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An important task for network operators is to properly dimension the capacity of their
links. Often, this is done by simple rules of thumb based on coarse traffic measurements
provided, e.g., by SNMP. More accurate estimations of the required link capacity typically
require packet-level measurements, which are hard to implement in today’s high-speed
networks. The challenge is, therefore, to accurately estimate the traffic statistics needed
for estimating the required link capacity with minimal traffic measurement effort. This
paper proposes a novel, hybrid procedure for link dimensioning that combines flow-level
measurements, minimal efforts on packet captures, and an analytical traffic model. The
result is an efficient and robust method to estimate required link capacities. Although
the idea of estimating required capacities from flows is not new, the novelty of this paper
is that it proposes a complete, efficient and deployable procedure. The proposed procedure
has been extensively validated using real-world traffic captures dating from 2011 to 2012.
Results show that, with minimal measurement effort, we are able to efficiently estimate
the required bandwidth at timescales as low as 1 ms.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

An important task for network operators is to properly
provision the capacity of their links. Under-provisioned
links might result in immediate decrease in network per-
formance, which can even be perceived by end users. Aim-
ing at adequate QoS (Quality of Service), operators
continuously monitor link usage. A commonly adopted
approach is to read interface counters via SNMP (Simple
Network Management Protocol) and use obtained values to
roughly estimate required capacity for current traffic. Per-
forming these measurements is relatively easy because
such protocol is already implemented in most devices.
However, the estimation of required capacity might lack
accuracy since short-term traffic fluctuations are hard to
capture via SNMP. Therefore, network operators tend to
over-provision their links by using a rule of thumb: adding
‘‘large-enough’’ safety margins on top of the traffic aver-
ages obtained from SNMP counters. Over-provisioning,
however, can lead to waste of link resources. Aiming at
more efficient provisioning, in the recent past the research
community has proposed several more accurate proce-
dures for estimation of the required link capacity. Instead
of relying on SNMP, these procedures often require traffic
measurements solely at the packet level. However, contin-
uous packet-level measurements in today’s high-speed
networks, with traffic rates of 10 Gb/s and more, are hard
to deploy because they demand dedicated and mostly
expensive devices.

Backbone links capacity provisioning is not the only
possible application for link dimensioning approaches.
These can also be used for a variety of related network
management and configuration operations. Efficient
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estimations of required capacity enable operators to know
the residual capacity of their links (i.e., unused capacity).
This information can be used, for example, to efficiently
reallocate traffic in operations of load balancing and also
towards energy efficiency. Furthermore, in a dynamic on-
demand bandwidth service, link dimensioning can be
applied on allocation of requests for resources, supporting
QoS provisioning.

Contribution. This paper presents an efficient and practi-
cal link dimensioning procedure. Aiming at minimal mea-
surement effort, this procedure uses flow-level traffic
measurements (NetFlow/IPFIX-like measurements) com-
bined with sporadic packet captures and an analytical
model to efficiently describe short-term traffic fluctua-
tions. The traffic model proposed in this paper extends
the original model in [1] and allows us to predict traffic
variance from flows at arbitrary timescales. This variance
is then used in the dimensioning formula from [1–3].
Although the idea of using flow measurements for estima-
tion of required link capacity is not new, the novelty of this
paper is that we propose a complete and deployable proce-
dure for link dimensioning. Our procedure has been exten-
sively validated using real-world traffic measurements
captured on universities routers and operators backbone
links around the globe in 2011 and 2012. Our results show
that we are able to efficiently estimate the required link
capacity with minimal measurement effort at timescale
as low as 1 ms.

Organization. The remainder of this paper is structured
as follows. Related work on link dimensioning is described
in Section 2. Flow-level network traffic monitoring is intro-
duced in Section 3. In Sections 4 and 5 we detail the back-
ground on which we base our contributions, and also
present the proposed flow-based link dimensioning proce-
dure. Then, a complete overview of the proposed proce-
dure is given in Section 6. The measurements dataset
used in this paper is presented in Section 7. The validation
of the proposed procedure and results discussion are done
in Section 8. In Section 9 we provide a discussion on the
parameters of the proposed solution and provide direc-
tions on how to set them in real deployments. Finally, in
Section 10, we draw our conclusions.
2. Related work

The problem of bandwidth provisioning has been exten-
sively studied. Several of the proposed solutions are tech-
nology-specific. For example, recently, Anjum et al. [4]
proposed a bandwidth allocation procedure for delay sensi-
tive applications along a path of point-to-point MPLS (Mul-
tiprotocol Label Switching) connection. More general
solutions, such as [5,3,6], have also been proposed, in which
intelligent over-provisioning of backbone links is presented
as an attractive alternative for QoS achievement; Fraleigh
et al. [5] focuses on packet delay, while [3,6] on link rate
exceedance. However, because they require traffic measure-
ments at the packet level, such solutions are hard to deploy
since packet monitoring in high-speed networks requires
powerful and expensive technologies. Pras et al. [3] and
Mandjes and van de Meent [6] also propose an indirect
method towards link dimensioning, in which traffic statis-
tics are computed from samples of the router’s buffer con-
tent. Although this approach does not need on-link traffic
measurements, it requires additional complexity to be
implemented in the routers.

In [9] the authors propose a bandwidth estimator based
on a M/G/1 model. The main limitation of this work is,
however, that it requires continuous packet-level mea-
surements to observe packet arrivals and sizes. In addition,
the model is further divided in four different sets of equa-
tions, and the selection on which one to use will depend on
the timescale the operator wishes to dimension a given
link. Our proposed solution differs by the fact that the
timescale is already modeled within the adopted dimen-
sioning formula (originally from [2,3]). This allows flexibil-
ity to the operator without the need to readapt the
dimensioning procedure if timescale is changed.

In [7], the authors propose a traffic model based on
Poisson flow arrivals and i.i.d. flow rates able to predict
bandwidth consumption for non-congested backbone
links. Our contribution differs in the proposed way of com-
puting the traffic variance, since in our case no assumption
on the evolution over time of the traffic in a single flow is
needed. In [8], the authors provide dimensioning formulas
for IP access networks, and the QoS is measured by useful
per-flow throughput. In such work only elastic data traffic
(TCP connections) was considered, while we do not put any
constraint on the nature of the traffic.

The work in [1] proposes a provisioning procedure
requiring minimal measurement effort, using minimal
model assumptions, and with QoS constraints expressed
in link rate exceedance. However, this work focuses on
traffic variation that are solely due to fluctuations at the
flow level, and the proposed bandwidth provisioning
method is only valid for relatively large timescales, e.g.,
1 s. We build upon this modeling approach by proposing
an extended version of the model. In short, we propose a
flow-based formula and additional packet-based correc-
tion factors that together enable better estimations of
required capacity at smaller timescales. Finally, in [10]
we propose a purely flow-based approach to estimate traf-
fic variance from flow-based time series, which proved to
work at timescales as low as 1 s. The modeling approach
in the present paper, however, lowers this boundary to
1 ms.
3. Flow-based traffic monitoring

In this section we provide a brief introduction to the
concept of flow-based monitoring. In [11], a flow is defined
as a set of packets that share common properties passing
an observation point in the network. A commonly-used
flow definition is based on a 5-tuple key consisting of
source and destination IP addresses, source and destina-
tion ports, and transport layer protocol.

A flow-monitoring probe exports information on the
observed flows by means of flow records. Flow records are
usually generated on the basis of timers with configurable
timeouts, namely active and inactive timeout. These are
defined as:
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� The inactive timeout defines how long the monitoring
device keeps a flow record in its internal memory before
exporting it after the last packet of the flow has been
observed. Consequently, flows with packet inter-arrival
times larger than the inactive timeout are split into
multiple flow records.
� The active timeout tells the monitoring probe to export

a flow record after a given time interval, even if the flow
is still active. That is, the active timeout defines a max-
imum duration for an active flow record and, hence, it
causes flows with durations longer than the active
timeout to be exported as multiple flow records.

