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A Performance Comparison of Hose Rate Controller
Approaches for P2P-TV Applications

S. Traversob,1,∗, C. Kiralya, E. Leonardib, M. Melliab

aBruno Kessler Foundation, Trento, Italy
bDET, Politecnico di Torino, Italy

Abstract

The goal of this paper is to investigate rate control mechanisms for unstructured P2P-
TV applications adopting UDP as transport protocol. We focus on a novel class of Hose
Rate Controllers (HRC), which aim at regulating the aggregate upload rate of each peer.
This choice is motivated by the peculiar P2P-TV needs: video content is not elastic but
it is subject to real-time constraints, so that the epidemic chunk exchange mechanism is
much more bursty for P2P-TV than file sharing applications. Furthermore, the peer up-
link (e.g., ADSL/Cable) is typically the shared bottleneck for flows in real scenarios.
We compare two classes of aggregate rate control mechanisms: Delay Based (DB) less-
than-best-effort mechanisms, which aim at tightly controlling the chunk transfer de-
lay, and loss-based Additive Increase Multiplicative Decrease (AIMD) rate controllers,
which are designed to be more aggressive and can compete with other AIMD conges-
tion controls, i.e., TCP.

Both families of mechanisms are implemented in a full-fledged P2P-TV application
that we use to collect performance results. Only actual experiments – conducted both
in a controlled test-bed and over the wild Internet, and involving up to 1800 peers – are
presented to assess performance in realistic scenarios.

Results show that DB-HRC tends to outperform AIMD-HRC when tight buffering
time constraints are imposed to the application, while AIMD-HRC tends to be prefer-
able in severely congested scenarios, especially when the buffering time constraints are
relaxed.

1. Introduction

P2P-TV applications are designed to offer real-time video streaming services ex-
ploiting the Peer-to-Peer (P2P) paradigm. In these systems, peers are arranged in a
generic meshed overlay topology which is dynamically adapted and optimized by a
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distributed algorithm, and neighboring peers are enabled to exchange data. The con-
tent to be delivered is chopped in segments, called chunks which are distributed among
peers exploiting an epidemic approach. Because of this characteristics, unstructured
P2P-TV systems may closely resemble P2P applications for file sharing, e.g., BitTor-
rent.

However, three peculiar aspects of P2P-TV applications mark a significant differ-
ence with respect to P2P file sharing applications like BitTorrent:

1) The content is not available in advance, but it is generated in real time at a single
point (the source). As a consequence no seeds are available in the system.

2) New generated chunks must be delivered to all peers, within a deadline, the total
offset delay, i.e., the lag between the chunk generation time at the source and the time
the chunk has to be played at the peer. For live content distribution, it is highly desirable
to keep this delay as small as possible so that chunks delivery times are minimized and
peers can view the show in almost real-time. Total offset delay is controlled by limiting
the number of chunks that peers can trade with other peers at any time.

3) As a consequence of the previous requirements, receiving data rate at peers can
not be adapted, i.e., the application is not elastic: either the peer is in the condition
of receiving chunks at the same rate they are generated at the source or it is not able
to watch the show with an acceptable Quality of Experience (QoE). This implies that
peers are not greedy (pre-fetching policies are indeed not possible, since content is gen-
erated in real-time), and the goal of the transmission rate controller is not to maximize
the download/upload rate, but to guarantee that the total demand is sustained. That
is, the system-wide total upload/download rate cannot exceed N times the video rate
(where N is the number of peers in the system).

The above three characteristics heavily impact the overall design of P2P-TV appli-
cations. First, to control the delivery time, chunk size must be kept small. A common
choice made in many P2P-TV systems is to deliver one video frame in a chunk. This
causes the size of each chunks to be highly variable, due to the video encoding process
nature [1, 2, 3].

Second, UDP is largely preferred to TCP, to avoid long retransmission delay and
accelerate sending of chunks. Packets of the same chunk are transmitted back-to-back
without sharing of the up-link capacity among different chunks [2, 3, 4, 5].

Third, to increase the ability of peers to retrieve chunks within a limited delay,
every peer should rely on a sufficient large set of neighbors. Hence, the size of peers’
neighborhoods to exchange data with is typically much larger than in BitTorrent (order
of several tens versus five).

At last, scheduling algorithms must be designed having in mind the goal of dis-
tributing chunks to all peers within the limit imposed by the total offset delay [6, 7, 8,
9, 10, 11].

The literature about P2P-TV systems is mostly focused on the overlay topology
design and on the modeling of scheduling algorithms to improve performance, and to
the best of our knowledge, only a few works focus on transmission rate controllers
for mesh-based P2P-TV systems (see Sec. 7 for a discussion). Indeed, most existing
P2P live video systems do not consider the sender rate control problem explicitly, and
they simply adopt a best-effort approach, where the senders try their best to serve the
receivers by using as much up-link bandwidth as possible, without any rate control
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Figure 1: Simple example which illustrates the benefits of an adaptive mechanism for adjusting the trans-
mission rate of chunks.

l. To the best of our knowledge, the only works that explicitly deal with the issue
of regulating the transmission rate of peers are [12, 13]. In particular [13] compares
a delay-based transmission rate controller against a simple scheme, where the chunk
offering rate is fixed.

Considering instead the industrial side, the many commercial P2P-TV clients avail-
able in the Internet, e.g., PPLive, SopCast, etc., do not disclose their source code,
making it impossible to understand which kind of rate controller they implement, and
making unfeasible any experimental comparison with them.

In a nutshell, only little attention has been devoted to the problem of how to ef-
ficiently exploit the peer upload capacity by controlling the sending rate of peers.
Considering the typical nowadays scenario faced by P2P applications, it is natural to
assume that the bottleneck is provided by the peer up-link, e.g., it is located at the
ADSL/cable up-link. In order to guess the right chunk sending rate most of P2P appli-
cations ask the user to manually set the available bandwidth, but bandwidth is known
to vary in time due to background traffic condition (take the case of a shared wireless
local network), and any static (mis)configuration often leads to an inefficient use of
the available resources possibly inducing congestion and packet loss. Automatically
tuning the transmission rate is thus essential i) to keep low chunk delivery delays, ii) to
guarantee that all users fairly participate to the chunk dissemination process in a way
proportional to their available resources, and iii) to let the system be more robust when
faced with (abrupt) changes of the network conditions.

For instance, Fig. 1 describes by means of a simple example the benefits brought
by an adaptive approach able to match the transmission rate of chunks to the available
bandwidth at the peer. A few peers form a small mesh network where S represents
the source peer: in the top part of the figure the sending rate of the chunks at each
peer is fixed and does not change in time. Moving from Time 1 to Time 2, peer A
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undergoes a bandwidth reduction from 5Mb/s to 1Mb/s, but its chunk transmission rate
does not adapt to the new condition, introducing delays in the delivery of the chunks
and, thus, losses. Notice, that peers B and C could actually replace peer A in the
chunk distribution process (they have enough bandwidth), but they do not, since their
transmission rate is fixed too. The bottom part of the figure depicts what happens
when an adaptive regulation is available: in Time 2 peer A undergoes a bandwidth
reduction, but its chunk transmission rate is nicely reduced to match its new upload
capacity. Moreover, peers B and C increase their transmission rate to replace peer A
in the chunk distribution. Observe, that by doing so, no delivery delays nor losses are
introduced.

For these reasons, embedding an application level rate controller algorithm that is
able to dynamically adapt the rate at which chunks are transmitted by peers becomes a
crucial task in P2P-TV applications design. Observe that the same motivations drove
to the development of Ledbat [14] in the context of P2P file sharing, and it is now
embedded into the majority of BitTorrent clients.

