
Specifying Software Features for Composition:
A Tool-Supported Approach

Thein Than Tuna,∗, Robin Laneya, Yijun Yua, Bashar Nuseibeha,b

aThe Open University, Milton Keynes, UK
bLero, Limerick, Ireland

Abstract

Development of several computing and communication technologies is enabling
the widespread availability of pervasive systems. In smart home applications,
household appliances—such as security alarms, heating systems, doors and
windows—are connected to home digital networks. These applications offer
features that are typically developed by disparate vendors, and when composed
together, these features are expected to work together harmoniously. Engineer-
ing these systems poses two main challenges. The first challenge is: how can
developers of individual features specify the features in order to make them
composable with other hitherto unknown features? The second challenge is:
when composition of features does not produce the desired behaviour, what can
be done to resolve this non-intrusively? This article argues that the two is-
sues are intrinsically related, and proposes an approach that addresses the first
challenge in a way that makes the second challenge manageable. In particular,
we describe a way of writing feature specifications in which assumptions about
the problem world are made explicit. These feature assumptions can then be
evaluated at runtime in order to preserve the desired system behaviour to the
extent possible. Our approach is illustrated with examples from smart home
applications.

Keywords:
Smart Home Applications, Feature Interactions, Feature Composition

1. Introduction

Convergence of several computing and communication technologies is en-
abling the development of pervasive systems. In smart home applications, house-
hold appliances—such as air conditioners, security alarms, doors and windows—
are controlled by software systems through both wired and wireless home digital

∗Corresponding author
Email address: thein.tun@open.ac.uk (Thein Than Tun)

Preprint submitted to Computer Networks April 8, 2013



networks (Grimm et al., 2004; Park et al., 2003; Kolberg et al., 2003). The sys-
tems have mobile and autonomous devices that communicate with each other
by sending and receiving discrete signals. These are distributed event-based
systems, components of which are developed independently. Smart home ap-
plications are used for several purposes including, but not limited to, health,
entertainment, security, and education. Several consumer electronics manu-
facturers such as Siemens and Philips are developing such applications, while
light-weight operating systems for such applications are also becoming available
from software vendors (Microsoft, 2012; LinuxMCE, 2012).

Smart home applications typically offer features which represent units of
user accessible functionality of the system. For example, a security feature of a
smart home application may switch on and off lights when home occupants are
away to give an impression that the house is occupied. Developing such event-
based software systems posses two main challenges. First, the requirements of
individual features are rooted in their environments in the sense that they are
expressed in terms of the property of the system rather than the software. For
example, the requirement for a security feature might be to “keep the window
shut at night”, rather than to implement the instruction “IF time=20:00:00
THEN Call tiltIn”, although that may turn out to be part of the specification.
A challenge here is to obtain, if possible, a correct specification of the software
from the description of a desired property of the system.

Second, different features of the application are developed by separate ven-
dors, but when put together in a particular environment they are expected to
work together harmoniously (Kolberg et al., 2003). For example, the enter-
tainment feature, developed by one vendor, may allow the user to record TV
programmes according to a predetermined schedule, and the security feature,
developed by another vendor, may allow the user to automatically capture the
video images when an intrusion is detected. Such subtle behavioural inconsis-
tencies are difficulty to identify and resolve at development time. A challenge
here is to provide a mechanism that can detect behavioural inconsistencies and
resolve them at runtime to the extent possible.

The main focus of this article is to address the first challenge of specifying
individual features. The proposed approach, however, aims to tackle the first
challenge in a way that helps address the second challenge, which has been
discussed in greater detail by Laney et al. (2007).

The conceptual framework of Problem Frames (Jackson, 1995, 2001) char-
acterizes the relationship between the specification (S), the problem world do-
mains (W ) and the requirement (R) as W,S ` R. The entailment operator
(`) emphasizes the fact that specifications rely on explicit domain properties in
satisfying the requirements. Typically in software development, W and R are
given, and the challenge is to find a correct and constructive S if possible. In
event-based temporal systems, such as smart home applications, a specification
describes the behaviour of a software component that observes and manipu-
lates properties of the problem world through events. In dealing with the first
challenge, we suggest that the correct specification for features can be obtained
through logical abduction and model abstraction. Given appropriate descrip-

2



tions of W and R of a particular feature, logical abduction generates all possible
scenarios of a feature specification satisfying the requirement. We use a form
of temporal logic, called the Event Calculus, to describe W and R and use
Decreasoner (Mueller, 2006) to perform abductive reasoning. Based on the sce-
narios generated by the tool, the developer provides rules for the specifications,
which should be an abstraction of the validated scenarios. Correctness of the
specification with respect to the requirement can then be checked automatically.

In the process of obtaining specifications, the problem world assumptions
of the specifications are made explicit in a way that they can be evaluated
at runtime. Making problem world assumptions explicit in specifications is
difficult for the following reason: as suggested by the conceptual framework
of Problem Frames, specifications must be described only in terms of events
that can be controlled and observed by the software. We use a predicate called
prohibit (Laney et al., 2007) to express problem world assumptions in terms of
specification events. These specifications with problem world assumptions are
monitored by a runtime composition controller that detects potential conflicts
and enforces user preferences to resolve them.

This article builds on several previous works, some by the authors. Zave and
Jackson (1997) make the distinction between requirements and specifications.
The notion of Composition Frames as a way to compose inconsistent require-
ments is introduced by Laney et al. (2004), and the Event Calculus is used to
manually refine requirements into specifications in (Laney et al., 2007). Using
the Event Calculus to reason about problem diagrams is discussed in (Classen
et al., 2008) whilst a way of detecting interactions between subproblems and
tool-support for it are presented by Tun et al. (2009b).