Nowadays, the majority of network devices is flow-
enabled, such as, among others, Cisco routers with embed-
ded NetFlow [12] and IPFIX-based monitoring probes. Con-
sequently, flow-based approaches are easy to deploy in
large infrastructures with minimal effort. The downside
is that data aggregation performed by the flow probe
comes at the cost of information loss. Typically, a flow
record does not contain information on individual packets,
such as the packet arrival times or the packet size. This has
a direct impact on the problem of link provisioning since
these are important information to compute essential traf-
fic characteristics, such as traffic variance. The relationship
between link dimensioning and traffic variance is detailed
in Section 4.

It is important to understand the trade-off between
short and long timeouts. By using longer timeouts, mea-
sured data is more aggregated, which might avoid exces-
sive measurement-related traffic. That’s mainly an issue
in distributed monitoring scenarios, where exporting and
collector processes are not located in the same physical
device [11]. Longer timeouts, however, may require more
buffer resources in the metering process to keep record
of many long flows. On the other hand, short timeouts gen-
erate more flow records and may increase measurement-
related traffic. The advantage of short timeouts is that
short-term traffic fluctuations can be better reconstructed
[10]. Further discussions on the impact of flow timeouts
on traffic monitoring can be found in Section 7 and on link
dimensioning in Section 9.

4. Models definition

In this section we first briefly introduce previous work
on which our procedure is based, namely, the link dimen-
sioning formula from [1–3] and the flow-level traffic model
from [1]. We also present novel contributions that are
extensions to the flow model from [1] and an important
part of our proposed procedure.

4.1. Link dimensioning formula

The work in this paper is based on the link dimension-
ing formula for Gaussian traffic proposed in [1–3], where a
statistical approach to the problem of link dimensioning is
provided, structured around the goal of ‘‘link transpar-
ency’’ (Gaussianity of traffic has been extensively assessed
in previous works [17–19]). With this, the authors indicate
the situation in which users should almost never perceive
performance degradations due to lack of bandwidth. Link
transparency is statistically guaranteed when the provided
link capacity C satisfies:

PfAðTÞP CTg 6 e; ð1Þ

where AðTÞ denotes the total amount of traffic arriving in
intervals of length T, and e indicates the probability that
the traffic rate AðTÞ=T is exceeding C at the timescale T.

The authors of [1–3] provide a bandwidth provisioning
formula applicable under the assumption that the traffic
aggregates AðTÞ at timescale T are normally distributed
and stationary. They show that the link capacity CðT; eÞ
needed to satisfy Eq. (1) can be computed by:

CðT; eÞ ¼ qþ 1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logðeÞ � tðTÞ

q
; ð2Þ

where q is the mean traffic rate and the second term can be
seen as a ‘‘safety margin’’ depending on the variance tðTÞ
of AðTÞ and chosen exceedance probability e. The formula
is therefore able to take into account the impact of possible
traffic bursts on the link capacity. In addition, it is very
flexible: network operators can choose T and e according
to the QoS that they want to provide to their customers.
For example, while larger T (i.e., around 1 s) would be
enough to provide good quality of experience to users on
elastic services, shorter T should be chosen when real time
applications are predominant in the network. e should be
chosen in accordance to the desired QoS.

When using Eq. (2) to calculate the bandwidth require-
ment of empirical network traffic, the main challenge gen-
erally consists in estimating tðTÞ from the measurement
data, especially if T is small. The goal of this paper is to
minimize or eliminate the need for packet measurements
for link dimensioning. To do so, we provide a procedure
to estimate tðTÞ from flow-level measurements, supported
by an analytical representation of traffic characteristics at
the packet level.

4.2. Flow-based model

The authors of [1] present an M/G/1model to estimate
tðTÞ at the flow-level. In its simplest form, the model
assumes that traffic flows are created according to a Pois-
son process with rate k and have i.i.d. duration D. Further-
more, it assumes that all flows have an identical and
constant traffic rate r. The mean throughput is then
q ¼ kdr with d ¼ E½D� and the amount of traffic in a period
of time T is AðTÞ ¼ r

R T
0 NðtÞdt with NðtÞ being the number

of active flows at time t.
The basic idea of the model is that NðtÞ is identical to

the number of busy servers in a M/G/1 queueing station
with arrival rate k and service time distribution FD. Using
this assumption, the variance tflowðTÞ of AðTÞ is found to
be given by:

tflowðTÞ ¼ kr2 2T
Z T

0
xð1� FDðxÞÞdx� d

Z T

0
x2fDr ðxÞdx

�

þ dT2ð1� FDr ðTÞÞ
�
; ð3Þ

where Dr is the residual distribution of D, i.e.,
1� FDðxÞ ¼ dfDr ðxÞ [1]. As usual, fX and FX denote, respec-
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tively, the density and distribution function of a random
variable X. Knowing the variance, Eq. (2) is used to com-
pute the bandwidth requirement CðT; eÞ.

It should be noted that, differently from the research in
this paper, the model in [1] was not directly applied to
empirical flow measurements, but rather was used for a
mathematical analysis of traffic behavior.
4.3. Flow-level traffic variance

The authors of [1] also give explicit expressions for the
variance in case of negative exponentially and Pareto dis-
tributed flow durations. For the former the variance
becomes [1]:

texpðTÞ ¼ 2qd2rðe�T=d � 1þ T=dÞ: ð4Þ

By examining empirical data we have found out that the
distribution of flow duration is long-tailed and fits better to
Pareto- or Weibull-like distributions. Nonetheless, as the
authors point out in [1] and also shown in Section 8 of this
paper, the choice of the duration distribution does not
affect much the resulting estimated variance. Therefore,
one might even consider to use a simple model, where
flows are assumed to have a constant duration d (further
motivations for such a choice will be given in Section 5).
Assuming a deterministic distribution FD, Eq. (3) simplifies
to

tconstðTÞ ¼
qr T2 � T3

3d

� �
; if T < d;

qr Td� d2

3

� �
; if T P d:

8><
>: ð5Þ
4.4. Packet-level modeling of flows

The basic model in [1] assumes that the traffic rate
inside a flow is constant. In general this is not true because
IP traffic is transported in form of discrete packets with
non-constant inter-arrival times. As a consequence, the
basic model underestimates the traffic variance due to pos-
sible bursts of packets in a flow. In [1], the authors also
proposed an extension of the model aiming at modeling
also the packet details within flows. Assuming that flows
consist of packets of constant size s arriving according to
a Poisson process, the estimation of the variance becomes
(called corrected variance in the following):

tcorrðTÞ ¼ tflowðTÞ þ /; ð6Þ

with the correction term / given by:

/1 ¼ qsT; ð7Þ

accounting for quantized nature of the traffic.
However, our experiments with empirical data reveal

that the corrected variance also underestimates the real
variance. Therefore, we propose two further extensions of
the model by relaxing the assumptions of Poisson arrivals
and constant packet sizes. Next, these extensions are
detailed.
4.4.1. Poisson arrival and non-constant packet size
It is clear that IP packets are not constant in size. Under

the assumption that packet arrivals inside a flow are Pois-
son distributed with i.i.d. non-constant packet sizes S, the
correction term / in Eq. (6) becomes:

/2 ¼ qTv; ð8Þ

where v ¼ E½S2 �
E½S� with E½S� and E½S2� being the first resp. sec-

ond moment of the packet size. A proof for Eq. (8) is given
in Appendix A. Note that Eq. (7) immediately follows from
Eq. (8) for a deterministic packet size distribution.