Results presented in [13] show that in P2P-TV systems it is preferable to adopt
transmission rate controllers rather than best-effort and static schemes. This paper
goes further, and investigates two families of rate control algorithms for P2P-TV sys-
tems. We present, discuss and validate possible alternatives by means of thorough
experimental campaigns. In particular, we address the following key points:

1. whether it is preferable to implement i) classical end-to-end transmission control
mechanisms which manage the rate of individual flows as for TCP, Ledbat [15]
or TCP Friendly Rate Control for multimedia, e.g., TFRC [16] 2; or ii) aggregate
forms of rate control which directly adjust the total chunk transmission rate at
the peer, which we call “Hose Rate Control” - HRC [13].

2. whether it is preferable that the rate control mechanism attempts a tight control
on the transmission queue delay (as for Ledbat or TCP Vegas) or embraces a
more aggressive loss-based approach inspired to TCP Additive Increase Multi-
plicative Decrease (AIMD).

For what concerns the first design choice, we believe that hose aggregate controllers
are more effective for P2P-TV applications as motivated in Sec. 3.1 and in Sec. 4.

For what concerns the second design dilemma, it is a priori much unclear which
may be the more convenient choice. By controlling the transmission queue delay, in-
deed, we gain a direct control on the chunk transfer time. This can be particularly
welcomed given the large queue size (and thus delay) that are encountered in today
Internet, i.e., the so-called “bufferbloat” effect [17]. However as side effect, we ob-
tain a less-than-best-effort rate controller compared, e.g., to TCP sources. Adopting an
AIMD paradigm, on the contrary, we are potentially able to compete with TCP for the
upload bandwidth of peers, at the risk of loosing the control on chunk transfer delay.

2In general, the end-to-end transmission control principle requires both peers, A and B, involved in the
communication to participate at adjusting the transmission rate of the flow. A typical example is TCP, for
which A regulates its sending rate by counting the number of ACKs sent back by B. Therefore, if peer A
opens a connection towards each of its neighbors in parallel, it can actually regulate its total chunk transmis-
sion rate by adjusting the transmission rate of each single connection independently.
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In the following we summarize the main contributions of this paper:

• We describe two novel hose rate control mechanisms. Both algorithms have been
implemented in PeerStreamer3, the full-fledged P2P-TV application developed
within the EU FP7 NAPA-WINE project4.

• We present the results of an extensive experimental campaign, conducted in a
large controlled test-bed involving up to 1800 peers, considering different sce-
narios, with and without TCP/UDP interfering traffic. Such results are comple-
mented by running experiments in the wild Internet employing more than 400
PlanetLab nodes emulating a churning scenario. In this paper we present a sub-
set of results equivalent to a total amount of 360 hours of tests. Furthermore,
the performance of each scheme is assessed by measuring the actual QoE on
delivered video streams.

• Finally our results show that the delay-based hose rate controllers (DB-HRC)
outperform loss-based controllers (AIMD-HRC) when tight buffering delay con-
straints are imposed to applications and in not heavily congested conditions. In
scenarios in which congestion is induced by large amount of competing TCP traf-
fic, AIMD-HRC tends, instead, to provide better performance. We emphasize,
however that in such scenarios peers typically experience severe QoE degrada-
tions.

The rest of the paper is organized as follows. In Sec. 2 we describe how P2P-TV
systems work in general and which are the constraints designers have to face. In Sec. 3
we discuss whether end-to-end congestion controllers represent the best solution for
P2P-TV systems with respect to aggregate type approaches. Secs. 3.2 and 3.3 describe
the algorithms behind DB-HRC and AIMD-HRC, and we present in Sec. 4 toy-case
experiments to show their differences in practice. Sec. 5 presents a comprehensive
performance evaluation conducted both in a controlled environment and in PlanetLab
(Sec. 5.1 to Sec. 5.4). In Sec. 6 we evaluate the hose rate controller sensitivity to
the parameters and to the peer upload capacity distribution, their performance when
increasing the scale and when adopting different chunk scheduler policies. Finally, we
discuss the related work in Sec. 7, and we conclude the paper with Sec. 8.

2. System description

We consider a typical unstructured P2P-TV application in which a source segments
the video stream into chunks and injects them into the system. Let N be the total
number of peers which are logically arranged in a graph called overlay topology. The
overlay topology is defined by the set of peers and virtual links connecting them and
may be dynamically adapted using smart algorithms [18, 19]. Since the actual design
of the overlay topology is out of the scope of this paper, we consider the simplest case

3Available at http://www.peerstreamer.org
4www.napa-wine.eu/
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Figure 2: Schematic representation of the chunk trading mechanism.

in which the overlay network is built on a random basis, a common assumption in the
literature [6, 7, 8].

Chunks are transmitted by peers to their neighbors in a swarm-like fashion. Since
video chunks must meet strict delay constraints, the intuition suggests to keep them
small, e.g., few IP packets, to minimize the packetization delay at the source, the store-
and-forward delay at the peers and the chunk corruption probability due to packet loss.
In what follows, we therefore choose that 1 chunk contains exactly 1 video frame; thus
the average chunk size is 5 kB for a 1 Mb/s encoding rate of a 25 fps video. The
rounding at frame boundaries minimizes the impact of losses, avoiding that a loss of a
chunk affects several frames due to partial delivery of information, e.g, missing frame
headers.

As already said, the system must deliver newly generated chunks to peers within
the deadline provided by the total offset delay, DOS , i.e., the lag elapsing between
chunk generation time at the source and its playing time at the peer. If the chunk is
received after its playing time, it is not anymore useful for the peer and it will be then
skipped by the player.

To avoid complex synchronization procedures, typically the constraint on the total
offset delay is indirectly imposed by limiting the number of chunks Z0 that every peer
can trade with other peers. Z0 is often called trading window. At every time t, the
trading window of peer a can contain the last Z0 consecutive chunks which are in
advance with respect to the chunk which is currently played by a. The resulting offset
delay will be different for every peer,DOS(a). We notice thatZ0 (expressed in seconds
of video) determines both i) the buffering time at the peer, which corresponds to the
delay experienced by the peer when it joins the channel (i.e., its zapping time), and ii)
DOS(a) that peer a suffers. Observe, however that the relation betweenZ0 (in seconds)
and DOS(a) is complex and not completely predictable, and only simple bounds can
be derived: on the one hand, DOS(a) cannot be smaller than the local buffering time;
on the other hand, chunks accumulate delay at every hop while traversing the overlay
topology. Thus, Z0 ≤ DOS(a) ≤ Z0H , where H is the maximum distance of peers
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from the source on the overlay topology (typically H ≈ logN ). We need to reduce as
much as possible both Z0 and H to achieve a tight control on the buffering time and on
DOS .

Finally, we can define the overall system load ρ as in [20]

ρ =
NVr

bs +
∑

p bp
(1)

where Vr is the video encoding rate, bs the bandwidth available at the source and bp
is the up-link capacity of peer p. Note that if load is smaller than one, peers cannot
saturate their upload capacity.

2.1. Chunk Trading Mechanisms
The signaling mechanism used to exchange chunks is a trading scheme similar to

the one used in other mesh-based P2P-TV systems [21, 22, 23]. A chunk is sent from a
peer to one of its neighbors after a trading phase. In order to avoid idle times and long
periods of inactivity, peer a maintains a certain number of parallel trading threads,
Na. Each of these evolves as follows:
1) Peer a chooses one of its neighbors b and sends it a signaling message, called offer
message, that contains the set of chunks a possesses in its trading window.
2) Upon receiving the offer message, b replies with a select message to request one
desired chunk. Once a chunk has been selected, the receiver sets it as pending until it
is correctly received; a pending chunk cannot be requested again by b and it cannot be
advertised until it has been fully downloaded.
3) When the select message is received by a

a) if a chunk was requested in the select message (positive select), a inserts it in its
chunk transmission queue that is served in a FIFO order.

b) Once b has completely received the selected chunk, it sends an ACK message to
a.

c) When a receives the ACK message, or if no chunk was requested in the select
message (negative select), a can send a new offer message and a new cycle starts.