The remainder of the article is organized as follows. Section 2 provides the
background discussion before the proposed approach is described in Section 3.
Tool-assisted derivation of feature specifications and the composition controller
is detailed in Sections 4 and 5. Finally, related work and conclusions can be
found in Sections 6 and 7 respectively.

2. Preliminaries

This section begins by characterizing and introducing a simple example from
the smart home application. We then discuss the key concepts used in the pro-
posed approach, namely, the Problem Frames approach to requirements analy-
sis, and the Event Calculus formalism to describe problem diagrams.

2.1. Smart Home Application

The smart home applications considered in this article are event-based tem-
poral systems involving autonomous agents, many of which are controlled by
software systems. There are hardware/software devices, as well as human
agents, communicating with each other largely through instances of event types
(or simply ‘events’). Each event type is controlled either by the software compo-
nents or the problem world domains, but not both. Although domains commu-
nication with each other through events, in some cases, problem world domains

3



Security

Feature

Window

Time

Panel
b

c

SR

d

a

Interface Name Phenomena Set
a: TiP!{Night, Day}
b: TiP!{NightStarted(),

DayStarted()}
c: SF!{TiltIn(), TiltOut()}
d: W!{Open, Shut}

Figure 1: Problem Diagram: Security Feature

may also expose their states directly to other agents. We assume partial order-
ing of events and more than one event may occur at a time within the system. A
linear time where all time points can be mapped to non-negative integer values
is also assumed.

Smart home applications provide features that may have been developed in-
dependently by different vendors. A feature in this case is a software component
that brings about certain behaviour of the smart home application in order to
satisfy a user requirement. Requirements are usually expressed in terms of prop-
erties of the problem world, in this case, the home environment. Specifications
of the software components are expressed in terms of the events the software
can fire, and the events of the environment the software can observe.

Users of smart home applications may buy features separately and put them
together in different ways. Therefore it is important to ensure that the specifi-
cation of the feature is not only correct, but also composable at runtime.

2.2. Problem Frames

According to the conceptual framework of Problem Frames (Jackson, 2001),
requirements for software systems can be analysed by applying some principles,
two of which are relevant to our discussions here.

One principle of Problem Frames is concerned with the properties of software
artefacts in requirements engineering. Intuitively, it suggests that requirements
(R) are expressed in terms of properties of their environment (or problem world
domains) (W ), and specifications (S), and within the context of problem world
domains, are expected to satisfy the requirements. This relationship can be
described as the logical entailment W,S ` R (Jackson, 2001).

The problem diagram for the smart home security feature in Fig. 1 can be
used to illustrate this characterization of artifacts. The diagram shows a high-
level relationship between the requirement R, denoted by a dotted oval, the
problem world domains W , denoted by plain rectangles and solid lines, and
the specification S denoted by a box with a double stripe. W represents the
properties of the problem world that are necessarily true, and R represent the
properties of the problem world that users wish to hold true, whilst S represents
the properties of a computer that will enact the required properties in that
problem world context. S is also called the specification of the machine.

The requirement and problem world domains in Fig. 1 can be described
informally as follows. The requirement for the security feature (SR) is to have

4



Table 1: Elementary Predicates of the Event Calculus

Predicate Meaning
Happens(a, t) Action a occurs at time t
Initiates(a, f , t) Fluent f starts to hold after action a at time t
Terminates(a, f , t) Fluent f ceases to hold after action a at time t
HoldsAt(f , t) Fluent f holds at time t
t1 < t2 Time point t1 is before time point t2

the window shut during the night. The requirement is expressed in terms of
problem world properties: it references the property of the domain Time Panel
that it is night (the undirected dotted line a) and constrains the property of the
domain Window that it is shut (the directed dotted arrow d). The requirement,
therefore, is a desired relationship between the property of the time panel and
the window.

The problem world domain Window in Fig. 1 has the following given prop-
erties. The event TiltIn() makes the window shut. The event TiltOut makes the
window open. The window cannot be both open and shut at the same time.

Domain interfaces such as b and c, as in all problem diagrams, are repre-
sented by undirected solid lines because they do not indicate any data flow, but
instead, indicate the sharing of states and events. Those states and events are
controlled by one domain (indicated by the symbol ! suffixing the domain ini-
tials), and observed by the other implicit domain. For instance, at the interface
b, the time panel controls the events NightStarted() and DayStarted(), denoted
by TiP!, and since the interface b connects the time panel with the machine
Security Feature, the machine observes those events when they are generated.
Similarly, at the interface c, Security Feature can fire the events TiltIn() and
TiltOut(), denoted by SF!, which are observed by the window.

We assume that problem world domains communicate with each other by
sending and receiving events, while the state properties are internal to the prob-
lem world domains.

The other principle of the Problem Frames approach is related to separation
of concerns. When dealing with complex problems, the Problem Frames ap-
proach suggests that individual subproblems should be solved before considering
how they may be recomposed to satisfy the requirements of (larger) composed
problems. Therefore individual features may be inconsistent. This principle
nicely fits the development practice of disparately constructing features before
considering how they might be composed. Therefore, Problem Frames allow
individual feature specifications to be initially inconsistent with each other.

We will use Composition Frames (Laney et al., 2004) to compose specifica-
tions by detecting and resolving runtime inconsistencies. Composition operators
of Composition Frames can intercept events from the individual features and
block certain events in order to resolve interactions between features.