4.4.2. Bursty arrival and non-constant packet size
Similar to the previous extension, we assume that the

packet size S is not constant. In addition, we assume that
packets arrive in bursts of P packets and the time between
bursts is i.i.d. and exponentially distributed (batch Poisson
process), where P is geometrically distributed with success
probability p, i.e., P½P ¼ i� ¼ ð1� pÞi�1p. Hence, the packet
inter-arrival time IA is hyper-exponentially distributed
with squared coefficient of variation c2

IA ¼
2�p

p , which sug-
gests that p can be estimated from an empirically mea-
sured squared coefficient of variation by

p ¼ 2
1þ c2

IA

: ð9Þ

Remarkably, a packet burst of P packets can simply be
modeled as a huge ‘‘super-packet’’ of byte size

S0 ¼
PP

i¼1 Si, where Si is the size of the ith packet in the
burst, i.i.d. like S. Since P and Si are independent, we obtain

E½S0� ¼ E½S�=p and E½S02� ¼ pE½S2 �þ2ð1�pÞE½S�2
p2 (see Appendix B).

Applying this result to Eq. (8) with v ¼ E½S02 �
E½S0 � , the correction

term / in Eq. (6) becomes:

/3 ¼ qT
pE½S2� þ 2ð1� pÞE½S�2

pE½S� : ð10Þ
5. Flow classification

From the work in [1], we learn that flow rate plays an
important role on the calculation of the traffic variance.
In addition, from testing the model with empirical data
we have observed that using a single set of model param-
eters for all flows in a measurement period does not pro-
vide satisfying results. One reason is the fact that
different applications may result in distinct flow character-
istics. Another reason is that we are working with flow
records, which introduces an artificial upper limit to the
flow duration. In order to better account for this behavior,
we group flows according to their rate and duration. Ulti-
mately, the traffic variance that goes into the formula of
Eq. (2) is obtained by simply adding up the individual vari-
ances of all classes.

Fig. 1 illustrates how flow records related to each other
by their respective rate and duration. This figure shows the
positioning of flows in a scatter plot by their rate and dura-
tion. We can also clearly see the upper limit introduced to
the flow duration given the use of flow records. In this 2-
dimensional classification, we divide the rate-duration
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space into cells of size h� g and assign all flow records in
the measurement period to flow classes Cij; i; j 2 N, where
Cij contains all flow records with a traffic rate in the
interval ½ih; ðiþ 1Þh½ and a duration in the interval
½jg; ðjþ 1Þg½. As done for the classification per rate, for each
class Cij we determine the flow arrival rate kij, the flow
traffic rate rij, the average flow duration dij, and the average
packet size sij. On defining a small g as compared to the
average duration of flow records, we can assume constant
duration dij within classes. In this case, dij is set to the aver-
age duration of flow records in the class Cij and Eq. (5) is
used to calculate the flow-level traffic variance for each
individual class.

6. Overview of the proposed procedure

The complete procedure to calculate CðT; eÞ from flow
record measurements for a given timescale T and band-
width exceeding probability e is summarized in Fig. 2. In
this section we describe the procedure using the flows
classification per rate h and duration g. The exact same
procedure can be used for classification only by rate. To
do so, the value of g should be set to 1.
Fig. 2. Procedure for the estimation of the ban
The first step (line 1) consists of collecting flow record
data for a desired duration M. As explained in Section 3,
the records depend on the active timeout ta and the inac-
tive timeout ti. We will discuss the effects of the timeouts
in the experiments in Section 8.

In line 2, we assign the flow records to classes according
to their traffic rate and their duration. The granularity of
the classes depends on the parameters g for the flow dura-
tion and h for the traffic rate. We will study various values
for g and h in the experiments in Section 8. Once all flow
records have been assigned, the model parameters are
determined for each class (lines 4–7) and the variance
tcorr;ijðTÞ is computed using Eq. (6). As already explained
in Section 4.3, the calculation of the variance tflowðTÞ can
be adapted if a different flow duration distribution is con-
sidered. The calculation of the packet correction factor /
can also be adapted according to the operators require-
ments (see Section 4.4).

Finally, the overall traffic rate q and variance tcorrðTÞ are
computed in lines 10 and 11 and the formula of Eq. (2) is
used to calculate the required capacity CðT; eÞ (line 12).
Based on the results of our experiments, the selection of
values for the parameters ta; ti;M;g; h; T , and e will be dis-
cussed in Section 9.

It is important to mention that we disregard flow
records with a duration of 0 s, which are mostly composed
by single packets, because their traffic rate is undefined.
Depending on timeouts configuration, these records may
account for more than half of all flow records. However,
the impact of removing such flows on the proposed link
dimensioning procedure is negligible because they typi-
cally only carry around 1% of all transferred bytes.

This section concludes the theoretical part of this paper.
In the following we first describe the measurements data-
set and then we present the validation of the proposed pro-
cedure. Before concluding the paper, we provide a general
discussion on parameters setting and their implications on
deployment.
dwidth requirement from flow records.



Table 1
Summary of measurements.

Abbr. Description Year Length # Of hosts Link capacity Avg. use

A Link from university’s building to core router 2011 24 h 6.5k 2 � 1 Gb/s 15%
B Core router of university in The Netherlands 2012 6 h 886k 10 Gb/s 10%
C Core router of university in Brazil 2012 84 h45 min 10.5k 155 and 40 Mb/s 19%
D Backbone links connecting Chicago and Seattle 2011 4 h 1.8M 2 � 10 Gb/s 8%
E Backbone links connecting San Jose and Los Angeles 2011–2012 5 h 3M 2 � 10 Gb/s 10%
F Trans-Pacific backbone link 2012 13 h15 min 4M n/a n/a

1 The information on the link capacity given on the MAWI website is not
consistent with the throughput observed in the traces.
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7. Measurements data set

In this section we first present the measurements data
set used in the validation of our proposed procedure for
estimating required bandwidth. It is important to highlight
that the entire data set is composed by packet captures,
which allows us to validate the proposed procedure
against a ground truth (i.e., required capacity empirically
found – details in Section 8.1). We also describe the proce-
dure of creating flows out of the packet measurements and
present some statistics of the traffic at the flow level.

7.1. Measurement locations

In this section we describe the measurement data set
used throughout this paper. The entire dataset comprises
548 15-min traces totaling 137 h of captures. The trace
duration of 15 min has been chosen in accordance with
[18]. Longer time periods are generally not stationary due
to the diurnal pattern. These traces come from different
locations around the globe and account for a total of more
than 13.3 billion packets. Traffic captures were done at the
IP packet level, using tools such as tcpdump. Table 1 pre-
sents a summary of the data obtained from the six mea-
surement locations. Note that the column ‘‘length’’ gives
the total duration of the, not necessarily successive,
15-min traces, i.e., a length of 1 h corresponds to four
traces.

Location A. In this location an aggregate link 2 � 1 Gb/s
was measured. This link connects a building to the gate-
way of a university. Most traffic in this link is actually
internal to the university. Due to the small number of
active hosts in the link, single activities, such as an over-
night automatic backup, can completely reshape the traffic
for a period. This measurement took place in a week day of
September 2011, and lasted for 24 successive hours.

Location B. It was measured a 10 Gb/s link, comprising
all the incoming and outgoing traffic in the gateway of a
university. The traffic was captured during the first
15 min of every full hour, during 24 h. This measurement
took place in December 2012. Most traffic is web browsing
and email.

Location C. It was measured an aggregate link (155 Mb/s
and 40 Mb/s) also at the gateway of a university. This mea-
surement took place from September 2012 to December
2012. Traces consist of first 15 min of every full hour. Mea-
surements happened from 08:00 to 22:00. Most traffic is
web browsing and email.

Locations D and E. Traces from this location are from
CAIDA’s public repository [13,14]. Four unidirectional
backbone links of 10 Gb/s, interconnecting four cities, were
measured (i.e., two in each location). Traces of D are from
May and June 2011, and traces from E are from December
2011 and January and February 2012.

Location F. Traces of this location come from MAWI’s
public repository [15] and they consist of captures in a
trans-pacific link. No additional information on link capac-
ity and usage is provided by MAWI.1 Traces of this location
are from November and December 2012.