Peer a is committed to send all requested chunks. Timers protect the waiting for
messages so that in case no reply (or chunk) is received within a timeout, the status is
reset. Fig. 2 represents the signaling messages and chunks exchanged by peer a with
its neighbors over time. In particular, signaling messages/chunks associated to one
active thread are highlighted. Note that all Na trading threads continue these cycles
independent of each other.

Several design choices impact the performance of the trading mechanism: 1) the
criterion to select destination peers for the offer message – known as the “peer selec-
tion”; 2) the strategy according to which peers select chunks to download – known as
the “chunk selection”; 3) the number Na of parallel trading threads peer a handles.

For the peer selection and chunk selection rules we adopt the “Random Peer - Latest
Useful Chunk” policy, which has been shown to provide good performance [9, 24].
According to this policy, 1) peer a chooses the peer b to contact uniformly at random
within the set of its neighbors; 2) peer b always selects the most recent chunk it needs
among the chunks offered by a. As for 3) Na is the key parameter on which we focus
our attention in the next sections.
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3. Rate Controller Design

As already said, it is of paramount importance to promptly adapt the rate at which
new offers are generated so to match peer’s upload available bandwidth. If it is too
small, the peer cannot effectively exploit its upload bandwidth. On the contrary, if the
rate is too large, the bottleneck transmission queue of the peer, typically located at the
ADSL/cable gateway, gets easily congested. This of course induces loss of packets that
have to be recovered through packet and/or chunk based selective ARQ mechanisms.
Resulting lengthy retransmissions would impair the chunk transferring delay.

In the following sections we critically discuss the main design choices for a possible
rate controller. We present two possible schemes that embrace different philosophies.

3.1. Hose Vs End-to-End rate controllers

For what concerns the choice between classical end-to-end and hose (aggregate)
rate controllers, our preference for hose rate controllers is motivated by the following
considerations:

• The system bottleneck is typically located close to the peer, e.g., at the ADSL/cable
up-link. Thus all flows would be bottlenecked at the same point.

• In P2P-TV applications, every peer exchanges simultaneously chunks with sev-
eral tens of other peers in a rather intermittent fashion. In addition, the rate at
which new neighbors are acquired can be very fast [3, 18]. Thus, several con-
current flows are present, and each carries a very bursty traffic, with low average
rate, and maximum rate bounded by the encoding rate. For these reasons, indi-
vidual flows hardly reach a steady state condition (in which the transmission rate
can be effectively controlled). Furthermore, the actual working point results to
be very low.

• Chunk scheduling algorithms determine the way in which the system-wide up-
load bandwidth of peers is shared. End-to-end rate controllers would necessar-
ily interfere in a complex and unpredictable way with the dynamics of chunk
scheduling algorithms. Hose rate controllers represent a much more natural
choice for the P2P-TV applications, because they impose just a limit to the aggre-
gate rate at which chunks can be transmitted at a peer, guaranteeing to the chunk
scheduler the degree of freedom to share the peer bandwidth in an arbitrary way.

While an end-to-end rate controller a la TFRC requires to maintain the status of
each single connection, the hose rate controller can be obtained by controlling the sin-
gle state variable Na, which is the equivalent of the window size in a window protocol.
Na, indeed, represents the maximum allowed number of pending chunks (i.e., chunks
for which an offer has already been issued, but no acknowledgement has still been re-
ceived). The rationale beneath controlling Na is that it regulates the workload of peer
a transmission queue: if Na is too large, the queue gets congested deteriorating system
performance; if it is too small, the queue gets frequently idle, and a fraction of the
upload bandwidth of a is wasted (as depicted in Fig. 2).
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3.2. Delay Based HRC
The basic idea of DB-HRC is rather simple: it adapts Na on the basis of an estima-

tion of the queuing delay incurred by chunks in the transmission queue. If the queuing
delay is large, Na is decreased, and vice-versa. More in detail, the algorithm according
to which Na is made adaptive is the following. (refer to Fig. 2): let Wa be the inter-
nal control variable (that we call window in the following), which takes real values:
Na = max(1, bWac).

For every neighbor peer b, peer a maintains an estimate of the minimum Round
Trip Time, minRTTab. RTT estimate can be computed as the difference between the
time a select message is received and the one the corresponding offer was sent,

RTTab = t
(a)

rx,select − t
(a)

tx,offer (2)

where t(p)

action,type identifies the time of the “action” triggered by the message of “type”

at peer p; action={rx, tx}, type={offer, select, chunk, ack}.
When a receives an acknowledge from b, it obtains a sample of the delayD incurred

by the chunk in the transmission queue, as

D̂ = t
(a)

rx,ack − t
(a)

rx,select −minRTTab. (3)

D̂ is then compared with a prefixed target value, D0, and Wa is updated according to a
simple proportional controller rule:

Wa(n)←Wa(n− 1)−Kp(D̂ −D0) (4)

Na(n)← max(1, bWa(n)c) (5)

D0 represents the target queue delay which can be set in the order of hundreds of ms,
and Kp is the proportionality gain. Interestingly, it is possible to prove that the DB-
HRC controller is stable for a wide set of Kp [25].

We have ∆Na = Na(n) −Na(n − 1). If ∆Na = 0, the number of active threads
is not changed, and peer a restarts the current thread by sending one new offer. If
∆Na ≥ 1, the number of active threads is increased, and peer a sends ∆Na + 1 offers
to its neighbors. At last, if ∆Na ≤ −1, the number of active threads is decreased, and
current thread is stopped (no new offer is sent).

3.2.1. Implementation Issues
The most critical part when undergoing the actual implementation of the DB-HRC

scheme is the estimation of queuing delay (3). Two different cases can be considered
in principle: i) the application can exploit priority mechanisms to differentiate signal-
ing and data information at the ingress to the network, ii) the most challenging and
intriguing case is the one in which no priority is available.

The first scenario is represented in Fig. 2. Here the bottleneck link supports separate
queues: a high priority queue serves signaling packets, and a low priority queue serves
data packets. Signalling packets thus are not delayed by queued chunks. This feature is
offered by most of nowadays ADSL/cable devices that support multimedia services. In
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this case, the estimation of D̂ is straightforward as in (3), while (2) allows to estimate
the RTT.

If no priority policy is provided, measurements include both the queuing delay at
peer a, denoted by D(a), and the queuing delay at b, D(b), i.e., it is only possible for a
to estimate the sum of the queuing delays,

D̂(a+b) = t
(a)

rx,ack − t
(a)

rx,select −minRTTab = D(a) +D(b) (6)

minRTTab can still be estimated as the minimum over all RTT samples (as in Ledbat),
while it is impossible to decouple D(a) and D(b) from D(a+b). The HRC algorithm at
peer a is coupled with the HRC control of all its neighbors.

The reader may be tempted to conclude that in this last scenario the DB-HRC mech-
anism will be hardly able to properly work, and it would be impossible to distinguish
between a local congestion at a and a congestion at neighbor b. However, notice that
the effect of the local congestion at a and the one present at b are differently weighted in
(4). Indeed, only the fraction of delay samplesD(b) related to b are biased by b conges-
tion, while all the samples containD(a) as component. For these reasons the algorithm
is marginally affected by remote congestion at a few neighbors. We support this in-
tuition by experimental evidences. At last, we emphasize that the implementation of
DB-HRC scheme requires to make the system robust to losses of offer/select messages,
through the use of opportune timeouts (set to 1.5 s in current implementation).

In this paper, we focus on the second and more challenging scenario where no
priority support is offered.

3.3. AIMD-HRC
In this case, according to the AIMD philosophy, loss indications are used to control

Na.
To detect losses, a time-out τ is set for every chunk5 that a enqueues in the trans-

mission queue. If the timeout expires before the reception of the corresponding ac-
knowledgement, the chunk is assumed to be lost. The timeout τ must be opportunely
set up to guarantee a prompt reaction to congestion, while avoiding false alarms. For
the sake of simplicity, we chose τ = 1.5 s6.