5



Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1 ≤ t < t2 ∧ Terminates(a, f, t)]

(EC1)

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1 ≤ t < t2 ∧ Initiates(a, f, t)]

(EC2)

HoldsAt(f, t2)← [Happens(a, t1)∧
Initiates(a, f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2)]

(EC3)

¬HoldsAt(f, t2)← [Happens(a, t1)∧
Terminates(a, f, t1) ∧ t1 < t2 ∧ ¬Declipped(t1, f, t2)]

(EC4)

Figure 2: Event Calculus Domain Independent rules

2.3. The Event Calculus

The Event Calculus (EC) is a system of logical formalism which draws from
first-order predicate calculus. We chose EC as our formalism, because it is suit-
able for describing and reasoning about event-based temporal systems. Several
variations of EC have been proposed, dealing with system properties such as
nondeterminism, concurrency, and continuous change, as well as different modes
of reasoning, such as abduction and default reasoning. Many of these capabil-
ities of the Event Calculus have been surveyed by Mueller (2006). In general,
the Event Calculus is appropriate for analysing the dynamic behaviour of the
smart home application, while the analysis of static structures such as numbers
and arrays may be best served by other relevant formalisms.

The calculus relates events and event sequences to ‘fluents’, time-varying
properties, which denote states of a system. Table 1, based on Miller and
Shanahan (1999), gives the meanings of the elementary predicates of the cal-
culus we use in this article. The domain-independent rules in Fig. 2, taken
from Miller and Shanahan (1999), state that: Clipped(t1, f, t2) is a notational
shorthand to say that the fluent f is terminated between times t1 and t2 (EC1),
Declipped(t1, f, t2) is another notational shorthand to say that the fluent f is
initiated between times t1 and t2 (EC2), fluents that have been initiated by
occurrence of an event continue to hold until occurrence of a terminating event
(EC3), and fluents that have been terminated by occurrence of an event continue
not to hold until occurrence of an initiating event (EC4). Following Shanahan,
we assume that all variables are universally quantified except where otherwise
shown. We also assume linear time with non-negative integer values. In EC, we
follow the rules of circumscription in formalizing commonsense knowledge (Mc-
Carthy, 1986), by assuming that all possible causes for a fluent are given in the
database and our reasoning tool cannot find anything except those causes.

6



Decreasoner

Logical

Abduction

Model

Checking

Descriptions of

W and R

Scenarios of

S

Rules for S
Verified

S

Model

Abstraction

Problem

Analysis

Figure 3: Overview of the approach

3. The Proposed Approach

A schematic overview of our approach is summarised in Figure 3. This
approach uses the Problem Frame approach to decompose complex problems
into subproblems and recompose them (Problem Analysis). Requirements (R)
and domain assumptions (W ) identified are described using the Event Calculus.
In order to find the instances of the specification, descriptions of W and R
are encoded and presented to Decreasoner (Mueller, 2006) to find event-based
narratives of actions, “plans”, or scenarios (Logical Abduction). These scenarios
show how the requirement can be satisfied given the domain descriptions.

Unrealistic scenarios, impossible sequences of actions, are then eliminated
and the remainder abstracted into rules for the specification (S) (Model Ab-
straction). In our derivation of specifications we not only find the events leading
to the satisfaction of the requirement, we also identify the events that may hap-
pen, and events that must not happen in the mean time. This information is
used in order to weaken feature specifications and detect potential inconsisten-
cies. The specification is then checked (Model Checking) to produce the verified
specifications (with respect to W and R).

3.1. Describing Problem Diagrams using the Event Calculus

In our approach to specifying event-based systems, requirements are de-
scribed as combinations of fluents capturing the required states of the problem
world, problem world domains are described as event-to-fluent and fluent-to-
event causality, and specifications are described as conditions constraining the
occurrences and non-occurrences of events.

Definition 3.1. Observations consist of a finite conjunction of (¬)HoldsAt
formulae. Reference phenomena (Γ) are observations describing the given state
of the system, while controlled phenomena (Γ′) are observations describing the
desired state of the system. A requirement in the Problem Problems approach
is expressed either as (i) ground observations Γ′, without any reference to the
given state of the system, or (ii) as a relationship between the reference and

7



the controlled phenomena, such as a state constraint of the form Γ → Γ′ , or
an action precondition axiom of the form (¬)Happens(f1, t) → Γ′ where the
antecedent is an occurrence of an action in the system (for example, to say that
when an event a1 happens at time t, the fluent f1 must be true at t1).

Since the requirements tend to be about (desired) properties of the system
over time, they will be formulated in terms of fluents holding, rather than in
terms of (instantaneous) event occurrences.

Definition 3.2. A domain description in our approach is expressed as event-to-
condition and condition-to-event causality. The first causality deals with what
happens to the fluents when events occur, and the second causality deals with the
domain properties that lead to the occurrence of certain events. In the Event
Calculus, the event-to-condition causality is described as a finite conjunction
of positive and negative effect axioms (Σ) of the form Initiates(a, f, t) ← Π
or Terminates(a, f, t) ← Π where Π has the form (¬)HoldsAt(f1, t) ∧ · · · ∧
(¬)HoldsAt(fn, t) and t, and f1 to fn are terms for the time and fluents re-
spectively. The condition-to-event causality is described as a finite conjunction
of trigger axioms (∆2) of the form Happens(a, t)← Π.

3.2. Specifying Features

Generally, specifications tend to describe the events that must be generated
at certain times in order to satisfy requirements. In our specifications, we also
describe the events that must not happen within certain time ranges in order
to satisfy requirements. The prohibit predicate is used to specify those events.
There may also be other events which are left undescribed because their occur-
rence or non-occurrence is assumed not to affect the requirement satisfaction.
When there are such undescribed events, the specification is partially open,
meaning that there can be more than one program that satisfies the specifica-
tion.