For measurements directly performed by us (i.e., loca-
tions A;B and C), no packet losses were observed. From
CAIDA’s website we know that, for one link of the location
D’s pair, packet losses are likely to happen. For traces from
location F, no information on packet loss is provided in
MAWI’s repository.

7.2. Flow data

We used YAF (Yet Another Flowmeter) [16] to create flow
records out of the packet traces. YAF is an IPFIX-based soft-
ware flow probe. We generated three different sets of flow
measurements, based on three different combinations of
active and inactive timeouts, namely, 5 and 2 s (hencefor-
ward referred as a5i2), 60 and 20 s (a60i20) and 120 and
30 s (a120i30). Such values allowed us to judge the impact
of short, medium and long timeouts on the procedure (for
the definition of timeouts, see Section 3).

Fig. 3a shows the average number of flow records per
15-min trace for the different measurement locations and
timeouts. As expected, considering the link capacity and
utilization, traces from D and E generated two orders of
magnitude more flow records than, for example, traces
from A, for the a5i2 timeouts. The small difference between
the number of flow records for any combination of time-
outs indicates that most of the flows have a duration lower
than 5 s. For a5i2 flows, we can observe a slight increase in
the number of flows for locations A and C. This means that
for these locations few more flows last longer than 5 s.

Fig. 3b shows the average number of (simultaneously)
active flow records per trace. Traces from A have an aver-
age of 542 active a5i2 flow records per second and around
1.6k active a120i30 records per second. Traces from D and E
have an average of, respectively, 30.9k and 48.7k active
a5i2 flow records per second, and around 68.8k and
136.9k active a120i30 records per second. The longer the
timeouts the longer flow records take to be exported by
the flow exporter. This explains why the number of



10-2

10-1

100

101

102

a5i2 a60i20 a120i30

# 
of

 fl
ow

s 
(x

10
6 )

flow definition

A B C D E F

10-2

10-1

100

101

102

103

a5i2 a60i20 a120i30

# 
of

 fl
ow

s 
(x

10
3 )

flow definition

A B C D E F

Fig. 3. Flow statistics for all traces per location.

258 R. de O. Schmidt et al. / Computer Networks 67 (2014) 252–269
simultaneous active flows increases for longer timeouts, as
observed in Fig. 3b. Therefore, although resulting in a smal-
ler number of flow records to be further processed, longer
timeouts might demand more resources from the mea-
surement device. Operational considerations on the choice
of the timeouts are given in Section 9.

7.3. Traffic properties

7.3.1. Link usage
Although Table 1 presents the average link use for each

location, such value is generally not constant over the
measurement period. In fact, for some locations it varies
substantially. Fig. 4a shows the average traffic rate per
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15-min for each location. The figure also shows the mini-
mum and maximum values of mean rate per trace. As
one can see, traffic from locations with lower-capacity
links and lower averages are the ones that also vary most.
For example, for traces of location C, the mean rate reaches
values that are 32� smaller than the average, while for
traces of E mean rate varies at most �1:3 times. Moreover,
in particular for locations A;B and C, low averages are most
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property of traffic is studied within our dataset. This will
further allow us to study the relation between the accuracy
of the estimation of required bandwidth and the degree of
Gaussianity of the traffic in Section 8. In short, considering
a traffic aggregate AðTÞ, at timescale T (for any T > 0), we
want to know if AðTÞ � Normðq; tðTÞÞ, where q is the mean
traffic and tðTÞ the traffic variance at timescale T. To com-
ply with previous works [17–19], among the many avail-
able procedures to quantify Gaussianity goodness-of-fit,
we have chosen to use the linear correlation coefficient
[20], which is defined by:

cðx; yÞ ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2

Pn
i¼1ðyi � �yÞ2

q ; ð11Þ

where x is the inverse of the normal cumulative distribu-
tion function of the sample and y is the ordered sample
(i.e., AðTÞ). Fig. 4b shows the average, minimum and max-
imum values of c for all traces per location at T ¼ 1 s. A
value c P 0:9 supports the hypothesis that the underlying
distribution is normal. The main take away of Fig. 4b is that
most of our traces have c P 0:9, i.e., around 83% of all
traces in our dataset are at least ‘‘fairly’’ Gaussian. Location
A is a 24-h measurement and around 50% of its traces have
c < 0:9. Most of these traces are measurements of the
overnight period in which less users are active in the net-
work, resulting in lower traffic aggregate and, hence,
reduced Gaussian character. At locations with larger aggre-
gates, such as D, all the traces are above the limit 0.9. In
this section we only show the Gaussian fit of traffic at
T ¼ 1 s. However, we have studied the Gaussian good-
ness-of-fit of our entire dataset for T ranging from 1 ms
to 30 s and results in all timescales are persistent. In [19]
one can find a thorough study on Gaussian properties of
our dataset.

8. Experiments and validation

In this section we present and discuss results of exper-
iments with the proposed flow-based procedure. In Sec-
tion 8.1 we introduce the methodology used for the
validation of the procedure. In Section 8.2 we show the
impact of flow duration distribution on link dimensioning.
The importance of the packet correction factor on the esti-
mation of required capacity at shorter timescales is shown
in Section 8.3, as well as how the packet-level parameters
can be fitted. In Section 8.4 we show the persistence of fit-
ted packet-level parameters for long term use on link
dimensioning. Finally, in Section 8.6 we show results of
the extensive validation of the proposed procedure using
the entire measurements dataset.

8.1. Methodology

To validate the performance of the flow-based proce-
dure, we apply it to the flow records generated from the
15-min packet traces and compare the estimated required
bandwidth with the empirical one, namely the 99th-per-
centile of the empirical CDF distribution of the throughput.
This value represents the minimum capacity that should
be allocated so that in only a predefined fraction of time
intervals of size T (i.e., e) the traffic rate AðTÞ=T will be
above this capacity. Thus, the empirical estimation is
defined as:

CempðT; eÞ :¼min C : #fAijAi > CTg=n 6 ef g; ð12Þ

where A1; . . . ;An are the empirical traffic aggregates on
timescale T and e is the bandwidth exceedance probability.

To verify the accuracy of the estimated required capac-
ity C, for a particular trace, we calculate the number of
measured intervals in which the traffic aggregate Ai

exceeds C:

ê :¼ #fAijAi > CTg=n: ð13Þ

From ê we are able to assess whether the estimated
required capacity is sufficient or not for a given trace.
Clearly, if ê 6 e the procedure did not underestimate the
required capacity. However, it is also important to check
whether the procedure excessively overestimate the
required capacity. To quantify the overshooting of the link
dimensioning procedure, if any, we calculate the relative
error, in percentage, between the estimation and the
empirical value (for any T and e). The relative error is given
by:

RE ¼ C � Cemp

Cemp
� 100%: ð14Þ

In the following experiments we have always grouped
flow records into classes defined by h ¼ 1000 bytes/s and
g ¼ 100 ms according to the procedure described in Sec-
tion 5. Flow records were created using active timeout of
60 s and inactive timeout of 20 s. Discussion on how the
definition of classes and flow timeouts might impact on
the accuracy of required capacity estimations is given in
Section 9. In addition, to comply with previous works [1–3],
in the following experiments we always set e ¼ 1% in Eq.
(2).

8.2. Choice of flow duration distribution

As explained in Section 4.3, to calculate the flow-level
traffic variance one may choose a formula according to
the distribution of flow duration. From real flow measure-
ments we have observed that the duration of flow records
tend to follow a long-tailed distribution, hence, justifying
the selection for a Pareto- or Weibull-based variance for-
mula. However, [1] also shows that flow duration do not
play an important role in the final estimation of required
capacity in the variance. Therefore, difference between
estimations using different variance formulas should be
negligible. Nonetheless, since in this work we use flow
records, which implies a upper-bound for duration, and
also by the fact that we classify flow records according to
their properties, it is important to revalidate the impor-
tance played by duration on variance formulas.