More in detail, upon acknowledge reception, a increases Wa according to

Wa(n)←Wa(n− 1) +KA, KA > 0 (7)

Instead , upon chunk loss, Wa is reduced according to

Wa(n)← 1

KM
Wa(n− 1), KM > 1 (8)

(7) leads to an approximate additive increase behavior in saturated conditions, i.e.,
when the transmission queue is continuously backlogged and the rate at which chunks

5We recall that our mechanism is designed to operate at chunk level, and not at packet level as in TCP.
6Tuning of timeout can be engineered as in TCP. While this would guarantee prompter loss detection, it

would have no effect on congestion control.
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that are transmitted is determined by the bottleneck queue service rate; in non satu-
rated conditions, i.e., when the chunk transmission rate is constrained by Wa, (7) leads
to a multiplicative increase [26]. Further observe how the additive rate in saturated
conditions is, by construction, proportional to the peer up-link capacity. (8), instead,
guarantees a multiplicative decrease with KM > 1.0.

As in TCP, the AIMD-HRC rate control causes the bottleneck queue to exhibit the
famous saw-tooth behavior alternating periods in which there is congestion (congestion
epochs) to periods in which the queue is depleted because of window reductions. For
effect of chunk loss burstiness, multiple chunks are typically lost within a congestion
epoch, which would cause multiple window decreases. To prevent cascades of window
reductions, we impose that decrease actions are inhibited for a time interval ∆Tloss
after the first reduction, thus ignoring further loss indications. ∆Tloss must be properly
match the typical duration of transmission queue congestion epochs.

3.4. Limiting the value of Na at low loads
An important issue may arise at low loads. According to (1), if ρ < 1, any allo-

cation of upload rate that meets the total download rate demand would be a feasible
solution. Thus, peers may not be able to sustain a sufficient high transmission rate
either to meet the D0 target (DB-HRC) or to congest the transmission queue (AIMD-
HRC). In this case the number of offers Na will potentially grow large, inducing a
useless increase of the signaling traffic, and eventually endangering the overall system
performance. To avoid this phenomenon, it is desirable to clip the value of Na with
some ingenuity. Indeed, since typical expected values of Na heavily depends from a
set of a priori unpredictable parameters, such as peer’s upload bandwidth and chunk
size, it is difficult to choose an a priori maximum value for Na.

We propose to use the ratio pa between the received positive selects and the total
offers issued by a. This ratio becomes significantly smaller than 1 when the peer is not
able to effectively offer useful chunks, i.e., when there is a surplus of capacity in the
systems and chunks are available at many neighbors.

In more details, we clip Wa (and consequently Na) when the ratio pa falls below a
given threshold, p0. That is:

Wa(n)←
{

W ′a(n) if pa > p0

min(W ′a(n),Wa(n− 1)) if pa ≤ p0
(9)

where W ′a(n) is computed according either to DB-HRC update rule (4) or the AIMD-
HRC ones, (7) and (8), and pa is obtained by using a standard sliding window tech-
nique.

3.5. Delay based Vs AIMD: a critical discussion of Pros and Cons
DB-HRC and AIMD-HRC embrace two rather different and complementary philoso-

phies to control rate at which peers send their data. When ρ < 1 and pa > p0, i.e.,
when the HRC is called to effectively control each peer upload rate, DB-HRC brings
the system to work at an operating point in which no transmission queues are over-
loaded. This would be in principle a desirable property that guarantee a better control
of the chunk transfer delay (which plays a fundamental rule in chunk distribution) with
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respect to AIMD-HRC. Considering the bufferbloat phenomenon, i.e., the excessive
presence of buffering at networking devices that can induce queuing delay to grow up
to 10 s [17], tightly controlling the delay looks like an appealing opportunity. Under
AIMD-HRC, indeed, the transmission queue of peers is subject to the classical saw-
tooth effect induced by AIMD sources, periodically exhibiting congestion epochs. As a
consequence the chunk transfer delay is not well controlled by the AIMD-HRC mech-
anism as by DB-HRC. This could induce some performance degradation, especially
when the sliding window Z0 is very tight (and large buffers are encountered).

On the contrary, when the system has to compete with TCP flows, DB-HRC re-
nounces to compete for the bandwidth while AIMD-HRC, if properly set, exhibits a
more aggressive behavior that place it in a better position to rival TCP. However, in
severely congested scenarios (ρ > 1), for effect of chunk losses and excessive delay,
P2P-TV applications experience performance degradations that make the content al-
most non usable by the users. Thus it is questionable whether it is really beneficial to
aggressively compete for upload capacity. We will discuss these issues in the experi-
mental evaluation (Sec. 5).

4. Algorithm Behavior - Introductory Results

To better clarify how hose rate control schemes works, in this section, we report
an introductory set of experimental results. We consider a simple overlay topology in
which the source s is connected to a HRC-enabled peer a which in turn is connected
to 30 other peers so that a upload capacity is used to serve them. We then focus on the
upload link of a where we impose known conditions. In particular, the Linux Traffic
Control tool tc, is used to shape the link capacity, queue size (fixed to 500ms) and
latency (fixed to 25ms). The iperf traffic generator is used to inject competing TCP
traffic flow. Video rate is Vr = 0.8Mb/s, encoded using H.264/AVC standard codec.

4.1. Transient analysis

Fig. 3 (for DB-HRC) and Fig. 4 (for AIMD-HRC) report the bottleneck link traffic
in the top plot, the evolution of the D̂(a+b) in the second plot, the evolution of Na (left
y-axis) and pa (right y-axis) in the third plot, and the cumulative number of timeouts
in the bottom plot. For DB-HRC, the target delay D0 = 50 ms, while Kp = 0.98. For
AIMD-HRC we use KA = 0.1, KM = 1.5, ∆Tloss = 1.5 s, Tack = 1.5 s. Finally,
p0 = 0.5 in both cases.

Clipping state - During the first 60 s, a up-link capacity is set to 40 Mb/s, i.e., large
enough to transmit all required chunks to all 30 connected leechers. a thus cannot
saturate its upload bandwidth and Na regulation is mainly determined by the clipping
mechanism associated to pa that prevents Na to grow without control. Notice the vari-
ability of offered traffic around the average nominal upload traffic of 30Vr ≈ 32 Mb/s
(excluding overheads) which is due to the burstiness of the encoded video stream.

Decrease of available capacity - a up-link capacity is decreased first to 25 Mb/s
at time t = 60 s, then to 15 Mb/s at time t = 120 s, and finally to 5 Mb/s only at
time t = 180 s. In all cases, this results less than the required capacity, so that the
offered traffic saturates the available capacity, and pa goes to 1. Both algorithms react
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Figure 3: DB-HRC withD0 = 50 ms; from the top: bottleneck link traffic, D̂(a+b),Na and pa, cumulative
number of timeouts.

to the various decreases by reducing Na. After each bandwidth abrupt decrease, a tem-
porarily congestion is experienced, which is reflected by the burst of threads timeouts
caused by the loss of chunks. Both algorithms react to the new bandwidth conditions
quite fast. After such transient phase, observe how DB-HRC adapts Na to the new
situation, sharply controlling the (average) chunk delay so that the queue can absorb
the eventual burst of packets due to large chunks. Practically no loss (no timeouts)
are registered. On the contrary, AIMD-HRC exhibits the classical saw-tooth behavior
leading to periodic congestion epochs, reflected by a timeout expiration process which
exhibits a strong burstiness. As said, this burstiness constitutes a challenge for the
rate control scheme, which needs to be protected from consecutive timeouts by setting
∆Tloss = 1.5 s.
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Figure 4: AIMD-HRC with KA = 0.1, KM = 1.5; from the top: bottleneck link traffic, D̂(a+b), Na and
pa, cumulative number of timeouts.

Competing TCP traffic - At time t = 240 s the full 40 Mb/s up-link bandwidth
is available again; however, at t = 250 s a greedy TCP flow starts competing for the
available upload bandwidth. Observe how DB-HRC reduces Na to the minimum uni-
tary value as expected, while AIMD-HRC is tries to compete against TCP (whose share
of capacity is reported as well in top plot). Whereas AIMD-HRC vies obtaining some
bandwidth share, DB-HRC renounces de facto to compete with TCP. Note however
that AIMD-HRC tends to obtain less bandwidth than TCP for this parameters setting.

