Computer Networks 64 (2014) 322-338

Contents lists available at ScienceDirect

puter
Computer Networks &E‘E’fy,rks
O

journal homepage: www.elsevier.com/locate/comnet

Tracking freeriders in gossip-based content dissemination @CmssMark
systems

Rachid Guerraoui?, Kévin Huguenin®*!, Anne-Marie Kermarrec”, Maxime Monod 2,
Swagatika Prusty %>, Aline Roumy "

2EPFL, School of Computer and Communication Systems, Lausanne, Switzerland

D INRIA Rennes — Bretagne Atlantique, Campus de Beaulieu, Rennes, France

°NXC, Lausanne, Switzerland

d Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA

ARTICLE INFO ABSTRACT

Article history: Gossip-based protocols have proven very efficient for disseminating high-bandwidth con-
Received 7 February 2013 tent such as video streams in a peer-to-peer fashion. However, for the protocols to work,
Received in revised form 8 January 2014 nodes are required to collaborate by devoting a fraction of their upload bandwidth, a scarce

Accepted 2 February 2014

Available online 5 March 2014 resource for some of them, to forward the content they receive to other nodes. Conse-

quently, such protocols suffer from freeriding, a common phenomenon on the Internet,
which consists in selfishly benefiting from the system without contributing its fair share.
Due to the dynamic nature and the inherent randomness of gossip protocols and to the
Peer-to-Peer (P2P) high scalability requirements of video streaming systems, detecting freeriders is a difficult
Free riding challenge.
Distributed verifications This paper presents LiFTinG, the first protocol for detecting freeriders, including collud-
ing ones, in gossip-based content dissemination systems with asymmetric data exchanges.
In addition, LiFTinG is still able to detect freeriders when network coding, a widely used
technique to improve the efficiency of content dissemination, is used. LiFTinG relies on
nodes to track abnormal behavior by cross-checking the history of their previous interac-
tions and exploits the fact that nodes pick neighbors at random to prevent colluding nodes
from mutually covering up their bad actions.
We present a methodology for setting the parameters of LiFTinG to their optimal value,
based on a theoretical analysis and we quantify theoretically the performance of LiFTinG.
We derive, based on simulations, the optimal strategy of freeriders by taking into account,
through a utility function, the benefit of freeriding and the probability of being detected. In
addition to these simulations, we report on the deployment of LiFTinG on PlanetLab. In a
300-node system, where a stream of 674 kbps is broadcasted, LiFTinG incurs a maximum

Keywords:
High-bandwidth content dissemination

* This article is a revised and extended version of a paper that appears in the Proceedings of the ACM/IFIPJUSENIX 11th International Middleware
Conference (Middleware '10) [19].
** This work was partially supported by the ERC Starting Grant GOSSPLE 204742.

* Corresponding author. Tel.: +41 216936634.

E-mail addresses: rachid.guerraoui@epfl.ch (R. Guerraoui), kevin.huguenin@epfl.ch (K. Huguenin), anne-marie.kermarrec@inria.fr (A.-M. Kermarrec),

maxime.monod@nxc.ch (M. Monod), aline.roumy@inria.fr (A. Roumy).

! This research was partially carried out while Kévin Huguenin was working for his PhD at Université de Rennes 1/IRISA, France.

2 This research was partially carried out while Maxime Monod was working for his PhD at EPFL, Lausanne, Switzerland. Maxime Monod was partially funded
by the Swiss National Science Foundation with Grant 20021-113825.

3 Parts of this research were carried out while Swagatika Prusty was doing an internship at EPFL, Lausanne, Switzerland.

http://dx.doi.org/10.1016/j.comnet.2014.02.023
1389-1286/© 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.02.023&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.02.023
mailto:rachid.guerraoui@epfl.ch
mailto:kevin.huguenin@epfl.ch
mailto:anne-marie.kermarrec@inria.fr
mailto:maxime.monod@nxc.ch
mailto:aline.roumy@inria.fr
http://dx.doi.org/10.1016/j.comnet.2014.02.023
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 323

overhead of only 8% and provides good detection results: For instance, with 10% of freerid-
ers decreasing their contribution by up to 30%, LiFTinG detects 86% of the freeriders after
only 30s and wrongfully expels only a few honest nodes (most of them actually being

buggy).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gossip protocols have been successfully applied to
decentralize large-scale high-bandwidth content dissemi-
nation, such as video streaming [12,14,15]. Such systems
are asymmetric*: nodes propose packet identifiers to a
dynamically changing subset of random nodes. Packets can
be either chunks of the file or stream, or combinations of
such chunks when coding is used (e.g., random linear com-
binations in [23,56,9]). These nodes, in turn, request packets
of interest, that are subsequently pushed by the proposer. In
such a three-phase protocol, gossip is used to disseminate
content location, whereas the content itself is explicitly
requested and served, in order to avoid serving redundant
content. These protocols are commonly used for high-
bandwidth content dissemination with gossip, e.g.,
[15,14,36,12] (a similar scheme is also present in mesh-
based systems, e.g., [35,59,55,58,39] - see [60] for a compre-
hensive survey of peer-to-peer live streaming protocols).

The efficiency of such protocols highly relies on the
willingness of participants to collaborate, i.e., to devote a
fraction of their resources, namely their upload bandwidth,
to the system. Yet, some of these participants might be
tempted to freeride [34,25,3], i.e., not contribute their fair
share of work, especially if they could still benefit from
the system. Freeriding is common in large-scale systems
deployed in the public domain [1] and significantly de-
grades the overall performance in bandwidth-demanding
and delay-sensitive applications such as streaming. In
addition, freeriders might collude (e.g., as evidenced in
the Maze peer-to-peer sharing system [37]), i.e., collabo-
rate to decrease their individual contribution and the con-
tribution of the coalition and mutually cover up their
misbehaviors to circumvent detection mechanisms.

Although gossip protocols are almost not affected by
crashes [31,13], high-bandwidth content dissemination
with gossip clearly suffers more from freeriders than from
crashes. Indeed, when content is pushed in a single phase,
a freerider is equivalent to a crashed node (if TCP, or a sim-
ilar flow control protocol, is not used). Both crashed nodes
and freeriders consume bandwidth (as content is pushed
to them) and they do not provide upload bandwidth. In
three-phase protocols, however, crashed nodes do not pro-
vide upload bandwidth anymore, nor do they consume
bandwidth, as they do not request content from proposers
after they crash. On the contrary, freeriders decrease their
contribution, yet keep requesting content.

4 Throughout the paper, asymmetry refers to the protocol, i.e., the fact
that nodes push content without expecting any content in return, not to the
heterogeneity of the nodes’ capabilities. See [15] for a study on this latter
topic.

A widely used solution to counter freeriding is to use
Tit-for-Tat (TfT) incentives (inspired by the BitTorrent
[10] file-sharing system): TfT-based content dissemination
solutions (e.g., FlightPath [36]) make nodes contribute as
much as they benefit by enforcing balanced symmetric ex-
changes. However, so-called symmetric systems do not
perform as well as asymmetric systems in terms of effi-
ciency and scalability for live streaming [5].

In practice, many proposals (e.g., [12,35,55,59]) con-
sider, instead of symmetric exchanges, asymmetric ex-
changes where nodes are supposed to altruistically serve
content to other nodes, i.e., without asking anything in re-
turn, where the benefit of a node is not directly correlated
to its contribution but rather to the global health of the sys-
tem. The correlation between the benefit and the contribu-
tion is not immediate. However, such correlation can be
artificially established, in a punitive way, by means of ver-
ification mechanisms that ensure that nodes that do not
contribute their fair share do not benefit anymore from
the system. Freeriders are by definition rational profit-
maximizing entities. Therefore, in the presence of punitive
mechanisms, they can then be defined as nodes that de-
crease their contribution as much as possible while keep-
ing the probability of being expelled low.

In this work, we consider a generic three-phase gossip
protocol where data is disseminated following an asym-
metric push scheme. Data can be transmitted in a coded
form, more specifically, random linear combinations [23].
In this context, we propose LiFTinG, a lightweight mecha-
nism to track freeriders. To the best of our knowledge,
LiFTinG is the first protocol for securing asymmetric gossip
protocols (even when coding is used) against possibly col-
luding freeriders. At the core of LiFTinG lies a set of deter-
ministic and randomized distributed verification
procedures based on accountability (i.e., each node main-
tains a digest of its past interactions). Deterministic proce-
dures check, by cross-checking nodes’ logs, that the
content received by a node is actually further propagated
following the protocol (i.e., to the right number of nodes
within an acceptable delay). By using statistical tech-
niques, randomized procedures check that the interactions
of a node are evenly distributed in the system. Interest-
ingly enough, the strong randomness and the high dynam-
ics of gossip protocols, which might be considered at first
glance as a barrier to properly monitor nodes, happens to
help in tracking freeriders. Indeed, LiFTinG exploits the
very fact that nodes pick neighbors at random to prevent
collusion: As a node interacts with a large subset of the
nodes chosen at random, this drastically limits its opportu-
nity to freeride without being detected, because this pre-
vents it from deterministically choosing colluding
partners that would cover it up.

324 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

Designing such a system raises a number of challenges,
including scalability, bandwidth usage, and performance of
detection in the presence of message losses and untruthful
reports from nodes. LiFTinG is scalable and lightweight as
it relies neither on a (trusted) central authority (e.g., PKI,
reputation server) nor on heavyweight cryptography and
incurs only very low overhead in terms of bandwidth. In
addition, LiFTinG is fully decentralized as nodes are in
charge of verifying each others’ actions. Finally, LiFTinG
provides a good probability of detecting freeriders and
keeps low the probability of false positives, i.e., inaccu-
rately classifying a correct node as a freerider, by using
mechanisms which, based on the results of our analytical
analysis, (i) de-incentivize nodes from reporting wrongful
accusations against other nodes and (ii) compensate the
effect of message losses.

We give analytical results backed up with simulations
that provide means to set the parameters of LiFTinG in a
real environment. Moreover, our theoretical results can
be used as input for a game-theoretical study of the system
because they provide expressions (or bounds) of the key
performance metrics including the probability of detection,
the false positive rate, and the expected benefit. In
addition, we deployed LiFTinG over PlanetLab, where a
stream of 674 kbps is broadcast to 300 PlanetLab nodes
with their upload bandwidth capped at 1000 kbps for
increased realism, and we report on LiFTinG’s performance
in practice. In order to illustrate the importance of counter-
ing freeriders and the performance of LiFTinG, consider the
following high-level experimental results: In the presence
of freeriders, the health of the system (i.e., the proportion
of nodes able to receive the stream in function of the
stream lag, i.e., cumulative distribution function) degrades
significantly, compared to a system where all nodes follow
the protocol. Fig. 1 shows a clear drop between the plain
line (no freeriders) and the dashed line (25% of freeriders).
With LiFTinG, and assuming that freeriders keep their
probability of being expelled lower than 50%, the perfor-
mance is close to the baseline.

In this setting, LiFTinG incurs a maximum network
overhead of only 8%. When freeriders decrease their
contribution by 30%, LiFTinG detects 86% of the freeriders
and wrongly expels 12% of honest nodes, after only 30 s.
Most of the wrongly expelled nodes deserve it, in a sense,

w OF

£ 08

2 07

- g

2T 06

I T T

L

= < 04

g

£ 03}

= ® .

