
Please cite this article as: A. Neumann, E. López, L. Navarro, Evaluation of mesh routing protocols for
wireless community networks, Computer Networks (2015), http://dx.doi.org/10.1016/j.comnet.2015.
07.018

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International ” license.

Evaluation of mesh routing protocols for wireless community

networks

Axel Neumanna,, Ester Lópezb, Leandro Navarrob

aRoutek SL
bUniversitat Politècnica de Catalunya

Abstract

In recent years, we have witnessed the exponential growth of wireless community networks
as a response to the clear necessity of Internet access for participation in society. For
wireless mesh networks that can scale to up to thousands of nodes, which are owned and
managed in a decentralized way, it is imperative for their survival to provide the network
with self-management mechanisms that reduce the requirements of human intervention and
technological knowledge in the operation of a community network. In this paper, we focus
on one important self-management mechanism, routing, and we study the scalability, perfor-
mance, and stability of three proactive mesh routing protocols: BMX6, OLSR, and Babel.
We study different metrics on an emulation framework and on the W-ILab.T testbed at
iMinds, making the most of the two worlds. Emulation allows us to have more control over
the topology and more systematically repeat the experiments, whereas a testbed provides a
realistic wireless medium and more reliable measurements, especially in terms of interference
and CPU consumption. Results show the relative merits, costs, and limitations of the three
protocols.

Keywords: mesh routing, wireless community networks, BMX6, OSLR, Babel

1. Introduction

Wireless community networks present an alternative ownership model for IP-networks,
where every piece of equipment is managed and owned in a decentralized fashion by members
of the community, and traffic is routed cooperatively. These were motivated to overcome the
gap between Internet access and the connectivity offered by traditional ISPs where coverage
is far from ideal, especially in rural areas. As time has gone by and as Internet access has
become increasingly important in individual and collective participation in society, wireless

Email addresses: axel@routek.net (Axel Neumann), esterl@ac.upc.edu (Ester López),
leandro@ac.upc.edu (Leandro Navarro)

http://dx.doi.org/10.1016/j.comnet.2015.07.018
http://dx.doi.org/10.1016/j.comnet.2015.07.018
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0

community networks have been growing exponentially in many countries, some of them
reaching thousands of nodes (e.g., Guifi.net [1] and Athens Wireless Metropolitan Network
(AWMN) [2]).

From a scalability point of view, this exponential growth must come with the proper set
of tools and mechanisms that render the network as autonomous as possible, so that the
management and control actions required are reduced to a minimum. However, not only is
minimizing human effort needed, but also making sure that those tools, mechanisms, and
software that bind the network together are adequately scalable and can support network
growth.

This paper is an extension of our previous work presented in [3], [4], and [5], which focused
on the scalability and stability of proactive routing protocols, one of the key building blocks
for operating such networks. In this paper we expand previous knowledge by analyzing
the performance of OLSR[6], BMX6[7] and Babel[8], three common routing protocols in
wireless community networks, under different networks’ sizes and characteristics, using both
an emulation framework and the W-ILab.T testbed. These routing protocols have been
characterized by means of studying their control overhead, convergence delay, CPU and
memory consumption and stability.

The rest of the paper is structured as follows. Section 2 details similar work that has
been previously done and Section 3 explains in detail the three routing protocols that are
compared. Section 4 discusses the different metrics that characterize the routing protocols
and then we present our emulation- and testbed-based experiments and results in Sections
5 and 6. We discuss the results as a whole in Section 7, and we conclude in Section 8.

2. Related Work

Ad hoc network routing protocols have been extensively studied in the literature; how-
ever, most of the work done focuses on mobile ad hoc networks. The performance of routing
protocols is expected to be different in wireless mesh networks, where the backbone mesh
nodes are static and do not have energy constraints.

Among the three protocols considered, OLSR has received more attention: its protocol
overhead, route convergence time, delivery ratio, end-to-end delay, and throughput have
been compared in simulations with those of AODV, HWMP, DSR, TORA and DSDV ([9,
10, 11, 12, 13, 14]). There are also some real testbed experiments that compare OLSR with
BATMAN([15, 16]) or AODV([17, 18, 19]) in networks that range up to 49 nodes and some
provide additional information such as CPU and memory consumption.

The results in these studies demonstrate that compared to on-demand routing protocols,
OLSR has comparable results in terms of delivery ratio, while the end-to-end delay is lower,
and the overhead is lower in dense networks with many flows and higher in the contrary sit-
uation. The OLSR protocol has been also compared with other proactive routing protocols,
such as Babel and BATMAN in [20] and [15], showing that distance-vector protocols have
lower overhead but do not necessarily achieve higher throughput.

