
A Mobile Code Bundle Extension for Application-defined Routing in Delay and
Disruption Tolerant Networking

Carlos Borregoa,∗, Sergi Roblesa, Angela Fabreguesa, Adria Sánchez-Carmonaa

aDepartament d’Enginyeria de la Informació i de les Comunicacions
Universitat Autònoma de Barcelona

Barcelona, Spain

Abstract

In this paper, we introduce software code to improve Delay and Disruption Tolerant Networking (DTN) performance.
DTN is extremely useful when source and destination nodes are intermittently connected. DTN implementations use
application-specific routing algorithms to overcome those limitations. However, current implementations do not support
the concurrent execution of several routing algorithms. In this paper, we contribute to this issue providing a solution
that consists on extending the messages being communicated by incorporating software code for forwarding, lifetime
control and prioritisation purposes. Our proposal stems from the idea of moving the routing algorithms from the host
to the message. This solution is compatible with Bundle Protocol (BP) and facilitates the deployment of applications
with new routing needs. A real case study based on an emergency scenario is presented to provide details of a real
implementation. Several simulations are presented to prove the feasibility and usability of the system and to analyse its
performance in comparison to state-of-the-art approaches.

Keywords: Active-DTN, aDTN, networking, DTN, routing, Bundle Protocol, Metadata Extension Block, mobile-code,
disaster recovery

1. Introduction

Portable devices such as mobile phones or tablets are
widely used in daily life. They are generally equipped with
wireless-enabled communication, GPS receivers and/or
touch screens. The existence of these devices has improved
outdoor applications in a great variety of situations. Par-
ticularly, they can directly connect with each other. The
most popular network configurations for this kind of con-
nections are Ad hoc and Mobile Ad hoc (MANET) [4].
This kind of configurations does not require other infras-
tructure than the connected devices themselves. New com-
munication paradigms are emerging to fill the void for
some specific settings not covered by Ad hoc and MANET.
This is the case of Delay and Disruption Tolerant Network-
ing (DTN) RFC 4838 [15].

DTN implementations are extremely useful when no
concomitant network links connect the source and the des-
tination nodes at transmission time. This is typical in
emergency and disaster recovery scenarios where the con-
ventional network infrastructure collapses. It is also com-
mon in the space and in undeveloped areas where no con-
ventional network is available. Ad hoc communications

∗Corresponding author
Email addresses: cborrego@deic.uab.cat (Carlos Borrego),

sergi.robles@uab.cat (Sergi Robles), fabregues@deic.uab.cat
(Angela Fabregues), adria.sanchez@deic.uab.cat (Adria
Sánchez-Carmona)

are defined when nodes keep connected solely during mes-
sage transmission. This is also the case of MANET. The
capability of DTN to work with intermittently connected
nodes makes it suitable for scenarios like the previously
described. The lack of infrastructure requirements makes
DTN applicable to restoring network connectivity even co-
existing with other networking solutions. DTN approaches
provide a cheap, easy and ready-to-use deployment.

DTN has strong foundations such as the Bundle Proto-
col (BP), RFC 5050 [46]. Many groups have been working
on their formalities for several years [22, 38]. Moreover,
NASA is using DTN in the International Space Station
[16]. However, there are still a number of issues to be
solved being routing one of the most problematic. We
consider routing as the process of selecting which messages
are to be transmitted (prioritisation and lifetime control)
and where to (forwarding). These issues need innovative
solutions that have not been normally used on the Inter-
net. The rationale for this is that applications running
on such poorly connected networks require different rout-
ing algorithms for their specific problems. In contrast to
what happens on the Internet, no general purpose routing
algorithms exist which satisfy the requirements of all appli-
cations at once. One of the design principles of the Delay-
Tolerant Networking Architecture, as defined in [15], is to:

“Provide coarse-grained classes of service, deliv-
ery options, and a way to express the useful life-

July 26, 2016

0001292
Cuadro de texto
This is the author's version of a work that was accepted for publication in Computer networks (Ed. Elsevier). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Borrego, C. at al. “A mobile code bundle extension for application-defined routing in delay and disruption tolerant networking” in Computer networks, vol. 87 (July 2015), p. 57-77. DOI 10.1016/j.commet.2015.05.017

time of data to allow the network to better deliver
data in serving the needs of applications.”

This principle can be summarised as “DTN routing al-
gorithms must be application-defined”. The problem lies
in the fact that with current specifications, any DTN im-
plementation must be devoted to a single application or
at least to applications with similar routing needs. This
often implies requiring to establish a network per applica-
tion. With the aim of following this principle of allowing
application diversity, we propose a solution without the
need for any software deployment or maintenance. Our
proposal incorporates the application-specific routing al-
gorithms as software code to be carried by the messages.
By this way, messages can be forwarded, lifetime controlled
and prioritised using algorithms suitable for the applica-
tions to which they belong. The concept underneath is
mobile code [42], that is, a well-known technology designed
for this purpose.

In this paper, we define Active-DTN, that is, a DTN
where messages have an active decision behaviour instead
of being pure data wrappers. This behaviour makes possi-
ble the use of application-specific routing allowing, at the
same time, the concurrent execution of applications with
different routing needs. Active-DTN follows BP in order
to be compatible with current implementations. It defines
the Mobile code Metadata Extension Block (MMEB) to
allow code to be carried, and three code types are pro-
posed: the forwarding, the lifetime control and the prior-
ity of messages. This paper also provides the description
of aDTN, the first Active-DTN implementation and a dis-
cussion about how can it be applied to a disaster recov-
ery scenario with several rescue teams sharing the same
network. The simulation experiments performed in the
context of disaster recovery show the soundness of this
proposal evaluating several components of Active-DTN.

The paper starts with all the relevant state of the art
information, in Section 2, paying special attention to the
BP. Next, we provide a full description of Active-DTN in
Section 3 and its block definition as MMEB in Section 4.
Section 5 defines three code types for forwarding, lifetime
control and priority. In Section 6, some security consider-
ations are discussed. Then, aDTN, the first Active-DTN
implementation, is explained in Section 7. The paper fol-
lows with a discussion about its applicability to disaster
recovery, in Section 8, followed by Section 9 with the sim-
ulation experiments. Finally, Section 10 contains the con-
clusions.

2. Related Work

There are two main developing paradigms related to
networks characterised by intermittent connectivity, asym-
metric bandwidths, long and variable latency and ambigu-
ous mobility patterns. The most relevant to this study is
the paradigm of the IRTF Delay Tolerant Network Re-

search group.1 They defined the DTN architecture, RFC
4838 [15], and BP, RFC 5050 [46], which are an abstract
service description for the exchange of what they denoted
by bundles in DTN. A bundle is a series of contiguous
data blocks containing enough semantic information to al-
low the application to make progress where an individual
block may not. These bundles carry the application infor-
mation from a source to a destination following the store-
carry-and-forward paradigm. That is: each node stores
application data that can forward whenever the node con-
tacts another node. The bundle architecture behaves as
an overlay network.

The second paradigm belongs to the Haggle project,
[45]. Haggle is a one-way communication architecture
which its main purpose is to take advantage of brief con-
nection opportunities. As in the BP, Haggle proposes so-
lutions to scenarios with intermittent network availability
suffering from long delays by switching messages and per-
forming opportunity-oriented behaviours. Haggle allows
the application messages on every DTN node to choose
among a limited number of routing protocols. These rout-
ing protocols must be previously deployed. However, in
intermittently connected scenarios, this deployment is not
easy to conduct. In DTN, due to the idiosyncrasy of the
network, performing such deployments does not guaran-
tee that when a message arrives at an intermediate node
their optimal routing protocol will be available. Addition-
ally, these nodes are normally hardware-limited and con-
sequently the local maintenance of the different routing
protocols is not easy to perform, as pointed out in studies
like [37].

The two previously introduced paradigms accept dis-
ruptions as the idiosyncrasy of the problem. Contrarily,
studies like [1] and [29] propose different ways of linking
the existing partitioned networks. These proposals may
be useful in some situations. Unfortunately, they are es-
sentially based on adding infrastructure elements to the
network. This is not always feasible due to the complexity
added to the system, the economic cost of the solution, or
the difficulty of finding the best location for the links. Fur-
thermore, most of these proposals fail to consider networks
of mobile elements such as those required by a practical
application such as disaster recovery [34].

Interesting proposals, such as [52], suggest the possible
use of the software-defined network technology (SDN) [48]
in DTN and in particular in emergency scenarios. SDN is
an open standards-based and vendor-neutral network ap-
proach that allows the applications to centrally control the
behaviour of the network in a very agile way. By means
of a logically centralised software program, SDN separates
the network control from the forwarding functions. How-
ever, we believe this could lead to many problems when
applying it directly to DTN because the centrally managed
approach is not appropriate for intermittently connected

1The main site of the IRTF Delay Tolerant Network Research
group is http://www.dtnrg.org.

2

http://www.dtnrg.org

scenarios where the control information is not guaranteed
to be properly distributed.

Some proposals have been published expressing con-
cern about effective buffer management in DTN networks.
Dimitriou et al. propose in [18] a way to accelerate trans-
missions by saving the bundle information in memory. In
[23], Henriksson et al. propose as a routing strategy a
ranking scheme using different classical caching models
such as most recently seen and most frequently seen. In-
troducing queues in the bundle layer is neither a new con-
cept. Lindgren et al. in [33] propose different strategies
to drop bundles in the case the bundle cache buffer be-
comes full. In [27], the authors propose using information
about encounters and locally collected statistics to derive
an optimal policy based on global knowledge about the
network. These strategies mainly use the bundle layer in-
formation. Other layers, like the application layer, should
also be considered because they contain essential informa-
tion. The criteria for bundle ordering or bundle dropping
remain unchanged in each node, and they do not provide
any deployment mechanisms to update these criteria dy-
namically taking into account the local context.

Transmissions in DTN networks can be much slower
than in Internet Protocol (IP) networks. Information sent
on DTN networks can travel from node to node for a very
long period of time until it reaches its final destination.
For some applications, the transmission speed is simply
too slow. For the rest of applications, a priority mecha-
nism among bundles is needed to guarantee an admissible
transmission speed for critical application tasks. Never-
theless, Seligman et al. propose in [47] a solution to han-
dle storage congestion that does not use priority. Instead,
they propose to migrate storage data to neighbours. Other
studies like [17] and [13] attempt to solve the same problem
by proposing a hop-by-hop local-flow control mechanism.
Unfortunately, these proposals take only into account local
information and fail to consider data from other nodes.

Several proposals around the name of active networks
were published during the early nineties. They are in-
cluded in an interesting survey that can be found in [51].
These networks perform user-driven computation at net-
work nodes in order to adapt the network to changing
requirements. This is done by selecting the most suit-
able routing algorithm among a preset set of algorithms
provided by the network. It is an approach towards
application-specific routing although they have never been
applied to DTN.

In [8], the authors propose using context-based informa-
tion for routing in opportunistic networks. These studies
are very interesting but, unfortunately, they do not pro-
vide the different applications that employ the network
with ways of seeing this context information from the ap-
plication perspective.