If the specification asserts that certain event instances are prohibited, this as-
sertion is universal in the sense that all specifications, including the one making
the assertion, must not generate the events. It may be non-trivial to implement
this assertion, especially when event are controlled by more than one device,
as is the case with smart home applications. Therefore, a composition con-
troller must be able to observe and when necessary block events that may cause
interactions.

Definition 3.3. A specification is expressed as a finite conjunction of event
occurrence constraints (Ψ) of the form (¬)Happens(a1, t)∧(¬)HoldsAt(f, t)→
(¬)Happens(a2, t) where a1, a2, t, and f are terms for the action, time point,
and fluent respectively.

3.3. Important Properties

The simplest specification in the problem frames approach is a pro-active
machine that addresses a subtype of problem known as Required Behavior. In

8



this type of problem, a specification is required to bring about certain states in
the system, without relying on the feedback from the problem world. In such
cases, the basic property of the descriptions we want is:

Σ ∧Ψ |= Γ′

That is, given a theory of problem world domains (Σ), a specification (Ψ), and
an appropriate deductive system (|=), we want to show that the requirement
(property of the controlled phenomena) are satisfied non-trivially, meaning that
the system has some liveness properties (Gunter et al., 2000).

In more common cases, the system has to rely on the feedback from the
environment (∆2) and observations about the environment (Γ) .

Σ ∧ Γ ∧∆2 ∧Ψ |= Γ′

The challenge in each case is to find (Ψ): what are the conditions under
which certain events should be generated by the machine, and the conditions
under which certain events must not be generated by the machine, in order to
satisfy the requirement?

3.4. Deriving Feature Specifications

Our approach to specifying the features involves four steps. Before that we
will make certain assumptions clear. First, these have to rely on the consis-
tency of the domain description Σ (see Def. 3.2) and observations Γ and Γ′ (see
Def. 3.1). Second, we assume uniqueness of fluent and event names, meaning
that no two names denote the same thing. This uniqueness axiom is represented
by Ω. Finally, we assume the completion of predicates in Σ Mueller (2006).

Our four steps are:

1. We first pose a logical abduction problem in order to find all constructive
hypotheses (∆1) explaining how, given the description of the problem
world domains (Σ ∧ Γ ∧∆2), the requirement (Γ′) can be satisfied, i.e.

CIRC[Σ; Initiates, Terminates]∧
CIRC[∆1 ∧∆2;Happens] ∧ Γ ∧ Ω |= Γ′

where ∆1 is consistent with the domain description. ∆1 is a partially
ordered sequences of event occurrences that, given the problem world do-
mains, leads to the requirement being satisfied. The circumscription op-
erator assumes that no events other than those by ∆1 and ∆2 may occur
(otherwise the requirement is not satisfied). Therefore, ∆1 tells us events
that must happen and that may happen. Event occurrences that do not
appear in ∆1 must not happen.
However, some of the hypotheses in ∆1 may not be “realistic”: for ex-
ample, a scenario may assume competence and co-operation of users to
a level that cannot be guaranteed. Furthermore, ∆1 may also contain
stuttering events that can be eliminated without affecting requirements
satisfactions (Lamport, 1983).

9



2. The developer then identifies the ‘unrealistic’ hypotheses in ∆1 and elim-
inates them by providing further information about the problem world
domains. Similarly, event stuttering is removed by adding further con-
straints (which are then used to weaken the specifications). Although each
hypothesis is a model of a running program that implements the specifi-
cation, we want specifications to be axiomatic because they are easier to
reason about and are highly composable.

3. The models are then abstracted and the event occurrence constraints are
formulated by creating the rules Ψ for S. This and the previous step
are done interactively. User input is important because it is difficult to
identify unrealistic hypotheses automatically. There are many approaches
to merging scenarios (for example Hélouët et al. (2006); Uchitel et al.
(2003)). There are also logic-based approaches to learning specification
rules from positive and negative scenarios such that the rules will permit all
positive scenarios and eliminate negative scenarios (Alrajeh et al., 2009).

4. Finally, specifications are verified via checking the completeness of the
constraints by showing that

CIRC[Σ; Initiates, Terminates]∧
CIRC[∆2;Happens] ∧Ψ ∧ Γ ∧ Ω |= Γ′

Notice that Ψ is not circumscribed: it will have to make explicit all events
that must not happen. Therefore, Ψ describe all events that must happen,
and all events that must not happen, the remainder being events that may
happen.

In practice, the process is highly iterative and will rely on the developer’s
expertise. The state-space of the model tends to grow exponentially, and the
number of scenarios also increase accordingly. When the number of the scenarios
becomes very large, there are tactics the developer can use in order to limit the
number of scenarios. For instance, Step 2 suggests removing stuttering events.
This may reduce the number scenarios significantly. The developer can also
write assertions removing scenarios that cannot happen in practice (such as the
clock going backward, or a burglar not wanting to steal after gaining entry to
the house). Finally, the developer can limit the length of time so that periodic
episodes in the system behaviour are not repeated too many times. All of these
tactics require a lot of care because they can be error-prone. In our experience,
after removing these three kinds of scenarios, the remainder is relatively small
and mostly realistic. Precise numbers vary from case to case. For the examples
discussed in the paper, tens of scenarios were reduced to a handful.

3.5. Tool Support
Logical reasoning in our approach is done using the Discrete Event Calculus

Reasoner, Decreasoner, tool (Mueller, 2006). The tool solves the Event Calculus
problems by translating them into satisfiability problems for SAT solvers. In
principle, the abductive procedure may not terminate if the goal is not satisfi-
able; however, since the reasoning in Decreasoner uses a bounded and discrete
time range, the tool forces a termination when the time limit is reached.

10



4. Specifying Individual Features

This section provides examples of how the proposed approach can be applied
in order to specify and check individual features and their composition.