Fig. 5 shows the behavior of a more aggressive parameter setting for AIMD-HRC:
KA = 0.5, KM = 2.0. This results in more frequent increase/decrease oscillations,
which causes a higher frequency of congestion epochs (notice Na curve, and the num-
ber of suffered timeouts). AIMD-HRC obtains thus larger share of capacity when
competing against TCP traffic, at the cost of significantly increasing congestion at the
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Figure 5: AIMD-HRC with KA = 0.5, KM = 2.0; from the top: bottleneck link traffic, D̂(a+b), Na and
pa, cumulative number of timeouts.

queue. In turn, the number of timeout expirations grows much faster, especially when
no TCP flow is active. In the next section we will better investigate which are the pos-
sible negative consequences on the user perceived QoE when adopting a too aggressive
AIMD-HRC scheme.

Our experiments with a third HRC driven by a TRFC-like controller (TFRC-HRC)
show very poor performance (available in the supplemental material of this paper).
Indeed, TFRC is designed to work for a context in which the the bandwidth bottleneck
is in the network backbone. In such a context, the packet loss process can be considered
as an exogenous process (i.e. a process whose dynamics are independent from the
behavior of the single controlled source). In our case, the bottleneck is represented
by the peer up-link, where multiplexing is very limited, and the packet loss process is
induced by the sender behavior (self induced congestion). This makes hard formula-
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Figure 6: Evolution of the transmitted rate when an increasing number of neighbors gets congested. from the
top: DB-HRC withD0 = 50 ms, AIMD-HRC withKA = 0.5, KM = 2.0, DB-HRC withD0 = 150 ms.

based congestion control like TFRC to work.

4.2. Impact of congestion at neighbors

Now we move to a slightly different scenario in which we vary a percentage PCN of
a neighbors which are affected by congestion on their up-link. Congestion is induced
by competing greedy TCP flows sending data from the peer to a server. The goal is
to verify whether DB-HRC and AIMD-HRC are able to discriminate between local
and remote congestion and thus to exploit the upload bandwidth at peer a even when
some of its neighbors are congested. As already explained, this scenario appears to be
particularly critical for DB-HRC whose delay samples in (6) are directly affected by
the congestion at neighbors. Top and middle plots of Fig. 6 reports the transmission
rate for peer a for DB-HRC and AIMD-HRC, respectively. We have chosen the most
aggressive parameter setting for AIMD-HRC. Available capacity is 40 Mb/s. For the
first 40 s no neighbor peers are congested (PCN = 0.0), then the fraction of congested
neighbors PCN increases so that PCN = {0.1, 0.2, 0.3} at time t = {40, 100, 160} s;
finally, at t = 220 s, PCN = 0.0.

Observe that congestion at neighbors does not significantly affects a transmission
rate, as long as PCN keeps smaller than 0.3. Beyond this point, D(a+b) is strongly af-
fected by the congestion at neighbors; thus, a reduces its transmission rate, maintaining
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DB-HRC AIMD-HRC Shared
Parameter D0 Kp KA KM ∆Tloss Tack p0 Z0

Value 150-250 ms 0.98 ms−1 0.3-0.5 1.5-2.0 1.5 s 1.5 s 0.5 50 (2 s) - 150 (6 s)

Table 1: Default values for DB-HRC and AIMD-HRC parameters.

only Na ' 1 offer thread.
Interestingly, AIMD-HRC exhibits similar impairment, even if in a much less evi-

dent way. This is due losses of acknowledgement messages on the congested reverse
paths, which causes timeouts to be triggered7. As depicted in the bottom plot of Fig. 6,
the robustness of DB-HRC can be improved by increasing D0 to 150 ms. Indeed, as-
suming D(a) ≈ 0 (no local congestion) and D(b) ≤ 500 ms (remote congestion with
500 ms queue size), we have that D(a+b) ≈ PCND

b ms < D0.

4.3. Final Remarks

In these simple introductory results, both DB-HRC and AIMD-HRC achieve the
goal of adapting the chunk offering rate to the available bandwidth. When competing
with TCP traffic, DB-HRC completely surrenders, whilst AIMD-HRC can maintain
some bandwidth share, but tends to obtain less bandwidth than TCP.

5. Performance Comparison

In this section, we compare the performance of DB-HRC and AIMD-HRC in more
significant scenarios. We start presenting results obtained over an emulated test-bed
(Sec. 5.1, 5.4 and 5.4), then we move to a real Internet scenario (Sec. 5.4).

We emphasize that even if emulated test-bed scenarios may appear somehow arti-
ficial, they allow to have the full control of almost every network parameter (such as
peer upload bandwidth and latency between peer pairs). In such a controlled environ-
ment we run different algorithms exactly in the same conditions obtaining results that
are fully reproducible and directly comparable. On the wild Internet, instead, several
parameters (such as the peer available bandwidth) are out of our control, thus perfor-
mance of algorithms is affected by ”unknown” environmental conditions that make
results not completely reproducible. To increase the reliability of our predictions, all
experiments were repeated 3 times, and averages are considered.
5.1. Emulated scenario - 200 peers

We start by presenting results collected by running the application in a controlled
test-bed composed of 200 PCs. Each PC runs PeerStreamer, so that a swarm of 200
peers is obtained. Each peer’s upload capacity has been artificially limited using the
Linux Traffic Control tool tc: 10% of peers have 5 Mb/s, 35% have 1.6 Mb/s, 35%

7Notice that cumulative/selective acknowledgement policies are not straight-forward to protect from loss
on the return path.
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Figure 7: SSIM vs Video Rate when no, 50%, 100% of peers are affected by competing ON-OFF TCP
sources for Z0 = 50 (on the top) and Z0 = 150 (on the bottom).

have 0.64 Mb/s and 20% have 0.20 Mb/s, corresponding to an average per peer Data-
Link capacity of 1.32 Mb/s. Down-link capacity is 100 Mb/s, i.e., much higher than
the video rate. Latencies among peers randomly varies uniformly in [10, 30] ms (so
that minRTT varies in [20, 60] ms). The Pink of the Aerosmith video (352x240 reso-
lution, 25 fps, H.264/AVC Codec) has been encoded at different rates and “streamed”
over the swarm. The whole video is looped 5 times, for a total duration of 20 m. After
discarding the initial 12 m of each experiment, each peers saves 100 s of the received
frames on disk. Structural Similarity index (SSIM) [27] is then computed against the
original YUV video for each video trace and averaged over all peers. The SSIM is a
highly non linear QoE metric that ranges from 0 to 1. Values higher than 0.95 are con-
sidered equivalent of good quality. Values smaller than 0.9 reflect already poor quality.
For reference, the Encoded Video Quality (EVQ) reports the SSIM as computed at the
source, i.e., considering the impairments due to encoding process, but not the one due
to losses during the transmission. In this scenario, Pbg fraction of peers can be affected
by TCP or UDP traffic competing for peer upload capacity. Interfering traffic follows
an ON-OFF pattern, with ON and OFF periods that are exponentially distributed with
average E[TON ] = 60 s and E[TOFF ] = 120 s.

