move in more restrictive coherent formations that increase the
likelihood of buffer overflows due to the limited number of paths to the sink. Fig. 19 illustrates
the effect of network size on EED. As the network size increases, the time needed for packets to
reach the sink shortens (i.e. lower EED). This is because the increase of network resources, and
as a result the increase of alternative paths to the sink, reduces the buffer occupancy (and buffer
overflows) at each node. Therefore, packets face lower queueing delays and travel from source
nodes to the sink at a fast pace. Finally, as expected, EED delay increases with the increase in
traffic rates due to the rise in buffer occupancy at each node.

4.6. Comparative studies

The proposed Flock-CC protocol was quantitatively compared against NCC, CAwR and
AODV [37] protocols, as well qualitatively compared against AntHocNet [33] and AntSensNet
[38]. It is worth pointing out that the comparative evaluation does not include issues such as
robustness and scalability. However, due its nature Flock-CC can be expected to outperform (by
far) these schemes. The characteristics of each protocol are summarized in Table 1.

Results of Figs. 20 (a)-(f) show that the proposed flock-based approach clearly outperformed
NCC (no congestion control) and CAwR (congestion-aware routing) protocols in terms of both
PDR and EED, for all traffic loads and scenarios. In addition, as shown in Figs. 20 (g)-(i), Flock-
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Figure 19: Scalability: The effect of network size in packet delivery ratio (PDR) and end-to-end delay (EED).

CC consumed less energy per delivered packet in low traffic rates (25 pkts/s) for all scenarios and
slightly increased energy in higher loads. The results for the AODV protocol were omitted due to
the very low performance of the protocol compared to the other protocols shown in Fig. 20. Note
that AODV suffers from two limiting factors: (a) it is an end-to-end routing protocol that routes
packets from a given source to a given destination through the shortest path connecting each
other; (b) it is a reactive routing protocol, meaning that the path needs to be established from
source on demand (when source has packets to transmit) using a series of control messages.
These control messages are broadcasted in all directions, which is useless when they are sent in
the opposite direction of the destination, causing high bandwidth consumption.

From the perspective of PDR, Figs. 20 (a)-(c) show that the Flock-CC approach delivered
around 15%, 23% and 19% more packets for scenario 1 than the NCC protocol under low, high
and extreme traffic loads respectively. The difference in PDR between scenarios 2 and 3 was
smaller. Similarly, in scenario 1, the Flock-CC approach achieved 2% to 8% higher PDR (bet-
ter performance in low loads with decreasing trends in extreme loads) compared to the CAwR
protocol. Differences of 2% to 4% in PDR between scenarios 2 and 3 were observed.

Based on the outcomes of the comparative study, it can be argued that the controlled traffic
spreading that emerged from the flocking behavior of packets allowed packets to exploit avail-
able resources on nodes involved in multiple paths to the sink, resulting in higher performance.
The NCC and CAwR protocols did not allow for packet spreading among all available paths, re-
sulting in over-utilization of some (popular) paths. Under the NCC protocol, packets were solely
sent over the shortest path(s), while the CAwR protocol allowed for packet spreading after the
appearance of buffer overflows. This behavior led to a high number of packet losses due to buffer
overflows. Further results showed that the Flock-CC approach exhibited extremely low buffer
overflows compared to both protocols due to the traffic spreading ability of the bird flocking
behavior.

In addition, Figs. 20 (d)-(f) show that the Flock-CC approach exhibited the lowest EED
among the other protocols for every transmission rate and scenario, because traffic spreading
prevented augmented buffer occupancies that contribute to larger queueing delays. As far as
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Figure 20: Comparative experiments in scenarios 1 − 3 for T = 0.5s. The performance of AODV was considerably
poorer, thus related results were omitted from this figure.

energy consumption is concerned, Figs. 20 (g)-(i) show that the Flock-CC protocol spent less
energy per delivered packet in low loads compared to NCC and CAwR.

Flock-CC was also qualitatively compared against AntHocNet and AntSensNet. Quantitative
comparative scenarios are left for future work. AntHocNet showed better performance compared
with AODV in terms of data delivery ratio and end-to-end delay [33]. Also, simulation results
show that the performance of AntSensNet outperforms AODV in terms of delivery ratio, end-to-
end delay and routing overhead [38].

Both AntHocNet and AntSenseNet are quite complicated protocols involving a large number
of parameters and equations. These parameters have to be tuned for a variety of network and
traffic conditions since they can be sensitive to the environment. On the other hand, the Flock-CC
approach is quite simple involving only one parameter and one equation (desirability function).

In addition, the overhead generated by the ants (i.e. control packets injected into the network)
is quite high for both AntHocNet and AntSensNet. In both approaches, each sensor node broad-
casts periodically a HELLO packet (control packet). Also a number of control packets (that act
as forward ants) are sent towards the sink and back for route probes. In Flock-CC protocol, the
overhead is lighter since each node broadcasts periodically a control packet only.
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In ant-based approaches, the problem is worsened since reactive forward ants (packets used
for exploration) store the full array of nodes that they have visited on their way to the destination.
In this way, a large amount of information is progressively added to these packets, thus increasing
the probability of collision at considerably high levels. On the other hand, in Flock-CC, the size
of a control packet remains always small and constant.