4.1. Tool-assisted Deriving of the Security Feature Specification

The requirement for the Security Feature (SF), initially discussed in Sec-
tion 2.2, is to ensure that the window is shut during the night. In this case, the
machine by itself does not know whether it is night or day at any given time,
and thus relies on the domain Time Panel for this information.

The requirement for the security feature is to keep the window shut during
the night. It can be formalised in the Event Calculus as follows:

¬HoldsAt(Night, time− 1) ∧HoldsAt(Night, time)∧
HoldsAt(Night, time1) ∧ time ≤ time1 ∧ ¬HoldsAt(Day, time2)∧

time ≤ time2 ≤ time1 ∧ time + delay ≤ time3 ≤ time1→
HoldsAt(Shut, time3)

(SR)

The requirement says that soon after the time point of nightfall, and until
the daybreak, the window should be shut.

We then describe the state machine of the window domain as follows. When
the event TiltOut() happens, the window opens (W1). When the event TiltIn()
happens, the window closes (W2). When the event TiltIn() happens, the window
is no longer open (W3). When the event TiltOut() happens, the window is no
longer closed (W4). The window cannot be both open and closed at the same
time (W5). This prevents inconsistent initial conditions of the window.

Initiates(TiltOut(), Open, time) (W1)

Initiates(TiltIn(), Shut, time) (W2)

Terminates(TiltIn(), Open, time) (W3)

Terminates(TiltOut(), Shut, time) (W4)

HoldsAt(Open, time)↔ ¬HoldsAt(Shut, time) (W5)

The behavior of the time panel can be described as follows, while omitting
the formalisation for space reasons. When the clock hits 7pm, it is night. When
the clock hits 7pm it is no longer day. When the clock hits 7am it is day. When
the clock hits 7am it is no longer night. It cannot be both night and day at the
same time. When it is night and was not night at the previous time point, the
night has started. When it is day and was not day at the previous time point,
the day has started.

In the first step, when this model is given to the solver to abduce the specifi-
cation, it finds several models with much similarity. In the second step, we add
further domains rules to remove stuttering events: (W6) and (W7) says that

11



when shut, the window cannot be shut again; when open, the window cannot be
opened again. We also define the initial condition of the window: The window
is initially open (W8). Finally, the behaviour of the clock is further constrained.
The clock hits 7am on the fifth of every ten time units (TP8), and hits 7pm
on the tenth of every ten time units (TP9). The clock will not hit either 7am
or 7pm at other times (TP10) and (TP11). Initially, it is day when the clock
strikes 7pm TP12 and TP13).

HoldsAt(Shut, time)→ ¬Happens(TiltIn(), time) (W6)

HoldsAt(Open, time)→ ¬Happens(TiltOut(), time) (W7)

(time = 0)→ HoldsAt(Open, time) (W8)

(time mod 5 = 0) ∧ (time mod 10 6= 0)∧
(time > 0)→ Happens(Hit7am(), time)

(TP8)

(time mod 10 = 0) ∧ (time > 0)→ Happens(Hit7pm(), time) (TP9)

(time mod 10 6= 0) ∧ (time mod 5 6= 0)→ ¬Happens(Hit7pm(), time)
(TP10)

(time mod 10 6= 0) ∧ (time mod 5 6= 0)→
¬Happens(Hit7am(), time)

(TP11)

(time = 0)→ HoldsAt(Day, time) (TP12)

(time = 0)→ Happens(Hit7pm(), time) (TP13)

Figure 4: Model Finding in Problem Frames

An intuitive description of the required specification is described in Figure 4.
There are two state machines: one for the time panel and another for the
window. We need to design a machine such that when some (shaded) properties
hold in one domain or state machine, certain (shaded) properties must also hold
in another state machine within a certain time range. The machine needs to
observe certain alphabets of both machines and make sure that the desired
properties hold by firing off appropriate events (or not firing certain events) in
time.

We can select any time range including an entire interval of night time, and
possibly some day time too. For instance, if we restrict the time range for the
abduction to 6 time units, the tool finds four scenarios as shown in Figure 5,
which can be read as follows:

12



model 1:
0
Day().
Open().
Happens(Hit7pm(), 0).
1
-Day().
+Night().
Happens(NightStarted(), 1).
Happens(TiltIn(), 1).
2
-Open().
+Shut().
3
4
5
Happens(Hit7am(), 5).
Happens(TiltOut(), 5).
6
-Shut().
-Night().
+Day().
+Open().
---
model 2:
0
Day().
Open().
Happens(Hit7pm(), 0).
1
-Day().
+Night().
Happens(NightStarted(), 1).
Happens(TiltIn(), 1).
2
-Open().
+Shut().
3
4
5
Happens(Hit7am(), 5).
6
-Night().
+Day().

model 3:
0
Day().
Open().
Happens(Hit7pm(), 0).
Happens(TiltIn(), 0).
1
-Day().
-Open().
+Shut().
+Night().
Happens(NightStarted(), 1).
2
3
4
5
Happens(Hit7am(), 5).
6
-Night().
+Day().
---
model 4:
0
Day().
Open().
Happens(Hit7pm(), 0).
Happens(TiltIn(), 0).
1
-Day().
-Open().
+Shut().
+Night().
Happens(NightStarted(), 1).
2
3
4
5
Happens(Hit7am(), 5).
Happens(TiltOut(), 5).
6
-Shut().
-Night().
+Day().
+Open().