Fig. 5 compares the estimation of required capacity
computed using exponential- (Eq. (4)) and constant-based
(Eq. (5)) variance formulas at various timescales T. These
estimations are represented by Cexp and Cconst , respectively.
It also plots the estimation curve of empirical capacity Cemp

to illustrate the cases in which the flow-based estimation
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is successful. This example shows that the difference
between results from both formulas is indeed insignificant
and that we can use the simpler constant-based model.
Note that in this example we do not implement the packet
correction factor /. That is, the flow-based procedure
solely gives us a baseline estimation that suffices required
capacity at larger T. The packet-level correction factor is,
therefore, needed so that the increasing demand as
observed for Cemp at smaller T is met. The packet correction
factor is validated in the following sections.

8.3. Packet correction factor

The packet correction factor / helps us to capture packet-
level details within flows, ultimately, aiming at better
estimations of required capacity at small timescales. Fig. 6
provides an example of estimation of required capacity
Cflow using the flow-based model and each one of the three
packet correction factors from Section 4.4. In this example,
all parameters for the packet correction factor formulas
were computed out of the measurements. In Fig. 6, Cconst is
computed using Eq. (2) with variance tconstðTÞ from Eq. (5).
For Cflow, however, the traffic variance is calculated using
Eq. (6) where tflowðTÞ comes from Eq. (5).
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Fig. 6. Estimation of required capacity using different packet corre
The packet-level correction /1, from [1], assumes Pois-
son packet arrivals and deterministic packet sizes within
the flow records. Although better than the purely flow-
based method, as shown in Fig. 6, /1 is clearly still too opti-
mistic and leads to an underestimation of the required link
capacity mainly at small timescales. In /2 we take into
account the influence of the packet size distributions
appearing in the formula of Eq. (8) through the ratio of
its second and first moments. The measured values of the
first two moments of packet size distribution slightly
increases the estimated required capacity, but still leads
to an underestimation. The main take away of this analysis
is that the Poisson packet arrival process within flows is
apparently too ‘‘friendly’’. Therefore, in /3, in addition to
the packet size, we explicitly take into account the bursti-
ness of the packet arrival process. This is done by the
assumption that the packets arrive according to a com-
pound Poisson process with geometrically distributed
batch sizes and then fit (the first and second order statis-
tics of) this process to measurements on the real arrival
process. The assumption of a compound Poisson packet
arrival process is, however, very conservative (i.e., ‘‘too
bursty’’), which explains the (strong) overestimation of
the required bandwidth by /3, as observed in Fig. 6.
cale (s)

 2

 3

 4

 5

 6

 7

 8

0.
00

1

0.
00

5

0.
01

0.
02

5

0.
05 0.
1

0.
5 1

(b)

ρ = 1.58 Gb/s

Cemp
Cconst
Cflow + φ1
Cflow + φ2
Cflow + φ3

ction factors; example traces from locations (a) D and (b) B.



R. de O. Schmidt et al. / Computer Networks 67 (2014) 252–269 261
Since parameters for /2 and /3 computed from traffic
measurements were not sufficient to provide an accurate
estimation of required capacity, we propose such values
to be fitted against empirically observed data. It is valid
to observe that the fitting procedure does not substitute
the model because neither v nor p depend on other impor-
tant parameters such as T and e. Considering how the flow
model and the packet correction factor were built, the fit-
ting of a single value of v or p is done for a specific e and
for any T. Therefore, only one ‘‘universal’’ value of v or p
is obtained for the given trace.
8.3.1. Fitting procedure
The amount of traffic AðTÞ, obtained from packet-level

measurements, allows us to compute the ground truth
CempðT; eÞ (see Eq. (12)). A value for v or p is chosen such
that the resulting estimation of required capacity Cflow sat-
isfies the condition ê 6 e0 at any T. e0 is the acceptable
exceedance probability for the fitting procedure only, i.e.,
the stopping condition for fitting. The value of e0 should
be chosen at most equal to e so that the fitted values
of v and p would ultimately yield Cflow P Cemp for all
considered T.

Fig. 7 shows the estimation curves from the flow-based
procedure, using fitted v for /2 and fitted p for /3. The
main take away of this figure is that results from the
flow-based procedure supported by the packet correction
factor are accurate with fitted v or p since there is no
underestimation. However, such accuracy is questionable
at T where excessively overestimation happens, e.g., from
1 ms to 10 ms for Fig. 7b. Such overestimation happens
in situations where vT¼100 ms > vT¼1 ms, i.e., the estimation
of the required capacity requires greater v at larger T than
at shorter ones. We have also observed for the example
traces of Fig. 7 that the packet level correction is needless
at T > 500 ms. That is, at such timescales v ¼ 0 and p ¼ 1
cancel out the packet correction factors /2 and /3,
respectively.

Operators might be interested in a single T or a reduced
set of T. In such cases, the fitting procedure can be per-
formed to those specific T only. This would both reduce
the execution time of the fitting algorithm and increase
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Fig. 7. Estimation of required capacity using packet correction factor / with
the accuracy of the fitted v or p. The later would help to
avoid situations as shown in Fig. 7b, where the required
v or p differs too much for small and large values of T. In
this case, fitted v for large T is too high, or p is too low
and, hence, they are not an optimal value for the whole
range of T.

Now the question is whether a fitted v or p will remain
valid for further successive estimations of required capac-
ity for the same link. Since the fitting process involves
packet-level measurements, it is important to minimize
such cost as much as possible. That is, if the fitted v or p
can be reused for a long period of time, one will hardly ever
need to perform packet measurements for the fitting pro-
cedure. The persistence of fitted v and p is presented in
the next section.
8.4. Consistency of fitted v and p

In the previous section we have shown that fitting v or
p provide us better results at any timescale. However, the
drawback is that the fitting process requires packet-level
traffic captures to compare the flow-based estimation
against an empirical one. The ideal situation would be that
the fitted values for v or p remain valid for a long period of
time, providing accurate estimations of required capacity.
In this section we show the consistency of fitting v or p
for successive estimations of required bandwidth for the
same location. The results in this section used flow records
classification by rate and duration and e ¼ 1%.

Fig. 8 shows the estimation curves for T ranging from
1 ms to 1 s. In this figure, the estimations of required
capacity for four successive traces from location D are
depicted. Fig. 8a shows the estimations with fitted v, and
Fig. 8b with fitted p. For both cases, the fitting procedure
was performed only for trace 1 of the four traces and the
fitted values reused for successive estimations of required
capacity. For each trace, the estimation Cflow is compared to
the trace’s respective empirical estimation Cemp. The main
take away of Fig. 8 is that Cflow is never significantly below
the respective empirical Cemp. This means that the fitted
values of v and p for the first trace were successfully
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reapplied in further successive estimations for traces from
location D.

To extend the example illustrated in Fig. 8, we assessed
the validity of fitted v and p for a larger sequence of traces
from locations D and E. Fig. 9a and b shows the relative dif-
ference between Cemp and Cflow for eight traces from loca-
tion D with fitted v and p, respectively. Fig. 9c and d
shows the same results for eight 15-min traces from loca-
tion E. The first 4 traces (traces 1–4) were captured roughly
two months before the last 4 traces (traces 5–8).

Fig. 9 shows the difference in percentage of the calcu-
lated Cflow using /2 or /3 and Cemp. That is, y-axis represent
how much the obtained Cflow, using fitted v from trace 1,
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underestimates or overestimates the empirical required
capacity Cemp at different T. Clearly, due to the fitting pro-
cedure, for trace 1 jCflow � CempjP 0 (i.e., no underestima-
tion). However, one can see that the overestimation at
short T is not very high, at most around 10%. It means that
the obtained exceedance probability ê for such cases is less
than the defined 1% for e. There are also cases of underes-
timation, but these are not less than 5%. This means that
the obtained error is probably not much higher than the
defined e.