The authors of [19] experimentally quantified and discussed the performance of OLSR,
Babel, and AODV implementations based on a small (7-nodes) indoors testbed. Results are

2

ranked using Kiviat diagrams to balance between the studied measures of overhead, energy
consumption, packet reordering, delay, and loss. Although the obtained standard deviations
for each measure indicate a high statistical validity and allow a clear and non-overlapping
ranking between the different protocols, the relevance of equivalently compared but obvi-
ously correlated measures of different importance seems misleading. Another shortcoming is
the lack of plausible explanations for certain results, such as why the overhead of proactive
routing protocols in an unchanging environment should depend on the distance (hops) be-
tween two communicating nodes or how application-traffic delay and loss measured between
two nodes with only a single possible single-hop path between them could be affected by the
routing protocol.

Regarding self-healing and convergence performance, while a tremendous amount of
work has been employed in the last years on simulation-based research on the perfor-
mance of mobile ad-hoc networking and mesh routing protocols regarding their performance
[21, 22, 23, 24] and tuning [25, 26], much less insight hs been published based on experi-
mental analysis using emulation [27, 20, 3] or testbeds [28, 29, 19], leaving the experimental
performance evaluation of changing topology aspects on mesh routing protocols surprisingly
unattended.

Despite this gap of profound experimental evaluation, pioneering projects have started to
work on concrete solutions targeted for low-budget IEEE802.11 enabled devices, such as the
Serval project [30], promising a communication anytime and anywhere even in the absence
of phone towers and other supporting infrastructure. Another project, however, which does
not focus on mobile routers, is the Village Telco project [31]. It is interesting to note that
both of these projects have changed the underlying routing protocols since their existence
due to critical performance issues found in live deployments.

In addition, it is worth mentioning the Battlemesh event [32]], which is an annual gath-
ering of mesh-routing protocol developers with the objective to compare their protocols in
different challenging environments and scenarios, including mobile scenarios. Unfortunately,
due to the dynamics of these events, reproducible results obtained via systematically per-
formed measurements have not yet been documented. However, measurement snapshots
from past years [33], capturing the performance in semi-static and mobile scenarios suggest
a huge gap between simulation-based and experimentation-based measurements.

This work presents an extension of our work in [3], [5], and [4], which compared with
other studies, such as [20, 15, 19], evaluates the effect of network dynamics (e.g. link failures)
and topology changes. Another relevant difference of our work is that results are based on
the combination of various scenarios and topologies and are thus not tightly coupled to
a particular deployment, which allows us to generalize results and derive expectations for
deployments with different topological structures, sizes, or node densities.

3. Mesh Routing Protocols

Routing is a critical function in wireless mesh networks, since it decides the path any
packet must follow to reach its destination. In a community network that grows organically,
with several hops from the source to the gateway and where network management is not

3

done by a single entity, but by many members of the community in a decentralized way,
it is imperative that a routing protocol is able to continuously adapt to network changes.
Routing protocols are usually classified as proactive or reactive, based on whether they learn
routing paths proactively or just when needed (reactively). In [34], it can be seen that the
vast majority of community networks use proactive routing protocols, since nodes do not
have energy constraints. Additionally, proactive routing protocols are more efficient in terms
of packet delay and outperform reactive protocols when the number of flows in the network
increases [35].

One of the goals of our evaluation is to understand the consequences of choosing either
a distance-vector or a link-state paradigm and how it affects scalability. Distance-vector
routing protocols follow the Bellman-Ford algorithm, sharing only aggregated information
about the path metrics, whereas link-state protocols share the whole view of the network,
and the metric of every single link is known by every node. On the representation of
link-state routing protocols, the choice is easy; OLSR is the most studied and used link-
stated routing protocol. On the distance-vector side, we have chosen BMX6 and Babel,
which have been extensively compared with other mesh routing protocols in Battlemesh
[32] workshops. Babel has been chosen because it is a clear implementation of a distance-
vector protocol and BMX6 because of its recent popularity in existing community network
projects (e.g., Guifi.net/qMp [36] and Libre-mesh [37]). In addition, BMX6 uses the Secure
Hash Algorithm (SHA) hashes instead of IP addresses as node identifiers and implements a
number of features to reduce the protocol overhead while keeping the protocol as reactive as
possible. The other famous Layer-2 BATMAN [38] has not been included in our evaluation
because of the difficulty of comparing it with the Layer-3 protocols.