Figure 5: Scenarios of how the security requirement can be satisfied

1 It is day, the window is open, and the clock hits 7pm. As a result, Night
becomes true. The events NightStarted() and TiltIn() are fired and the
window becomes shut. It remains shut until the clock hits 7am, then the
event TiltOut() is fired. Notice that the machine Security Feature can ob-
serves the universal time and the events NightStarted() and DayStarted().
Occurrences of TiltOut() and TiltIn() may be caused by the time, occur-
rences of NightStarted() and DayStarted(), or both (in cases of delayed
event occurrences). Since Security Feature is a reactive machine, and does
not (appear to) generate delayed events, we will look for event to event
causality.

It is possible to fire TiltIn() when NightStarted() is observed (time 1). As
the event Hit7am() is not observable by the machine, this causality is not
feasible (time 5).

13



2 This is similar to the previous scenario, except for the fact that nothing
happens when the clock hits 7am. This is true because the requirement
does not say what happens when it is day. This is a realistic scenario.

3 In this scenario, the event TiltIn() is fired before NightStarted() is observed.
This is not realistic, so it is ignored.

4 This scenario also is unrealistic for reasons given above.

From these scenarios, we can say in the positive mode that the event TiltIn()
should be fired whenever NightStarted() is observed.

Happens(NightStarted(), time)→ Happens(TiltIn(), time) (SF1)

In addition, we examine the list of ¬Happens() produced by the tool. Re-
moving those covered by (TP10 and TP11), and abstracting the remainder
yields the following rule.

Happens(NightStarted(), time) ∧ ¬Happens(DayStarted(), time1)∧
time ≤ time1→ ¬Happens(TiltOut(), time1)

(SF2)

(SF1) and (SF2) are the specification for Security Feauture. In order to
simplify, our feature specifications, we introduce into our Event Calculus the
predicate, Prohibit(a, t1, t2), with the meaning that the event a should not
occur between times t1 and t2. More formally,

Prohibit(a, t1, t2)
def≡ ¬∃t ·Happens(a, t) ∧ t1 ≤ t ≤ t2 (EC7)

Using this definition, we can rewrite (SF2) as follows:

Happens(NightStarted(), time) ∧ ¬Happens(DayStarted(), time1)∧
time ≤ time1→ Prohibit(TiltOut(), time, time1)

(SF2b)

Notice that the predicate Prohibit explicitly defines the domain assumptions
that must hold in order that the feature satisfy its requirement. The variable
time1 in SF2b indicates the time point until which the door should remain
shut and we will refer to it as ShutUntil. Having derived the specification, we
can now prove the specification in the fourth and final step. Let SF2b be the
specification (Ψ) for the Security Feature. Let W1 to W8, and TP8 to TP13
be the domain description (Σ), and let SR be the requirement Γ′. Let EC be
a conjunction of all domain independent EC rules, namely (EC1) ∧ . . . (EC7).
Then the following property can be proved using the tool.

CIRC[Σ; Initiates, Terminates] ∧Ψ ∧ EC ∧ Ω |= Γ′

14



Temperature

Feature

Window

TR

e

h

g

f
Temperature

Panel

Interface Phenomena
Name Set

e,f: TeP!{NiceTemp,
OutTemp,InTemp}

g: TF!{tiltIn(), tiltOut()}
h: W!{Open,Shut}

Figure 6: Problem diagram for the temperature feature

4.2. Temperature Feature

In order to illustrate our approch to composition of features, we will first
briefly introduce a new smart home feature. The problem diagram for the
temperature feature, shown in Fig. 6 is similar to the diagram in Fig. 1. The
requirement (TR) here is that if the desired temperature (NiceTemp) and the
indoors and outdoors temperatures (OutTemp and InTemp) are in a certain
relationship, the window should be kept open. The temperature readings are
controlled by the temperature panel (TeP!), and the temperature feature can
observe them at the interface f. One description of the specification Temperature
Feature is to fire the tiltOut() event at the interface g whenever the conditions
NiceTemp < InTemp and OutTemp < InTemp hold and to ensure that the
tiltIn() is not fired as long as that relation remains true.

Notice that the two requirements above do not say anything about what to
do during the daytime, and when it is not hot indoors. Composing these two
features can lead to a divergent behaviour under certain conditions. During a
hot night, according to the temperature feature, the window should be open, but
according to the security feature, the window should be shut. It is important to
note that although the temperature feature will not close the window by firing
the tiltIn event, it cannot stop the security feature from firing the same event
during the hot night. Likewise, although the security feature will not open the
window by firing the tiltOut event, it cannot stop the temperature feature from
firing the same event during the hot night.

5. Runtime Composition of Features

As shown in Fig. 7, the two features can be composed by introducing the new
software component SmartHome Controller, which is obtained by merging two
wrappers that sit at the interfaces a and b of the security feature in Fig. 1 and
the interfaces f and g of the temperature feature in Fig. 6. In effect, SmartHome
Controller intercepts the information and events going in and coming out of
the two features. Tun et al. (2009a) discuss rules for obtaining and merging
wrappers.

The variable ShutUntil is used by the security feature to indicate the time
point until which it does not want other features to open the window. A similar
variable OpenUntil is used by the temperature feature to indicate the time point

15



SmartHome

Controller Window

RC

e

d h

c’ g’

f

Security

Feature

Temperature

Feature

b’

b

a

c

g

f’

Time

Panel

Temperature

Panel

Interface Phenomena
Name Set

a: TiP!{Night, Day}
b: TiP!{NightStarted(),

DayStarted()}
b’: SC!{NightStarted(),

DayStarted()}
c: SF!{TiltIn(), TiltOut()}
c’: SC!{TiltIn(), TiltOut()}
d: W!{Open, Shut}

e,f: TeP!{NiceTemp,
OutTemp,InTemp}

g: TF!{tiltIn, tiltOut}
g’: SC!{tiltIn, tiltOut}
h: W!{Open,Shut}

Figure 7: Composition of the security and temperature features

until which it does not want other features to shut the window. Again, notice
that each of the features does not prevent another feature from opening or
shutting the window. Each feature only declares what it wants other features
not to do within a certain duration. ShutUntil and OpenUntil will then be used
by the SmartHome Controller to mediate when conflicts arise.