The results presented in this section constitute a small subset of the overall collected
results, which amount to more than two months of equivalent time of testing. Addi-
tional results are presented in [25]. Both DB-HRC and AIMD-HRC have been tested
under several parameter settings. As a result of our campaign, we observed that: perfor-
mance of DB-HRC is weakly sensitive to the parameter settings; reasonable choices of
D0 in the range [150, 300] ms produce similar results in most of the cases of interests.
We present results for two different DB-HRC configurations in which D0 = 150 ms
and D0 = 250 ms respectively. For what concerns the parameter Kp, as long as Kp is
selected sufficiently small (Kp < 1 s−1), the DB-HRC results stable; this is confirmed
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with simple control theoretical arguments, which are not reported for the sake of the
brevity (the interested reader is referred to [25]). We fix Kp = 0.98 ms−1. Parameter
setting for AIMD-HRC is instead much more critical, since the overall performance
of the system is strongly sensitive to choices. In this section we present results for
the two different AIMD-HRC configurations that provided the overall best results. In
the two proposed configurations we have set KA = 0.3, KM = 2.0 and KA = 0.5,
KM = 1.5 respectively. Finally, p0 has little impact on performance, but it greatly
helps in limiting the number of offers when ρ < 1 (see Sec. 5.4). We choose p0 = 0.5
for all experiments. Employed algorithm parameters are summarized in Table 1.

Fig.7 reports the average SSIM experienced by peers vs the video rate. Curves
within each plot refer to different rate control schemes. Different plots refer to different
network scenarios and Z0 settings, with Z0 = 50 (2 s) and Z0 = 150 (6 s) on the top
and bottom row, respectively.

We start considering left plots that refer to a scenario with no competing traffic.
Observe that DB-HRC (especially when we set D0 = 150 ms) in general outperforms
AIMD-HRC for Z0 = 50 (top plot). Indeed DB guarantees reasonable video quality
(SSIM above 0.95) for video rate smaller or equal than 1.1 Mb/s (we recall that the
average peer upload bandwidth bandwidth is approximately 1.32 Mb/s at Data-Link
layer); AIMD-HRC performs worse, dropping below 0.95 already for Vr = 1 Mb/s.
This is not surprising in light of the fact that under AIMD-HRC, peers greedily try to
get bandwidth (even in absence of competing traffic) congesting their up-link. This
leads to an increase of the chunk delivery delay, possibly inducing unnecessary chunk
losses due to missed deadline. Increasing Z0 to 150, the overall QoE performance
significantly improves (so that the QoE matches the EVQ for Vr up to 1 Mb/s). This
happens at the cost of tolerating a significantly larger buffering time and total offset
delay. The performance gap between DB-HRC and AIMD-HRC is greatly reduced,
because in this case the DOS constraint is relaxed, and thus achieving a tight control
of chunk delay becomes much less important.

5.2. Impact of TCP competing traffic
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Central and right-most plots in Fig. 7 refer to scenarios in which an increasing frac-
tion of peers, i.e. Pbg , is affected by ON-OFF TCP competing sources. Pbg = 0.5 in
middle plots and 1.0 in right plots. Obviously, the SSIM starts degrading for smaller
values of Vr, i.e., ρ increases due to the reduction of available average capacity. Ob-
serve that, in general, also in these scenarios, which should be in principle more favor-
able to AIMD-HRC, DB-HRC performs rather well and definitely better than AIMD-
HRC when tight delay constraints are imposed (i.e. Z0 = 50). DB-HRC with smaller
target (D0 = 150 ms) achieves better performance in the scenarios with moderate per-
centages of simultaneous peers affected by TCP traffic (Pbg = 0.5), while DB-HRC
with larger target (D0 = 250 ms) behaves better in scenarios in which the average
number of TCP interfering flows increases (Pbg = 1.0). This because higher target de-
lay makes DB-HRC more robust to neighbor congestion effects (as already observed in
the previous section). Turning now our attention to AIMD-HRC, observe that the two
selected configurations provide essentially the same performance; the more aggressive
version of AIMD-HRC (KA = 0.5, KM = 2.0) tends to be preferable compared to
the smoother version (KA = 0.3, KM = 1.5) as the amount of TCP traffic increases
(Pbg = 1.0). Yet the higher greediness of AIMD-HRC does not pay off in terms of
quality when tight delay constraints are imposed (i.e. Z0 = 50): the higher greedi-
ness causes more losses, i.e., reduced useful delivery of timely chunks which overall
provides worse QoE than DB-HRC. When we increase Z0 to 150, the performance
gap between AIMD-HRC and DB-HRC algorithms tend to disappear. Furthermore
AIMD-HRC tends to perform better than DB-HRC in congested scenarios (i.e, for
Vr ≥ 1 Mb/s and Pb = 1) due to its ability to subtract bandwidth to competing TCP
flows. Observe, however, that the overall QoE performance is globally rather bad (be-
low 0.9) in these cases.

As a further proof of the capability of HRC controller of adapting the chunk of-
fering rate to the available up-link capacity, we report in Fig. 8 the average number of
offers in flight E[Na] for all peers involved in our experiment, given the scenario with
Pbg = 0.0 and D0 = 150 ms. Peers were ranked according to their up-link capacity
(peers with large up-link capacity to the left). Observe that DB-HRC tends to better
exploit large bandwidth peers, reducing the stress on peers with lower resources.

5.3. Impact of UDP competing traffic

For completeness, Fig. 9 reports results for a scenario in which each peers shares
its up-link capacity with a competing ON-OFF UDP source that grabs half of the peer
nominal bandwidth when in ON state. In this case, DB-HRC is globally preferable to
AIMD-HRC (especially for Z0 = 50) since peers can quickly adapt their transmission
rate to the available bandwidth left by UDP without greedily generating congestion on
the up-link queue.

These experiment support the intuition that for inelastic P2P-TV applications, with
near real-time constraints, it is hard to find a scenario in which a greedy behavior pro-
vides significant advantages for peers. Indeed when the bandwidth is made scarce
for effect of elastic competing traffic, a greedy behavior does provide some advan-
tage. However, this scenario is unfit for P2P-TV applications whose end-user QoE
would remain in any case unsatisfactory. In less extreme scenarios, greedily competing
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Figure 9: SSIM vs Video Rate when 100% of peers are affected by competing ON-OFF UDP sources for
Z0 = 50 (top plot) and Z0 = 150 (bottom plot).
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Figure 10: Average SSIM versus Vr for Z0 = 50 (left plot) and Z0 = 150 (right plot) on PlanetLab
experiments.
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experiments.

for bandwidth can induce unnecessary losses, and a more graceful rate controller that
avoids transmission queue congestion typically achieves better performance.
5.4. Real Internet Results: PlanetLab

No churning - Now we move to a real Internet scenario. We selected about 500
PlanetLab nodes spread all over the world. Peer upload capacity has been limited by
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Figure 12: Average SSIM versus Vr for Z0 = 50 (left plot) and Z0 = 150 (right plot) on PlanetLab
experiments with churning.

the PeerStreamer embedded rate limiter; 2 classes are present, with half of peers having
2 Mb/s at their up-link, and half with 0.64 Mb/s. Average upload capacity results to
1.32 Mb/s. Observe this is an upper-bound to the actual available peer upload band-
width which may be reduced for effect of competing experiment running on the same
PlanetLab node or due to other bottlenecks on the access links of the node. Similarly,
download capacity and CPU availability at nodes may constitute a bottleneck. To avoid
extreme outliers, we run a preliminary experiment with Vr = 0.4 Mb/s to discard the
most congested and unreliable nodes, i.e., peers that received less than 90% of chunks
even with this small ρ. 410 PlanetLab nodes were then selected.

Fig. 10 reports the average SSIM for different video rates for Z0 = 50 (2 s) and
Z0 = 150 (6 s), on left and right plots, respectively. Curves refer to the more aggressive
version of AIMD-HRC (KA = 0.5, KM = 2.0), while D0 = 250 ms is considered for
DB-HRC. Observe that for moderate Vr < 1.0 Mb/s (i.e., ρ < 1) there is little differ-
ences among the two cases, while AIMD-HRC takes the edge for Vr ≥ 1.0 Mb/s. This
is not surprising, since in congested scenario AIMD-HRC competes more aggressively
with other traffic, getting a higher share than DB-HRC. Yet, in these conditions the QoE
guaranteed to end-users is in any-case far from optimal. For completeness, Fig. 11 de-
tails each peer’s individual SSIM performance for Vr = 0.8 Mb/s and Vr = 1.0 Mb/s,
on left and right plot, respectively, and Z0 = 150 for both. Peers have been sorted in
decreasing SSIM to ease visualization. Observe that for Vr = 0.8 Mb/s, almost the to-
tality of peers experiences the best QoE. Only some losses are experienced by a small
fraction of peers (about 5 % of peers with DB-HRC, 15% with AIMD-HRC) whose
SSIM is degraded. In this scenario DB-HRC is preferable. For Vr = 1.0 Mb/s, about
50% of peers already experiences significant losses with both controllers; AIMD-HRC
provides slightly better QoE in this case.