For the same set of traces, Fig. 9 shows the difference in
percentage of the calculated Cflow using /3 and Cemp. The
same behavior as for fitted v can also be observed in this
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example, but few differences are noticeable. For example,
at T ¼ 1 ms, underestimation is slightly higher for traces
5 and 6 and, for all other traces, overestimation is more
centralized around 5%.

The main conclusion of Fig. 9 is that the fitted value of v
or p for a single trace remained valid for several successive
traces, supporting accurate estimation of required capacity
and keeping differences between estimations very small,
specially at shorter T. The fitting procedure inherits from
the dimensioning formula of Eq. (2) the dependency on
Gaussian traffic. Therefore, fitting with non-Gaussian traf-
fic may not yield expected results. This problem is better
detailed in the next section.

8.5. Fitting with non-Gaussian traces

One of the key requirements of the link dimensioning
formula of Eq. (2) is that input traffic is Gaussian (i.e., nor-
mal-distributed). Obviously, such requirement also
extends to the fitting procedure, since the dimensioning
formula is used. Attempting to fit v or p using non-Gauss-
ian traffic might result in unexpected behavior of the fit-
ting procedure. In this section we use an example trace
from location E that is non-Gaussian at larger timescales.
This is an unexpected characteristic since traffic is
presumably less Gaussian at shorter T (for more details
see [17–19]).

In the example trace used in this section, several traffic
bursts of millisecond-precision occurred close to each
other in time, as one can see in Fig. 10a. However, since
traffic bursts were not excessive high at shorter T, the dis-
tribution of traffic throughput was still ‘‘enough’’ Gaussian
for the dimensioning formula. However, by increasing the
size of the bins in the time series, i.e. larger T, the close-
by bursts were averaged together resulting in long-lasting
traffic peaks with much higher throughput than the other
averages in the time series (see Fig. 10b). These long-last-
ing peaks compromised the Gaussianity fit of the trace at
larger T, as one can see in Fig. 11.
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Fig. 10. Time series and estimations of required capacity
Fig. 11 illustrates the Gaussianity goodness-of-fit of the
traffic averages at T ¼ 10 ms and T ¼ 10 s by means of
quantile–quantile (Q–Q) plots. These plots are created by
plotting the inverse of the normal cumulative distribution
function and the ordered sample – i.e., these are the same
of the pairs used for Eq. (11). In Q–Q plots, the more the
points fall in a perfect diagonal line, the more the underly-
ing distribution is Gaussian. Therefore, by visually analyz-
ing Fig. 11, one could claim that traffic in not Gaussian at
both T. However, as one can see, cT¼10 ms > 0:9, which sup-
ports the hypothesis of Gaussian traffic, but cT¼10 s < 0:9
and, therefore, traffic is not Gaussian at T ¼ 10 s. Although
one may still argue that at both T many points fall far from
the diagonal line, at T ¼ 10 ms many more points are suf-
ficiently close to the perfect diagonal as compared to
T ¼ 10 s and, hence, these balance the resulting Gaussian
fit.

When executing the fitting procedure with the example
trace of this section, the yield values for v and p do not
make sense at larger timescales. The proposed packet cor-
rection factor is intended for helping the flow-based model
to estimate required capacity at shorter T. Therefore, the
larger the T, the more we expect that v � 0 and p � 1. That
is, the packet correction factor is cancelled since it is not
needed at larger T (see Figs. 6 and 7). However, in this
example trace, the fitted values of v and p are more conser-
vative at large T (i.e., estimations of required capacity are
much higher than actually needed). Note that we have
already mentioned few times that the packet correction
factor is not intended for large T, but for clarity of the
example used in this section we have opted for showing
results with T ¼ 10 s.

Fig. 10a shows the time series for the example trace of
location E at T ¼ 10 ms. Considering that it is a 15-min-
long trace, at T ¼ 10 ms there are 90k bins of size T. The fit-
ting stop condition is set to e0 ¼ 1%, which means that we
allow for 900 of these bins to have values above the esti-
mated CflowðT; eÞ. Under these parameters, we obtain
v = 12,700. When defining T ¼ 10 s, near-by traffic peaks
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between 10 s and 30 s are averaged together resulting in
three main huge peaks. Such peaks directly impact on
the fitting procedure. The defined e0 ¼ 1% at T ¼ 10 s
means that only 0.9 bins can be above the estimated
CflowðT; eÞ. This results in v > 5M. Even if we consider the
interpolated value between the 99th and 100th percentiles
of the empirical traffic averages, the fitting procedure
yields a unreasonable v > 1:8M.

The main take away of this analysis is that the resulting
traffic peaks at T ¼ 10 s demand disproportionally high
values of v so that the fitting condition of e0 ¼ 1% is met.
Considering practical deployment of link dimensioning,
vT¼10s ¼ 12700 would suffice, since the operator would be
interested in finding a long lasting v that potentially takes
care of regular traffic bursts and disregards unusual peaks
– i.e., focusing on customary network behavior and not on
exceptions.

It is important to mention that, at T ¼ 10 s, as one can
see in Fig. 10, even the packet-based dimensioning
approach, as proposed in [2,3], fails on estimate the
required capacity of traces that present the same behavior
as the one studied in this section. In the next section we
present results of a thorough validation of the proposed
flow-based procedure for link dimensioning using all mea-
surements from our dataset.
8.6. Extensive validation and overall results

In this section we validate the proposed flow-based
procedure for link dimensioning by estimating the
required capacity for all traces in our dataset. We present
results for both packet correction factors /2, from Eq. (8),
and /3, from Eq. (10). A single fitting of v and p is done
for each location using the very first trace in chronological
order. Then, the obtained values for v and p are reapplied
to all successive traces for each location. Our conclusions
on the quality of estimations are drawn based on the
obtained exceedance probability ê given by Eq. (13). As
well as in previous sections, we used a60i20 flows, i.e., cre-
ated with active timeout of 60 s and inactive timeout of
20 s. Resulting flow records were classified by their respec-
tive rate and duration, following the procedure detailed in
Section 5. The parameters used for the classification were
h ¼ 1000 bytes/s and g ¼ 100 ms. To comply with previous
works, the exceedance probability was set to e ¼ 1% and T
varied from 1 ms to 1 s.
The summary of results is shown in Fig. 12, where for
each location the average and standard deviation of ê at
various T are plotted. One can see the small difference on
results between the approach using /2, in Fig. 12b, or the
one using /3, Fig. 12c. Nonetheless, the approach using
/3 is slightly more conservative. In addition, for compari-
son purposes, Fig. 12a shows the average and standard
deviation of ê for the purely packet-based approach as pro-
posed in [1–3]. That is, mean traffic rate and variance were
calculated directly from packets. The main take away of
this comparison is that our proposed approaches, helped
by the packet correction factors, manage to achieve more
conservative estimations at short T, but they demonstrate
to be more unstable at large T. The purely packet-based
approach was successful (i.e., ê 6 e) in about 22% of all
traces at T ¼ 10 ms and 48% at T ¼ 1 s. Due to conservative
estimations, our procedure using /2 correctly estimated
required capacity for 64% of traces at T ¼ 10 ms and for
22% at T ¼ 1 s. Furthermore, using /3, success was
improved to 87% of traces at T ¼ 10 ms and 28% at T ¼ 1 s.

For the proposed procedure, the worse estimations at
T P 100 ms can be related to fitting of parameters v and
p using non-Gaussian traces. As explained in Section 8.5
this would result in better estimations of required capacity
for shorter T, but traffic bursts at larger T would result in
higher ê. Therefore, underestimation problems at larger T
could be alleviated by assuring v and p to be fitted using
Gaussian traffic. Nonetheless, if one considers all estima-
tions of required capacity that resulted in a not too high
ê, let’s say less than 2%, results become more expressive
for our procedure. In such case, for the proposed procedure
using /2, 95% and 44% of traces had ê 	 2% at T ¼ 10 ms
and T ¼ 1 s, respectively. For our procedure using /3, 99%
and 59% of traces had ê 	 2% at T ¼ 10 ms and T ¼ 1 s,
respectively.