The requirement for composition (RC) can be defined in several ways in
resolving the conflicts: we will call them the semantics of the composition op-
erator. They include:

• No Control: In this composition, the requirements for the security and
temperature features should each be met at times when they are not in
conflict; but when conflicts occur, any emergent behaviour is acceptable.
It allows, for example, the window to oscillate in a partly open position.

• Exclusion: In this composition, the requirements for the security and
temperature features should each be met at times when they are not in
conflict; but when conflicts occur, the requirement of the feature that
started first should have priority. For example, if the security feature
shuts the window before the temperature feature needs to open it, the
temperature feature will not be able to shut the window until the security
requirement has been satisfied. This exclusion is symmetrical.

• Exclusion with Priority. In this composition, the exclusion is asym-
metrical, for instance, in favour of the security requirement. The security
feature can shut the window during the time in which the temperature fea-
ture wants the window open. The temperature feature, however, cannot
open the window if the security feature wants it shut.

A precise specification of these semantics of the composition operator have
been discussed by Laney et al. (2007).

16



6. Related Work

There is a long history of research into feature interaction problems, sur-
veyed comprehensively, for instance, by Calder et al. (2003). Therefore, the
discussion here will relate mostly to research into feature interactions in smart
home applications, into tool-assisted specification and composition of features.

6.1. Feature Interactions in Smart Home Applications

Nakamura et al. (2005) propose an object-oriented approach to detecting
feature interactions in smart home applications. They model each device, as
well as the home environment, as an object, whose properties can be accessed
through the object methods. Pre- and post-conditions of the methods are used
to detect possible feature interactions. They distinguish between two kinds of
feature interactions: appliance interactions can be detected within the properties
of a single device, while environment interactions can only be detected when
properties of several devices (or the environment as a whole) are considered.

Shehata et al. (2007) examine the runtime policy interactions in smart home
applications. In particular, they consider the issue of divergent policies invoked
by different users of the smart home application. They propose different ways to
detect possible interactions and propose a KNX-based policy interaction man-
agement module to resolve undesired interactions at runtime.

Rashidi and Cook (2009) argue that many smart home technologies often do
not fit user expectations. Part of the difficulties is that these technologies do not
adapt to changing environments and user needs. They propose to use machine
learning techniques to discover patterns of user behaviour and modify system
behaviour accordingly. Although feature interaction is not the central to this
work, it may be possible to learn how users wish to resolve new interactions.

6.2. Deriving Specifications

Although there are several tools to analyze specifications for certain proper-
ties, there are relatively few tools that help find specifications. In this article,
we discuss an approach to specifying these systems, and suggest tool support
to help develop their specifications. There are several systematic approaches
to finding specifications (Yu and Mylopoulos, 1994; Laney et al., 2007; Rapan-
otti et al., 2006; Seater and Jackson, 2006; van Lamsweerde et al., 1995; van
Lamsweerde and Willemet, 1998). There are few tools to support systematic
derivation of specifications from requirements using abductive temporal logic.

The Event Calculus has previously been used for reasoning about evolving
specifications (d’Avila Garcez et al., 2003; Russo et al., 2002), and distributed
systems policy specifications (Bandara et al., 2003). Our work is complementary
to such approaches in that it will allow inconsistencies to be resolved at run-time.

Various specification analysis tools exist; Lespérance et al. (1999) and Heit-
meyer et al. (1996), for example, propose tool suites to perform specific analyses
tasks, such as consistency checks. However, they are less concerned with auto-
mated derivation of specifications.

17



7. Conclusion

This article has examined two challenges in engineering smart home appli-
cations, relating to the question of deriving correct feature specifications from
requirements and to the question of runtime composition of features and res-
olution of interactions. The first challenge is addressed by using the Problem
Frames approach in order to pose the specification as a logical abduction prob-
lem. Results from the abduction procedure are used by the developer to refine
and write rule-base specifications which can then be checked by the tool. The
second challenge is addressed by making the domain assumptions of the indi-
vidual features explicit, so that those assumptions, in the form of the Prohibit
predicate, are used by a composition controller to detect and resolve feature
interactions.

Acknowledgements

We thank the anonymous reviewers for providing helpful and detailed com-
ments. This work was funded in part by the SFI grant 10/CE/I1855 and ERC
Advanced Grant 291652.

8. References

References

Alrajeh, D., Kramer, J., Russo, A., Uchitel, S., 2009. Learning operational
requirements from goal models. In: Proceedings of ICSE. IEEE Computer
Society, Washington, DC, USA, pp. 265–275.

Bandara, A. K., Lupu, E., Russo, A., 2003. Using event calculus to formalise
policy specification and analysis. In: POLICY. IEEE Computer Society, pp.
26–39.

Calder, M., Kolberg, M., Magill, E. H., Reiff-Marganiec, S., 2003. Feature inter-
action: a critical review and considered forecast. Computer Networks 41 (1),
115 – 141.

Classen, A., Laney, R., Tun, T. T., Heymans, P., Hubaux, A., 2008. Us-
ing the event calculus to reason about problem diagrams. In: Proceedings
IWAAPF’08, Leipzig, Germany, May 2008.

d’Avila Garcez, A. S., Russo, A., Nuseibeh, B., Kramer, J., 2003. Combining
abductive reasoning and inductive learning to evolve requirements specifica-
tions. IEE Proceedings - Software 150 (1), 25–38.