The high packet overhead causes scalability problems in AntHocNet and the performance of
the protocol degrades as the number of nodes in the MANET increases. AntSensNet is consid-
ered to be more scalable than AntHocNet due to the clustered underlying topology. However,
clustering formation assumes special roles in the network (e.g. clusterheads), while additional
mechanisms are needed for maintaining and re-assigning roles. Also, areas around clusterheads
may progressively become collision hot spots and deteriorate congestion. The Flock-CC pro-
tocol was shown to be scalable with the increase of sensor nodes without involving any added
complexity like clustering.

Furthermore, both AntHocNet and AntSensNet necessitate large memory space to store all
information used by the protocol. AntSensNet involves four pheromones for each traffic class.
Every node x has to keep in its pheromone table the four pheromone values for each traffic class
that passes through each link connecting node x and its neighboring nodes. Similarly, in An-
tHocNet, each node i maintains one pheromone table Ti. Pheromone tables contain for every
destination a vector with one entry per outgoing link. The entry T d

i j of node i’s pheromone ta-
ble Ti contains the pheromone value ξdi j, which is a floating point number indicating the relative
goodness of taking outgoing link j on the way to destination d. Apart from a pheromone ta-
ble, each node also maintains a neighbor table, in which it keeps track of which nodes it has a
wireless link to. Only highly capable sensor nodes with extended memory capacities are able to
store this mass of information. On the other hand, in Flock-CC, each node employs four small
unidimensional tables. The size of each table is equal to the number of nodes in the FoV.

In addition, AntSensNet requires modifications in the queueing policies of the underlying
MAC protocol in order to accept multi-class and multi-priority traffic, whereas Flock-CC coop-
erates well with a large number of MAC protocols without necessitating any modifications.

5. Conclusion and future work

This study focused on the bird flocking behavior to coherently ‘move’ packets to the sink,
whilst combating congestion in wireless sensor networks (WSNs). The synchronized group be-
havior of birds flocks is mimicked in order to control the motion of packet flocks through a
network of constrained sensor nodes, whilst avoiding congestion regions and dead node zones
in a robust way. It is worth stressing that despite the simple behavior at individual nodes, the
proposed Flock-CC approach contributes to the emergent behavior of high packet delivery ratio,
low end-to-end delay and minimal energy tax.

The bio-swarm approach of Couzin [8] was reformulated from a metrical space to a topo-
logical space in order to manipulate the direction of motion of packets in WSNs influenced by
local interactions among neighboring packets. The Flock-CC protocol is based on four flocking
characteristics. Each packet perceived repulsive and attractive forces exhibited by other packets
located on neighboring nodes within the FoV. The magnetic field oriented and guided packets
towards the sink. Perturbation, which allows for exploration, was also introduced to allow pack-
ets to pick random routes, and thus to avoid over-flooding popular (due to their low congestion
levels) next hop nodes.
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It is worth noting that the Flock-CC model involves only one easily understood tuning pa-
rameter, the spreading variable, ξ, which influences the cohesiveness of the flock, and T , the
sampling time. The spreading variable ξ was investigated across a large number of scenarios
involving grid and random topologies, failure-free and failure-oriented environments, low and
high MAC transmission rates. A good compromise value for ξ was 0.75. The value of parameter
T cannot be hard coded into the model due to its dependance on network conditions and node
hardware characteristics. A self-adaptive method of optimally choosing T based on network
conditions (e.g. high T in failure-free environments, low T in scenarios with failing nodes) can
be usefully employed, but it is left for future work.

The behavioral tendencies involved in the proposed approach were implemented in a simu-
lated environment to study its effectiveness in mimicking the collective behavior of bird flocks.
Performance evaluations showed that the proposed mechanism was able to robustly move pack-
ets to the sink, whilst alleviating congestion by balancing the offered load. In addition, results
showed that the Flock-CC offers high PDR, fast delivery (small EEDs) of packets to the sink,
and low energy tax. Furthermore, the Flock-CC approach outperformed typical conventional
congestion-aware and congestion-free routing approaches in terms of PDR, EED and energy tax
in low, medium and high loads.

Future work will investigate different functions for randomizing the attractiveness to the sink.
Also, the performance in terms of power, as well as the inclusion of power in the desirability func-
tion remains a matter of further research. In addition, beyond the hop distance, new techniques
for sink direction discovery are also left for future work. Also, an interesting idea is to investigate
if and how the Flock-CC approach can operate in the presence of multiple sinks. Finally, beyond
the simulative evaluation, a real-time implementation would further enhance the confidence in
the proposed approach.
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