In the following subsections, we explain how these three routing protocols work by de-
scribing the mechanisms used for neighbor discovery (How does a node know other mesh
nodes in range?) and topology dissemination (How does a node learn about routes to nodes
that are not directly reachable?).

3.1. Babel

Babel is a proactive, distance-vector routing protocol based on the Bellman-Ford protocol
[8]. Its main concern is to limit routing pathologies as routing loops or black holes, which
it achieves using a proper feasibility condition and attaching a sequence number to routing
updates.

Babel’s feasibility condition determines which of the received routing updates should be
considered and which should not; a routing update for a route is feasible only if its metric
is smaller than any of the routing updates for the previously advertised route.

The sequence number attached to a routing update is generated by the destination node
it announces and determines to which other routing updates the metric can be compared.
Only information with the same sequence number is comparable.

Neighbor discovery. Babel nodes discover its neighborhood by exchanging two types
of messages.

• Hello messages are sent to a multicast address by every Babel interface with a sequence
number that is increased locally every time a new Hello message is sent. By listening to

4

Hello messages, a node not only discovers its neighboring nodes, but it also estimates
the reception cost (rxcost) of that link. By default Babel sends a Hello message every
four seconds.

• I heard you (IHU) messages are used to determine the bidirectionality of a link and
share the rxcost with the neighboring node. The IHU messages are conceptually
unicast; however, they are sent to a multicast address to avoid address resolution
protocol (ARP) exchanges and to aggregate multiple messages in a single packet. They
are also sent periodically, but usually not as often as a Hello messages; by default they
are sent every 12 seconds.

Topology dissemination. In Babel, nodes discover far away nodes by sharing their
routing table in route update messages.

• A route update message announces a route and its associated cost, and every Babel
node sends a periodic update for every node it can reach to a multicast address.
Additionally, when there is a significant change in the network topology, such as a
route retraction or a significant change in the metric, an unscheduled route update is
sent, so that periodic updates do not need to happen as often (by default every 16
seconds).

When a node receives an update, first of all it checks its feasibility, and if feasible, it
computes the accumulated metric by combining the metric on the update message plus the
cost of the link from where the update is received.

3.2. BMX6

The BMX6 protocol is also a proactive, destination-sequenced distance vector protocol
whose main goal is to reduce the size of periodic messages to achieve low routing overhead
while attaining high reactivity to network changes. The key concepts behind this are (i)
using a stateful-compressed communication between neighbors and (ii) the context-specific
propagation of local versus global and static versus dynamic information.

In a mesh network with flat addressing, reducing overhead using stateful communication
translates largely to the use of compact (16 bit) local identifiers to refer to other nodes, since
addresses (specially with IPv6) are very long. Therefore, every message sent by a node will
use its own local identifiers instead of a global one, which has been previously shared.

On the categorization for information, static information refers to such addresses and
other details about a node that are unlikely to change; those attributes are gathered together
into the node’s description. On the other hand, dynamic information refers mainly to link
and path costs estimations. The global versus local separation determines which information
is kept within the neighborhood and which is flooded through the network; local identifiers
and link costs are kept locally, while path costs and node descriptions are shared globally.

Neighbor discovery. Neighbors are discovered in a similar fashion to Babel.

• Hello messages are sent to a multicast address periodically with a sequence number
that is locally increased every time a new Hello message is generated. By default,
Hello messages are sent every 0.5 seconds.

5

• Report (RP) messages are sent with the same interval as Hello messages and report
the number of Hello messages received. By counting the number of Hello messages
received from a node and knowing the number of Hello messages that a node has
received, a node can compute both the transmission and reception costs of a link.

Topology dissemination. Routes to other nodes in the network in BMX6 are obtained as
a result of the flooding of originator messages.

• OriGinator Messages (OGM) are sent periodically by every node (originator) to an-
nounce its presence and then re-sent if appropriate by any node that receives it. An
OGM contains the sender’s local identifier of the originator, a sequence number, and
a metric that measures the cost of reaching it from the sender’s perspective. When a
node receives an OGM, it computes the cost of reaching the originator by combining
the metric announced in the OGM with the cost of the sender’s link; if this cost is
smaller than the cost via any other neighbor, then the node will re-multicast the OGM,
after updating it with its local identifier and the metric computed. By default, a node
generates an OGM every five seconds.