Although ê 6 e is desirable, excessive overestimation is
not. If overestimation happens it should be between rea-
sonable boundaries, i.e., not overly higher than the empir-
ical capacity Cemp for any T and e. For example, from the
plots of Fig. 12b and c one can see that at very small time-
scales ê ¼ 0 for location A and the standard deviation is
insignificant. The reason for this becomes clear when com-
puting the relative error RE, from Eq. (14). Fig. 13 shows
the normalized RE for all traces in our dataset. Note that,
since there are different number of traces per location,
the x-axis in Fig. 13 shows the percentage of traces per
location sorted from left to right by their respective RE.
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Fig. 12. Average and standard deviation of ê per location for all traces in our dataset.
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Fig. 13. Relative error for all traces per location; y-axis is limited to [�50 . . .50] for visualization reasons.
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In Fig. 13 one can see that the overestimation is actually
quite high for most traces from A at small T. Using /3 with
fitted p at T ¼ 10 ms (Fig. 13b), for only about 15% of traces
from A the CðT; eÞ is less than 50% more the CempðT; eÞ. This
problem, although with less intensity, can also be observed
for traces from location C. As previously mentioned, in our
experiments we fitted v and p only once. Locations A and C
illustrate what happens when the shape of the traffic in the
measured link constantly varies. Since the measured link in
these locations carries traffic of a small number of users, it
only takes few users to change traffic properties and inval-
idate previously fitted v and p. Besides, these measure-
ments also capture differences in traffic due to day and
night patterns. By fitting parameters only once, the ‘‘bad
fitting’’ was never fixed and for the other remaining traces
the fitted values of v and p were not the correct ones and,
ultimately, yielded mostly very conservative results. For
such networks, a system implementing the proposed link
dimensioning procedure would better to also implement
a checking process to, e.g., decide whether to run the fitting
of parameters again once exorbitant values of estimated
required capacity were obtained (i.e., the fitting process
should be performed again aiming at having proper values
for v or p). Another idea would be to use different values of
v and p fitted at different times of the day.

Considering only traces from C, at T ¼ 1 s and using /2

with single fitting of v in around 76% of traces the esti-
mated CðT; eÞ was kept in between 20% for more or less
the empirical estimation CempðT; eÞ. At the same timescale
and using /3 with fitted p, around 84% of traces had esti-
mated capacity within this range. For most of the traces
of the other locations (with a larger and regular number
of active users throughout the measured period) the esti-
mated required capacity CðT; eÞ remained between reason-
able bounds, i.e., between 20% for more or less the
empirical estimation. For example, at T ¼ 10 ms, excluding
those from locations A and C, using /2 around 96% of all
traces had estimated CðT; eÞ within the range of 20% for
more or less the empirical estimation and, using /3, it
was more than 87% of all traces. In the latter case, for
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few and not necessarily consecutive traces from F, the fit-
ted value of p was not appropriate, leading to excessive
overestimation of required capacity.
9. Operational considerations and selection of
parameters

The proposed flow-based procedure relies in a number
of parameters. This section is dedicated to discuss the
parameters that were not presented in previous sections
and their respective impacts on the accuracy of the pro-
posed link dimensioning procedure.

9.1. Measurement duration

In this paper we have only used 15-min long traces,
hence, simulating traffic being monitored every 15 min.
The measurement duration should be reasonably chosen
such that the traffic during the measurement can be con-
sidered stationary, as required by the dimensioning for-
mula of Eq. (2). Longer periods might capture undesired
periodic changes on traffic behavior hurting its stationarity
character. However, that’s not true to assume that traffic
will always be stationarity when measured in periods of
15 min. It will depend on the traffic nature and network
users behavior. The measurement period of 15 min used
in this paper was chosen to comply with previous works
[1–3].

9.2. Flow timeouts

The active timeout ta and inactive timeout ti are set on
the flow exporter and they define the length of a flow
record and, consequently, the level of aggregation of traffic
information. The chosen timeouts will depend on the pur-
poses of traffic monitoring at the network operator. The
analysis of previous sections were presented using flow
records created with ta ¼ 60 s and ti ¼ 20. However, we
have tested our proposed flow-based link dimensioning
procedure using many other combinations of timeouts,
varying ta from 5 s to 120 s and ti from 2 s to 30 s (always
obeying the condition ta > ti). We have not observed any
significant difference between results obtained with differ-
ent timeouts and, therefore, we assume that, for the tested
range of values, the timeouts combination does not impact
on the accuracy of the estimated required capacity. It is
important to know, however, that the amount of processed
flow records is the most dominating factor in the computa-
tion time in the proposed flow-based procedure.

9.3. Flow records classification

In the previous sections, we presented results obtained
with flow records classified by rate h ¼ 1000 bytes/s and
duration g ¼ 100 ms. Since the definition of these parame-
ters depends on the traffic nature, the network operator
would also be responsible for such task. By testing the pro-
posed flow-based procedure we have observed that the
smaller the h and g parameters are defined, the more accu-
rate is the estimation of required capacity. However, the
smaller are such parameters the more classes will be cre-
ated and, consequently, the more time the procedure
may take to compute the required capacity. From the
results presented above we can conclude that the settings
used in this paper are enough for providing satisfactory
accuracy on estimations of required capacity. It should be
emphasized that the proposed link dimensioning proce-
dure is very lightweight and even a standard computer
can perform the computations for 20 K flow classes in
few seconds.

9.4. Exceedance probability e

To comply with previous works [2,3], in this paper we
have always set e ¼ 1%. Clearly, it does not make sense
to choose smaller e at large T when the measurement dura-
tion is no longer than 15 min (as in the case of this paper).
For example, setting e ¼ 1% at T ¼ 10 s means that the
dimensioning formula should return an estimated required
capacity so that under-provisioning happens in only 0.9
out of 90 time bins. Consequently, the link dimensioning
procedure may result in excessive overestimation so that
over-provisioning happens for all time bins. In addition,
network operators must take into consideration the length
of the time bin defined by T. That’s because the larger T the
more traffic is aggregated within a single time bin. This
means that, depending on the link load, a single under-pro-
visioned time bin at T ¼ 1 s might result in much bigger
problems of performance than a under-provisioned time
bin at T ¼ 10 ms. Therefore, e must be chosen to avoid
underestimation but also avoiding unnecessary
overestimation.

9.5. Fitting of v and p

The crucial point of the fitting procedure for the packet
corrections /2 and /3 is that e0 should be chosen such that
Cflow P Cemp. The chosen value for e0 should be enough to
avoid underestimation but also not too conservative so
that overestimation is not excessively high. For example,
e01 ¼ e will result in Cflow;1 ¼ Cemp;1 and ê ¼ e. If the fitted
value of v or p is subsequently used for estimating required
bandwidth of the next 15-min measurement period, and
Cflow;2 < Cemp;2, the end result may be the undesired
ê2 > e. Therefore, e0 should be wisely chosen obeying
e02 < e. This way Cflow;2 > Cemp;2 for the fitted trace, and a
safety margin is kept in order to assure ê2 6 e for succes-
sive traces using the previously fitted v or p. To play safe,
the network operator may choose e0 ¼ e, as done in the
experiments in this paper. To further reduce risks of having
many underestimation cases for successive traces, v and p
should be fitted only using Gaussian traces.

9.6. Choice between /2 and /3

Concerning the packet correction factors /2 and /3, we
have showed that the latter provided better results than
the former. However, this small gain comes at a cost. The
trade-off is that /3 requires the second moment of packets
size E½S2� (see Eq. (10)). A simple modification in the flow
exporter is needed so that the sum of squares of packets
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size is also exported within the flow record. Therefore, /3

deployment is limited to cases in which network operator
is able and willing to modify the flow exporter. Modifica-
tions can easily be made if the operator uses an open-
source flow monitoring tool. For example, we have imple-
mented such modifications in the open source exporter
YAF [16].