There are few studies using mobile code in DTN sce-
narios. [10] proposes a new paradigm called store-carry-
process-and-forward that uses mobile code to improve the
integration of wireless sensor networks and grid comput-

ing infrastructures. It proposes the implementation of a
delay tolerant grid service, the computer element, to give
computing access to an intermittently connected wireless
sensor network. The result is an intelligent system which
takes the routing problem, adapts itself dynamically to
intermittent disconnections and improves the coexistence
of multiple grid applications. Moreover, in [31] a simi-
lar proposal is introduced using message relay. Unfortu-
nately, it is an algorithmic approach that does not use any
application-specific routing algorithm. Furthermore, no
architecture details nor implementation details were pro-
vided by the authors.

Additionally, the authors of the present study have re-
cently published in [9] a study which presents a general
purpose, multi-application robot sensor network based on
mobile code. This intelligent system can work in DTN
scenarios. Mobile nodes host software mobile code with
task missions and act as DTN routers following the store-
carry-and-forward paradigm. A proposal for a real-world
application in the context of refugee camp management is
presented as well.

Even though there has been considerable ongoing work
on mobile code and DTN network infrastructure integra-
tion, there is not yet a standard solution flexible enough to
fit the need for application-specific routing algorithm di-
versity in DTN. In this work, we outline a novel approach
to overcoming this limitation and permit application-
specific forwarding, lifetime control, and priority algo-
rithms.

3. Active-DTN

Active-DTN is a DTN where bundles have an active
routing behaviour. Instead of being data wrappers only,
active bundles can carry software code for forwarding, life-
time control or prioritisation purposes. The movement of
software code from a device to another is widely studied
under the concept of mobile code. In Active-DTN, mo-
bile code provides routing flexibility supporting the usage
of many routing algorithms simultaneously. In fact, each
bundle can carry its own routing algorithm to solve these
three DTN issues. In other words, mobile code brings a so-
lution for the need of having at the same time application-
specific forwarding, lifetime control and prioritisation al-
gorithms.

In Active-DTN, when a new application intends to use
the network, no network reconfiguration or deployment is
required. Moreover, in order to be compatible with exist-
ing DTN implementations, Active-DTN satisfies BP and
defines a Metadata Extension Block (MEB) to specify how
software code must be carried by bundles. See Figure 1 for
a graphical representation of Active-DTN as a DTN exten-
sion including related work. Whenever an active bundle
arrives at a non Active-DTN node, the routing code in-
cluded in the active bundle will be ignored. However, the
bundle will be processed in any case using the node’s de-
fault algorithm.

3

Bundle Protocol
Specification
RFC5050

DTN Metadata
Extension Block

RFC6258

DTN Architecture
RFC4838

DTN Bundle Protocol
IANARegistries

RFC6255

Active-DTN Architecture

Mobile-Code DTN
Extension Block

BPExtended
Class of Service

[7]

Bundle Security
Protocol
RFC6257

Figure 1: Active-DTN extends DTN architecture adding more flexi-
bility being fully compatible with current specification of the Bundle
Protocol.

Making a parallelism with the IP and its Routing
Table, we define a data structure to be stored in Active-
DTN nodes for routing purposes. The existence of a
unique and known routing algorithm shared among
all nodes makes the use of the routing table suitable
for IP. Nevertheless, the existence in Active-DTN of
several routing algorithms given by the applications being
launched makes it necessary the use of a more flexible
data structure. We propose the use of a tree structure as
in the specification of the Simple Network Management
Protocol (SNMP) [14] to store routing information. This
tree is a way of representing the hierarchical structure
of the routing information. We denote this tree by
Routing Information Tree (RIT). Every Active-DTN node
has one with different information. This information
is used by the routing software codes to make deci-
sions. Routing data are accessible through paths from the
root of the RIT that we define as productions in ASN.1 [5]:

< relPath >::=< word > | < relPath > “/” < relPath > |“”

< path >::= “/” < relPath >

Figure 2 represents an example of a RIT instance for
a node with a local branch for position sensor data and
the list of neighbour nodes. In addition, three branches
are available for three applications with different routing
needs. Their difference is clear due to the information
stored in each branch. RIT branches are created by the
routing algorithms themselves. The correspondence be-
tween applications and branches shown in Figure 2 is not
necessary. Several applications can share the same routing
algorithm, and thus, share the same RIT branch too. In
fact, the name of the branch does not need to be the name
of the application. It is the case in this figure for sim-
plicity. Similarly, an application can send bundles using
different routing algorithms.

The content of the RIT can be accessed and modified
using primitives like put and get:

• put(path,value) stores a value at the given path of
the RIT. Existing paths are overwritten. Non-existing
paths are created in order to allocate the value.

• value = get(path) returns the value stored at the
path. Non-existing paths imply an empty return.

• set(path,label) sets a label to a given path of the
RIT.

triage
App local

/

messaging
App

envSensing
App

TTR meeting
Prob

last data position name
sensed

neighbors

Figure 2: Example of a RIT instance depicted as a tree diagram with
square boxes for path terms. In this RIT, three different applications
and the local platform store data. Dark squared boxes represent RIT
paths set as announceable.

Routing software codes may tag elements from the RIT
as announceable using the set primitive. By this way, the
applications can choose which routing information may be
shared and spread over the Active-DTN network using
beacon messages (broadcast messages sent to announce
node’s presence).

For an Active-DTN node to be able to execute a for-
warding, lifetime control or prioritisation algorithm, the
node must be able to understand its software code and
know when it should be executed. Multiple software code
languages are currently available in several formats: source
code, bytecode, binary code, etc. Besides, the RIT struc-
ture may be accessed in very different ways. In order to
specify all this information, a software architecture must
be defined identifying all this.

4. Mobile code Metadata Extension Block

The specification of the bundle data block is included
in RFC 5050. RFC 6258 defines how a bundle can be ex-
tended by means of adding a set of Metadata Extension
Blocks (MEB). These extensions have been used in the lit-
erature for security [50] and priority [12] purposes as rep-
resented in Figure 1. Nevertheless, for Active-DTN, what
we need is to be able to include software code in the bundle
to include forwarding, lifetime control, and prioritisation
algorithms. To that end, we define Mobile code Meta-
data Extension Block (MMEB) as a type of MEB with
the necessary fields for the inclusion of software code. In
this section, we provide a general description of the bundle
and MEB data block structure and specify MMEB data
structure.

The purpose of MEBs is to carry additional information
that nodes can use to make processing decisions regarding
bundles. The original bundle structure consists of a pri-
mary block followed by several payload blocks. The pri-

4

mary block contains the source and destination of the bun-
dle using a service based on Endpoint Identifiers (EIDs).
The payload is the data blocks to be transferred. MEBs
extend the original structure of a bundle being included
between the primary and the payload blocks. Figure 3
shows a graphical representation of a MEB illustrating its
inclusion in a bundle.

Metadata Extension
block(s)

Primary block

Metadata Extension
block(s)

Payload block(s)

Type

EID-
refs

Flags

Length

MetadataMetadata
 Type

Figure 3: MEBs fit between the primary and the payload blocks
of a bundle. Short field names are used to simplify its graphical
representation.

The list bellow provides details about MEB fields using
parentheses to remark the short field names included in
Figure 3:

• Block-type (Type) is a single byte. According to RFC
6255 [7], the different Bundle block types have differ-
ent block-type codes starting from the first available.
The block-type code for the metadata block is 0x08.

• Block processing control flags (Flags) is a non-fixed
length field encoded in Self-Delimiting Numeric Val-
ues (SDNV) format as defined in RFC 5050. Thus,
this field follows the bundle definition described in the
BP.

• EID-references (EID-refs) is an optional composite
field that contains references to EIDs. When EIDs are
available, the 6th bit flag denoted by “Block contains
an EID-reference field” must be set. EID-references
allow blocked MEBs to be ignored or employed only
in some specific bundle nodes.

• Block length (Length) is the total MEB length ex-
pressed in SDNV format as defined by the BP for
every block except the primary bundle block.

• Metadata type field (Metadata Type). Encoded in
SDNV, this field indicates which metadata type is to
be used to interpret the metadata field and the EID-
references in the optional Block EID-reference field.

• The metadata (Metadata) is the bundle metadata. Its
format depends on the software architecture that has
been specified in this MEB.

Nevertheless, enabling bundles to carry software code
requires representing this code in a bundle. To that end,
we define MMEB as a new type of MEB and we propose to

allocate the Block-type 0x10 from the Bundle Block Types
Registry defined in RFC 6255.

MMEB splits the metadata field content of MEB defin-
ing several new fields most of them encoded in SDNV for-
mat. We define a CodeType field similar to the Block-type
in MEB to allow the inclusion of three types of routing al-
gorithms in a bundle: forwarding, lifetime control, and
prioritisation.

Figure 4 illustrates the MMEB and its fields using short
names as previously defined. A complete description of the
MMEB fields is included bellow. Notice that short field
names are represented between parentheses. The MMEB
fields are:

Software code 2

Software code 1

AlgType2 Alg Length

Software code 1

EID-refs Length

Type Flags

 SW Len1

AlgType1 Alg Length

 SW Arch1

Metadata
 Type

Software code 1

EID-refs Length

Type Flags

AlgType1 Alg Length

Metadata
 Type

 SW Len1 SW Arch1

 SW Len2 SW Arch2

 SW Len1 SW Arch1

Figure 4: The MMEB splits the metadata field of a MEB. As a re-
sult, several new fields are added that are represented in dark. Two
examples are depicted in this figure. For simplicity, short field names
are used. At the left side of the figure, we represent a MMEB with
a single-algorithm type, a forwarding code, for example. This algo-
rithm type is represented using two different software architectures.
At the right side of the figure, we represent a MMEB with two al-
gorithm types, a forwarding code, and a prioritisation algorithm,
for example. Both algorithm types are represented using the same
software architecture.

• Algorithm type (AlgType). It is a two-byte field rep-
resenting the type of algorithm. Three types of algo-
rithms are described in this article: forwarding, life-
time, and priority.

• Algorithm length (AlgLength) is the total length for
this algorithm expressed in SDNV format. Several
algorithms can be included in one MMEB.

• Software Architecture (SW Arch). It is a two-byte
field which identifies the software architecture as ex-
plained in Section 3. An example value for the Soft-
ware Architecture field could be aDTN 1.0 platform, a
software architecture that provides specific functions
to access information such as the RIT, the format of

5

the software code or how to access the list of neigh-
bours in order to implement the different algorithm
types.

• Software code length (SW Len) is the length of the
Software code field expressed in SDNV format.

• Software code (Software code) It is a field with vari-
able length. This field contains the software code it-
self.