S 0.2} No freeriders

B 0.1 25% freeriders ---------- i
o L 25% freeriders (LIFTInG) e
0 10 20 30 40 50 60

stream lag (s)

Fig. 1. System efficiency in the presence of freeriders.

as their actual contribution is smaller than required. How-
ever, this is due to poor capabilities, as opposed to freerid-
ers that deliberately decrease their contribution.

The rest of the paper is organized as follows. Section 2 de-
scribes our illustrative gossip protocol and Section 3 lists and
classifies the opportunities for nodes to freeride in such a con-
tent-dissemination protocol. Section 4 presents LiFTinG and
Section 5 formally analyzes its performance backed up by
extensive simulations. Section 6 reports on the deployment
of LiFTinG over the PlanetLab testbed. Section 7 reviews re-
lated work. Section 8 concludes the paper.

2. Model and gossip protocol

We consider a system of n nodes that communicate
over lossy links (e.g., UDP) and that can receive incoming
data from any other node in the system. More specifically,
the nodes that are behind a NAT or a firewall make use of
the Internet Gateway Device Protocol (through Universal
Plug‘'n’Play) to dynamically add translation rules at the
router or implement UDP NAT traversal techniques (“hole
punching”) such as STUN [48]. Relay-based techniques
can also be used [32]). In addition, nodes can pick uni-
formly at random a set of nodes in the system. This is
achieved by using full membership (i.e., the nodes know
the list of all other nodes in the system) or a random peer
sampling protocol, e.g., [33,27]. Such sampling protocols
can be made robust to byzantine attacks by using tech-
niques such as Brahms [6]. Indeed, a node might be
tempted to tamper with the peer sampling service in order
to be chosen, and thus served content, more frequently by
other nodes.

A source broadcasts a data stream to all nodes by using
a three-phase gossip protocol (e.g., [14,12]). The content is
split into multiple chunks uniquely identified by IDs. In
short, each node periodically proposes a set of chunks it re-
ceives to a set of random nodes. Upon reception of a pro-
posal, a node requests the chunks it needs-essentially
those it does not have already-and the sender then serves
them. All messages are sent over UDP. The three phases are
illustrated in Fig. 2(b).

2.1. Proposal phase

A node periodically, i.e., at every gossip period T, picks
uniformly at random a set of f nodes and proposes to them
(as depicted in Fig. 2(a)) the set P of chunks it has received
since its last propose phase. The size f of the node set,
namely the fan-out, is the same for all nodes and kept con-
stant over time (the fan-out is typically set to a value
slightly larger than In(n) [31], that is f = 12 for a 10,000-
node system). Such a gossip protocol follows an infect-
and-die process, as once a node proposes a chunk to a set
of nodes, it does not propose it anymore.

2.2. Request phase

Upon reception of a proposal of a set P of chunks, a
node determines the subset of chunks R it needs and re-
quests these chunks.

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 325

Po P1

serve(cg)

[nodes

request(3,9)_ __- :

propose(3.7, 9. | | T .

(a) Gossip dissemination

(b) Three phases

Fig. 2. Three-phase generic gossip.

2.3. Serving phase

When a proposing node receives a request correspond-
ing to a proposal, it serves the chunks requested. If a re-
quest does not correspond to a proposal, it is ignored.
Similarly, nodes only serve chunks that are effectively pro-
posed, i.e., chunks in PN R.

2.4. Network coding

To increase the efficiency of the dissemination, coding
techniques can be used: by proposing combinations of
chunks instead of proposing chunks, the probability of pro-
posing, and thus of pushing, useful content increases. For
instance, random linear network coding [23] was success-
fully used in Avalanche [18], in SPANC [9], and in R2 [56].
When random linear network coding is used, nodes pro-
pose linear combinations (i.e., bitwise XORs) of the chunks
they receive during the last period. A node proposes one
linear combination for each chunk it received over the last
gossip period to each of the f nodes it contacts. The coeffi-
cients of the combination are picked at random from a
Galois field GF(27). To propose a linear combination of
chunks, a node sends a set of pairs (ID,coefficient) instead
of a single ID. For instance, to propose the combination
2 -c3 @ cs, a nodes sends {(3,2),(5,1)}. To ensure an opti-
mal utility of the proposed combinations, the proposer
makes sure they are linearly independent. Checking linear
independence and decoding the original data chunks of the
stream are achieved through Gauss elimination. For the re-
ceiver, the packets of interest are those that are linearly
independent with the packets it has received so far. The
receiver requests only such packets from the proposer.

3. The freeriding problem

Nodes are either honest or freeriders; we denote by m
the number of freeriders. Honest nodes strictly follow the
protocol, including the verification procedures specified
in LiFTinG. Freeriders, however, allow themselves to devi-
ate from the protocol in order to minimize their contribu-
tion while maximizing their utility. In addition, freeriders
can adopt any behavior in order to not be expelled, includ-
ing lying to verifications, or covering up colluding freerid-
ers’ bad actions. More generally, freeriders are rational
entities: They behave in such a way that their utility is

maximized; their utility being a decreasing function of
their upload bandwidth usage and an increasing function
of the quality of the stream they receive. Note that in our
model, we assume that freeriders do not wrongfully accuse
(honest) nodes (In [7], the authors propose techniques to
deal with such accusations). This is motivated by the fact
that causing honest nodes to be expelled (i) does not in-
crease the benefit of freeriders, (ii) does not prevent them
from being detected, i.e., detection is based solely on the
suspected node’s behavior regardless of other nodes’
behaviors (details in Section 5.1), and finally (iii) leads to
an increased proportion of freeriders, degrading the benefit
of all nodes (including freeriders). This phenomenon is
known as the tragedy of the commons [21]. Note that there
are still some advantages for freeriders to wrongfully ac-
cuse other nodes, e.g., discredit the entire reputation sys-
tem. Existing solutions can be used to mitigate the effect
of such dishonest behaviors. For instance, it can be en-
forced that nodes accuse only the nodes they interact with.
In addition, one can limit the number of nodes a node can
accuse (per minute); this would have a limited effect on
legitimate accusations provided that the proportion of
freeriders remains low. Other existing solutions (e.g.,
[40], see [24] for a comprehensive survey) propose to mod-
ulate accusations by the credibility/trustworthiness (which
can be the reputation of the node itself) of the accusing
node. More complex solutions can be used; for instance
in SumUp [54], the nodes propagate their accusations
(i.e., votes in the original version) along the edges of a so-
cial network in order to mitigate the effect of a coalition of
related nodes that try to jointly wrongfully accuse other
nodes. Such solutions however, often require some infra-
structure and extra information which do not match the
requirements of LiFTinG in terms of decentralization, scala-
bility and reactivity.

Freeriders deviate from the gossip protocol in the fol-
lowing ways: (i) decrease the number of partners to com-
municate with, (ii) bias the partner selection, (iii) drop
messages they are supposed to send, or (iv) modify the
content of the messages they send. In the following sec-
tion, we provide an exhaustive list of all possible attacks
in each phase of the protocol, we discuss their motivations
and effects, and then we extract and classify those that can
increase the individual utility of a freerider or the common
utility of colluding freeriders. Throughout the paper, the
attacks that require collusion between some nodes or prof-
it to colluding nodes are denoted with a ‘x’.

Proposal phase During the first phase, a freerider can (i)
communicate with less than f nodes, (ii) propose less
chunks than it should (less linear combinations, or linear
combinations of less received packets when network
coding is used), (iii) select as communication partners only
a specific subset of nodes, and (iv) reduce its proposing
rate.

1. Decreasing fan-out: By proposing chunks to f < f
nodes per gossip period, the freerider trivially reduces
the potential number of requests and thus the probabil-
ity of serving chunks. Therefore, its contribution in
terms of the amount of data uploaded is decreased
and its utility increases.

326 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

2. Invalid proposal: A proposal is valid if it contains every
chunk received in the last gossip period. Proposing only
a subset of the chunks received in the last period obvi-
ously decreases the number of requested chunks. How-
ever, a freerider has no interest in proposing chunks it
does not have as, unlike with TfT-based protocols,
uploading chunks to a node does not imply that it sends
chunks in return. In other words, proposing more (and
possibly fake) chunks does not increase the benefit of
a node and thus does not need to be considered.

3. Biasing the partners selection (%): Considering a
group of colluding nodes, a freerider might want to bias
the random selection of nodes to favor its colluding
partners, so that the group’s benefit increases.

4. Increasing the gossip period: A freerider can increase
its gossip period, leading to less frequent proposals
advertising more, but “older”, chunks per proposal. This
implies a decreased interest of the requesting nodes
and thus a decreased contribution for the sender. This
is due to the fact that an old chunk has a lower proba-
bility of being of interest as it becomes more replicated
over time.

3.1. Pull-request phase

Nodes are expected to request only chunks that have
been proposed to them. A freerider would increase its ben-
efit by opportunistically requesting extra chunks (even
from nodes that did not propose these chunks). The dis-
semination protocol itself prevents this misbehavior by
automatically dropping such requests.

3.2. Serving phase

In the serving phase, freeriders can (i) send only a sub-
set of what was requested or (ii) send junk. The first obvi-
ously decreases the freeriders’ contribution, as they serve
fewer chunks than they are supposed to. However, as we
mentioned above, in the considered asymmetric protocol,
a freerider has no interest in sending junk data, because
it does not receive anything in return for what it sends.

3.3. Summary

Analyzing the basic gossip protocol in detail enables us
to identify the possible attacks. Interestingly enough, these
attacks share similar aspects and can thus be gathered into
three classes that dictate the rationale along which our
verification procedures are designed.

The first is quantitative correctness that characterizes the
fact that a node effectively proposes to the correct number
of nodes (f) at the correct rate (1/T,). Assuming this first
aspect is verified, two more aspects must be further con-
sidered: causality that reflects the correctness of the deter-
ministic part of the protocol, i.e., received chunks must be
proposed in the next gossip period (as depicted in
Fig. 2(b)); and statistical validity that evaluates the fairness
(with respect to the distribution specified by the protocol)
in the random selection of communication partners.

4. Tracking freeriders in gossip

To address the problem of freeriders in epidemic proto-
cols, we propose LiFTinG, a lightweight protocol for freerid-
er tracking in gossip, that encourages nodes, in a dissuasive
way, to contribute their fair share to the system, by means
of distributed verifications. LiFTinG consists of (i) direct
verifications and (ii) a posteriori verifications. Verifications,
that require more information than what is available at the
verifying node and the inspected node, are referred to as
cross-checking. This essentially consists in several nodes
grouping together their information to effectively detect
misbehaviors (that were committed by the inspected
node) that could not be detected solely based on the infor-
mation they hold individually. Cross-checking requires
nodes to communicate and therefore incurs communica-
tion overhead. In order to control the overhead of LiFTinG,
the frequency at which such verifications are triggered is
controlled by a parameter p.. € [0, 1], as described in Sec-
tion 4.2. Verifications can either lead to the emission of
blames or directly to expulsion, depending on the gravity
of the misbehavior.

Direct verifications are performed regularly while the
protocol is running: the nodes’ actions are directly
checked. Direct verifications aim at checking that all
chunks requested are served and that all chunks served
are further proposed to a correct number of nodes, i.e, they
check the quantitative correctness and causality. Direct ver-
ifications are composed of (i) direct checking and (ii) direct
cross-checking.