9.7. Procedure execution performance

Regarding the performance of the whole link dimen-
sioning procedure, one can divide it in two parts: the traffic
measurements and the dimensioning calculations.
Although our proposed procedure requires sporadic
packet-level traffic measurements for the fitting of param-
eters, these captures do not need to happen for long periods
and the main basis of the procedure relies solely on flow-
level measurements. It remains, therefore, a lightweight
procedure in terms of traffic measurements. Concerning
execution time of the calculations for estimating the
required capacity, we have observed that even for the larg-
est traces (i.e., those from location D; E and F) the whole
procedure usually took less than a minute to complete.
For example, for a large 15-min trace from location D, our
procedure classified more than 5.6 million flows (defined
as a60i20) by their respective rate and duration into almost
14,000 classes (defined by h ¼ 1000 bytes/s and
g ¼ 100 ms, which is the most granular classification tested
by us). For each class a variance was computed using Eq. (6).
These variances were summed up and, with the trace aver-
age rate q, applied into the link dimensioning formula. Ulti-
mately, the estimation of required capacity CðT; eÞ was
obtained for the same range of timescales used throughout
this paper (i.e., 1 ms to 1 s). The overall procedure took
around 50 s to complete. Nonetheless, the most costly oper-
ation in the whole proposed procedure is the fitting process
of parameters for the packet correction factor. This process
mainly depends on the range of timescales of interest. The
larger the range, the longer the fitting process takes to fit
the parameters such that the condition ê 6 e is satisfied
for all the considered timescales. Using the same example
trace from D, it took around 1 min 45 s for fitting p (used
in /3) for the same range of timescales from 1 ms to 1 s.
Note that these time measurements come from a prototype
brute-force implementation. System performance was not
the focus of this paper. However, one can certainly expect
significantly lower run times with a proper production-
ready implementation.

9.8. Link dimensioning in practice

It is inevitable that network operators, even having
good estimations of required capacity for their links, will
eventually add safety margins on the top of these estima-
tions. As mentioned in the beginning of this paper, this is
already adopted practice. However, nowadays operators
add margins on top of traffic averages obtained from read-
ing SNMP counters at very coarse time resolutions, such as
5-min averages. The procedure proposed in this work
comes to add more reliability on link dimensioning by pro-
viding a well founded baseline estimation. Independently
of adding or not a safety margin on top of the estimations,
our procedure proved to be, at finer time resolutions, as
much efficient as a packet-based approach. Nonetheless,
by adding a safety margin, problems of underestimation
of required capacity due to, e.g., fitting of parameters with
non-Gaussian traces, can be alleviated. For instance, in
cases of Fig. 9 around 5% extra capacity (i.e., on top of
the estimated one) would already be sufficient for all con-
sidered traces to have ê 	 1%.
10. Conclusions

In this paper we propose a practical link dimensioning
procedure aiming at minimal traffic measurement efforts.
Our procedure extends the work from [1] by adding a
method to capture packet-level details besides the flow-
level ones. At the same time our procedure remains light-
weight and efficient being able to estimate the required
bandwidth within seconds even when several thousands
of flows are measured.

The proposed procedure provides a well founded base-
line estimation of required capacity for network traffic
streams. By using measurements at the flow level, and sel-
dom requiring packet captures, our proposed procedure is
– almost – as easy to deploy as SNMP-based approaches
and with the advantage that it allows to gather informa-
tion about traffic fluctuations at finer time resolutions.
The main advantage of our procedure is that by integrating
analytical modeling with measurement data, estimations
of required capacity are as accurate as fully packet-based
approaches without the overhead of performing continu-
ous packet captures. Although required by our procedure,
packet-level measurements do not need to be longer than
15 min and values obtained from them remain valid for
very long periods of time.

Our findings showed that our procedure is able to accu-
rately estimate the required capacity for a range of time
resolutions as low as 1 ms. For most applications, e.g.,
web browsing, end users usually experience QoS at the
timescale of 1 s. Having accurate estimations of required
capacity for shorter timescales can now also help ensuring
QoS for delay sensitive applications, like VoIP and real time
video streaming.
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Appendix A. Flow model with Poisson packet arrivals

In this section we prove Eq. (8) under the assumption
that packet arrivals inside a flow are Poisson with rate l
and have arbitrary sizes i.i.d. like S.

Let T be the aggregation timescale. Obviously, if we
observe the active traffic flows during an interval of length
T, we will mostly only see fragments of those flows because
most flows start or end outside that interval. Let L be the
total length of flow fragments observed in that interval.
Since packet arrivals are Poisson, the p.m.f. of the number
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of packets Kl arriving during that interval for L ¼ l is
(neglecting packet transmission times)

P½Kl ¼ k� ¼ ðllÞk

k!
e�ll:

Let Si be the size of the ith packet, i.i.d. like S. The total
number of bits Al arriving in that arrival is then

Al ¼
XKl

i¼1

Si;

with Laplace–Stieltjes transform (LST)

LAl
ðqÞ ¼ E e

�q
XKl

i¼1

Si

2
6664

3
7775 ¼

X1
k¼0

ðltÞk

k!
e�ll E½e�qS�

� �k

¼ e�llð1�E½e�qS �Þ:

Let gðlÞ be the p.d.f. of L, with LST Gð�Þ. The LST of the total
amount of traffic AðTÞ arriving in that interval is then

LAðTÞðqÞ ¼
Z 1

l¼0
gðlÞLAl

ðqÞdl ¼
Z 1

l¼0
gðlÞe�llð1�E½e�qS �Þdl

¼ Gð�lð1� E½e�qS�ÞÞ:

Hence, the first and second moment of AðTÞ are given by

E½AðTÞ� ¼ � d
dq

Gð�lð1� E½e�qS�ÞÞ
����
q¼0
; ðA:1Þ

E½AðTÞ2� ¼ d2

dq
Gð�lð1� E½e�qS�ÞÞ

�����
q¼0

: ðA:2Þ

By applying basic differentiation rules to Eq. (A.1) and
using the identities � d

dx GðxÞ
��

x¼0 ¼ E½L� and
� d

dx E½e�qS�
��
x¼0 ¼ E½S� we obtain

E½AðTÞ� ¼ lE½S�E½L�:

Similarly, Eq. (A.2) gives

E½AðTÞ2� ¼ lE½S2�E½L� þ l2E½S�2E½L2�:

Hence, the variance of AðTÞ is

Var½AðTÞ� ¼ lE½S2�E½L� þ l2E½S�2E½L2� � l2E½S�2E½L�2:

Noting that the difference l2E½S�2E½L2� � l2E½S�2E½L�2 is sim-
ply the variance v flowðTÞ of the traffic in the constant-traf-
fic-rate model in Eq. (3), introduced in Section 4.2, it holds

Var½AðTÞ� ¼ v flowðTÞ þ lE½S2�E½L�:

Using lE½S�E½L� ¼ qT, where q is the mean of the total traf-
fic throughput, we finally obtain Eq. (8).

Appendix B. Flow model with bursty packet arrivals

Let P the number of packets in a burst. Since
P½P ¼ i� ¼ ð1� pÞi�1p, the mean and variance of P are
E½P� ¼ 1� p and Var½P� ¼ ð1� pÞ=p2, respectively. The byte
size of the burst can be expressed as a sum of a random
number of random variables: S0 ¼

PP
i¼1 Si. Under the

assumption of Si i.i.d. like S and the independence of Si

and P, it is known for such sums that
E½S0� ¼ E½P�E½S�;
Var½S0� ¼ E½P�Var½S� þ E½S�2Var½P�;

which allows to calculate E½S02�.
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