Impact of churning - At last we consider a scenario in which peers are subject to
churning to observe any negative impact on the performance of our schemes. In this
scenario, one forth of peers are coming and going following an ON-OFF Markovian
pattern. Churning peers’ average sojourn time is 120 s. Off periods are set to only 10 s
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Figure 13: SSIM vs Z0 when of 50% of peers is affected by competing ON-OFF TCP sources for Vr =
0.8Mb/s (left) and Vr = 1.0Mb/s (right).

to maximize the number of peers in the system8.
We emphasize that SSIM can be computed only for the fraction of peers which

is stable. Fig. 12 reports the results for the two considered algorithms versus Vr for
Z0 = 50 (left plot) and Z0 = 150 (right plot). Observe that the effect of churning
does not significantly change the way in which the HRC algorithms behave; similar
considerations with respect to the previous case can be drawn. However a generalized
performance degradation can be noticed by comparing Fig. 12 with Fig. 10. This is
mostly unrelated to HRC since it is expected to impact overlay topology and scheduling
algorithms effectiveness.

5.5. Final Remarks
From our experiments, we can conclude that DB-HRC and AIMD-HRC achieve

similar performance when the constraints imposed by the total offset delay (i.e. the
buffering time) are relaxed. In presence of tighter constraints, and when competing
with UDP traffic DB-HRC is the preferable choice. When competing with TCP traffic
(both in our test-bed and in the real Internet9) AIMD-HRC tends to perform better, but
in a region in which the overall QoE is poor.

6. Sensitivity to Parameters and Scales

6.1. Impact of Z0

To provide a more complete view of the impact of Z0 parameter, Fig. 13 reports
the average SSIM vs Z0. For the sake of clarity, the latter is expressed in number of
chunks with the corresponding amount of buffering time within parentheses.

8When a peer enters the overlay after an off period, it takes a different ID.
9Notice that in this case the competing traffic is given by the natural working of the Internet, i.e., traffic

generated by Internet users, that we expect to be largely composed by TCP.
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Figure 14: Average SSIM when increasing the number of peers in the swarmN . Vr = 1.3 Mb/s, Z0 = 150
(6 s).

We report results for two configurations of DB-HRC and one configuration of
AIMD-HRC. We consider a scenario in which Pbg = 0.5 (i.e., 50% peers compet-
ing with ON-OFF TCP sources). Left plot of Fig. 13 refers to Vr = 0.8 Mb/s, while
Vr = 1.0 Mb/s is considered on right plot. Results confirm the expected intuition:
when achieving a tight control on the chunk transfer time is of paramount impor-
tance, i.e., Z0

10 forced small, DB-HRC outperforms AIMD-HRC, and a smaller tar-
get (D0 = 150 ms) provides better performance than the more aggressive settings
(D0 = 250 ms). As the Z0 constraint is relaxed and larger delays are tolerated, the per-
formance gap between DB-HRC and AIMD-HRC tends to vanish, and more aggressive
settings (DB-HRC with D0 = 250 ms) guarantees better overall performance.

These figures clearly enlighten that a challenging issue for P2P-TV designers is to
find a reasonable compromise between the opposite needs of guaranteeing good QoE
performance while keeping the real-time delay as short as possible.

6.2. Scaling the emulated scenario up to 1800 peers.

Fig. 14 shows the average SSIM for increasing number of peers N for DB-HRC
(D0 = 150 ms) and AIMD-HRC (KA = 0.5, KM = 2.0). In this scenario, each
PC runs from 1 to 9 PeerStreamer instances, thus the swarm size varies from 200 to
1800 total peers11. To limit the up-link capacity, we adopt the rate limiter embedded
in PeerStreamer. The bandwidth distribution is heterogeneous as described in previous
section, but the available capacity results constrained at the application layer and not
at the Data-Link layer as before, allowing for a slightly higher average total upload
capacity. There is no competing traffic (Pbg = 0.0), Z0 = 150 (6 s), and Vr =
1.3 Mb/s, corresponding to nominal ρ = 0.98, a rather critical scenario. Result shows
that the system is able to practically deliver very good performance for ρ very close to
1. As expected, the average QoE perceived by users is substantially independent from

10Observe that in general all peers participating to the swarm share the same Z0.
11Instantiating more than 9 PeerStreamer per PC causes congestion on the local O.S.
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N , with a marginal decrease for larger population (related to the increase of number
of hops in the overlay). In general, observe again that DB-HRC performs better than
AIMD-HRC since it tries its best to avoid overflowing the transmission queue at peers.

6.3. Upload capacity heterogeneity.

The heterogeneity of the peers in terms of upload capacity has in general some im-
pact on the QoE which is perceived by the users. This is confirmed by Fig. 15 where
peers are ranked according to their upload capacity (peers with larger upload capacity
to the left) and which reports the per peer SSIM. Experiment refers to a scenario where
Vr = 1.3Mb/s, corresponding to a system load ρ close to 1. Observe that peers whose
upload capacity is poorer experience more congestion at the uplink, and thus encounter
some difficulties at replying to offer messages promoting new chunks. However, ob-
serve that both the HRC controllers are affected by this effect, being AIMD-HRC and
DB-HRC showing very similar patterns. This demonstrates that the difference in per-
formance between the two HRC controllers is not affected by the upload capacity dis-
tribution, and, therefore, the results presented in this work are not biased.
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Figure 15: Per peer SSIM for Vr = 1.3Mb/s (ρ = 0.98) in controlled test-bed. Peers are ranked according to
their upload capacity. Z0 = 150.

6.4. Signalling overhead.

One important aspect of a P2P-TV system is the evaluation of signaling overhead
that is required to deliver the video content. In our case, both the overlay maintenance
and trading scheme require peers to exchange signaling messages. Among the two,
the second one is expected to be more critical. Notice that when ρ < 1, overhead is
potentially not critical, and when ρ = 0.98 as in Fig. 14, we have already observed
that the system provides overall excellent performance. Yet, HRC entails a mechanism
to self limit the amount of offers which depends on p0 - see Sec 3.4. We thus run a
set of experiments to gauge the percentage of overhead that is required to execute the
offer-select scheme. Details can be found in [25]. Overall, when ρ approaches 1, the
overhead (in bytes) never exceed 5-10%. When ρ is small, the clipping effect due to
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Figure 16: SSIM vs Video Rate comparison between DB-HRC and DB-AIMD, when adopting different
chunk scheduling policies: “Random Useful” (left), “Latest Useful Video-Aware” (center) and “Random
Useful Video-Aware” (right). Z0 = 150.

p0 successfully limits the signaling impact which decreases with increasing p0. Values
in the range 0.4 ≤ p0 ≤ 0.8 have little impact on the QoE, and guarantee that the
overhead is limited to 30% - 15% for Vr = 0.6 Mb/s.
6.5. Impact of chunk scheduling policies

Finally, the reader can argue that the performance of the transmission rate con-
trollers may be different for different peer and chunk scheduling policies running above
it. We thus conclude our experimental campaign showing that the relative performance
of the transmission control mechanisms proposed in this paper are independent on the
logic adopted by the chunk scheduling algorithms.

We focus on the impact of enhanced and well-understood chunk scheduling policies
that have been proposed in the literature [9, 24, 28]. Implementing them is a fairly
simple task in PeerStreamer. We thus show results obtained comparing different chunk
schedulers on the top of both DB-HRC and AIMD-HRC.