As introduced in Section 3, the software code has access
to all the resources accessible by the node using the RIT
functions provided by the software architecture. For secu-
rity reasons, constrained access may be applied so that, for
instance, a software code would have access only to partic-
ular branches in the RIT. In [43], the research group of the
authors of this paper has already presented an identity-
based access control system for code-contained bundles.
This system uses bundle software code hashes to give ac-
cess to keys that allow partial access to the RIT. Security
services provided are confidentiality, integrity, and indi-
rectly authenticity.

Figure 5: Content of a bundle with a MMEB routing extension as
shown by the Wireshark application. A simple epidemic forwarding
software code can be read at the bottom part of the figure.

In Figure 5, a bundle is captured by the Wireshark net-
work protocol analyser application [39]2 and its MMEB
is shown containing a classic epidemic forwarding algo-
rithm.

5. MMEB Code Types

This work is about allowing forwarding, lifetime con-
trol and prioritisation diversity by including the routing
software code into bundles. As introduced in the previous

2Source code for the Wireshark aDTN extension can be found
at: https://senda.uab.cat/wiki/aDTN in Section Wireshark aDTN
Bundle Plug-in.

section, MMEB block definition incorporates a CodeType
field to specify the algorithm type of the software code.
We propose the use of a code type registry similar to RFC
6255 [7]. In this section, we propose three CodeTypes.
Those algorithms are denoted by forwarding (code 0x01),
lifetime (code 0x02), and priority (code 0x03).

The forwarding algorithm refers to the path decision
task. It takes the bundle destination as a parameter and
computes the list of nodes where the bundle must be for-
warded to. This list is named nextHopList following the
terminology presented in [15].

nextHopList ⊆ neighbourNodes ∪ {node}

The list of nodes where the bundle must be forwarded to
(nextHopList) must be a subset of the set formed by the
list of neighbours (neighbourNodes) and the local node
(node). This latter is added to this set to allow the routing
algorithms to keep a copy of the bundle in the local node.
Contrarily, an empty list being returned means that the
bundle can just be discarded.

Lifetime control is crucial to avoid bundles endlessly cir-
culate through the network. The Internet Protocol (IP),
for example, uses the Time to live (TTL) field included in
each datagram. This lifetime control mechanism consists
of a number that gets decremented by every router it goes
through. When the TTL is 0, the datagram is discarded.
A similar approach has been proposed in [21] for BP. How-
ever, the time to deliver a message is much more difficult
to foresee in BP than in IP. We claim that, in DTN, life-
time control algorithms must be more complex than simple
counters or timestamps attached to the message because of
the heterogeneity and unpredictability of the network. We
propose using application-specific software codes and to in-
clude them in bundles as we already do with forwarding
algorithms. Thus, every bundle can carry its own lifetime
control algorithm that may be evaluated on every bundle
hop to decide whether a bundle should be discarded or
not. This decision is made from the point of view of the
application in terms of the local context found in the RIT.
This mechanism allows applications to decide how to dis-
card their bundles in terms of their own criteria beyond
the classical time-based approaches. An example for con-
textual application-based lifetime control, which will be
extended in Section 8.2, could be an algorithm that uses
the node’s GPS position to discard bundles depending on
their location.

Lifetime control has no parameters. However, it can
query and modify the RIT. The purpose of this proce-
dure is to compute whether the bundle must be discarded
or not. Therefore, it returns a Boolean value where 0x1

means true, and 0x0 means false. Next line represents a
call to this procedure:

mustBeDiscarded = lifetimeControl()

Another crucial issue is bundle prioritisation. By setting
bundle priorities, we establish a processing order among

6

bundles in custody. The BP contains two bits to define
three types of priorities in its header. Using the MEB, the
extended class of service described in [12], enhances the BP
allowing the sender to specify additional priorities among
bundles. These priorities, defined in RFC 5050 and [12],
are equivalent to those defined in the Differentiated Ser-
vices field in the Internet Protocol Suite. They define an
order for IP datagrams based on precedence classes. This
field could force routers to act on datagrams. As described
in [30], it is seldom used, and it does not guarantee the pri-
ority set. However, we claim that in DTN prioritisation
algorithms must be application-specific and included into
bundles as software code. The idea is to allow priorities
to be dynamic in terms of the context. By this way, the
application may control bundle prioritisation on every hop
in a very flexible and context-aware way.

Bundle prioritisation has no parameters. However, it
can query and modify the RIT. This procedure computes
the priority level of a bundle and returns a positive inte-
ger number representing this level being 0x00 the highest
priority, and 0xFF the lowest. Next line represents a call
to this procedure:

level = bundlePriority()

The use of MMEB provides much flexibility for the defi-
nition of application-specific algorithms that can make use
of contextual information stored in the node’s RIT. Never-
theless, there is no guaranty on information to be present
and updated in the RIT. Therefore, it is recommended to
use a defensive programming strategy to code the proce-
dures to include in MMEB in order to prevent errors to
occur. In any way, in case of error, the node executes the
default procedure with the same type of algorithm.

6. Security considerations

In the context of DTN networks, security is a very com-
plex issue to achieve. There is a wide range of security ser-
vices that should be analysed in this type of networks. Ser-
vices that are usually secured in recent publications, like,
for example [19], are authentication and privacy. However,
in this section we want to focus on the security problems
derived from the fact of having software code in the mes-
sages. We discuss in this section several solutions to be
considered to improve the security of our proposal. On one
hand, we propose to use the standard Bundle Security Pro-
tocol to obtain MMEB authentication and integrity ser-
vices. Secondly, we discuss how to define security services
to the access the RIT. Finally, we propose the sandboxing
technique as a way to limit the execution environment to
routing software codes.

Routing software codes proposed in this study may be
signed by software providers, the routing software code
programmers. These providers may be the source appli-
cation itself or an external entity. Software providers may
sign routing software codes so DTN nodes may decide on

every bundle hop whether to execute the routing software
codes or not. This decision is done in terms of the trust
relationship with the software provider.

Routing software code signatures and its corresponding
signer certificates can be added to the MMEB as an addi-
tional field to the ones presented in Section 4. However,
we believe that using the standard Bundle Security Proto-
col (BSP) [20] is an elegant and standard solution to pro-
vide routing software code authentication and integrity.
This protocol provides data integrity and confidentiality
services for the Bundle Protocol. Different services are
provided to protect the bundle payload and the rest of the
blocks from the bundle. These services are the Bundle
Authentication Block (BAB), the Payload Integrity Block
(PIB), the Payload Confidentiality Block (PCB) and the
Extension Security Block (ESB).

We consider that the ESB may be very useful to pro-
vide to our proposal with software code authenticity and
integrity. This security solution places the ESB in the
bundle in the same position as the MMEB we want to se-
cure. The original MMEB block that contains the routing
software code is signed by the source application and en-
capsulated in an ESB block. From the point of view of the
bundle, this block is placed at the same sequential position
as the original MMEB block.

Length

Type Flags

Ciphersuite ID

Ciphersuite Flags Correlator

Ciphersuite
Params Data

Params Len

Security
Result DataRes Len

EID-refs

Figure 6: Extension security block fields. Dark background fields
contain MMEB information. The MMEB is placed in the Ciphersuite
Params Data. Its signature with the key identifier or certificate used
to sign in the Security Result Data field. Depicted in light gray font,
fields that are not needed.

Following the BSP, we discuss now how the ESB should
be defined as presented in [19]. In Figure 6, all the fields
of the ESB are depicted.

• The Type field should be set to 0x09, indicating that
this block is an ESB.

• The Flags should be defined as in all Bundle Protocol
blocks except the primary bundle block, as described
in [46].

7

• The EID-refs field is not needed because no additional
Endpoint Identifiers must be referenced.

• The Block data length (Length) field indicates the
length of the block, as in all Bundle Protocol blocks
except the primary bundle block.

• The Ciphersuite ID indicates the cryptographic algo-
rithms and implementation rules to provide the secu-
rity services. In our case, a new ciphersuite must be
defined3 to provide the hop-by-hop routing software
code authentication service.

• Ciphersuite Flags indicate which fields are present in
this block.

• The Correlator field is used when more than one re-
lated block is inserted. Since the MMEB is unique,
this field is not needed.

• The Ciphersuite Flags field informs about the pres-
ence of security-source EID, security-destination EID
or ciphersuite-parameters. In our case, only the
ciphersuite-parameters flag should be set.

• The original MMEB routing extension is placed in the
Ciphersuite Params Data field as an item 10: encap-
sulated block with length Params Len.

• The key or certificate used to sign the MMEB and the
signature is placed in the security-result data as item
3: key-information with length Res Len.

Secondly, the access to the RIT is also an issue that
should be discussed from the security perspective. It is
desirable to preserve confidentiality and integrity in the
routing data stored in the RIT. For this purpose, there
are many studies that propose different solutions for ac-
cess control in similar structures like the RIT, like, for
example [3]. However, these solutions are not applicable
when it comes to scenarios where the network connectivity
is intermittent.

We propose to employ security strategies like [2] where
the security access control is based on the identity of the
requester. Services covered by this proposal guarantee the
confidentiality and integrity of the information used for
routing published on every DTN node in the RIT. The
idea behind this publication can be applied to our pro-
posal: access control can be performed in terms of the very
same routing algorithm. When a routing software code re-
quests access to some branch from the RIT, access control
is evaluated by the DTN node using a hash function of the
very same routing software code.

Finally, in order to allow unverified applications to run
untrusted programs, the sandboxing technique can be ex-
tremely useful. Sandboxing [41] is a form of software vir-

3We suggest defining ESB-RSA-SHA256-EXT with ciphersuite ID
value 5 (first available in the IANA registry).

tualization that limits the execution environment to soft-
ware codes. This technology is far from being a research-
only product: there are many examples of sandboxing,
such as Google Native Client [53], that are being used in
browsers to allow web-based applications to run at near-
native speeds.

The objective of using sandboxing in our proposal is to
control the local resources of the DTN node that is exe-
cuting the routing software codes. These resources include
file descriptors, memory, file system space, RIT branches
or access to other bundles in custody. Sandboxing may be
used without the ESB, or it can be applied in combination
with it to improve the DTN node security.

The main challenge for network security in aDTN net-
works is preventing malicious code actions. The scheme
presented in this section is a possible way to solve it, but
each particular scenario could require different solutions,
taking advantage, where possible, of other available se-
curity tools such as public-key infrastructures or crypto-
graphic token devices.

7. aDTN: an Active-DTN implementation

The first implementation of Active-DTN is the Active-
DTN platform named aDTN4. This aDTN is a Bundle
Protocol agent, as defined in RFC 5050 [46], which includes
a software platform that supports Active-DTN’s Mobile
code Metadata Extension Blocks (MMEB). In Figure 7,
its different modules are depicted. This platform has been
implemented by our research group SeNDA5 taking the BP
Application Server as reference and supporting the basic
three MMEB code types: forwarding, priority and lifetime.

The main component of aDTN is the Bundle Agent that
has a modular structure. Bundles arrive at the Bundle
Agent through the Bundle I/O Manager that is a mod-
ule listening for bundles either coming from the network
or applications running on the DTN node. The Bundle
I/O Manager checks bundle destination in order to dele-
gate bundles whenever is possible. Otherwise, the bundle
is enqueued. To keep the bundle agent delay and disrup-
tion tolerant, the communication between platform appli-
cations and the Bundle I/O Manager is asynchronous.