Additionally, static information is shared on demand. When a node receives an OGM
or a Hello message with an unknown local identifier, it will ask the sender for the node
description’s hash. This hash allows the node to determine whether the local identifier
refers to any of the known nodes, and if it is not the case, then it will request the node’s
description and update its knowledge conccerning the network.

3.3. OLSR

In contrast, OLSR, as its name points out, is an optimized link-state routing protocol.
The optimized part comes from the optimization on the flooding mechanism; only nodes
selected as multi-point relays (MPR) retransmit the node’s messages.

Topology dissemination. As any link-state routing protocol, OLSR provides every
node in the network with a (partial) view of the whole topology by flooding the network
with Topology Control (TC) messages.

• A TC message describes all the nodes that are reachable from the message creator, as
well as the quality of the involved links in both directions. The TC messages are gener-
ated periodically by every node in the network and are then retransmitted unchanged
throughout the network. By default, the implementation used in our experiments
transmits a TC message every five seconds.

Neighbor discovery Neighborhood sensing is performed in OLSR by periodically send-
ing Hello messages.

• A Hello message consists of a locally increased sequence number and the list of known
links to the sender’s neighbors as well as their quality and the quality from the neigh-
bor’s perspective. Link quality is computed as a function of the number of received
Hello messages from that neighbor, while the quality from the neighbor’s perspective
is simply the quality reported in its Hello messages. Hello messages are sent to a
multicast address periodically, by default every two seconds.

6

In this evaluation, we have used the popular implementation by olsrd.org, which imple-
ments three fundamental changes to the original RFC. First, the MPR optimization itself,
originally designed for wired scenarios with loss-free links, is modified to require not only
one but seven nodes to reach every two hop neighbor. Otherwise, when considering even the
weakest detected link as a reliable resource for the dissemination of topology information,
massive network instabilities must be expected. Second, to compensate for the overhead in-
troduced by the increased MPR redundancy, the fish-eye extension has been introduced [39]
where TC updates are exchanged less often between far away nodes than between nearby
nodes. This is achieved by letting the originator of each TC message use different time
to live (TTL) values with the consequence that only every second TC message propagates
beyond the first hop. Third, the path metric used by the olsrd.org implementation is based
on the expected transmit count (ETX) metric [40] which, compared to the originally pro-
posed hop count metric, provides a better reflection of the real path cost for transmitting a
packet via wireless links. Although controversy on the best parameterization of this protocol
exists (such as the findings published by Johnson and Hancke in [41] on the performance
of ETX and the hysteresis-based hop count metric), we decided to base our experiments on
the defaults of this implementation because their current selection still represents a common
ground that reflects the experience from its usage in several community networks over many
years.

3.4. Summary

In essence, what differentiates these routing protocols is their topology dissemination
mechanisms and how they solve and position themselves in the trade-off between convergence
delay and overhead.

• In Babel, nodes only interact with their neighbors, sharing all the relevant informa-
tion between them periodically. Routing updates are bigger because they contain the
complete routing table, but are only shared locally. Overhead is reduced by retaining
long intervals between periodic updates, while reactiveness is increased by sending
unscheduled updates when the network changes considerably.

• Additionally, BMX6 floods small OGM messages through the network, but principally
the information shared is the same as on Babel, except messages are split and trig-
gered differently. Overhead is reduced by compacting periodic messages as much as
possible using stateful communication between neighbors, whereas convergence delay
is minimized by having a very frequent exchange of messages.

• Further, OLSR is a link-state protocol; therefore, during topology dissemination, in-
formation concerning every link is shared, instead of path-aggregated information.
Overhead is reduced using the fish-eye extension; updates are shared more frequently
with nearby nodes than with far away nodes, but to be adequately reactive, the time
interval between updates is kept small.

7

Table 1: Periodic Messages

Message Size (B) Interval Messages/node

Babel

Hello 8 4 s 1

IHU 16 12 s 1× n
Update [12, 28] 16 s 1× route

BMX6

Hello [4, 6] 0.5 s 1

RP 1 0.5 s 1× n
OGM 4 5 s 1

OLSR
Hello [28, 32] +20× n 2 s 1

TC 28 + 20× n 5 s 1

Figure 1: Topology dissemination mechanisms

Figure 1 summarizes the topology dissemination mechanism for each routing protocol.
Table 1 lists the messages exchanged by each routing protocol, explaining its size and how
many of them are exchanged depending on the number of neighbors (n) that a node has.
The size given for each message type does not take into account the length of the headers.