A posteriori verifications are run sporadically. They re-
quire each node to maintain a log of its past interactions,
namely a history. In practice, a node stores a digest of the
events that occurred in the last h seconds (i.e., a sliding
window), corresponding to the last n, = h/T, gossip peri-
ods. The history is audited to check the statistical validity
of the random choices made when selecting communica-
tion partners. In LiFTinG, an entropic check is used as de-
scribed in Section 4.4. The veracity of the history is
verified by cross-checking the involved nodes, namely a
posteriori cross-checking.

We present the blaming architecture in Section 4.1 and
present direct verifications in Section 4.2. As freeriders can
collude to not be detected, we expose how they can cover
up each other’s misbehaviors in Section 4.3 and address
this breach in Section 4.4. The different attacks and corre-
sponding verifications are summarized in Table 1.

4.1. System architecture

In LiFTinG, the detection of freeriders is achieved by
means of a score assigned to each node. When a node de-
tects that some other node is freeriding, it emits a blame
message containing a blame value (i.e., essentially a real
number) against the suspected node. Summing up the
blame values of a node results in a score. For scores to be
meaningful, blames emitted by different verifications
should be comparable and homogeneous. In order to col-
lect blames targeted at a given node and to maintain its
score, each node is monitored by a set of other nodes,

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 327

Table 1
Summary of attacks and associated verifications.

Attack Type Detection

Quantitative Direct cross-check
Partial propose (P) Causality Direct cross-check
Partial serve (|S| < [R|) Quantitative Direct check

Bias partners selection (%) Entropy Entropic check a pos-
teriori cross-check

Fan-out decrease (f <f)

named managers, distributed among the participants.
Blame messages about a node are sent to its managers.
When a manager detects that the score of a node p it mon-
itors drops beyond a fixed threshold (the design choice of
using a fixed threshold is explained in Section 5.1), it
spreads - through gossip — a revocation message against
p, thus making the nodes of the system progressively re-
move p from their membership. A general overview of
the architecture of LiFTinG is given in Fig. 3.

The blaming architecture of LiFTinG is built on top of
the AVMON [43] monitoring overlay.” In AVMON, nodes
are assigned a fixed-size set of M random managers consis-
tent over time, which makes it very appealing in our
setting, specifically a dynamic peer-to-peer environment
subject to churn with possibly colluding nodes. The fact
that the number M of managers is constant makes the
protocol scalable, as the monitoring load at each node is
independent of the system size. Randomness prevents col-
luding freeriders from covering each other up, and consis-
tency makes long-term blame history at the managers, and
thus long-term follow up, possible. The monitoring rela-
tionship is based on a hash function and can be advertised
in a gossip-fashion by piggybacking node’s monitors in the
view maintenance messages (e.g., exchanges of local views
in the distributed peer-sampling service). Doing so, nodes
quickly discover other nodes’ managers — and are therefore
able to blame the nodes if necessary - even in the pres-
ence of churn. In addition, nodes can locally verify (i.e.,
without the need for extra communication) whether the
node-to-managers mapping is correct by hashing the
nodes’ IP addresses, thus preventing freeriders from
forging fake or colluding managers. If a manager does
not map correctly to a node, a revocation against the
concerned node is sent.

4.2. Direct verifications

In LiFTinG, two direct verifications are used. The first
aims to ensure that every requested chunk is served. It is
called direct check. As detection can be done locally and
thus does not incur any bandwidth overhead, it is always
performed. If some requested chunks are missing, the
requesting node blames the proposing node by f/|R|
(where R is the set of requested chunks) for each chunk
that has not been delivered.

5 Note that other monitoring systems, such as PeerMint which makes use
of a Distributed Hash Table (DHT) to store and maintain node profiles or
AlliaTrust [17], could be used.

The second verification checks that received chunks
are further proposed to f nodes within the next gossip
period. This is achieved by a cross-checking procedure that
works as follows: a node p; that received a chunk ¢; from
po during the previous gossip period acknowledges to p,
that it proposes c¢; to a set of f nodes. Then, p, sends
confirm requests (with probability p.) to the set of f
nodes to check whether they effectively received a pro-
pose message from p, containing c;. The f witnesses reply
to p, with answer messages confirming whether p;’s
acknowledgment to p,.

Fig. 4 depicts the message sequence that composes a di-
rect cross-checking verification (with a fan-out of 2 for the
sake of readability). The blaming mechanism works as fol-
lows: (i) if the ack message is not received, the verifier p,
blames the verified node p, by f, and (ii) for each missing
or negative answer message, p, blames p, by 1. In the case
where network coding is used, the linear combinations a
node sends (more specifically, the coefficients) are
specified by the nodes that served it during the last gossip
period, in order to prevent the proposing node from misbe-
having (e.g., carefully choosing and proposing combina-
tions that are not of interest to the receiver). For
instance, when p, serves p,, it specifies a set of coefficients
for each packet it serves, e.g., {3,4,...}. During the next
gossip period, p; must propose the following combination:
3 times the first packet it received during this gossip
period, plus 4 times the second one (if any), and so on
and so forth. When p, asks for a confirmation from p,
and ps, it includes the list of packets it served to p; and
the coefficients it specified to p,. Then, p, and p; can verify
if the combinations proposed by p; match the
specifications of p,.

As the verification messages (i.e., ack, confirm and con-
firm responses) for the direct cross-checking are small and
in order to limit the subsequent overhead of LiFTinG, direct
cross-checking is done exclusively with UDP. The blames
corresponding to the different attacks are summarized in
Table 2.

Blames emitted by the direct verification procedures of
LiFTinG are summed into a score reflecting the nodes’
behaviors. For this reason, blame values must be compara-
ble and homogeneous. This means that two misbehaviors
that reduce a freerider’s contribution by the same amount
should lead to the same value of blame, regardless of the
misbehaviors and the verification.

We consider a freerider p; that received ¢ chunks and
wants to reduce its contribution by a factor 6(0 <5 < 1).
To achieve this goal, p; can do one of the following: (i)
propose the c¢ received chunks to only f=(1-9)-f
nodes, (ii) propose only a proportion (1-6) of the
chunks it received, or (iii) serve only (1-9)-|R| of
the |R| chunks it was requested. For the sake of simplic-
ity, we assume that f7c‘5,c/f and § - |R| are all integers.
The number of verifiers, that is, the number of nodes
that served the c chunks to p; is called the fan-in (f).
On average, we have f;, ~f and each node serves c/f
chunks [16].

We now derive, for each of the three aforementioned
misbehaviors, the blame value emitted by the direct
verifications.

328 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

p’s managers (AVMON) 7

O« _blacklist p
~

AN
(GOSSIP REVOCATION) \C)
VA Y

check p’s actions
(LIFTING)

update/check p’s score
(LIFTING)

(3-PHASE GOSSIP)

P
/

@)

blacklist p P

- 7

- N - -

O (GOSSIP REVOCATION)
~

- N
~ ~

\l blame
push content /‘

/
/ check p’s actions
(LIFTING)

Fig. 3. Overview of LiFTinG’s architecture and functionning.

Po p1 P2 Ps
tr-ao serve(c;)

ack[?](p2, [)‘;_)‘ -

Fig. 4. Cross-checking protocol.

Table 2
Summary of attacks and associated blame values.

Attacks Blame values

Fan-out decrease (f <f) f —f From each verifier
Partial propose 1 (Perinvalid proposal) from each verifier
Partial serve (|S| < |R|) f-(|R|—|S|)/|R| from each requester

(i) Fan-out decrease (direct cross-check): If p; proposes
all the ¢ chunks to only f nodes, it is blamed by 1
by each of the f;, verifiers, for each of the f — f miss-
ing “propose target”. This results in a blame value of
fin'(f_f):ﬁn'é'fgéfz-

(ii) Partial propose (direct cross-check): If p, proposes
only (1 —9)-c chunks to f nodes, it is blamed by f
by each of the nodes that provided at least one of
the missing chunks. A freerider therefore has inter-
est in removing from its proposal those chunks orig-
inating from the smallest subset of nodes. In this
case, its proposal is invalid from the standpoint of
& - fin verifiers. This results in a blame value of
O fin-f=0-f

(iii) Partial serve (direct check): 1f p; serves only
(1—19)-|R| chunks, it is blamed by f/|R| for each
of the § - |R| missing chunks by each of the frequest-
ing nodes. This again results in a blame value of

f-U/R) -8RI =0-f2.

The blame values emitted by the different direct verifi-
cations are therefore homogeneous and comparable on
average, because all misbehaviors lead to the same amount
of blame for a given degree of freeriding ¢. Thus, they result
in a consistent and meaningful score when summed up.

4.3. Fooling the direct cross-check (%)

When a set of freeriders collude, they lie to verifications
to mutually cover up their misbehaviors. Consider the sit-
uation depicted in Fig. 5(a), where p; is a freerider. If p, col-
ludes with p,, then it will not blame p,, regardless of p,’s
answer. Similarly, if p, colludes with p,, then it will answer
to p, that p; sent a valid proposal, regardless of what p,
sent. Even when neither p, nor p, collude with p;,p; can
still fool the direct cross-checking - thanks to a colluding
third party by implementing a man-in-the-middle attack
as depicted in Fig. 5(b). Indeed, if a node p; colludes with
p1, then p; can tell p, it sent a proposal to p, and tell p, that
the chunk originated from p,. Doing this, both p, and p,
will not detect that p; sent an invalid proposal. The a

confirm
_ - T T - -
- ~
P ~
- ~
2 N
‘@ serve C propose i)
~ 7
~ -
N -
~ -
~ -
yes/no

(a) Direct cross-checking

ot
-

~ _confirm
- N = ~
- ~
- // - ~ \\ ~
S ~
yes yes/no ~

(b) Man-in-the-middle attack

Fig. 5. Direct cross-checking and attack. Colluding nodes are denoted
with a ‘x’.

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338

posteriori verifications presented in the next section address
this issue.

4.4. A posteriori verifications

As stated in the analysis of the gossip protocol, the ran-
dom choices made in the partners selection must be
checked. In addition, the example described in the previ-
ous section, where freeriders collude to circumvent direct
cross-checking, highlights the need for statistical verifica-
tion of the nodes’ past communication partners.

The history of a node that biased its partner selection
contains a relatively large proportion of colluding nodes.
If only a small fraction of colluding nodes is present in
the system, they will appear more frequently than
honest nodes in each other’s histories and can therefore
be detected. Technically speaking, the IDs of the nodes
a node communicates with are a sequence of realizations
of independent identically distributed (i.i.d.) random
variables drawn from a uniform distribution (across the
whole set of nodes in the system). Determining if an
observed sequence of node ids is drawn from a given
distribution can be achieved through a statistical good-
ness-of-fit test [52]. Below, we present three variants of
such tests.

Statistical verifications operate as follow (see Fig. 6):
once in a while, each node picks a random node (e.g., one
of the nodes it manages) and verifies its local history over
the last h seconds. When inspecting the history of p, the
verifier computes the number of occurrences of each node
in the set of proposals sent by p during the last h seconds.
We denote by F} as the multiset of nodes to whom p sent a
proposal during this period (a node could indeed appear
more than once in F;). The distribution fih of nodes in Fj
characterizes the randomness of the partners selection.
We denote by ah_,- the number of occurrences of node i
(ie{1,...,n})in F, normalized by the size of F,. Then, a
statistical test is run on the observed distribution.