The module in charge of forwarding bundles is the Cus-
tody Manager Module. This module dequeues bundles in
order to execute a forwarding algorithm for them. De-
pending on the output of the execution, the bundle is
forwarded or enqueued again. See Algorithm 1 for more
details. This algorithm loops over the bundles to be pro-
cessed (m) and then over the available neighbours (n).
The computation complexity of this procedure is quadratic
(O(mn)). This complexity is similar to other Custody

4Source code can be found at:
https://github.com/SeNDA-UAB/aDTN-platform.

5Security of Networks and Distributed Applications (SeNDA) is a
research group within the Department of Information and Commu-
nications Engineering of the Universitat Autònoma de Barcelona.

8

Neighbour
Discoverer

Execution
Manager

Custody
Manager

Neighbour
List

RIT
beacons

actiondata transfer
Module Data

base

bundles

in

out

01101101

Bundle Agent

Queue
Manager

Bundle
Queue

 RIT
Manager

 Bundle
I/O Manager

Figure 7: Structure of the aDTN platform.

Managers from other implementations of the Bundle Pro-
tocol such as DTN2 [40] since they behave in a very sim-
ilar way. Concerning its space complexity, the amount
of space the Custody Manager employs is equal to every
Bundle Protocol implementation: linear to the number of
bundles in custody. Bundles are written to disk to provide
persistence and to prevent message volatility if the node
is powered off.

Algorithm 1 Bundle Agent using the Custody Manager
to process bundles.

Ensure: executor is a reference to the Executor Module
with procedure execForwarding(·) for executing the for-
warding algorithm.

Ensure: queue is a reference to the bundle queue with
procedures enqueue(·) and dequeue(·).

Ensure: forward(·) is a procedure for forwarding bundles
to other nodes.

Ensure: FORWARDING is a constant representing the
MMEB codeType value for the forwarding algorithm.

1: procedure process
2: loop
3: bundle ← queue.dequeue()
4: nextHopList← executor.exec(FORWARDING,

bundle)
5: for node ∈ nextHopList do
6: if thisNode = node then
7: queue.enqueue(bundle)
8: else
9: forward(node, bundle)

10: end if
11: end for
12: end loop
13: end procedure

The different routing algorithms to execute for a given
bundle are the ones the very same bundle contains. There-
fore, when available, the software code of the bundle’s
MMEB for routing must be used. Nevertheless, when this
extension is not present, or there is no software code in
it that is compatible with the platform,6 then a default
routing algorithm must be executed.

For security reasons, the execution of software codes pro-
vided by the bundles must be supervised. For instance,
access to system functionality must be denied by default.
Only access to particular structures like the RIT is avail-
able. Moreover, the execution time is limited. When the
execution time limit is reached, the execution must be can-
celled, and a default software code must be executed in-
stead. Similarly, a default software code must be executed
whenever the bundle’s software code execution fails.

The module in charge of the software code execution is
denoted by the Execution Manager. This module is aware
of the format that is supported by the platform; it super-
vises the software code execution and knows what are the
default software codes to use in case they fail. The Execu-
tion Manager is available for running algorithms software
codes. The aDTN platform is prepared to receive forward-
ing, lifetime and priority software codes.

Current aDTN implementation supports ISOC99-
compliant code only. TinyCC [6] is used to compile the
C software code because it can quickly 7 compile to native
x86, x86-64 and ARM code in devices with slow processors
and few disk space. Support to other software code lan-
guage formats can be provided by extending the Execution
Manager.

The access to the bundle queue is regulated by the Bun-
dle Queue Manager that provides internal services for en-
queuing and dequeuing bundles. Moreover, this module is
in charge of controlling bundle lifetime and re-scheduling
the queue by priority. In order to perform those tasks, a
procedure similar to Algorithm 1 line 4 is provided.

The RIT is implemented in aDTN as a JSON file 8 where
elements are tree nodes. Elements can have several tags
but only a single value. The current version of the aDTN
RIT supports content announcement with announceable
tags set to true. Tags can also be used to extend the
implementation to support access restriction to particu-
lar branches only. The interaction with the RIT is only
possible through the RIT Manager that is a module that
provides a public API and several internal services. All
primitives introduced in Section 4 have been implemented.
Sensors connected to the platform can write information
into the RIT using the public API. For example, it is pos-

6As described in Section 4, several software codes can be included
per MMEB. Active-DTN nodes are not required to support any spe-
cific format.

7For example, a TTR-based forwarding algorithm in a2.6 GHz
Intel Core i5 takes on average to compile 0.048s.

8JSON (JavaScript Object Notation) is a lightweight easy to read
and write data-interchange format to transmit data objects consist-
ing of attribute/value pairs (http://www.json.org/).

9

sible to set a GPS sensor to keep the local position of the
platform up to date by updating a special RIT path.

aDTN platform nodes advertise their presence sending
simple beacon messages. A node is considered a neigh-
bour if a beacon message has recently been received from
it. Beacon messages contain the node end-point identifi-
cation. In addition, as introduced in Section 3, they can
also include a small amount of announceable information
from the RIT. Notice that, by this way, routing informa-
tion can be spread over the Active-DTN network. The
Information Exchange Module is in charge of periodically
sending beacon messages and keeping neighbour informa-
tion up to date. To that end, this module makes use of a
RIT Manager internal service that provides announceable
information. Additionally, this module decides the amount
of information to be shared. An example of content access
restriction in the RIT is the writing access to the neigh-
bour list that must be only possible from the Information
Exchange Module.

The current implementation has been coded in C lan-
guage and provides a communication software architec-
ture for applications to interact with the platform. As
in TCP/IP, an aDTN socket is provided that needs to
be bound before being used. The Software Code 2 pro-
vides a programming example on how to send bundles
with MMEB extensions. In this example, a bundle is sent
containing the forwarding software code provided in Soft-
ware Code 1 as MMEB extension. Notice that the current
implementation supports a C-based software architecture.
In Software Code 1, an example of a routing code is pre-
sented.

1 // Forwarding algorithm
2 int forwarding(char* dest){
3 nbs=RIT.getNeighbors ();
4 // Starts decision
5 int minttr = 100; // maxTTR =100
6 int ttr = 0;
7 int len;
8 while(nbs.has_next ()){
9 char triageBranch [160] = {0};

10 char* endPointId = nbs.next();
11 snprintf(triageBranch , 159,

"/%s/TTR", endPointId);
12 ttr = atoi(RIT.get(triageBranch));
13 if(ttr < minttr){
14 minttr = ttr;
15 cln_hops ();
16 add_hop(endPointId);
17 }else if(ttr == minttr){
18 add_hop(endPointId);
19 }
20 add_hop(nbs.next());
21 }
22 return 0;
23 };

Software Code 1: Example of forwarding algorithm software code.
The list of neighbours in this software architecture is obtained by
the function RIT.getNeighbors(). DTN nodes are added to the list
of nodes to be forwarded using the add hop(endPointId) function.
Access to the RIT is done by the RIT.get(branch) function.

1 // Creating a bundle socket
2 int bundle_sock = adtn_socket ();
3 // Setting data for origin and destination
4 sock_addr_t origin , destination;
5 ...
6 // Binding the socket
7 adtn_bind(bundle_sock ,& origin);
8 // Adding a routing code type MMEB
9 adtn_setcodopt(bundle_sock , 0x01 ,

"nbs=RIT.getNeighbors (); int minttr = 100; int ttr
= 0; int len; while(nbs.has_next ()){ char
triageBranch [160] = {0}; char* endPointId =
nbs.next(); snprintf(triageBranch , 159,
"/%s/TTR", endPointId); ttr =
atoi(RIT.get(triageBranch)); if(ttr < minttr){
minttr = ttr; cln_hops (); add_hop(endPointId);
}else if(ttr == minttr){ add_hop(endPointId);}
add_hop(nbs.next()); } return 0; ");

10 // Sending data using the bundle socket
11 adtn_sendto(bundle_sock , destination , "This is

the payload.");

Software Code 2: Example of C code used to send a bundle with the
forwarding MMEB software code developed in Software Code 1.

8. Discussion of a Practical Application

Disaster recovery actions after emergencies such as ter-
rorist attacks or meteorological calamities are difficult to
conduct. A priori connected areas become precipitously
disconnected and isolated. The high deploying speed of
DTN networks makes them an excellent solution for com-
munication until the original network is restored9. In this
section, we define an emergency scenario based on [34] and
use it as case base scenario to show the advantages of using
an Active-DTN network.

Medical Emergency Team (MET) members arriving at
the disaster scenario follow an emergency protocol that
consists in localising victims and classifying them given
their health condition. This classification is denoted by
triage and defines four different victim statuses: status 0
for deceased, status 1 for seriously injured, status 2 for
injured and status 3 for mildly injured. MET members
move freely around the disaster area collecting informa-
tion and providing it back to the Emergency Coordination
Centre (ECC). It is crucial to perform all this process as
quick as possible as the soonest the information arrives
at the ECC, the earliest the victims will be attended and
the whole disaster scenario will be recovered. Notice that
no network available means that each MET member must
collect the data and carry it at least until he/she returns
to the ECC. That is, MET members must constantly be
deciding whether to continue collecting data or returning
to the ECC for these data to be used. Moreover, it also
means that much time is lost while people are going and
returning to the ECC that, for logistic reasons, may be
relatively far away from the critical area.

A DTN network can be deployed in disaster scenarios us-
ing mobile devices10 carried by the members of the rescue

9Some kinds of disaster require several days or even weeks to
restore the original network.

10By mobile devices we refer to mobile phones, tablets and similar
global purpose devices that people daily use.

10

team and sensor devices deployed at the ECC and along
the disaster area as illustrated in Figure 8. Mobile and
sensor devices are the nodes that form the intermittently-
connected network that use opportunistic contacts among
nodes to allow bundles to jump node to node from the
source towards the destination.

status 3
victim

rescue
member

status 2
victim

sensor ECC wireless
range

status 1
victim

status 0
 victim

Figure 8: Disaster scenario with victims spread around and the res-
cue team performing the triage. The ECC is already deployed as
well as some portable devices. The rescue team members are car-
rying mobile devices. Outer circles around each of them represent
wireless ranges. There are three groups of team members: medical
(yellow), firemen (red) and policemen (blue).

Using a regular DTN benefits the MET efficiency letting
them send triage information about victims to the ECC.
This application creates a bundle per victim containing
the victim location and status. The destination of this
bundle is the ECC. Thus, the bundle can be forwarded
to the mobile devices of other MET member contacted in
the field to take advantage of their trips to the ECC. As
a direct consequence, the number of trips can be reduced.
DTN provides a good solution to MET efficiency problems.
However, this solution could be not enough for environ-
ments where MET members do not regularly contact. In
addition, there are many other applications for support-
ing the whole rescue team that would not be compatible
with the triage application because, as explained in previ-
ous sections, DTN performs very well for applications that
share the same forwarding algorithm. To get the benefits
of DTNs and provide forwarding diversity support among
several applications, we propose to use Active-DTN.