4. Evaluation Metrics

There are several metrics to consider when evaluating the performance and overhead of
a wireless mesh routing protocol.

The most common one is to measure its network efficiency, that is: how much routing
traffic is necessary to be able to establish a connected network. Network efficiency is usually
measured in terms of bytes/second or packets/second.

Given the relatively dynamic properties of wireless community networks we are interested
in measuring how fast the routing protocol can adapt to these network changes or how stable
the IP network is, given that the physical network is not stable. In terms of stability, we
can measure the percentage of time the network is connected by pinging from some nodes
to others or, similarly, measuring the longest time the network is not connected. From the

8

perspective of reactivity, we can measure how long it takes to learn a new or better path,
which is what we call convergence time. We are also interested in the cost in terms of the
resource consumption of processing (CPU) and memory for each routing protocol. We must
ensure the network nodes have the capabilities to run such protocols.

We measure the sensitivity of these metrics to the scale of the network, according to the
variation of the size of the node neighborhood, variation of the total network size, variation
of the length and number of hops of the network paths, and variation of the availability of
links or the rate of changes in the network.

These measurements are performed and evaluated in different scenarios using container-
based emulation and testbed-based experimentation. Both of them have different degrees of
realism and flexibility. Emulation allows total control over environmental conditions, such
as topology, availability, and changes but under limited realism. For instance, details taken
from diverse real wireless community networks regarding the structure and events during
a temporal period can be reproduced in a series of experiments and even be subjected to
variations. In contrast, testbed experimentation provides a real environment, under stable
environmental conditions, with a given set of nodes, radios, and locations, and control over
a few aspects, such as transmit power and choice of nodes to use in an experiment among
those available in the testbed.

5. Emulation Experiments

Using emulation, we can easily measure network overhead and convergence time. It is
also possible to measure the cost in terms of memory, but the CPU cost is not reliable.
Measuring the quality of the path is also complicated because the channels are not perfectly
modeled. These metrics, therefore, are better studied in a testbed or real world deployment.

The emulation experiments presented in this paper represent a summary of the results
obtained during several experiments using the same emulation system. Table 2 shows the
network characteristics used for each figure. The Barcelonès area corresponds to a large
portion of the city and metropolitan area of Barcelona, and its topology was retrieved from
Guifi.net Community Network Mark Up Language (CNML). Generator refers to topologies
obtained using the generator from [42] with parameters from the Osona county, a represen-
tative semi-rural area where Guifi.net started. Each specific experiment with a given set of
parameter values was repeated at least 20 times.

Our emulation system is based on mesh Linux containers (MLC) [43], which is a set
of scripts based on Linux containers (LXC) and Linux networking tools, such as ip or tc.
The MLC runs an LXC container for each node in the network and establishes the desired
connections between them with a given link quality using tc, so that packets are randomly
dropped and delayed with probabilities as configured. The system does not allow applying
complex Wi-Fi models or reflecting the impact of interference between links of any kind.

5.1. Network Overhead

In our first set of experiments, we studied the effect of network size on the network
overhead of each routing protocol. The topology emulated in this case corresponds with a

9

Table 2: Network characteristics of the emulation experiments

Topology Number of nodes Number of links

Figs. 3a, 4a Barcelonès {10,20, 30, 40, 50, 60, 66} {9,21,31,43,54,65,72}
Figs. 3b, 4b Barcelonès 50 54
Figs. 3c, 4c Barcelonès 69 {75,100,150,250,500,750,1000}
Fig. 5a Barcelonès 66 72
Figs. 5b, 5c Generator 50 75
Fig. 6a Generator 49 74
Fig. 6b Generator {16,25,49,64,81,100} {24,38,74,96,122,150}

Figure 2: The topology of the Barcelonès network

representation of the Barcelonès area of Guifi.net (shown in Figure 2 and more details in
Table 2), where each link quality was determined by averaging the measurements of one
hour [5].

Figures 3a and 4a illustrate the network overhead in bytes and packets of each routing
protocol on networks with different numbers of nodes. To obtain those networks, the original
network was randomly sampled. As we can see, the number of bytes increases with the
number of nodes, and OLSR seems to be the more heavily influenced protocol, Babel always
has lower overhead but seems to increase at a faster rate than BMX6. Regarding the number
of packets, all routing protocols seem quite stable except Babel, which has a step increase
on 50 nodes.