4.4.1. The Kullback-Leibler divergence

Assessing the similarity of two distributions, i.e., the
distribution d of p,’s history and the uniform distribution,
can be achieved with the Kullback-Leibler divergence
[11]. When the reference distribution is the uniform distri-
bution, this comes down to computing the Shannon entro-
py of the observed distribution and to comparing the value
obtained to a threshold y (0 < y < log, (n,f)).

npf 5 5
=Y dnilog, () (1)
i=1

329

The entropy is maximum when every node of the sys-
tem appears at most once in F, (assuming
n > |Fu| = npf). In this case, it is equal to log, (nyf). As the
peer selection service might not be perfect, the threshold
y must be tolerant to a small deviation, with respect to
the uniform distribution to avoid false positives (i.e., honest
nodes being blamed). In fact, entropic and statistical tests
similar to those presented in this section are often used
to assess the quality of random peer sampling algorithms.

4.4.2. The y? and the Kolmogorov-Smirnov test

These tests evaluate the likelihood that an observed
sample is drawn from a specific distribution (here the uni-
form distribution). This is achieved by computing a func-
tion, namely a statistic, of the observed sample. Under
the hypothesis that the observed sample is indeed drawn
from the specific distribution, the statistics follows a
well-known distribution. For instance, for the y? test for
assessing the goodness of fit of the uniform distribution,
the statistic is F2(dy) = >/ (dn; — 1/n)" and F. follows
a y? distribution with n,f —1 degrees of freedom. The
likelihood of the hypothesis is then evaluated by using
the statistics table of the y? distribution. For the
Kolmogorov-Smirnov test, the statistics (see [52]) follows
a Kolmogorov distribution.

For the sake of simplicity, LiFTinG makes use of the
entropic check. Details on how to dimension the threshold
y are given in Section 5.2.

The statistical check must be coupled with an a
posteriori cross-checking verification procedure to
guarantee the validity of the inspected node’s history.
Cross-checking is achieved by polling all or a subset of
the nodes mentioned in the history for an acknowledg-
ment. The inspected node is blamed by 1 for each proposal
in its history that is not acknowledged by the alleged
receiver. Hence, an inspected freerider replacing colluding
nodes by honest nodes in its history in order to pass the
entropic check will not be covered by the honest nodes
and will thus be blamed accordingly.

Because of the man-in-the middle attack presented in
Section 4.2, a complementary entropic check is performed
on the multi-set of nodes F}, that asked the nodes in 7, for
a confirmation, i.e., direct cross-checking. On the one hand,
for an honest node p,, 7} is composed of the nodes that
sent chunks to p, - namely its fan-in. On the other hand,
for a freerider p} that implemented the man-in-the-middle
attack, the set 7} of p¥ contains a large proportion of col-
luding nodes - the nodes that covered it up for the direct
cross-checking — and thus fails the entropic check. If the
history of the inspected node does not pass the entropic

= {Po; P1; P2, P3, D3, Pa, Ps, D5, D7}

history

P1,D3,P5
Po; Pa, P7
P2, D3, Ps5

dh

ny, entries {

frequency

stat. test
(e.g., entropy)

dh) > Y

01234567 pode

Fig. 6. Entropic check on proposals (f = 3).

330 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

checks (i.e, fan-in and fan-out), the node is expelled from
the system.

Local-history auditing verifications are sporadically
performed by the nodes using TCP connections. The rea-
sons for using TCP are that (i) the overhead of establishing
a connection is amortized because local history auditing
happens sporadically and implies transferring a large
amount of data, i.e., proportional to h, and that (ii) local
auditing is very sensitive to message losses as the potential
blame is much larger than for direct verifications and it can
lead to expulsion from the system.

5. Parametrizing LiFTinG

This section provides a methodology to set LiFTinG’s
parameters. With this aim, the performance of LiFTinG,
with respect to detection, is analyzed theoretically. Closed
form expressions of the detection and false positive proba-
bilities as functions of the system parameters are given.
Theoretical results allow the system designer to set the
system parameters, e.g., detection thresholds. The nota-
tions used throughout the section are summarized in
Table 3.

This section is split into three parts. First, the design of
the score-based detection mechanism is presented and
analyzed by taking into account message losses. Second,
the entropy-based detection mechanism is analyzed by
taking into account the underlying peer-sampling service.
Both depend on the degree of freeriding and on the favor-
ing factor, i.e., how freeriders favor colluding partners.
Third, the message complexity of LiFTinG is analyzed, as
a function of the various system parameters, as it consti-
tutes an important factor when choosing the values of
the parameters.

5.1. Score-based detection

Because of message losses, all nodes can be wrongfully
blamed, i.e., blamed even though they follow the protocol.

Table 3
Summary of principal notations.

Notations Descriptions

n,m Number of nodes/freeriders

IR| Number of chunks requested

f Fan-out

ny Size of history

Fn, Fh Multi-set of fan-out/fan-in in history

Pdcc Probability to trigger direct cross-checking

D Probability of message loss (p, =1 —p;)

b Average value of wrongful blames

o(b) Standard deviation of wrongful blames

r Number of gossip periods spent in the system

s Normalized score

A Degree of freeriding (3-uple)

[,(A) Average value of blames (freeriders)

a(b'(5)) Standard deviation of blames (freeriders)

n Detection threshold (blame-based detection)

o Probability of detection (blame-based detection)
B Probability of false positive (blame-based detection)
b Detection threshold (entropy-based detection)

In addition, freeriders are blamed for their misbehaviors.
Therefore, the score distribution among the nodes is ex-
pected to be a mixture of two components corresponding
respectively to those of honest nodes and freeriders. In this
setting, likelihood maximization algorithms are tradition-
ally used to decide whether a node is a freerider. Such
algorithms are based on the relative score of the nodes
and are thus not sensitive to wrongful blames. Effectively,
wrongful blames have the same effect on honest nodes and
freeriders.

However, in the presence of freeriders, two problems
arise when using relative score-based detection: (i) freerid-
ers are able to decrease the probability of being detected
by wrongfully blaming honest nodes, and (ii) the score of
a node joining the system is not comparable to those of
the nodes already in the system. For these reasons, in
LiFTinG, the effect of wrongful blames, due to message
losses, is automatically compensated, and detection thus
consists in comparing the nodes’ compensated scores to a
fixed threshold #. In short, when the compensated score
of a node drops below #, the managers of that node broad-
cast a revocation message, thus expelling the node from
the system, by using gossip.

Considering message losses independently drawn from
a Bernoulli distribution of parameter p, (we denote by
p, =1—p, the probability of reception), we derive a
closed-form expression for the expected value of the
blames applied to honest nodes by direct verifications
during a given timespan. Periodically increasing all scores
accordingly (i.e., by a value corresponding to the expected
wrongful blames applied to the nodes because of message
loss) leads to an average score of O for honest nodes. This
way, the fixed threshold # can be used to distinguish be-
tween honest nodes and freeriders. The value of p, used
to compensate the wrongful blames in LiFTinG is the same
for all the nodes; it is evaluated once for all-or at least at a
low frequency (e.g., every month)-and hard-coded in the
protocol, independently from LiFTinG (e.g., by experimen-
tally evaluating the average message loss rate between
trusted nodes).

5.1.1. Wrongful blames

We now compute the expected value of the wrongful
blames applied to honest nodes by direct verifications. To
this end, we analyze, for each verification, the situations
where message losses can cause wrongful blames, and
we evaluate their average impact. For the sake of the
analysis, we assume that (i) a node receives at least one
chunk during every gossip period (and therefore it will
send proposals during the next gossip period), and (ii) each
node requests a constant number |R| of chunks for each
proposal it receives. We consider the case where cross-
checking is always performed, i.e., p.. = 1.

5.1.1.1. Direct check (dc). For each requested chunk that has
not been served, the node is blamed by f/|R|. If the pro-
posal is received but the request is lost (i.e., p,(1 —p,)),
the node is blamed by f ((a) in Eq. (2)). Otherwise, when
both the proposal and the request message are received
(i.e., p?), the node is blamed by f/|R| for each of the chunks
lost (i.e., (1 —p,)IR|) ((b) in Eq. (2)). The expected blame,

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 331

applied to an honest node (by its f partners), during one
gossip period, due to message losses is therefore

(b)

; —— T 7
bdc:f' pr(lfpr)'f+pr (17pr)|R‘@
=p(1-p}) f? (2)

5.1.1.2. Direct cross-checking (dcc). On average, a node
receives f proposals during each gossip period. Therefore
a node is subject to f direct cross-checking verifications
and each verifier asks for a confirmation from the f part-
ners of the inspected node. Let p, be the inspected node
and p, a verifier. First, note that p, verifies p; only if it
served chunks to p;, which requires that its proposal and
the associated request have been received (i.e., p?). If at
least one chunk served by p, or the ack has been lost
(ie., 1—p~*1), p, will blame p, by f regardless of what
happens next, because all the f proposals sent by p, are
invalid from the standpoint of p, ((a) in Eq. (3)). Otherwise,
that is, if all the chunks served and the ack have been re-
ceived (i.e., p'™!), p, blames p, by 1 for each negative or
missing answer from the f partners of p,. This situation
occurs when the proposal sent by p, to a partner, the
confirm message or the answer is lost (i.e., 1 — p?) ((b) in

Eq. (3)).

(@) (b)
bee =f-p2[(1 = pR+Y) - f 4 F - pIRET (1 — p2)]
=p}(1 - pF) - f? 3)

From the previous analysis, we obtain a closed-form
expression for the expected value of the blame b applied
to an honest node by direct verifications due to message
losses:

b = bac + bec = p,(1+p, —p? —p*°) - f*. 4)

5.1.2. Freeriding blames

The blame value b', applied to a freerider by direct
verifications, depends on its degree of freeriding A that
characterizes its deviation from the protocol. Formally,
we define the degree of freeriding as a 3-uple
A = (61,02,03),0 < 61,92,03 < 1, so that a freerider con-
tacts only (1 —61)-f nodes per gossip period, proposes
the chunks received from a proportion (1 —J,) of the
nodes that served it in the previous gossip period, and
serves (1 — d3) - |R| chunks to each requesting node. With
the same methodology as for b, we get:

b(A) = (1=61)-p(1-p}(1=85)) - f* +02-f +(1-52)
-pr- [P =pi(1 = 60) + (1 =pFE] - f2 0 (5)
Note that the gain in terms of the upload bandwidth
saved by a freerider is 1 — (1 — d1)(1 — 82)(1 — 33). Follow-

ing the same line of reasoning, a closed-form expression
of the standard deviation a(b) (resp. a(b'(A))) of b (resp.

b'(A)) can be derived. Note that, unlike for the computation
of the expectation, for the standard deviation all the
sources of blame must be considered jointly as they are
not independent (and the standard deviation is therefore
not additive). The analysis thus needs to be more system-
atic than above, that is, building a binary decision tree with
all the messages exchanged during a gossip period (each
branch coding whether the corresponding message was re-
ceived or lost) and counting the total blame for each of the
cases at the leaves.

5.1.3. Scores

In order to enable the use of a fixed threshold 7, the
scores are compensated with respect to message losses
and normalized by the number of gossip periods r the node
spent in the system. At the tth gossip period, the score of a
node writes

1< =
s= *;;(br-i - b), (6)
where b; is the value of the blames applied to the node
during the ith gossip period.

Fig. 7 depicts the distribution of compensated and
normalized scores (see Formula 6) in the presence of
1000 freeriders of degree 6 =6, =09, =63=0.1 in a
10,000-node system after r = 50 gossip periods. The mes-
sage loss rate is set to 7%, the fan-out f to 12 and |R| = 4.
The scores of the nodes were increased by —b = 72.95,
according to Formula (4). We plot separately the distribu-
tion of scores among honest nodes and freeriders. As
expected, the probability density function (Fig. 7(a)) is split
into two disjoint modes separated by a gap: the lowest
(i.e., left most) mode corresponds to freeriders and the
highest one to honest nodes. We observe that the average
score (dotted line) is close to zero (< 0.01), which means
that the wrongful blames have been successfully
compensated.