We consider the following four different chunk scheduling policies:

1. “Latest Useful” (LU) - already adopted in experiments shown in previous sec-
tions: a peer selects the most recent chunk (i.e., with the largest sequence num-
ber) among the useful chunks offered by a neighbor.

2. “Random Useful Chunk” (RU): a peer selects at random a chunk among the
useful chunks offered by a neighbor.

3. “Latest Useful Video-Aware Chunk” (LUV): for each frame class (I, P, B), a peer
selects the latest-useful chunks defining the set LUV = {Ilu, Plu, Blu}. Then, a
weighted random choice is performed to select one chunk from LUV . Weights
are proportional to the importance of the frame type, i.e., (WI = 5, WP =
2, WB = 1), so that higher preference is given to the most recent chunk carrying
an I-frame [29].

4. “Random Useful Video-Aware Chunk” (RUV): useful chunks form the setRUV ,
in which each chunk is weighted based on the type of frame it carries (WI =
5, WP = 2, WB = 1). Then, one chunk is selected using a weighted random
choice among chunks in RUV .

We run experiments in our controlled environment as considered in Sec. 5.1 (
Pbg = 0.0, i.e., no background traffic) and compute the resulting SSIM for both DB-
HRC (D0 = 250ms) and AIMD-HRC (KA = 0.5, KM = 2.0). Results are plotted in
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Fig. 16 for the three new schedulers (since LU has been already studied in the previ-
ous sections). In this scenario, DB-HRC performs better than AIMD-HRC, confirming
results reported in Fig. 7. While the chunk schedulers do have an impact on absolute
performance (with LUV offering the best results), the ranking is respected indepen-
dently on which chunk scheduler algorithm is adopted. This confirms that the hose rate
controller can be adopted on the top of different chunk schedulers with good perfor-
mance.

6.6. Final Remarks

From the results presented in this section, we can conclude that DB-HRC outper-
forms AIMD-HRC when the total offset delay is above 3s in the scenario considered in
Sec. 5.4. Moreover, the difference in performance between DB-HRC and AIMD-HRC
is independent from i) the number of peers involved in the swarm, ii) from the kind of
chunk scheduler that is built upon them and iii) the peer upload capacity distribution.

7. Related Works

In P2P-TV systems chunks present a smaller size with respect to other P2P appli-
cations, and UDP is typically preferred by commercial solutions [2, 3, 4, 5]. Handling
smaller chunks allows to enforce serial chunk packet transmission and to avoid unnec-
essary delays due to TCP retransmission and congestion control. However, adopting
UDP at transport level poses the problem of how to regulate the amount of information
a peer can transmit, since the download rate in P2P-TV systems is in all cases limited
by the video stream rate. Controlling therefore the up-link bandwidth allocation is a
key problem.

However, many works in the literature consider the general problem of optimizing
the resource allocation in media streaming [30, 31, 32]. This problem is commonly
known with the name of rate allocation, but with different meaning [33]: the first one,
mostly signal-processing oriented, focuses on the problem of allocating the bitrate dur-
ing source and channel coding phases, with the objective of optimizing the quality of
the reconstructed video. The second one, is devoted to the problem of exploiting the
available bandwidth, with the objective of maximizing some utility function. This work
clearly falls in the latter, more network oriented, category. However, all the controllers
proposed in this branch do not fit with the needs of the system we propose: i.e., they
rely on multicast [32], they propose end-to-end rate controllers [30], or they rely on
structured overlays (trees) [33]. In a nutshell, the literature about transmission rate
controllers for mesh-based P2P-TV systems is very limited and we are not aware of
other proposals. This is justified since most existing P2P live video systems do not
consider the sender rate control problem explicitly, and they simply adopt a best-effort
approach. Furthermore, any comparison with other solutions is impracticable, since
popular applications (e.g., PPLive, SopCast, etc.) do not disclose their source code, so
that it is impossible to understand whether they implement any rate controller, and, if
so, which kind. As said, to the best of our knowledge, the only works that explicitly
deal with the issue of regulating the transmission rate of peers in unstructured P2P-TV
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systems are [12, 13]. The algorithm shown in [12] is based on the periodic advertise-
ment of peer’s buffermaps, offered to a subset of the peer’s neighbors. However, the
resulting scheme which assumes essentially homogeneous latencies may be difficult
to implement in practice. The transmission rate control proposed in [13] represents a
preliminary performance evaluation work about Hose Rate Control. The delay-based
HRC version is compared against fixed naive schemes and a comprehensive compar-
ison with loss-based schemes is missing. In this paper we fill this gap: we present
results obtained from experimental test-beds run both on PlanetLab and in a controlled
environment to compare a less-than-best-effort philosophy (DB-HRC) with a TCP-
competitive loss-based one (AIMD-HRC).

About congestion control protocols, reader may refer to Ledbat [14] and TCP-
Vegas [34] as notable examples of delay-based approaches. About loss-based conges-
tion controllers, instead, many works have been proposed, from early proposals such as
TCP-Reno and TCP-Sack to more recent solutions like TCP-Cubic [35]. A specific so-
lution for media streaming is represented by TFRC [16] whose transmission controller
built at application level guarantees a smooth sending rate and a fair competition with
TCP sources. However, all these solutions rely on some end-to-end rate regulation
mechanism and, as shown in 3.1, this makes them hardly adequate for live P2P-TV
applications.

Common assumptions in literature about P2P-TV systems are that i) the main
bottleneck to system performance is given by the upload capacity of peers, ii) peers
are expected to have homogeneous and stable-in-time upload bandwidths, and iii)
each peer is assumed to have a perfect up-to-date view of the internal state of other
peers [7, 8, 9, 10]. While assumption i) is often met in practice, ii) is unrealistic since
peers are distributed in heterogeneous capacity scenarios and, moreover, available up-
load bandwidth varies in time due to user’s activity. Even assumption iii) is unfeasible
in practice, since peers have to face with latencies separating each other.

Few papers focus on the impact of peers bandwidth heterogeneity and how it can
be exploited to improve system performance [10, 6, 36]. How the latency can impact
on system performance is a problem that has been studied through a simple model
corroborated by real measurements in PlanetLab in [21]. The authors propose a sys-
tem that overcomes the effect of latency by exchanging state information via signaling
messages. Little description is however given about the implemented signaling mech-
anisms details. In [28] and [19] we also evaluated the impact of latency on system
performance, using a non-adaptive signaling mechanism. Considering then both peers
heterogeneity and latencies, an accurate design of the signaling mechanism is manda-
tory.

8. Conclusions

In this paper we have addressed issues related to how to design simple and effi-
cient rate controller mechanisms for P2P-TV applications. Given the almost un-elastic
video-rate, and non greediness of receiving peers, transmission rate controllers for P2P-
TV are intrinsically different from P2P file sharing applications. We have discussed
and motivated all the design choices proposing two simple aggregate rate controller
schemes that embrace two rather different philosophies. The first scheme DB-HRC
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attempts a tight control of the transmission queue delay, the second AIMD-HRC mim-
ics the behavior of TCP falling in the class of the Additive Increase Multiplicative
Decrease (AIMD) schemes.

Our main conclusions are:

• Having a tight control of the chunk delivery delay is of fundamental importance
when the buffering time at peers is tightly constrained (smaller than 5 s). In this
conditions DB-HRC scheme is in general preferable to AIMD-HRC, leading to
better global QoE performance. This because delay based schemes are able to
gently adapt the transmission rate of peers to the available bandwidth without
congesting the up-link, and thus keeping the chunk transfer time under control.

• The performance gap between AIMD-HRC and DB-HRC tends to vanish when
the constraints on the buffering time are relaxed, i.e., buffering time is set greater
or equal than 5 seconds.

In conclusion, we believe that P2P-TV designers should target non extremely ad-
verse scenarios where enough bandwidth is globally available to the application even
if a fraction of the peers may experience congestion due to crossing traffic; in such
conditions DB-HRC rate control appears preferable to AIMD-HRC, as confirmed by
our experimental results.
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