Then for Figures 3b and 4b, we run the experiment using the Barcelonès network without
any modifications, and it shows the overhead of each node depending on the number of
neighbors each node has. As we can see, OLSR is more heavily affected by the number of

10

(a) Bytes vs. nodes (b) Bytes vs. specific links (c) Bytes vs. average links

Figure 3: Network overhead in bytes

(a) Packets vs. nodes (b) Packets vs. specific links (c) Packets vs. average links

Figure 4: Network overhead in number of packets

neighbors, whereas Babel and BMX6’s overhead in bytes only increases slightly with the
number of neighbors. The number of packets looks stable in every case, except for a peak
in Babel when there are five neighbors.

Finally, Figures 3c and 4c show the results when there is a fixed number of 69 nodes in
the network, but the number of links is variable. As before, OLSR is the protocol that is
more heavily affected by the number of links, whereas Babel remains stable in every case.
Further, BMX6 increases slightly as the number of links increases. Because every point
represents the overhead for a node, nodes with higher numbers of links within the same
network will have higher overhead, and this difference is greater for OLSR than for BMX6
and Babel. The results for the number of packets are similar.

5.2. Stability and Reactivity

Our second set of experiments attempts to characterize the stability and reactivity of
the three routing protocols.

11

(a) Convergence vs. hops (b) Ping success vs. changes (c) Offline period vs. changes

Figure 5: Network stability and reactivity

To measure the convergence time, we have looked for the longest path on the Barcelonès
network. Then, we have measured how long it takes to discover new nodes that are attached
to each of the nodes in the path from one of the endpoints. Figure 5a depicts our experiments’
results. The OLSR obtains the worst performance, and we can clearly see a step function.
This is due to the fish-eye extension [39], which sends link updates more frequently to nearby
nodes, and not that frequently to far away nodes. Both BMX6 and Babel have flat responses,
with BMX6 outperforming Babel.

In reference to measuring the stability, we have generated random network topologies
using the community network generator presented in [42] with the parameters from the
Osona zone in the Guifi.net [1] community network (degree=2.99, shape α = 0.2521602,
and rate β = 0.01147359). Then links of the network were turned on and off with different
times between changes but always ensuring that the network remained connected. Figure
5b illustrates the success rate of a ping between two randomly selected nodes of the network,
depending on the number of changes per second. As expected, more changes imply that the
routing protocol cannot keep up, and connectivity is lost sometimes. In this case, BMX6
outperforms both Babel and OLSR, which present similar results. Figure 5c presents the
same results regarding which routing protocol has longer offline periods.

5.3. Memory Usage

The final metric studied through emulation is the cost in terms of memory. To measure
the memory consumption, we have run the experiments on a computer with an Intel Core2
Duo E8400 processor running at 3.00 GHz with 4 GB of memory. We have retrieved statistics
regarding memory usage using the pmap utility.

Our first experiment considers a network of 49 nodes and 74 links, and studies the
memory consumed by each node based on the number of neighbors it has (Figure 6a). In
this scenario, both OLSR and Babel show constant memory usage, independently of the
number of neighbors; however, BMX6 requires more memory when the number of neighbors
reaches 15. The results are similar in our next experiment (Figure 6b), which increases

12

(a) Memory vs. number of links (b) Memory vs. number of nodes

Figure 6: Memory consumption

the size of the network (e.g., network with 16 nodes and 24 links, then 25 nodes and 38
links, etc.) and measures the average memory used by each node. Babel memory usage
is stable, BMX6 increases with size and for OLSR, we observe an increase in one case for
the biggest network. We believe that, for bigger networks, we would also see an increase in
the memory use for OLSR and Babel, but this is not seen because memory is assigned in
chunks, and, in contrast to BMX6, the OLSR and Babel protocols do not yet need the full
memory provided by the current chunk. The assignment of memory in chunks also explains
why memory usage of BMX6 seems non-linear. The measured usage remains unchanged
until the last allocated memory chunk is exhausted and the probability for allocating the
next chunk rises quickly and is non-linear in sections. The measured BMX6 memory usage
in Figure 6a for 10 and 15 neighbors indicates such a section. In Figure 6b, the exponential
growth in memory requirements for BMX6 is also caused by an increasing number of links
that come with an increasing number of nodes.