5.1.4. Detection

Now, we evaluate the ability of LiFTinG to detect free-
riders (probability of detection o) and the proportion of
honest nodes wrongfully expelled from the system (proba-
bility of false positives p). Fig. 7(b) depicts the cumulative
distribution function of scores and illustrates the notion of
detection and false positives for a given value of the detec-
tion threshold.

From the previous analysis, we obtained expressions of
the expectation and the standard deviation of the blames
applied to honest nodes at each round due to message
losses. Therefore, assuming that the b; are independent
and identically distributed (i.i.d.), we get E[s]=0 and
o(s) = a(b)//r. Using Bienaymé-Tchebychev’s inequality
we get:

2

a(b)’. _q__o®)
= ~ 2
r-(b'(A)-n)

In LiFTinG, we set the detection threshold # to —9.75 so
that the probability of false positive is lower than 1%; we

p=P(s<n) <

(7)

-
=
N}

332 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

. hon‘osl, 110(10§ —————————— ‘
0.1F freeriders
< 0.075 F ;
g i
5 o
E I
& =
= o H
- 0.025 & \
;g
4 o
i © \
/ ‘ \,
0 L L %) i “n
50 40 30 20 NoAD 0 10
score
(a) probability density function
1 T T
honest nodes ----—----
0.9 F freeriders
0.8 | i
§ 0.7 t detection (ar) ,"’
g {
= 06}
051 threshold ——|
5
el 04}
Q
é 0.3} false positives (3)
0.2}
0.1
0 1 1 1 =~ 1 1
-50 -40 -30 -20 -10 0 10

score
(b) cumulative distribution function

Fig. 7. Distribution of normalized scores in the presence of freeriders
(6 =0.1)).

assume that freeriders perform all possible attacks with
degree § (i.e., 5 = §, = J3 = J); and we observe the propor-
tion of freeriders detected by LiFTinG for several values of
é. Fig. 8 plots « as a function of 6. We observe that a node
freeriding by 5% is detected with probability 0.65. Beyond
10% of freeriding, a node is detected over 99% of the time.
It is commonly assumed that users are willing to use a
modified version of the client application only if it in-
creases significantly their benefits (resp. decreases their
contribution). In FlightPath [36], this threshold is assumed
to be around 10%. With LiFTinG, a freerider achieves a gain
of 10% for 6 = 0.035 which corresponds to a probability of
being detected of 50% (Fig. 8).

5.1.5. Optimal freeriding strategy

From the previous analysis, we can extract expressions
and bounds of the key factors that affect a node’s utility —
specifically the probability of detection (), and the upload
bandwidth savings (1 — (1 — 1)(1 — 32)(1 — 83)) - as func-
tions of the degree of freeriding. In addition, previous stud-
ies of epidemic high-bandwidth content dissemination
protocols derived expressions of the global health of the
system, which determines the benefits of the nodes (i.e.,
the quality of service), as a function of the contributions
of the nodes (e.g., [5]). The coupling of LiFTinG’s detection
and punishment mechanisms adds a feedback loop from

0.5 B/C= 1.1 - 1

utility
[

08 |
06 |
04

02}

fraction of
freeriders

gain

fraction of
upload bandwidth

oo
SIS F NS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
degree of freeriding (3)

Fig. 8. Proportion of freeriders detected by LiFTinG.

the nodes’ behavior to their benefits. Therefore, one has
all the ingredients to perform a game-theoretical study of
a gossip-based dissemination protocol secured with
LiFTinG.

Although performing a complete study is out of the
scope of this paper, we consider a simple utility function
to characterize the behavior of the freeriders when LiFTinG
is used. We define the utility of a node as the benefit of
seeing the stream, minus its contribution in terms of the
devoted upload bandwidth. For the sake of simplicity, we
assume that any node in the system (i.e., not expelled)
can see the stream, and in this case the benefit is B > 0
(0 otherwise). For an honest node, the cost of uploading
content to the other nodes is denoted by C > 0. For a
freerider, the cost is C- (1 —61)(1 — d2)(1 — J3) and drops
to O if it is expelled from the system. The utility of a node
out of the system is therefore O and necessarily B > C,
otherwise nodes would gain nothing by joining the system.
We can now express the expected utility u of a freerider as
a function of its degree of freeriding A: If the freerider is
detected (which occurs with probability «(A)), its utility
drops to 0, otherwise (probability 1 — a(A)) its utility is
the benefit of seeing the stream (i.e., B) minus the cost
of (partially) uploading the stream, ie.,
C(1 —61)(1 = 62)(1 — 93). That is:

u(A) =at(A) x 0+ (1—a(A)) x (B—C(1=01)(1—8,)(1—33))
=(1—a(A) x (B=C(1=5,)(1—8)(1—03)) (8)

As freeriders are utility-maximizing entity, they will
choose the value of A that maximizes u.

In Fig. 8, we also plot the freeriders’ utility to determine
their optimal strategy (i.e., their degree of freeriding) for
different values of the benefit and of the cost (B/C). It can
be observed that for B/C =1.1 (i.e., the freeriders care
slightly more about the stream than about their upload
bandwidth) the utility is maximized for a degree of freerid-
ing around § = 0.025, which corresponds to a gain (i.e., the

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 333

fraction of upload bandwidth saved) of ~7%. For B/C = 1.5
however, the optimal strategy is to well-behave.

5.2. Entropy-based detection

For the sake of fairness and in order to prevent collud-
ing nodes from covering each other up, LiFTinG includes
an entropic check thus assessing the statistical validity of
the partner selection. To this end, the entropy H of the dis-
tribution of the inspected node’s former partners is com-
pared to a threshold). The distribution of the entropy of
honest nodes’ histories depends on the peer sampling algo-
rithm used and the random numbers generator. It can be
estimated by simulations. Fig. 9(a) depicts the distribution
of entropy for a history of n,f = 600 partners (n, = 50 and
f =12) of a 10,000-node system using a full membership-
based partner selection. The observed entropy ranges from
9.11 to 9.21 for a maximum reachable value of
log, (n,f) = 9.23. Similarly, the entropy of the fan-in mul-
ti-set F}, i.e., nodes that selected the inspected node as
partner, is depicted in Fig. 9(b). The observed entropy
ranges from 8.98 to 9.34.

With y = 8.95 the probability of wrongfully expelling a
node during local auditing is negligible.

We now analytically determine to what extent a free-
rider can bias its partner selection without being detected
by local auditing, given a threshold y and a number of col-
luding nodes® m'. Consider a freerider that biases partner
selection in order to favor colluding freeriders by choosing
a freerider as partner with probability p,, and an honest
node with probability 1 — p,,. We seek the maximum value
of p,, a freerider can use without being detected, function
of y and m'. Defining the probability law of the partner selec-
tion among honest nodes (resp. colluding nodes) by X (resp.
by Y), the entropy of its fan-out is expressed as follows:

H(Fy) = — pwlog,py — (1 = py)logy (1 - py) + pH(X)
+ (1 = py)H(Y),

as X and Y are independent. This quantity is maximized
when X and Y are the uniform distribution. Therefore, to
maximize the entropy of its history, a freerider must
choose uniformly at random its partners in the chosen
class, i.e., honest or colluding. In this case, the entropy of
its history writes (for m’ < npf):

= pon () -0 -potem (i) o

Inverting numerically Formula (9), we deduce that for
y =8.95 a freerider colluding with 25 other nodes can
serve its colluding partners up to 15% of the time, without
being detected.

In some cases, the random selection of nodes can be
biased and therefore deviates from the uniform distribu-
tion. For instance, because inter-ISP traffic is expensive,
ISPs sometime block peer-to-peer traffic between their
own clients and clients of other ISPs [47,50]. Also, nodes

6 Note that, as the length of a history is relatively small, we do not take
into account the number of nodes that join the system during this time
interval.

0.12 0.12
honest nodes - honest nodes

g 01 4 0.1
2 i
2 0.08 i 0.08
o
© 0.06 0.06
g
= 0.04 0.04
3
&= 0.02 0.02

8889 9 9.1929394
entropy

8889 9 91929394
entropy

(a) entropy of fan-out (b) entropy of fan-in

Fig. 9. Entropy distribution (experimental pdf) of the nodes’ histories
using a full membership.

might prefer to communicate with close nodes (with re-
spect to network distance) for improved latencies and per-
formance. Such optimizations are considered as freeriding
by LiFTinG and can make a node fail the statistical test,
thus leading to its expulsion from the system. Provided
that the size of the groups towards which the nodes bias
the selection are large enough (typically much larger than
the size of a coalition), LiFTinG can still distinguish be-
tween freeriders and honest nodes by relaxing the thresh-
old of the entropic test, at the expense of an increased
tolerance towards freeriders. This is achieved by calibrat-
ing the threshold as explained above with the typical size
of a group (i.e., the average number of nodes that are lo-
cated in the same country or that have the same ISP) in-
stead of the system size n.

5.3. Communication costs

In this section, we evaluate the overhead caused by
LiFTinG on the content dissemination protocol. To this
end, we compute the maximum number of verification
and blame messages sent by a node during one gossip
period. The overhead of the verifications is summarized
in Table 4. Note that we do not consider statistical verifica-
tions in this section, as it does not imply a regular overhead
but only sporadic message exchanges.

5.3.1. Direct verification

Direct verifications do not require any exchange of
verification messages as they consist only in comparing
the number of chunks requested by the verifier to the
number of chunks it really received. However, direct
verification can lead to the emission of f blames (to M
managers). The communication overhead caused by direct
verifications is therefore O(M - f) messages.

Table 4
Overhead of verifications.

Direct verifications (messages) 0

Direct verifications (blames) O(M - f) For the verifier

Direct cross-check (messages) O(pgecf?) For the verifier
O(pgecf) for the inspected node
O(paccf?) for the each witness

Direct cross-check (blames) O(Pce - M - f) For the verifier

334 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

5.3.2. Direct cross-checking

In order to check that the chunks it sent during the previ-
ous gossip period are further proposed, the verifier polls the
fpartners of its f partners with probability p,.. Similarly, a
node is polled by pq - f? nodes per gossip period on average
and therefore sends pq,. - f? replies. Finally, a node sends the
list of its current partners to the f nodes (on average) that
served chunks to it in the last gossip period. In addition, as
anode inspects its f partners, direct cross-checking can lead
to the emission of a maximum of fblames (to M managers).
The communication overhead caused by direct cross-check-
ing is therefore O(pyc - f* + Pgec - M - f) messages. Setting
Pdcc to 1/f the overhead is O(M + f).

The number of messages sent by LiFTinG is O(M - f).
This has to be compared to the number of messages sent
by the three-phase gossip protocol itself, specifically
f(2+|R|) - where R is the set of requested chunks, the
two additional messages are the proposal and the request.
The overhead of LiFTinG is even more negligible when tak-
ing into account the size of the chunks sent by a node,
which is several orders of magnitude larger than the veri-
fication and blame messages. Finally, as f ~ In(n), both the
three-phase protocol and LiFTinG scale with the number of
nodes. Finally, note that setting f to In(n) in an infect-and-
die gossip protocol is sufficient to ensure that the content
is successfully broadcast with high probability [31]. Thus,
both the three-phase protocol and LiFTinG scale with the
number of nodes.