Active-DTN provides a better solution to emergency
scenarios than traditional DTN. It engages all kind of
rescue team members to participate in the network with
application diversity. We envisage many useful applica-
tions ranging from internal messaging to environmental
sensing applications. Among the latest, we would like to
mention the following three: pollution and nuclear radi-

ation measurement,11 smoke and fire detection,12 sound
and movement detection,13. The coexistence of all these
applications using the same network decreases the global
deploying cost and time. Furthermore, it increases the fre-
quency of node contacts as more users would be willing to
contribute to establishing the network using their devices.

In the following sections, we discuss some issues that
emerge from applying Active-DTN to disaster recovery
and how we deal with them.

8.1. Application-specific forwarding diversity

In emergency scenarios, there is a need for several ap-
plications to coexist, for example, triage applications, in-
ternal messaging, and environmental sensing. However,
there is no single-forwarding algorithm suitable for all kind
of applications. The most suitable forwarding algorithm
for triage application is based on the fact that, for se-
curity reasons, MED members must notify to the emer-
gency coordinator the expected time to return (TTR) to
the ECC. The neighbour nodes with soonest TTR are then
selected by the forwarding algorithm as the next hop. Al-
gorithm 2 describes an example of forwarding algorithm
based on TTR for the triage application. It assumes that
the RIT is similar to the one represented in Figure 2 with
several nodes at the /triageApp/TTR/ path representing
the TTR value of those nodes.

As it happens with other routing algorithms, such as
[32], Algorithm 2 needs to compare local values to others
from every single neighbour to make a routing decision.
As a consequence, the computation complexity of this al-
gorithm is linear to the number of neighbours a node has.
Other routing protocols, like Spray and Wait [49], do not
need to iterate over the available neighbours if, for exam-
ple, the number of copies of a message to be forwarded
is less than the number of neighbours. Instead, the space
computational cost is constant: the local TTR variable is
the only variable that should be stored in the node so it
can be compared to the ones from its neighbours.

In contrast to the triage application, a probabilistic al-
gorithm is more suitable for internal messaging in order
to take advantage of the fact that some rescue team mem-
bers meet more often than others. Similarly, this happens
with environmental sensing applications. These applica-
tions use epidemic algorithms in order to spread alarms
rapidly when danger is detected. Following our approach,
many forwarding algorithms can coexist being very rapid
to deploy as a set of MMEB. In Algorithm 3, an example
of epidemic forwarding algorithm is represented.

11The Fukushima incident just after the tsunami required nuclear
radiation measurement.

12Smoke and fire detection applications can help firemen to be
aware of apparently extinct fires to come alive from their ashes in
the forest.

13Sound and movement detection applications can help rescue
teams finding victims under collapsed buildings after an earthquake.

11

Algorithm 2 A forwarding algorithm based on TTR.

Require: maxTTR is the highest possible TTR
Require: rit is a reference to the RIT
Require: “/local/neighbours” is the standard path to the

neighbours stored in the RIT
Ensure: Returns the set of nodes where the bundle must

be forwarded to.
1: procedure forwarding(Destination)
2: NeighbourNodes ← rit.get(“/local/neighbours”)
3: if Destination ⊆ NeighbourNodes then
4: return Destination
5: end if
6: Dest ← Destination ∩ NeighbourNodes
7: min ← maxTTR
8: NextHop ← ∅
9: for node ∈ NeighbourNodes \ Dest do

10: ttr ← rit.get(“/triageApp/TTR/”node) .
Getting the TTR info for this node from the RIT.

11: if ttr < min then
12: min ← ttr
13: NextHop ← {node}
14: else if ttr = min then
15: NextHop ← NextHop ∪{node}
16: end if
17: end for
18: return NextHop ∪ Dest
19: end procedure

Algorithm 3 The traditional epidemic forwarding algo-
rithm.
Require: “/local/neighbours” is the standard path to the

neighbours stored in the RIT
Ensure: Returns the set of nodes where the bundle must

be forwarded to.
1: procedure forwarding(Destination)
2: NeighbourNodes ← rit.get(“/local/neighbours”)
3: if Destination ⊆ NeighbourNodes then
4: return Destination
5: end if
6: return NeighbourNodes ∪ {thisNode}
7: end procedure

In fact, apart from allowing application-specific forward-
ing, our approach supports bundle-specific forwarding let-
ting different forwarding algorithms to be carried by bun-
dles of the same application. This is especially suitable in
the case of environmental sensing applications. In these
applications, epidemic forwarding can be limited to rele-
vant sensed data while regular data can be communicated
using, for instance, Spray&Wait’s algorithm [49]. Addi-
tionally, different initial number of copies can be set de-
pending on how critical the sensed data is.

8.2. Bundle congestion alleviation

Congestion alleviation in Active-DTN is application-
specific being mainly performed by the lifetime control
and the prioritisation algorithms. The amount of bun-
dles in custody that a node can support is finite. Using
aDTN nodes, the maximum number of supported bundles
in custody is given by the capacity of the Custody Manager
queue. When the bundle queue is full, and a new bundle
needs to be in custody, any of these bundles in custody
must be discarded. For some applications, losing some
bundles could have almost no effect. This is the case, for
instance, of bundles belonging to an environmental sens-
ing application that contain information about non-critical
sensed values. However, for other applications, the dam-
age is unacceptable. This is the case of the triage appli-
cation where discarding a bundle means leaving a victim
unattended.

Lifetime control is crucial to alleviate bundle conges-
tion. Bundles may be perishable, the information that
they contain may decay on time. We claim that only the
application can know whether a bundle is not useful any-
more, and this will depend on the context of the node.
The common approach is similar to using the TTL field
from IP and discard all bundles after a particular num-
ber of seconds or hops. Instead, what we propose is to
let the bundles carry its own lifetime control algorithm.
Note that this empowers bundle lifetime control because
it allows to take into account the context of the node from
the point of view of the application. As an example of
the flexibility that this kind of lifetime control provides,
we define Algorithm 4, a lifetime control algorithm based
on the node’s GPS position. Disaster scenarios are geo-
graphically restricted to a given damaged area. Bundles
being carried by nodes that have left this area can be safely
discarded. This is not possible using traditional TTL-like
lifetime control approaches.

Algorithm 4 When using this GPS position based life-
time control algorithm, bundles are discarded if they are
located outside a given area.

Require: rit is a reference to the RIT.
Require: isDamagedArea(·) is a predicate that returns

whether a GPS position is included in a damaged area.
Ensure: Returns whether the bundle must be discarded.

1: procedure lifetimeControl
2: position ← rit.get(“/local/position”)
3: return ¬ isDamagedArea(position)
4: end procedure

When the previously described congestion alleviation
method is not enough, the node can still discard the last
bundles of the queues. In this case, bundle prioritisa-
tion is crucial to prevent high-priority bundles to be dis-
carded. According to the aDTN model, the Custody Man-
ager scheduling policy states that less prioritised bundles

12

will be at the end of the queue. Therefore, no major com-
putation is necessary to decide which bundle to discard.

8.3. Contextual bundle prioritisation

As introduced before, bundle prioritisation is used for
scheduling bundles in custody. The capability of Active-
DTNs to use application-specific bundle prioritisation al-
gorithms brings the possibility to define context-aware al-
gorithms that can take advantage of application-specific
routing information stored in the RIT to deal with prior-
ity criteria changes. For instance, in Triage the prioritisa-
tion algorithm adjusts the bundle priority according to the
victim status and the danger level of the damaged area.

According to the [34], status 1 victims are seriously in-
jured victims. Given the fact that status 0 victims are
already deceased, it seems reasonable to give maximum
priority to any information related to status 1 victims.
However, this depends on the danger level in the damaged
area. When the danger level is very high, rescue team
members can be ordered to leave seriously injured victims
die in order to save their own life. Assuming a danger pro-
tocol that defines 5 danger levels being level 4 the highest,
a bundle priority algorithm like Algorithm 5 would be ap-
propriate for status 1 victim bundles. As represented in
the algorithm, when the danger level is lower than 3, the
bundle has a high priority in order to reduce the rescue
time, see line 4. Contrarily, when danger level is higher,
the bundle priority decreases a great deal as it will only
be used for counting deceased victims, see line 6. This al-
gorithm is a good example of the degree or flexibility pro-
vided by Active-DTN in comparison to traditional DTN
approaches where all this application-based context-aware
decisions cannot be implemented.

Algorithm 5 Triage bundle prioritisation for status 1 vic-
tims.
Require: rit is a reference to the RIT.
Require: “/triageApp/dangerLevel” is the path used by

the triage app to store the current danger level.
Require: HIGH is the highest priority level.
Require: LOW is the lowest priority level.
Ensure: Returns the priority level.

1: procedure bundlePriority
2: level ← rit.get(“/triageApp/dangerLevel”)
3: if level < 3 then
4: return HIGH . Victim must be rescued.
5: else
6: return LOW . Victim must be counted.
7: end if
8: end procedure

9. Simulation results

Active-DTN is our approach for a DTN that supports
concurrent applications with different routing needs. We

have conducted several experiments using simulations in
an emergency scenario that corresponds to the practi-
cal application described and discussed in Section 8. In
this kind of scenarios, we prove that Active-DTN im-
proves network latency and delivery ratio by the use of
several forwarding algorithms at the same time. We con-
firm that RIT spreading improves the performance, and
contextual prioritisation works better than static prioriti-
sation. We checked the convenience of using lifetime con-
trol as MMEB, and it largely improves the network av-
erage latency. Finally, we wanted to confirm that bundle
size increase due to MMEB has no major negative conse-
quences. For all these reasons, we claim that Active-DTN
is highly beneficial for environments with routing diversity
like emergency scenarios. In this section, we describe the
simulation experiment in more detail.

9.1. Environment

The experiment has been conducted over the Oppor-
tunistic Network Environment (TheONE) simulator [26].
This simulator was created to run simulation experiments
on opportunistic networks like DTN and to provide reports
and graphical representations of the results. TheONE rep-
resents the communication among nodes as well as the
nodes movement. It simulates intermittent disconnections
by also taking into account the node transmission range.
One of the advantages of this simulation environment is
that it is quite simple to configure and intuitive to extend
and modify. In fact, we have modified the simulator to rep-
resent an Active-DTN network and study the peculiarities
of our networking approach.

TheONE allows the user to define different types of
messages with configurable size. In our experiment, a
TheONE message represents a bundle. The official ver-
sion of the simulator assumes that, as it is the case in most
opportunistic networks, there is a single-forwarding algo-
rithm at a time to forward all messages. Therefore, there
is a single-forwarding algorithm procedure that is called in
TheONE every time an event needs to be forwarded.