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T. E.,
Bershad, B. N., Borriello, G., Gribble, S. D., Wetherall, D., 2004. System
support for pervasive applications. ACM Trans. Comput. Syst. 22 (4), 421–
486.

18



Gunter, C. A., Gunter, E. L., Jackson, M., Pamela, Z., 2000. A reference model
for requirements and specifications. IEEE Software 17 (3), 37–43.

Heitmeyer, C. L., Jeffords, R. D., Labaw, B. G., 1996. Automated consistency
checking of requirements specifications. ACM Trans. Softw. Eng. Methodol.
5 (3), 231–261.

Hélouët, L., Hénin, T., Chevrier, C., 2006. Automating scenario merging. In:
Gotzhein, R., Reed, R. (Eds.), SAM. Vol. 4320 of Lecture Notes in Computer
Science. Springer, pp. 64–81.

Jackson, M., 1995. Software Requirements & Specifications: A Lexicon of Prac-
tice, Principles and Prejudices. ACM Press.

Jackson, M., 2001. Problem Frames: Analyzing and structuring software devel-
opment problems. ACM Press & Addison Wesley.

Kolberg, M., Magill, E. H., Wilson, M., 2003. Compatibility issues between
services supporting networked appliances. IEEE Communications Magazine
41 (11), 136–147.

Lamport, L., 1983. What good is temporal logic? In: IFIP Congress. pp. 657–
668.

Laney, R., Barroca, L., Jackson, M., Nuseibeh, B., 2004. Composing require-
ments using problem frames. In: Proceedings of RE’04. IEEE Computer So-
ciety, pp. 122–131.

Laney, R., Tun, T. T., Jackson, M., Nuseibeh, B., 2007. Composing features by
managing inconsistent requirements. In: Proceedings of ICFI. pp. 141–156.

Lespérance, Y., Kelley, T. G., Mylopoulos, J., Yu, E. S. K., 1999. Modeling
dynamic domains with congolog. In: Jarke, M., Oberweis, A. (Eds.), CAiSE.
Vol. 1626 of LNCS. Springer, pp. 365–380.

LinuxMCE, 2012. Linux media center edition.

McCarthy, J., 1986. Applications of circumscription to formalizing common
sense knowledge. Artificial Intelligence 28, 89–116, reprinted in McCarthy
(1990).

McCarthy, J., 1990. Formalization of common sense, papers by John McCarthy
edited by V. Lifschitz. Ablex.

Microsoft, 2012. Homeos: Enabling smarter homes for everyone.
URL http://research.microsoft.com/en-us/projects/homeos/

Miller, R., Shanahan, M., 1999. The event calculus in classical logic - alternative
axiomatisations. Journal of Electronic Transactions on Artificial Intelligence.

Mueller, E. T., 2006. Commonsense Reasoning. Morgan Kaufmann.

19



Nakamura, M., Igaki, H., ichi Matsumoto, K., 2005. Feature interactions in inte-
grated services of networked home appliance. Feature Interactions in Telecom-
munications And Software Systems VIII.

Park, S. H., Won, S. H., Lee, J. B., Kim, S. W., 2003. Smart home - digitally
engineered domestic life. Personal Ubiquitous Comput. 7 (3-4), 189–196.

Rapanotti, L., Hall, J. G., Li, Z., 2006. Deriving specifications from requirements
through problem reduction. IEE Proceedings Software 153 (5), 183–198.

Rashidi, P., Cook, D., sept. 2009. Keeping the resident in the loop: Adapting
the smart home to the user. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on 39 (5), 949 –959.

Russo, A., Miller, R., Nuseibeh, B., Kramer, J., 2002. An abductive approach
for analysing event-based requirements specifications. In: Stuckey, P. J. (Ed.),
ICLP. Vol. 2401 of LNCS. Springer, pp. 22–37.

Seater, R., Jackson, D., 2006. Requirement progression in problem frames ap-
plied to a proton therapy system. In: Proceedings of RE’06. IEEE Computer
Society, Washington, DC, USA, pp. 166–175.

Shehata, M., Eberlein, A., Fapojuwo, A., 2007. Managing policy interactions in
knx-based smart homes. In: Computer Software and Applications Conference.
Vol. 2. pp. 367 –378.

Tun, T. T., Trew, T., Jackson, M., Laney, R. C., Nuseibeh, B., 2009a. Specifying
features of an evolving software system. Softw., Pract. Exper. 39 (11), 973–
1002.

Tun, T. T., Yu, Y., Laney, R., Nuseibeh, B., 2009b. Early identification of
problem interactions: A tool-supported approach. In: Glinz, M., Heymans,
P. (Eds.), Proceedings of REFSQ. LNCS 5512. Springer, pp. 74–88.

Uchitel, S., Kramer, J., Magee, J., 2003. Synthesis of behavioral models from
scenarios. IEEE Trans. Software Eng. 29 (2), 99–115.

van Lamsweerde, A., Darimont, R., Massonet, P., 1995. Goal-directed elabora-
tion of requirements for a meeting scheduler: problems and lessons learnt. In:
RE. IEEE Computer Society, pp. 194–203.

van Lamsweerde, A., Willemet, L., 1998. Inferring declarative requirements
specifications from operational scenarios. IEEE Trans. Software Eng. 24 (12),
1089–1114.

Yu, E. S. K., Mylopoulos, J., 1994. Understanding “why” in software process
modelling, analysis, and design. In: ICSE. pp. 159–168.

Zave, P., Jackson, M., 1997. Four dark corners of requirements engineering.
ACM Transactions on Software Engineering and Methodology (TOSEM)
6 (1), 1–30.

20