5.3.3. A posteriori verification and cross-checking

Assume that nodes verify the nodes they manage. Every
period of time, a node picks one such node and triggers a
verification. The cost of obtaining/providing the inspected
node history is O(nf) (for the inspected node and for the
verifier). For each entry in the history, the verifier asks
for a confirmation to the corresponding node (with a given
probability p.). This leads to a cost of O(p.nyf) (for the ver-
ifier and for the polled nodes as they answer to p.n,f such
confirmation requests on average, each with a unit cost).

6. Evaluation and experimental results

We now evaluate LiFTinG on top of the gossip-based
streaming protocol described in [14], over the PlanetLab
testbed. We describe the experimental setup in Section 6.1.
We evaluate the performance of LiFTinG showing its small
overhead in Section 6.2 and its precision and speed at
detecting freeriders in Section 6.3.

6.1. Experimental setup

We deploy and execute LiFTinG on a 300 PlanetLab
node testbed, broadcasting a stream of 674 kbps in the
presence of 10% of freeriders. The freeriders (i) contact
only f = 6 random partners (6; = 1/7), (ii) propose only
90% of what they receive (5, = 0.1) and finally (iii) serve
only 90% of what they are requested (d; = 0.1). The fan-
out of all nodes is set to 7 and the gossip period is set to
500 ms. The blaming architecture uses M = 25 managers
for each node.

6.2. Practical cost

We report on the overhead measurements of direct and
a posteriori verifications (including blame messages sent to
the managers) for different stream rates.

6.2.1. Direct verifications

Table 5 gives the bandwidth overhead of the direct ver-
ifications of LiFTinG for three values of p.. Note that the
overhead is not null when p. = 0 because acknowledg-
ment messages are always sent. Yet, we observe that the
overhead is negligible when p.. = 0 (i.e., when the system
is healthy) and remains reasonable when p.. = 1 (i.e., when
the system needs to be purged from freeriders).

6.2.2. A posteriori verifications

A history message contains n, entries. Each entry con-
sists of f nodes identifiers and the chunk IDs that were pro-
posed. Both the fan-out and fan-in histories are sent upon a
posteriori verification.

Besides the entropic checks, a posteriori cross-checking
is performed on a subset of the fan-out or fan-in entries.
We measure the maximum overhead, that is when the
whole fan-out and fan-in histories are cross-checked. The
overhead incurred by a posteriori verifications in our exper-
imental setup (i.e., a history size n, = 50, a gossip period of
500 ms, a fan-out of f = 7 and a posteriori verification per-
iod of h = 25s) is given in Table 5.

6.3. Experimental results

We executed LiFTinG with p.. = 1 and p.. = 0.5. Fig. 10
depicts the scores obtained after 25, 30 and 35 s when run-
ning direct verifications and cross-checking. The scores are
compensated as explained in the analysis, assuming a loss
rate of 4% (average value for UDP packets observed on
PlanetLab).

The two cumulative distribution functions, for honest
nodes and freeriders, are clearly separated. The threshold
for expelling freeriders is set to —9.75 (as specified in the
analysis). In Fig. 10(b) (p.. = 1, after 30s) the detection
mechanism expels 86% of the freeriders and 12% of the
honest nodes. In other words, after 30 s, 14% of freeriders
are not yet detected and 12% represent false positives that
mainly correspond to honest nodes that suffer from very
poor connection (e.g., limited connectivity, message losses
and bandwidth limitation). These nodes do not deliber-
ately freeride, but their connection does not allow them
to contribute their fair share. This is acceptable as such
nodes should not have been allowed to join the system
in the first place. As expected, with p_. set to 0.5 the detec-
tion is slower but not twice as slow. Effectively, with nodes
freeriding with J3 > 0 (i.e., partial serves) the direct check-
ing blames freeriders without the need for any cross-
checking. This explains why the detection after only 35 s
with p.. = 0.5 (Fig. 10(f)) is comparable with the detection
after 30 s with p.. = 1 (Fig. 10(b)).

Due to the dynamic nature of live streaming, being able
to expel freeriders after less than 1 min allows us to dras-
tically reduce their viewing experience. Indeed, because of
LiFTinG’s exclusion mechanism, a freerider will experience

335

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338

Table 5
Practical bandwidth overhead.

A posteriori

Direct
(%)
Pec =0 Pee =05 Pee =1
(%) (%) (%)
674 kbps 1.07 4.53 8.01 3.60
1082 kbps 0.69 3.51 5.04 2.89
2036 kbps 0.38 2.80 2.76 1.74

frequent pauses, i.e., every time it is excluded from the sys-
tem, during the viewing. The duration of such pauses is in-
creased by the fact that the freerider needs to change its
identifier (e.g., its IP) to be able to rejoin the system and
by the bootstrapping time inherent to the dissemination
protocol (e.g., buffering time, delay before the node’s ID
is available to the node selection). Hence, running a poster-
iory verification every few minutes on average is enough to
significantly degrade the freeriders’s experience. For the
same reasons, whitewashing (i.e., leaving and joining the
system with a fresh identifier to reset its score) is not a via-
ble solution for freeriders.

As stated in the analysis, we observe that the gap be-
tween the two cumulative distribution functions widens
over time. However, the variance of the score does not de-
crease (for both honest nodes and freeriders). This is be-
cause, in the analysis, we considered that the blames
applied to a given node during distinct gossip periods were
independent and identically distributed (i.i.d.). In practice
however, successive gossip periods are correlated. Indeed,
a node with a poor connection is usually blamed more than
nodes with high capabilities, and this remains true over the

whole experiment.

7. Related work

TfT distributed incentives have been broadly used to
deal with freeriders in file sharing systems based on sym-
metric exchanges, such as BitTorrent [10]. However, there
are a number of attacks, mainly targeting the opportunistic
unchoking mechanism (i.e., asymmetric push), allowing
freeriders to download contents with no or a very small
contribution [38,51,45]. Many other incentive schemes
have been proposed, in particular for mesh overlays (e.g.,
reputation-based [42,49,41,29]) or trees (e.g., [57], mar-
ket-based [44], payment-based [53]) systems. However,
most of them either rely on a central authority to maintain

reputation or consider static overlays for easier auditing
and real-time verifications. In [46], the authors propose
OneHop reputations, a system in which peers rely on the
peers they interacted with in the past to assess the reputa-
tion of the peers they could interact with: if a peer p never
interacted with p’ in the past, it looks for a peer p” that
interacted with it (i.e., p) and with p’ in the past, and asks
p" about the reputation of p’. However, while such a peer
can be found most of the times in small swarms in which
peers collaborate with many other peers and keep track
of all their previous interactions, this might not be the case
for large-scale epidemic systems with hard scalability
constraints. In [28,29], the author propose EigenTrust, a
distributed algorithm for reputation management in
peer-to-peer networks, based on the number of
satisfactory/unsatisfactory pairwise interactions. The
authors also propose a (secure) distributed version of Eig-
enTrust that relies, similarly to LiFTinG, on the peers to act
as score managers (for each other) for aggregating,

1 T T — T 1 T T — T 1 T T —— T
honest nodes ~ + X honest nodes ~ + g‘(honest nodes ~ + g
@ 0.8 freeriders x §< 1 08 freeriders x § 1 osl freeriders § 4
° ‘g 5 4
o i¥ & £
< 06 i 1 06 b 1 06 £ 1
c : gl %
o 04r B 1 04 £ 1 04r¢ £ R
E 02t 5 { 02} £ {1 02t £ .
,gii* % < ¢ x x w*
0 L e wt W L 0 L e BT L 0 Xowrr gt T L
-60 -40 -20 0 20 -60 -40 -20 0 20 -60 -40 -20 0 20
score score score
(a) After 25 seconds. (b) After 30 seconds. (c) After 35 seconds.
1 T T T T 1 T T —y T 1 T T
honest nodes +);(’{ [} honest nodes + g honest nodes
® 08 freeriders § i] os freeriders § 1 os freeriders
8 i
< 06} { o6} g { o6}
B g 5
S 04l 5 { 04} g {1 o0at
3 ; i
& 02} £ 1 02 }:((1 02
£ x* X
0 . L e e . 0 . AL il . 0 . S
-60 -40 -20 0 20 -60 -40 -20 0 20 -60 -40
score score score
(f) After 35 seconds.

(d) After 25 seconds.

(e) After 30 seconds.

Fig. 10. Scores CDF for honest nodes and freeriders, with p.. = 1 (top row) and p.. = 0.5 (bottom row).

336 R. Guerraoui et al. / Computer Networks 64 (2014) 322-338

computing and maintaining the reputation of other peers.
The focus and the contribution of EigenTrust are dual to
those of LiFTinG: EigenTrust relies on basic input from
the peers (i.e., generic binary input that represents
whether an interaction was satisfactory) and proposes a
complex aggregation and management scheme for reputa-
tion scores; LiFTinG however, relies on fine-grained input
from the peers (i.e., blames, tightly related to the dissemi-
nation protocol, with integer values that reflect the seri-
ousness of the deviation-which is one of the main
contributions) and makes use of a simple aggregation
scheme (i.e., sum of the blame values). Note also that Eig-
enTrust can raise scalability issues in the context of epi-
demic dissemination as it involves computations on the
scores given by all the peers that interacted with a given
peer.

FlightPath (built on top of BAR Gossip) [36] is a gossip-
based streaming application that fights against freeriding
by using verifications on partner selection and chunk
exchanges. FlightPath operates in a gossip fashion for
partner selection and is composed of opportunistic pushes
performed by altruistic nodes (essential for the efficiency
of the protocol) and balanced pairwise exchanges secured
by TfT. The randomness of partner selection is verified by
means of a pseudo-random number generator with signed
seeds, and symmetric exchanges are made robust by using
cryptographic primitives. FlightPath prevents attacks on
opportunistic pushes by turning them into symmetric ex-
changes: each peer must reciprocate with junk chunks
when opportunistically unchoked. This results in a non-
negligible waste of bandwidth. It is further demonstrated
in [22] that BAR Gossip presents scalability issues, not to
mention the overhead of cryptography.

PeerReview [20] deals with malicious nodes following
an accountability approach. Peers maintain signed logs of
their actions that can be checked by using a reference
implementation running in addition to the application.
When combined with CSAR [4], PeerReview can be applied
to non-deterministic protocols. However, the intensive use
of cryptography and the sizes of the logs maintained and
exchanged drastically reduce the scalability of this solu-
tion. In addition, the validity of PeerReview relies on the
fact that messages are always received, which is not the
case over the Internet.

The case of malicious participants is considered in the
context of generic gossip protocols, i.e., consisting of state
exchanges and updates [26]. This system relies on cryptog-
raphy for signing messages between peers and does not
consider malicious behaviors that stem from the partner
selection, i.e., biasing the random choices. In addition, they
do not tackle the problem of collusion.

The two approaches that relate the most to LiFTinG are
the distributed auditing protocol proposed in [22] and the
passive monitoring protocol proposed in [30]. In the first
protocol, freeriders are detected by cross-checking their
neighbors’ reports. The latter focuses on gossip-based
search in the Gnutella network. The peers monitor the
way their neighbors forward/answer queries in order to
detect freeriders and query droppers. In [8], the authors
propose a protocol to detect and exclude freeriders in the
CAN peer-to-peer data structure by monitoring how peers

forward and answer routing messages. Yet, contrarily to
LiFTinG — which is based on random peer selection - in
both protocols the peers’s neighborhoods are static, form-
ing a fixed mesh overlay. These techniques thus cannot
be applied to gossip protocols. In addition, the situation
where colluding peers cover each other up (not addressed
in the papers) makes such monitoring protocols vain.