Active-DTN networks support the concurrent use of
many different forwarding algorithms employing the for-
warding algorithm provided by the bundle to forward it.
In a real scenario, the software code of the forwarding al-
gorithm is carried by the bundle using a MMEB. To simu-
late this behaviour, we have extended TheONE messages
to represent bundles with configurable payload and MEB
size. Moreover, we implemented a forwarding algorithm
procedure to select the forwarding algorithm to execute.
By this implementation, each bundle can be forwarded
employing its corresponding forwarding algorithm.

TheONE simulator provides reports about the overall
communication of the network. To analyse the perfor-
mance of Active-DTN in more detail, we have extended
the reporting functionality of the simulator to discrimi-
nate results also per message type. By this way, we can
report the communication results obtained by each for-
warding algorithm. Then, to facilitate the visualisation

13

of results and simplify its analysis, we have implemented
the functionality to create reports following the Google’s
Motion Chart14. The chart represents the evolution of the
network latency and delivery ratio (x- and y-axis) as well
as the number of forwarded bundles (size and colour of
the bullet representing the application in the chart) per
forwarding algorithm.

Finally, the official TheONE release does not take into
account energy consumption of nodes. We extended it
to measure the existing energy measured by the remain-
ing time of power autonomy. We also provide the needed
functionality to configure the energy consumption speed
taking into account that nodes consume more when they
are transferring data than when they are just waiting for
new data to be transferred.

9.2. Settings

As described in Section 8, a rescue team involves many
different people, e.g.: doctors, fireman and coordination
staff. Each of them carries a mobile device. In addition, a
portable device is placed at the ECC and several sensor de-
vices are spread over the area. They all together form the
communication network. For this experiment, victims are
also given a mobile device when the medical team performs
the Triage procedure to them. Transmit speed for wire-
less devices is fixed to 15Mbps15. The buffer size for small
devices such as the wireless sensors is a random value be-
tween 1MB to 20MB. The buffer size is fixed to 500MB for
mobile devices and the ECC. The transmit range for the
small devices is 3 meters, and it is 500 meters for the mo-
bile nodes. The emergency area contains 100 nodes: 65%
of them represent victims, 10% represent doctors, 10% are
sensors, 7% are firemen and 7% are coordination personal
and 1% the ECC node.

The emergency area occupies 20Km2. Mobile nodes
present in the affected area produce different mobility pat-
terns. On one hand, the paramedic personnel follow a
variation of the random-walk movement model in which
several points of interest have been defined. These nodes
come back to the Emergency Coordination Centre (ECC)
every less than 3 hours and return to the emergency sce-
nario after a maximum of 1 hour. Firemen behave slightly
differently from the paramedic personnel: they enter the
emergency scenario directly to where a fire has occurred
and come back after a random time, less than 6 hours. Co-
ordination personnel follow a task-driven movement model
in which nodes perform a node searching movement model
combined with a list of points of interest to be visited. Mo-
bile device nodes can move up to 3m/s. Other nodes such
as the ECC and the wireless sensors are static.16

14Google’s Visualisation Motion Chart http://goo.gl/otSnq1
1515Mbps is a fairly realistic speed because although Wi-Fi don-

gles like Wi-Pi for single-board computers like Raspberry Pi allow
transmission speeds up to 150Mbps, the USB controller slows the
transmission speed down to values around 15Mbps.

16The implementation of the movement models is available at
https://senda.uab.cat/wiki/aDTN.

Four applications coexist in this scenario. An alert ap-
plication is used to broadcast alerts among all people in
the rescue area. Another application permits notifying an
event to a particular person. There is an application for
sensor data retrieval, and finally, the Triage application
previously described in this paper.

Messages created during the simulations represent alert
and communication messages, images and sensed data.
These messages have a variable size from 10KB to 50KB.
This size is representative of messages used in emergency
scenarios as learnt by our research group from projects like
the ones presented in [36] and [34] and some others from
other external studies like [25] and [11]. By default, the
network configuration sets nodes to create all bundles with
10KB for payload and to forward them using PRoPHET
[32]. Moreover, bundles are created periodically using a
random value between 1 and 10 as the amount of seconds
to wait for next bundle to be created. We defined other
network configurations based on the default configuration
by changing some of its features. For instance, we set other
bundle creation time thresholds, change the forwarding al-
gorithm and require bundle extensions. When extensions
are present, the size of these extensions is 200B. All sim-
ulations represent 300 hours of activity. Finally, battery
consumption is simulated by decreasing a maximum value
of 10h per computation action, storage access or radio us-
age. The batteries are recharged and set to fully charged
every time the node goes back to the ECC.

9.3. Tests & results

In this work, we conduct the experimentation perform-
ing tests to validate several hypotheses about our network-
ing approach. In the following, we enumerate those hy-
potheses, describe the network configurations being used
and illustrate the results of their simulation execution.
With the aim of avoiding noise, we repeated every exe-
cution 20 times and illustrated and analysed their average
results.

Test 1 Forwarding diversity improves network perfor-
mance.

The main advantage of Active-DTNs is that many for-
warding algorithms can run concurrently with no need for
network re-configuration. In this study, we claim that for-
warding diversity improves network performance. There-
fore, we set a network configuration with several forward-
ing algorithms and compare its performance to other net-
work configurations with a single-forwarding algorithm.
Concretely, we employ PRoPHET and Larod as previ-
ously done in [35] and [25]. Moreover, we also employ the
TTR algorithm described in previous sections. Then we
employ them all together in a single configuration where
we define the forwarding algorithm to use by each type
of bundles being sent. We denote this configuration by

14

multi-forwarding.17

The probabilistic forwarding algorithm PRoPHET takes
into account the frequency of opportunistic contacts
among nodes to forward the bundle to the neighbour node
with higher contact frequency. The forwarding algorithm
Larod [28] forwards bundles to the node geographically
closer to the destination node. Finally, TTR (see Algo-
rithm 2) takes advantage of the existing time-to-return
information and forwards bundles to the neighbour node
that will return sooner to the ECC.

The multi-forwarding configuration is set to forward
all bundles generated by the Triage application using
the TTR forwarding algorithm because this algorithm is
specifically designed to accelerate the latency of bundles
with ECC as destination. Bundles from the notification
application use PRoPHET, the alerts application uses epi-
demic forwarding [24] unless the alert is addressed to a
specific physical area, for example, an area on fire. In that
case, Larod is the forwarding algorithm to use.

To check whether the bundle size affects the network
performance, we set network configurations to create all
their bundles with a fix payload size. The set of payload
size values used in Kilobytes is {10, 15, 20, 25, 30, 35, 40,
45, 50}. Note that, even though the payload size is fixed,
the bundle size is larger in multi-forwarding configurations
because bundles in those configurations use a MMEB.

The most popular metrics to use to evaluate network
performance are latency and delivery ratio. The latency
is the time for bundles to communicate from the source
to the destination. In Figure 9, we can see a summary of
the simulation results indicating the average latency per
network configuration over the payload size of its bundles.
Therefore, we identify a network configuration by its for-
warding algorithm and the bundles’ payload size.

 600

 620

 640

 660

 680

 700

 720

 740

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

s
)

Payload size (kB)

Multi−forwarding
Prophet

TTR
Larod

Figure 9: Latency over payload size for executions with different
forwarding: forwarding diversity, Larod, PRoPHET, and RTT. The
Forwarding diversity option performs better independently of the
size of the payload.

17The source code for routing algorithms can be found at
https://senda.uab.cat/wiki/aDTN in Section “TheOne resources”.

As it can be seen in Figure 9, latency time increases as
the size of the message increases. In the different routing
protocols, the gradient of the graphic decreases as the pay-
load size increases due to how the buffers get full. This
evolution of the performance in terms of the size of the
message is a common issue in this kind of networks, and it
can be seen in studies like [44]. As illustrated, PRoPHET
performs well. However, the multi-forwarding configura-
tion has the lowest latency time regardless of the payload
size.

The delivery ratio is the percentage of bundles arrived at
their destination among those that were sent. During the
simulation execution, bundles are periodically created by
nodes using random values between 1 and 100 as the time
to wait in seconds between bundles being created. There-
fore, the number of bundles created is quite constant. If
we set the configurations to create bundles forever, during
the whole execution, the last bundles sent will not have the
chance to arrive at the destination because the execution
will stop immediately after their creation. After running
some simulations, we decided to set all nodes to stop creat-
ing bundles some time before stopping the execution. We
set that amount of time to be double the observed latency.
We illustrate the impact of this change in Figure 11 with
the number of bundles in the network at the end of the
simulations.

The results using this new configuration where bundle
creation is stopped before finishing the simulation execu-
tion are represented in Figure 10. In our scenario, the
connection window is sometimes very small. As a con-
sequence, when two nodes meet, the bigger the messages
are, the easier the messages will not be forwarded: mes-
sages may be started to be forwarded but then aborted.
This is the reason why, in Figure 10, when the payload
size increases, the delivery ratio decreases.

Observing Figure 10, we can see that although TTR
shows a good delivery ratio, the highest delivery ratio cor-
responds to the multi-forwarding configuration.

 65

 70

 75

 80

 85

 90

 95

 10 15 20 25 30 35 40 45 50

D
e

liv
e

ry
 r

a
ti
o

 (
%

)

Payload size (kB.)

Multi−forwarding
Prophet

TTR
Larod

Figure 10: Delivery ratio over payload size for executions with differ-
ent forwarding: forwarding diversity, Larod, PRoPHET, and RTT.
The Forwarding diversity option performs better independently of
the size of the payload.

15

Max

 90 92 94 96 98 100

B
u

n
d

le
s
 d

u
ri
n

g
 s

im
u

la
ti
o

n

Simulation percentage time (%)

Bundles during simulation
Bundle draining start

Maximum number of created bundles

Figure 11: Number of messages present in the scenario as a function
of the percentage of the simulation time. Message creation is stopped
after double the observed latency on previous simulations.

According to the latency and the delivery ratio mea-
sures, the multi-forwarding configuration is considerably
better than the single configurations that lead to con-
firm that forwarding diversity improves the network per-
formance. However, we wanted to study the overhead
generated by our proposal. To that end, we measured
the most important overheads introduced by our proposal.
These overheads include the bundle size overhead due to
the bundle extension, the buffer occupancy overhead on
average during the simulation, the CPU overhead, the en-
ergy consumption and the node’s message drop overhead,
all of them as a function of the size of the payload mes-
sage. Then, we compare them to the default configuration
results and illustrate the result of the perceptual overhead
in Figure 12.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40 45 50

O
v
e

rh
e

a
d

 (
%

)

Payload size (kB)

Bundle size overhead
Dropped bundles

Node buffer usage
Node CPU usage

Energy consumption

Figure 12: Bundle size overhead created by the extension blocks,
buffer occupancy on average during the simulation overhead and
message drop overhead, all of them as a function of the size of the
payload message.

As illustrated in this figure, the overhead can be con-
sidered low as it is always under 3%. The increase of
overhead over the payload size is also low. In fact, the
message size overhead reduces over the payload size be-
cause the MMEB is fixed while the measure is relative. As

it can be seen, the energy consumption increases stronger
than CPU when payload size is increased. This is because
a great part of the energy consumption of a DTN node is
spent on the radio wireless radio. The bigger the message
is, the more energy is used to transmit it.