6. Testbed Experiments

6.1. Experiment Setup

Protocol performance measurements based on real hardware have been performed in the
W-ILab.T wireless testbed [44]. The facility consists of approximately 60 stationary and
15 mobile experimentation devices deployed in a 60 x 20 meter indoor location at iMinds.
The grid-like deployment structure of stationary devices is principally given by six rows
with 10 devices (columns) each and an inter row space of 3.6 meters and inter column
space of six meters. The devices consist of of-the-shelf computer hardware, each equipped
with two 802.11abgn WLAN cards, which can be freely programmed by the experimenters.

13

Further characteristics and configurations are summarized in Table 3. The devices, also
called nodes, were configured to run a Linux operating system (OS) based on OpenWRT,
a Linux distribution optimized for embedded wireless devices, and several convenient OS
and measurement tools to control and collect measurement data. For the experiment, 50
nodes (the upper five node rows) have been used with one radio each configured in IEEE
802.11a ad-hoc mode. All protocols were configured to run on IPv6 and to announce only
their primary interface addresses. Given the physically dense node deployment with an
average neighbor distance of less than five meters, a number of preliminary measurements
were performed to understand the wireless characteristics of the testbed and to avoid a
fully connected mesh where the broadcast-based link detection mechanisms of the routing
protocols detect links to nearly all other nodes (note that even the two most distant nodes are
less than 63 meters away from each other) and achieve the establishment of true multi-hop
topologies. The result of this exercise can be seen in Figure 7, showing topology snapshots
(as detected by the OLSR protocol) resulting from different transmit power configurations
with and without background traffic.

The average number of links per node is shown in Figure 8 for the number of nodes,
transmit (TX) power, and TX rate grouped by their link quality and whether the links were
captured with or without interference caused by TCP background traffic. It can be seen
that the presence of TCP user traffic significantly decreases the perception of high-quality
links (here those with an ETX rate of less than 1.3), while the total number of detected
links is much less affected. The figure also shows that, in our testbed scenario, the average
number of links per node scales linearly with the selected transmit power or rate. Figure
9a demonstrates the path length established by each routing protocol to route from the
leftmost node in the second upper row (node Id 0) to the rightmost node in the same row
(node Id 9). As expected, with a low transmit power (or high TX rate) and consequently
small transmit range the selected end-to-end path relies on many intermediate hops, while
less relaying nodes are required with an increased TX power (or a more robust but lower
rate). Figures 9b and 9c give an impression on the end-to-end throughput achievable with
each routing protocol when varying the node density by increasing power or rate.

Based on these findings, our following experiments will be configured to use the param-
eters shown in Table 4. Primarily, we use 3 dBm of transmit power and disabled transmit
rates below 36 Mbps to enforce the establishment of topologies with more than seven hops.

6.2. Measurements

In order to measure the impact of neighbor size (density) and network size on cost and
performance, all protocols have been sequentially exposed to a variety of testbed configu-
rations. These testbed configurations were given by the range of parameterization values
for each studied parameter and the default value for all other parameters. Each exposure
(experiment) consists of the following standard procedure. First, all currently active pro-
tocols were disabled on all nodes. Then, the interfaces, IPv6 addresses, wireless settings
(channel, mode, TX power, and enabled rates), and the currently probed protocol (only
one at a time) were configured and activated only on those nodes relevant for this test. A
stabilization period of 100 seconds was applied before continuing the actual measurement

14

0 10 20 30 40 50

−
15

−
5

5
po

si
tio

n
[m

]

●
●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●● ●

●

●

●

●●

●● ●

●

●

●

● ●

●

●

●● ●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

ETX<1.3 ETX<2 ETX<10

(a) 3dBm,36Mbps

0 10 20 30 40 50

−
15

−
5

5
po

si
tio

n
[m

]

● ● ●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●● ●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

ETX<1.3 ETX<2 ETX<10

(b) 3dBm,36Mbps with TCP user traf-
fic

0 10 20 30 40 50

−
15

−
5

5
po

si
tio

n
[m

]

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

● ●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

ETX<1.3 ETX<2 ETX<10

(c) 8dBm,36Mbps (d) mobile setup @4dBm,36Mbps

Figure 7: Topologies in different scenarios

●

●

●

●

●

10 20 30 40 50

1
2

3
4

Number of nodes

N
um

be
r

of
 li

nk
s

pe
r

no
de

● ETX<10
ETX<10 (@interf.)
ETX<2
ETX<2 (@interf.)
ETX<1.3
ETX<1.3 (@interf.)