In [2], the authors study the impact of measures against
the peers, such as the exclusion of peers, on several met-
rics, including the extinction time of the shared file, in epi-
demic dissemination systems. The results of this work can
be used to evaluate the efficacy of LiFTinG in terms of its
effect on the global performance of the system.

8. Conclusions

We have presented LiFTinG, a protocol for tracking free-
riders in gossip-based asymmetric data dissemination sys-
tems. Beyond the fact that LiFTinG deals with the inherent
randomness of the protocol, LiFTinG precisely relies on this
randomness to robustify, with very low overhead, its
verification mechanisms against colluding freeriders. We
provided a theoretical analysis of LiFTinG that enables
the system designers to set its parameters to their optimal
values and characterizes its performance backed up by
extensive simulations. We reported on our PlanetLab
experimentation, that demonstrates the practicability and
efficiency of LiFTinG.

We believe that, beyond gossip protocols, LiFTinG can
be used to secure the asymmetric component of TfT-based
protocols, namely opportunistic unchoking, which is consid-
ered to constitute their Achilles’ heel [38,51]. We can also
envision a scheme in which peers are rewarded (by
increasing their scores) when they altruistically push
chunks to other peers, even after completing the download
(i.e., seeding, for P2P file download systems). As future
work, we intend to model a content-dissemination system
secured by LiFTinG as a game and study the strategies of
freeriders and the possible equilibria.

References

[1] E. Adar, B. Huberman, Free riding on Gnutella, First Monday 5 (2000).
[2] E. Altman, P. Nain, A. Shwartz, Y. Xu, Predicting the impact of
measures against P2P networks on the transient behaviors, in:
INFOCOM'11: Proc. of the 30th IEEE Conference on Computer
Communications, pp. 1440-1448, doi: 10.1109/
INFCOM.2011.5934931.
[3] F. Azzedin, Trust-based taxonomy for free riders in distributed
multimedia systems, in: HPCS'10: Proc. of the 2010 International
Conference on High Performance Computing and Simulation, pp.
362-369, doi: 10.1109/HPCS.2010.5547108.
M. Backes, P. Druschel, A. Haeberlen, D. Unruh, CSAR: a practical and
provable technique to make randomized systems accountable, in:
NDSS'09: Proc. of the 16th Annual Network & Distributed System
Security Symposium, pp. 341-353.
[5] T.Bonald, L. Massoulié, F. Mathieu, D. Perino, A. Twigg, Epidemic live
streaming: optimal performance trade-offs, in: SIGMETRICS’08: Proc.
of the 2008 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 325-336,
doi: 10.1145/1375457.1375494.
E. Bortnikov, M. Gurevich, 1. Keidar, G. Kliot, A. Shraer, Brahms:
byzantine resilient random membership sampling, Comput.
Networks 53 (2009) 2340-2359, http://dx.doi.org/10.1145/
1400751.1400772.

[4

[6

http://refhub.elsevier.com/S1389-1286(14)00089-9/h0190
http://dx.doi.org/10.1145/1400751.1400772
http://dx.doi.org/10.1145/1400751.1400772

R. Guerraoui et al./ Computer Networks 64 (2014) 322-338 337

[7] S. Buchegger,].Y. Le Boudec, Coping with False Accusations in
Misbehavior Reputation Systems for Mobile Ad-hoc Networks,
Technical Report, EPFL, 2003, <http://infoscience.epfl.ch/record/
467>,

[8] E. Buchmann, K. Bhm, FairNet: how to counter free riding in peer-
to-peer data structures, in: CooplS’04: Proc. of the 2004 International
Conference on Cooperative Information Systems, pp. 337-354, doi:
10.1007/978-3-540-30468-5_22.

[9] K.H. Chan, S.H. Chan, A. Begen, SPANC: optimizing scheduling delay
for peer-to-peer live streaming, IEEE Trans. Multimedia 12 (2010)
743-753, http://dx.doi.org/10.1109/TMM.2010.2053524.

[10] B. Cohen, Incentives build robustness in BitTorrent, in: P2PEcon’03:
Proc. of the 1st Workshop on Economics of Peer-to-Peer Systems, pp.
1-5.

[11] T. Cover, J. Thomas, Elements of Information Theory, John Wiley and
Sons, Inc., 1991.

[12] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
S. Mehrotra, CREW: a gossip-based flash-dissemination system, in:
ICDCS'06: Proc of the 26th IEEE International Conference on
Distributed Computing Systems, pp. 45-45, doi: 10.1109/
ICDCS.2006.24.

[13] P.T. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.M.
Kermarrec, Lightweight probabilistic broadcast, ACM Trans. Comput.
Syst. 21 (2003) 341-374, http://dx.doi.org/10.1145/945506.945507.

[14] D. Frey, R. Guerraoui, A.M. Kermarrec, M. Monod, V. Quéma,
Stretching gossip with live streaming, in: DSN'09: Proc. of the
2009 IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 259-264, doi: 10.1109/DSN.2009.5270330.

[15] D.Frey, R. Guerraoui, B. Koldehofe, A.M. Kermarrec, M. Mogensen, M.
Monod, V. Quéma, Heterogeneous gossiping, in: Middleware’'09:
Proc. of the ACM/IFIP/JUSENIX 10th International Middleware
Conference, pp. 42-61, doi: 10.1007/978-3-642-10445-9_3.

[16] A. Ganesh, A.M. Kermarrec, L. Massoulié, SCAMP: peer-to-peer
lightweight ~membership service for large-scale group
communication, in: NGCO01: Proc. of the 3rd International
Workshop on Networked Group Communication, pp. 44-55, doi:
10.1007/3-540-45546-9_4.

[17] J. Gerard, H. Cai,]J. Wang, Alliatrust: a trustable reputation
management scheme for unstructured P2P systems, in: GPC06:
Proc. of the 1st International Conference on Advances in Grid and
Pervasive Computing, pp. 115-125, doi: 10.1007/11745693_12.

[18] C. Gkantsidis, P. Rodriguez, Network coding for large-scale content
distribution, in: INFOCOM'05: Proc. of the 24th IEEE Conference on
Computer Communications, pp. 2235-2245, doi: 10.1109/
INFCOM.2005.1498511.

[19] R. Guerraoui, K. Huguenin, A.M. Kermarrec, M. Monod, S. Prusty,
LiFTinG: lightweight freerider-tracking protocol in gossip, in:
Middleware’10: Proc. of the ACM/IFIP/USENIX 11th International
Middleware Conference, pp. 313-333, doi: 10.1007/978-3-642-
16955-7_16.

[20] A. Haeberlen, P. Kouznetsov, P. Druschel, PeerReview: practical
accountability for distributed systems, in: SOSP’'07: Proc. of 21st
ACM SIGOPS Symposium on Operating Systems Principles, pp. 175-
188, doi: 10.1145/1323293.1294279.

[21] G. Hardin, The tragedy of the commons, Science 162 (1968) 1243-
1248, http://dx.doi.org/10.1126/science.162.3859.1243.

[22] M. Haridasan, 1. Jansch-Porto, R. Van Renesse, Enforcing fairness in a
live-streaming system, in: MMCN'08: Proc. of the 2008 Conference
on Multimedia Computing and Networking, pp. 1-13, doi: 10.1117/
12.775127.

[23] T. Ho, M. Mdard, R. Koetter, D. Karger, M. Effros,]. Shi, B. Leong, A
random linear network coding approach to multicast, IEEE Trans. Inf.
Theory 52 (2006) 4413-4430, http://dx.doi.org/10.1109/
TIT.2006.881746.

[24] K. Hoffman, D. Zage, C. Nita-Rotaru, A survey of attack and defense
techniques for reputation systems, ACM Comput. Surv. 42 (2009) 1-
31, http://dx.doi.org/10.1145/1592451.1592452.

[25] D. Hughes, G. Coulson,]. Walkerdine, Free riding on gnutella
revisited: the bell tolls?, IEEE Distrib Syst. Online 6 (2005) 1-18,
http://dx.doi.org/10.1109/MDS0.2005.31.

[26] M. Jelasity, A. Montresor, O. Babaoglu, Detection and removal of
malicious peers in gossip-based protocols, in: FuDiCo’04: Proc. of the
2nd Workshop on Future Directions in Distributed Computing, pp.
1-4.

[27] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, M. van Steen,
Gossip-based peer sampling, ACM Trans. Comput. Syst. 25 (2007) 1-
36, http://dx.doi.org/10.1145/1275517.1275520.

[28] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, Incentives for
combatting freeriding on P2P networks, in: Euro-Par'03: Proc. of

the 9th International Conference on Parallel and Distributed
Computing, pp. 1273-1279, doi: 10.1007/978-3-540-45209-6_171.

[29] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust
algorithm for reputation management in P2P networks, in:
WWW’03: Proc. of the 12th International Conference on the World
Wide Web, pp. 640-651, doi: 10.1145/775152.775242.

[30] M. Karakaya, I. Kérpeoglu, O. Ulusoy, Counteracting free-riding in
peer-to-peer networks, Comput. Networks 52 (2008) 675-694,
http://dx.doi.org/10.1016/j.comnet.2007.11.002.

[31] AM. Kermarrec, L. Massoulié, A. Ganesh, Probabilistic reliable
dissemination in large-scale systems, IEEE Trans. Parallel Distrib.
Syst. 14 (2003) 248-258, http://dx.doi.org/10.1109/
TPDS.2003.1189583.

[32] AM. Kermarrec, A. Pace, V. Quéma, V. Schiavoni, NAT-resilient
gossip peer sampling, in: ICDCS'09: Proc. of the 29th IEEE
International Conference on Distributed Computing Systems, pp.
360-367, doi: 10.1109/ICDCS.2009.44.

[33] V. King,]. Saia, Choosing a random peer, in: PODC'04: Proc. of the
23rd Annual ACM Symposium on Principles of Distributed
Computing, pp. 125-130, doi: 10.1145/1011767.1011786.

[34] R.Krishnan, M. Smith, Z. Tang, R. Telang, The impact of free-riding on
peer-to-peer networks, in: HICSS'04: Proc. of the 37th Annual
Hawaii International Conference on System Sciences, pp. 1-10,
doi: 10.1109/HICSS.2004.1265472.

[35] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, X. Zhang, Inside the new
coolstreaming: principles, measurements and performance
implications, in: INFOCOM’'08: Proc. of the 27th IEEE Conference
on Computer Communications, pp. 1031-1039, doi: 10.1109/
INFOCOM.2008.157.

[36] H.Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson, L. Alvisi, M.
Dahlin, FlightPath: obedience vs choice in cooperative services, in:
0SDI'08: Proc. of the 8th USENIX Conference on Operating Systems
Design and Implementation, pp. 355-368.

[37] Q. Lian, Z. Zhang, M. Yang, B.Y. Zhao, Y. Dai, X. Li, An empirical study
of collusion behavior in the maze P2P file-sharing system, in:
ICDCS’07: Proc of the 27th IEEE International Conference on
Distributed Computing Systems, p. 56, doi: 10.1109/ICDCS.2007.84.