Analysing the latency, the delivery ratio and the added
overhead of the multi-forwarding configuration over the
rest of the single-forwarding configurations, we can con-
firm that the multi-forwarding configuration performs bet-
ter enough to pay off the overhead added by our proposal.
Therefore, for all these reasons, we conclude confirming
that forwarding diversity considerably improves the net-
work performance.

Test 2 RIT spreading increases network delivery ratio.

Another contribution of Active-DTNs is the use of the
RIT, see Section 7, to store routing information in nodes.
aDTN nodes spread part of this information using beacon
messages. The aim motivating the use of RITs is to as-
sist the routing algorithm with information generated from
other nodes assuming that this information improves the
communication increasing the delivery ratio. By this test,
we want to prove that this claim is true. Therefore, we
set two network configurations using TTR as forwarding
algorithm. This forwarding algorithm has been selected
because the TTR information of nodes is stored in the
RIT. The difference between the two configurations is that
only one of them spreads RIT information. We execute 20
simulations of these two configurations with each of the
following maximum bundle creation times {1, 35, 70, 105,
140, 175, 205, 240} in seconds.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 35 70 105 140 175 205 240

D
e

liv
e

ry
 r

a
ti
o

 (
%

)

Creation threshold interval (s)

Using RIT announceable fields
Not using RIT announceable fields

Figure 13: Bundle arrival efficiency as a function of the message
creation interval. Spreading RIT fields tagged as announceable per-
forms better than another scenario that does not.

As seen in Figure 13, the delivery ratio of the spread-
ing configuration is substantially higher for each maximum
bundle creation time used. Therefore, we conclude that
the convenient use of the RIT with spreading values is
beneficial for the network as it increases its delivery ratio.

16

Test 3 Contextual prioritisation is effective.

The Bundle Protocol header reserves seven bits to spec-
ify the bundle class of service that is a static prioritisation
mechanism to establish a processing order among bundles
in custody. In Active-DTN, the use of MMEB with bundle
prioritisation code allows the definition of context-aware
prioritisation algorithms. These algorithms can be sen-
sitive to changes in the neighbour node list and the RIT.
By this test, we check whether context-aware prioritisation
is more effective than static prioritisation measuring the
effectiveness as the amount of latency reduction of high-
priority bundles.

When no priority is set, all bundles are delivered with
a similar latency. Nevertheless, when priority is set, high-
priority bundles are expected to have a lower latency. Sev-
eral executions have been performed using three different
configurations. The static prioritisation configurations use
the class of service field in the bundle header to set the
bundle relevance before sending the bundle. This prior-
ity is static, does not change during communication. The
contextual prioritisation configuration uses the bundle pri-
oritisation MMEB to set its relevance as a software code
computes the priority of the bundle in terms of information
stored in the RIT. This priority is dynamic and can change
during communication. The non-prioritised configuration
does not prioritise relevant bundles.

The configurations are set to change the bundle priority
at intervals of every one fifth of the simulation time. The
priority is set to either maximum or minimum. All bundles
created during the same period of time are set to have
the same priority. When the priority changes, only those
bundles with contextual priority will be aware and affected
by the change. After the executions, we classify bundles
arriving at the destination by their priority and compute
the latency mean of high-priority bundles. This value is
compared to the overall bundle latency to compute the
latency difference of high-priority bundles over the overall
mean. Figure 14 illustrates the results.

 0

 20

 40

 60

 80

 100

 120

 1 35 70 105 140 175 205 240

H
ig

h
 p

ri
o

ri
ty

 b
u

n
d

le
 l
a

te
n

c
y
 i
m

p
ro

v
e

m
e

n
t

Creation threshold interval (s)

Contextual prioritisation
Fixed prioritisation

Non prioritised

Figure 14: Prioritised bundles over total mean as a function of the
number of messages. Contextual prioritisation performs better than
the schemes with no prioritisation and source-prioritisation.

As can be seen in Figure 14, in priority changing sce-
narios, the relative latency of high-priority bundles using
contextual prioritisation criteria is much smaller than the
latency of high-priority bundles using static prioritisation
criteria. This is due to the capability of bundles in contex-
tual prioritisation criteria to be aware of priority changes.
Therefore, according to our experiments, contextual pri-
oritisation with MMEB bundle prioritisation is more ef-
fective than static prioritisation using class of service field
or non-prioritisation.

Test 4 Dynamic lifetime control reduces network
congestion.

Lifetime control aim is network congestion reduction.
The more efficiently messages are lifetime controlled, the
fewer useless messages will be present in the network. As a
consequence, node’s buffers are more efficiently used, and
congestion is alleviated.

In the Bundle Protocol, bundles can be lifetime con-
trolled using the bundle time-to-live field. In this case,
the time-to-live must be a priori set. This means that it
is necessary to estimate the latency of messages in order
to set a time-to-live at least as long as its future delivery
time. To guarantee a certain probability of the bundle be-
ing delivered, the time-to-live is often a much longer than
necessary. Instead, in Active-DTN we can use a dynamic
lifetime control where time to live is determined by a soft-
ware code that can take as input information stored in the
RIT. Notice that this alternative does not require latency
estimations.

To prove that dynamic lifetime control is better reduc-
ing network congestion, we run several simulations with
two network configurations with different lifetime control
mechanisms. One of them is dynamic, and the other is
static. The dynamic one allows the application to control
the bundle’s lifetime from an application perspective. In
these simulations, victims’ information messages are life-
time controlled using technical medical algorithms. In-
stead, sensors and fire information messages use geograph-
ical and meteorological algorithms. Finally, coordination
information messages are discarded using data from task
completion information, when available.

As can be seen in Figure 15, latency in dynamic life-
time control is always lower than latency in static lifetime
control. As latency directly depends on congestion, we
can claim that dynamic lifetime control reduces network
congestion.

Test 5 Contrary to deployment-based solutions, carry-
ing routing algorithms ensures optimal routing usage.

As introduced in Section 2, there are proposals like Hag-
gle [45] that allow application messages to choose among a
limited number of routing protocols which have been pre-
viously deployed. However, as already explained in Sec-
tion 2, in DTN networks, this deployment is not a trivial
issue. We have performed several simulations to under-

17

 700

 750

 800

 850

 900

 950

 1000

 1050

 1 35 70 105 140 175 205 240

L
a

te
n

c
y
 (

s
)

Creation interval (s)

Dynamic lifetime control
Static lifetime control

Figure 15: Latency time as a function of the number of the message
creation interval for two different scenarios: dynamic lifetime control
using MMEB and static one.

stand how difficult is to perform these deployments and to
study which are their limitations. In Figure 16, we anal-
yse the percentage of messages routed using their optimal
routing protocol as a function of the mobile nodes maxi-
mum time to return to the ECC. In this scenario, the four
applications previously simulated in this section coexist.
The simulation starts with a network formed by the medi-
cal personnel and the victims. In t=0, a single application
runs in the network. The additional three applications and
the rest of the DTN nodes are incorporated gradually to
the simulation after three hours. The fact that every node
is incorporated in different moments prevents the possibil-
ity of an initial routing software deployment. Mobile nodes
are updated with new routing algorithms every time the
come back to the ECC. Static nodes remain with a single
routing algorithm during the whole simulation period.

As it can be seen, using our proposal, 100% of the mes-
sages are routed using their optimal routing algorithm.
Instead, using a Haggle-like solution the different applica-
tions are routed using their optimal routing algorithm in
51% to 65% of the cases, on average, depending on the
maximum TTR. We claim, consequently, that using our
proposal helps the bundles to be routed using their opti-
mal routing algorithm.

10. Conclusions

In this article, we have presented a network solution
based on mobile code to improve DTN networks. Our pro-
posal enables the nodes to execute routing software codes
carried by the messages themselves. This proposal fol-
lows the Bundle Protocol specification by extending the
bundles with forwarding, lifetime control and prioritisa-
tion algorithms. This allows the coexistence of different
applications needing to use different routing algorithms.
As a consequence, and unlike classical DTN approaches,
when this type of applications intends to use the network,
no network reconfiguration or deployment is required.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

O
p

ti
m

a
l
ro

u
ti
n

g
 r

a
te

 (
%

)

Max TTR (minutes)

Haggle−like: Apps. average
Haggle−like: Alert−app
Haggle−like: Note−app

Haggle−like: Triage−app
Haggle−like: Sensor−app

Active DTN−like: Apps. average

Figure 16: Percentage of the messages routed with their optimal
routing algorithm as a function of the time to return to the ECC.
For the Haggle-like approach, the different applications simulated are
shown on average and separately. For the Active-DTN approach, the
result is shown on average for every application.

We have described the feasibility, utility and usefulness
of our proposal by applying it to a recovery scenario, as
described in Section 8. We have also included in Section 9
experiments for several DTN applications in a realistic sce-
nario. These experiments conclude that Active-DTN re-
duces network latency and increases delivery ratio by the
use of several routing algorithms at the same time. It
is confirmed that application-based information spreading
improves the performance of the network. Furthermore,
we have seen that contextual application-based prioritisa-
tion works better than static prioritisation. Additionally,
we conclude that using application-based lifetime control
improves the network average latency. Finally, we con-
firm that bundle size increase due to MMEB has no major
negative consequences.

It is a fact that the complexity of the network as a whole
has increased by moving the routing software code from
the host to the message. Furthermore, there is an overhead
of information transmitted since the bundles are carrying
their routing algorithms in addition to the application data
itself. As seen in Section 9, these overheads are low and
do not affect network performance. We have learnt that
the advantages of employing such a paradigm in scenarios,
such as disaster recovery scenarios, absolutely outweigh
the impediments related to a network solution with the
added complexity.

The network solution presented in this paper opens new
possibilities in opportunistic networks. The results pre-
sented give a flourishing indication that new scenarios be-
sides the ones presented in this paper may take advantage
of the combination of DTN and mobile code.

Acknowledgements

This work was partly supported by the Catalan AGAUR
2014SGR-691 project and the Spanish Ministry of Econ-
omy and Competitiveness TIN2014-55243-P project. The

18

authors thank Daniel Ezquerra, Gerard Garcia and Rafael
Páez for their excellent contribution to the aDTN imple-
mentation, Luca Bernabini for his advice on emergency
scenarios and Peter Lovell and Stephen Farrell for their
advice on the Bundle Security Protocol.

References

[1] Hisham M Almasaeid. Data delivery in fragmented wireless
sensor networks using mobile agents. ProQuest, 2007.

[2] Joan Ametller, Sergi Robles, and Jose A Ortega-Ruiz. Self-
protected mobile agents. In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems-Volume 1, pages 362–367. IEEE Computer Soci-
ety, 2004.

[3] Asmidar Abu Bakar, R Ismail, and J Jais. A review on ex-
tended role based access control (e-rbac) model in pervasive
computing environment. In Networked Digital Technologies,
2009. NDT’09. First International Conference on, pages 533–
535. IEEE, 2009.