[38] T. Locher, P. Moor, S. Schmid, R. Wattenhofer, Free riding in
bittorrent is cheap, in: HotNets-V: Proc. of the 5th Workshop on
Hot Topics in Networks, 2006, pp. 85-90.

[39] N. Magharei, R. Rejaie, PRIME: peer-to-peer receiver-driven mesh-
based streaming, IEEE/ACM Trans. Networking 17 (2009) 1052-
1065, http://dx.doi.org/10.1109/TNET.2008.2007434.

[40] S. Marti, H. Garcia-Molina, Taxonomy of trust: categorizing P2P
reputation systems, Comput. Networks 50 (2006) 472-484.
j.comnet.2005.07.011.

[41] M. Meulpolder, J. Pouwelse, D. Epema, H. Sips, BarterCast: a practical
approach to prevent lazy freeriding in P2P networks, in: IPDPS'09:
Proc. of the IEEE International Symposium on Parallel & Distributed
Processing, pp. 1-8, doi: 10.1109/IPDPS.2009.5160954.

[42] A. Montazeri, B. Akbari, Mesh-based P2P video streaming with a
distributed incentive mechanism, in: ICOIN'11: Proc. of the 2011
International Conference on Information Networking, pp. 108-113,
doi: 10.1109/ICOIN.2011.5723143.

[43] R. Morales, I. Gupta, AVMON: optimal and scalable discovery of
consistent availability monitoring overlays for distributed systems,
IEEE Trans. Parallel Distrib. Syst. 20 (2009) 446-459, http://
dx.doi.org/10.1109/TPDS.2008.84.

[44] A. Payberah, F. Rahimian, S. Haridi, J. Dowling, Sepidar: incentivized
market-based P2P live-streaming on the gradient overlay network,
in: ISM'10: Proc. of the 2010 IEEE International Symposium on
Multimedia, pp. 1-8, doi: 10.1109/ISM.2010.11.

[45] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkataramani,
Do incentives build robustness in BitTorrent?, in: NSDI'07: Proc. of
the 4th USENIX Symposium on Networked Systems Design and
Implementation, pp. 1-14.

[46] M. Piatek, T. Isdal, A. Krishnamurthy, T. Anderson, One hop
reputations for peer to peer file sharing workloads, in: NSDI'08:
Proc. of the 5th USENIX Symposium on Networked Systems Design
and Implementation, pp. 1-14.

[47] F. Picconi, L. Massoulie, ISP friend or foe? Making P2P live streaming
ISP-aware, in: ICDCS'09: Proc of the 29th IEEE International
Conference on Distributed Computing Systems, pp. 413-422, doi:
10.1109/ICDCS.2009.37.

[48]]. Rosenberg, R. Mahy, P. Matthews, D. Wing, Session Traversal
Utilities for NATs (STUN), Technical Report RFC 5389, IETF, 2008.

[49] A. Satsiou, L. Tassiulas, Reputation-based resource allocation in P2P
systems of rational users, IEEE Trans. Parallel Distrib. Syst. 21 (2010)
466-479, http://dx.doi.org/10.1109/TPDS.2009.80.

http://infoscience.epfl.ch/record/467
http://infoscience.epfl.ch/record/467
http://dx.doi.org/10.1109/TMM.2010.2053524
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0205
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0205
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0205
http://dx.doi.org/10.1145/945506.945507
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1109/TIT.2006.881746
http://dx.doi.org/10.1109/TIT.2006.881746
http://dx.doi.org/10.1145/1592451.1592452
http://dx.doi.org/10.1109/MDSO.2005.31
http://dx.doi.org/10.1145/1275517.1275520
http://dx.doi.org/10.1016/j.comnet.2007.11.002
http://dx.doi.org/10.1109/TPDS.2003.1189583
http://dx.doi.org/10.1109/TPDS.2003.1189583
http://dx.doi.org/10.1109/TNET.2008.2007434
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0255
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0255
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0255
http://dx.doi.org/10.1109/TPDS.2008.84
http://dx.doi.org/10.1109/TPDS.2008.84
http://dx.doi.org/10.1109/TPDS.2009.80

338 R. Guerraoui et al./ Computer Networks 64 (2014) 322-338

[50] Z. Shen, R. Zimmermann, ISP-friendly P2P live streaming: a roadmap
to realization, ACM Trans. Multimedia Comput. Commun. Appl. 8
(2012) 11:1-11:20, http://dx.doi.org/10.1145/2089085.2089088.

[51] M. Sirivianos, J. Park, R. Chen, X. Yang, Free-riding in BitTorrent with
the large view exploit, in: IPTPS'07: Proc. of the 6th International
Workshop on Peer-to-Peer Systems, pp. 1-6.

[52] M.A. Stephens, EDF statistics for goodness of fit and some
comparisons, J. Am. Stat. Assoc. 69 (1974) 730-737.

[53] G. Tan, S.A. Jarvis, A payment-based incentive and service
differentiation scheme for peer-to-peer streaming broadcast, IEEE
Trans. Parallel Distrib. Syst. 19 (2008) 940-953, http://dx.doi.org/
10.1109/TPDS.2007.70778.

[54] D.N. Tran, B. Min, J. Li, L. Subramanian, Sybil-resilient online content
voting, in: NSDI'09: Proc. of the 6th USENIX Symposium on
Networked Systems Design and Implementation, pp. 15-28.

[55] V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread:
heterogeneous unstructured tree-based peer-to-peer multicast, in:
ICNP'06: Proc. of the 14th IEEE International Conference on Network
Protocols, pp. 2-11, doi: 10.1109/ICNP.2006.320193.

[56] M. Wang, B. Li, R2: random push with random network coding in
live peer-to-peer streaming, IEEE]. Sel. Areas Commun. 25 (2007)
1655-1666, http://dx.doi.org/10.1109/JSAC.2007.071205.

[57] S.Yang, X. Wang, An incentive mechanism for tree-based live media
streaming service, J. Networks 5 (2010) 57-64.

[58] N. Zeilemaker, M. Capota, A. Bakker, J. Pouwelse, Tribler: P2P media
search and sharing, in: MM'11: Proc. of the 19th ACM International
Conference on Multimedia, pp. 739-742, doi: 10.1145/
2072298.2072433.

[59] M. Zhang, Q. Zhang, L. Sun, S. Yang, Understanding the power of pull-
based streaming protocol: can we do better?, IEEE] Sel. Areas
Commun. 25 (2007) 1678-1694, http://dx.doi.org/10.1109/
JSAC.2007.071207.

[60] X. Zhang, H. Hassanein, A survey of peer-to-peer live video
streaming schemes - an algorithmic perspective, Comput.
Networks 56 (2012) 3548-3579, http://dx.doi.org/10.1016/
j.comnet.2012.06.013.

Rachid Guerraoui is a Professor of computer
science at the school of computer and com-
munication sciences of the Ecole Polytech-
nique Fédérale de Lausanne (EPFL),
Switzerland, where he leads the Distributed
Programming Laboratory. Prior to that, Rachid
has been affiliated respectively with the Cen-
tre de Recherche de I’Ecole des Mines de Paris,
the Commissariat 4 I'Energie Atomique Paris,
HP Labs Palo Alto and the Massachusetts
Institute of Technology.

Kévin Huguenin is a Post-Doctoral
Researcher at Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland, in the Labora-
tory for Communications and Applications. He
earned his M.Sc. from Ecole Normale Supéri-
eure (ENS) de Cachan and the Université de
Nice - Sophia Antipolis, France, in 2007 and
his Ph.D. in computer science from the Uni-
versité of Rennes, France, in 2010. His
research interests include security and pri-
vacy in networks and distributed systems.

Anne-Marie Kermarrec is a Senior
Researcher at INRIA, Rennes, France, where
she leads the ASAP research group. Her
research interests are in peer-to-peer net-
works, large-scale information management,
epidemic protocols and social networks.
Before that, Anne-Marie was with Microsoft
Research in Cambridge. She earned her Ph.D.
from the Université de Rennes, France, in
1996. She has been awarded a European
Research Council Starting Grant for her five-
year GOSSPLE project.

Maxime Monod is a Chief Technology Officer
(CTO) at Klewel, Switzerland, where he works
on an advanced webcasting solution, both for
live and on-demand, by capturing, indexing
and broadcasting events such as conferences
and lectures. He received his M.Sc. and his
Ph.D. in computer science from Ecole Poly-
technique Fédérale de Lausanne (EPFL), Swit-
zerland, in 2004 and 2010. His research
interests include gossip protocols, peer-to-
peer architectures and live streaming in large-
scale distributed systems.

Swagatika Prusty is graduate student work-
ing for her Ph.D. in computer science in the
Center for Forensics and Society at the Uni-
versity of Massachusetts Amherst. She earned
her B.Sc. in computer science and engineering
from the India Institute of Technology,
Guwabhati, India. She worked as an intern at
Nokia Research Center Cambridge in 2011 and
at Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland in 2009 The primary focus
of her research is on digital forensics and
analyzing security and privacy aspects of real-

Aline Roumy is a researcher at INRIA, Rennes,
France in the SIROCCO research group. She
earned her Engineering degree from the Ecole
Nationale Supérieure de I'Electronique et de
ses Applications, Cergy, France, in 1996, and
her M.Sc. and Ph.D. degrees from the Univer-
sité de Cergy-Pontoise, France, in 1997 and
2000, respectively. From 2000 to 2001, she
was a Research Associate with Princeton
University, Princeton, NJ. She joined INRIA in
November 2001 as a researcher. Her current
research interests include statistical signal
processing, coding theory, and information theory.

http://dx.doi.org/10.1145/2089085.2089088
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0275
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0275
http://dx.doi.org/10.1109/TPDS.2007.70778
http://dx.doi.org/10.1109/TPDS.2007.70778
http://dx.doi.org/10.1109/JSAC.2007.071205
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0290
http://refhub.elsevier.com/S1389-1286(14)00089-9/h0290
http://dx.doi.org/10.1109/JSAC.2007.071207
http://dx.doi.org/10.1109/JSAC.2007.071207
http://dx.doi.org/10.1016/j.comnet.2012.06.013
http://dx.doi.org/10.1016/j.comnet.2012.06.013

	Tracking freeriders in gossip-based content dissemination systems
	1 Introduction
	2 Model and gossip protocol
	2.1 Proposal phase
	2.2 Request phase
	2.3 Serving phase
	2.4 Network coding

	3 The freeriding problem
	3.1 Pull-request phase
	3.2 Serving phase
	3.3 Summary

	4 Tracking freeriders in gossip
	4.1 System architecture
	4.2 Direct verifications
	4.3 Fooling the direct cross-check (?)
	4.4 A posteriori verifications
	4.4.1 The Kullback–Leibler divergence
	4.4.2 The ? and the Kolmogorov–Smirnov test

	5 Parametrizing LiFTinG
	5.1 Score-based detection
	5.1.1 Wrongful blames
	5.1.1.1 Direct check (dc)
	5.1.1.2 Direct cross-checking (dcc)

	5.1.2 Freeriding blames
	5.1.3 Scores
	5.1.4 Detection
	5.1.5 Optimal freeriding strategy

	5.2 Entropy-based detection
	5.3 Communication costs
	5.3.1 Direct verification
	5.3.2 Direct cross-checking
	5.3.3 A posteriori verification and cross-checking

	6 Evaluation and experimental results
	6.1 Experimental setup
	6.2 Practical cost
	6.2.1 Direct verifications
	6.2.2 A posteriori verifications

	6.3 Experimental results

	7 Related work
	8 Conclusions
	References