[4] Meenakshi Bansal, Rachna Rajput, and Gaurav Gupta. Mobile
ad hoc networking (manet): Routing protocol performance is-
sues and evaluation considerations. Technical report, RFC 2501
(Informational), Jan, 1999.

[5] PT Barry. Abstract syntax notation-one (asn. 1). In Formal
Methods and Notations Applicable to Telecommunications, IEE
Tutorial Colloquium on. IET, 1992.

[6] Fabrice Bellard. Tcc: Tiny c compiler. URL: http://fabrice.
bellard. free. fr/tcc, 2003.

[7] Marc Blanchet. Delay-Tolerant Networking Bundle Protocol
IANA Registries, 2011.

[8] Chiara Boldrini, Marco Conti, Jacopo Jacopini, and Andrea
Passarella. Hibop: a history based routing protocol for oppor-
tunistic networks. In World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007. IEEE International Sympo-
sium on a, pages 1–12. IEEE, 2007.

[9] Carlos Borrego, Sergio Castillo, and Sergi Robles. Striving for
sensing: Taming your mobile code to share a robot sensor net-
work. Information Sciences, 2014.

[10] Carlos Borrego and Sergi Robles. A store-carry-process-and-
forward paradigm for intelligent sensor grids. Information Sci-
ences, 222(0):113 – 125, 2013.

[11] Raffaele Bruno, Marco Conti, and Andrea Passarella. Oppor-
tunistic networking overlays for ict services in crisis manage-
ment. In Proceedings of International Conference on Informa-
tion Systems for Crisis Response and Management ISCRAM,
2008.

[12] Scott Burleigh. Bundle protocol extended class of service (ecos),
2010.

[13] Scott Burleigh, Esther Jennings, and Joshua Schoolcraft.
Autonomous congestion control in delay-tolerant networks.
Pasadena, CA: Jet Propulsion Laboratory, National Aeronau-
tics and Space Administration, 2006.

[14] Jeffery Case, Mark Fedor, Martin Schoffstall, and C Davin. A
simple network management protocol (SNMP). Network Infor-
mation Center, SRI International, 1989.

[15] Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson,
Robert Durst, Keith Scott, Kevin Fall, and Howard Weiss. RFC
4838, delay-tolerant networking architecture. RFC 4838 (Infor-
mational), 2007.

[16] Michael Cooney. Nasa exploring groundbreak-
ing space network to sustain large data dumps
and trips to the moon, mars. Available online:
http://www.networkworld.com/community/blog/nasa-
exploring-groundbreaking-space-network-sustain-large-data-
dumps-and-trips-moon-mars, 2013.

[17] Floriano De Rango, Mauro Tropea, Giovanni Battista Laratta,
and Salvatore Marano. Hop-by-hop local flow control over in-
terplanetary networks based on DTN architecture. In Commu-

nications, 2008. ICC’08. IEEE International Conference on,
pages 1920–1924. IEEE, 2008.

[18] Stylianos Dimitriou and Vassilis Tsaoussidis. Effective buffer
and storage management in DTN nodes. In Ultra Modern
Telecommunications & Workshops, 2009. ICUMT’09. Interna-
tional Conference on, pages 1–3. IEEE, 2009.

[19] Stephen Farrell. Security in the wild. Internet Computing,
IEEE, 15(3):86–91, 2011.

[20] Stephen Farrell, Howard Weiss, Susan Symington, and Peter
Lovell. Bundle security protocol specification. 2011.

[21] Zhenxin Feng. Data dissemination in delay tolerant networks.
doctor of philosophy thesis, 2012.

[22] Delay Tolerant Networking Research Group. Delay tol-
erant networking research group website, December 2013.
http://www.dtnrg.org.

[23] Dan Henriksson, Tarek F Abdelzaher, and Raghu K Ganti. A
caching-based approach to routing in delay-tolerant networks.
In Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, pages
69–74. IEEE, 2007.

[24] Che-Jung Hsu, Huey-Ing Liu, and Winston KG Seah. Oppor-
tunistic routing–a review and the challenges ahead. Computer
Networks, 55(15):3592–3603, 2011.

[25] Peng Jiang, John Bigham, and Eliane Bodanese. Adap-
tive service provisioning for emergency communications with
DTN. In Wireless Communications and Networking Confer-
ence (WCNC), 2011 IEEE, pages 2125–2130. IEEE, 2011.

[26] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The ONE
simulator for DTN protocol evaluation. In Proceedings of
the 2nd international conference on simulation tools and tech-
niques, page 55. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2009.

[27] Amir Krifa, Chadi Barakat, and Thrasyvoulos Spyropoulos.
Message drop and scheduling in DTNs: Theory and practice.
Mobile Computing, IEEE Transactions on, 11(9):1470–1483,
2012.

[28] Erik Kuiper. Node density, connectivity and the percolation
threshold. doctor of philosophy thesis, 2010.

[29] Sookyoung Lee and Mohamed Younis. Optimized relay place-
ment to federate segments in wireless sensor networks. Selected
Areas in Communications, IEEE Journal on, 28(5):742–752,
2010.

[30] Fulu Li, Nabil Seddigh, Biswajit Nandy, and Diego Matute. An
empirical study of today’s internet traffic for differentiated ser-
vices ip qos. In Computers and Communications, 2000. Pro-
ceedings. ISCC 2000. Fifth IEEE Symposium on, pages 207–
213. IEEE, 2000.

[31] Qun Li and Daniela Rus. Communication in disconnected ad
hoc networks using message relay. Journal of Parallel and Dis-
tributed Computing, 63(1):75–86, 2003.

[32] Anders Lindgren, Avri Doria, and Olov Schelén. Proba-
bilistic routing in intermittently connected networks. ACM
SIGMOBILE Mobile Computing and Communications Review,
7(3):19–20, 2003.

[33] Anders Lindgren and Kaustubh S Phanse. Evaluation of queue-
ing policies and forwarding strategies for routing in intermit-
tently connected networks. In Communication System Soft-
ware and Middleware, 2006. Comsware 2006. First Interna-
tional Conference on, pages 1–10. Ieee, 2006.

[34] Ramon Mart́ı, Sergi Robles, Abraham Mart́ın-Campillo, and
J Cucurull. Providing early resource allocation during emergen-
cies: The mobile triage tag. Journal of Network and Computer
Applications, 32(6):1167–1182, 2009.

[35] Abraham Mart́ın-Campillo, Jon Crowcroft, Eiko Yoneki, and
Ramon Mart́ı. Evaluating opportunistic networks in disaster
scenarios. Journal of Network and Computer Applications,
36(2):870–880, 2013.

[36] Abraham Mart́ın-Campillo, Carles Mart́ınez-Garćıa, Jordi Cu-
curull, Ramon Mart́ı, Sergi Robles, and Joan Borrell. Mo-
bile agents in healthcare, a distributed intelligence approach.
In Computational Intelligence in Healthcare 4, pages 49–80.

19

Springer, 2010.
[37] Paolo Meroni, Elena Pagani, Gian Paolo Rossi, and Lorenzo Va-

lerio. An opportunistic platform for android-based mobile de-
vices. In Proceedings of the Second International Workshop on
Mobile Opportunistic Networking, pages 191–193. ACM, 2010.

[38] Helsinki University of Technology. Networking laboratory web-
site, 2013. http://www.netlab.tkk.fi/engl.shtml.

[39] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark
& Ethereal network protocol analyzer toolkit. Syngress, 2006.

[40] Wolf-Bastian Pöttner, Johannes Morgenroth, Sebastian Schildt,
and Lars Wolf. Performance comparison of DTN bundle proto-
col implementations. In Proceedings of the 6th ACM workshop
on Challenged networks, pages 61–64. ACM, 2011.

[41] Vassilis Prevelakis and Diomidis Spinellis. Sandboxing appli-
cations. In USENIX Annual Technical Conference, FREENIX
Track, pages 119–126. Citeseer, 2001.

[42] Antonio Puliafito and Orazio Tomarchio. Using mobile agents to
implement flexible network management strategies. Computer
Communications, 23(8):708–719, 2000.

[43] Adrián Sánchez-Carmona, Carlos Borrego, Sergi Robles, and
Jordi Andújar. Control de acceso para mensajes pro-activos
en redes dtn. In Proceedings of XII Reunión Española sobre
Criptoloǵıa y Seguridad de la Información, 2012.

[44] Gabriel Sandulescu and Simin Nadjm-Tehrani. Opportunistic
DTN routing with window-aware adaptive replication. In Pro-
ceedings of the 4th Asian Conference on Internet Engineering,
pages 103–112. ACM, 2008.

[45] James Scott, Jon Crowcroft, Pan Hui, and Christophe Diot.
Haggle: A networking architecture designed around mobile
users. In WONS 2006: Third Annual Conference on Wire-
less On-demand Network Systems and Services, pages 78–86,
2006.

[46] Keith L Scott and Scott Burleigh. Bundle protocol specification.

RFC 5050 (Experimental), November 2007.
[47] Matthew Seligman, Kevin Fall, and Padma Mundur. Storage

routing for DTN congestion control. Wireless communications
and mobile computing, 7(10):1183–1196, 2007.

[48] Sakir Sezer, Sandra Scott-Hayward, Pushpinder-Kaur
Chouhan, Barbara Fraser, David Lake, Jim Finnegan,
Niel Viljoen, Marc Miller, and Navneet Rao. Are we ready for
sdn? implementation challenges for software-defined networks.
Communications Magazine, IEEE, 51(7):36–43, 2013.

[49] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S
Raghavendra. Spray and wait: an efficient routing scheme for
intermittently connected mobile networks. In Proceedings of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking,
pages 252–259. ACM, 2005.

[50] Susan Symington, Stephen Farrell, Howard Weiss, and Peter
Lovell. Bundle security protocol specification, 2007.

[51] David L Tennenhouse, Jonathan M Smith, W David Sincoskie,
David J Wetherall, and Gary J Minden. A survey of active
network research. Communications Magazine, IEEE, 35(1):80–
86, 1997.

[52] Noriki Uchida, Norihiro Kawamura, Nicholas Williams, Kazuo
Takahata, and Yoshitaka Shibata. Proposal of delay tolerant
network with cognitive wireless network for disaster information
network system. In Advanced Information Networking and Ap-
plications Workshops (WAINA), 2013 27th International Con-
ference on, pages 249–254. IEEE, 2013.

[53] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. In Security and Privacy, 2009 30th
IEEE Symposium on, pages 79–93. IEEE, 2009.

20

	Introduction
	Related Work
	Active-DTN
	Mobile code Metadata Extension Block
	MMEB Code Types
	Security considerations
	aDTN: an Active-DTN implementation
	Discussion of a Practical Application
	Application-specific forwarding diversity
	Bundle congestion alleviation
	Contextual bundle prioritisation

	Simulation results
	Environment
	Settings
	Tests & results

	Conclusions