(a) Links depending on number
of nodes (3dBm,36Mbit)

●

●

●

●

●

●

3 4 5 6 7 8

0
5

10
15

20

TX power [dBm]

N
um

be
r

of
 li

nk
s

pe
r

no
de

● ETX<10
ETX<10 (@interf.)
ETX<2
ETX<2 (@interf.)
ETX<1.3
ETX<1.3 (@interf.)

(b) Links depending on TX
power (36Mbit)

●

●

●

●

●

●

●

−40 −30 −20 −10

0
5

10
15

20

TX rate [−Mbps]

N
um

be
r

of
 li

nk
s

pe
r

no
de

● ETX<10
ETX<10 (@interf.)
ETX<2
ETX<2 (@interf.)
ETX<1.3
ETX<1.3 (@interf.)

(c) Links depending on TX rate
(3dBm)

Figure 8: Network densities and link qualities for different testbed configurations

15

●

●

●

●

●

●

3 4 5 6 7 8

0
2

4
6

8
10

12

TX power [dBm]

E
nd

−
to

−
en

d
di

st
an

ce
 [h

op
s]

●

●

●

●

●

●

●

●

olsr
bmx6
babel

(a) Path length vs. TX power
(36 Mbps)

●

●

●

●

●

●

3 4 5 6 7 8
10

0
20

0
30

0
40

0

TX power [dBm]

T
C

P
 th

ro
ug

hp
ut

 [K
B

yt
es

/s
]

●

●
●

●

●

●

●

●

olsr
bmx6
babel

(b) Throughput vs. TX power

●

●

●

●

●

●

●

−40 −30 −20 −10

0
50

10
0

15
0

20
0

25
0

TX rate [−Mbps]

T
C

P
 th

ro
ug

hp
ut

 [K
B

yt
es

/s
]

●

●

●

●

●

●

●

●

●

olsr
bmx6
babel

(c) Throughput vs. TX rate

Figure 9: End-to-end path length and TCP throughput depending on network density varying power and
rate

to avoid capturing of atypical bootstrapping effects. Each following measurement lasted 60
seconds and relied on common Linux tools (such as ping6, iperf, top, and tcpdump) for ac-
tive probing of end-to-end path characteristics and monitoring and capturing CPU, memory,
and traffic overhead.

After each experiment, the measurement data were offloaded and, once all experiments of
a particular scenario were executed, post processed into graphs illustrating the dependency
of one characteristic depending on a particular testbed parameter. Each measurement point
in any of the graphs shown in Figures 8 to 15 represents the averaged relevant measurement
data captured during a single experiment run.

The very limited exclusive testbed usage slots that allow interference-free experiments
in the often overbooked W-ILab.T infrastructure do not allow the systematic repetition of
scenarios required for a statistical validity analysis. Instead, the goal has been covering a
wide range of selected parameters. However, atypical measurements have been selectively

Table 3: General W-ILab.T testbed and protocol characteristics and configuration

Characteristic Configuration

Environment Laboratory 16x60 meter
Deployment Regular 5x10 nodes grid (see Fig. 7a)
Operating system Linux/OpenWRT BarrierBreaker rev41558
Protocol impl. babeld v1.5.0, bmx6 rev8b0585e8, olsrd v0.6.6.2
Hardware ZOTAC NM10-ITX
CPU model Intel(R) Atom(TM) CPU D525 @ 1.80GHz
Memory 903460 kB
Wireless Atheros - AR928X 802.11a/b/g/n
Wireless mode 80211a, ad-hoc, channel 36 (5.18GHz)

16

repeated to avoid the consideration of exceptional outliers. This way, the resulting and
purposely un-smoothed plots also include strongly varying behavior that is a typical charac-
teristic of any real wireless network. Still, a number of protocol-typical characteristics and
tendencies can be identified and generally acknowledge the findings made via our previous
emulation-based measurements.

The results in Figures 11a, 12a, 13a, and 14a illustrate the impact of network size on
overhead, CPU, and memory consumption and are based on the experiments of a single
scenario where nodes, grouped in rows with 10 nodes each, were successively added to the
total number of participating nodes, starting with the second row (which also contained
source and destination node used for end-to-end path probing and optional transmission of
TCP user traffic), then adding the first, third, fourth, and fifth rows until the final size of 50
nodes was reached, eventually yielding a topology as illustrated in Figure 7a. During this
scenario, the power and minimum rate was fixed to 3 dBm and 36 Mbps.

The impact of node density has been studied by either varying the transmit power of
each node (with results shown in Figures 11b, 12b, 13b, and 14b) or by varying the minimal
allowed transmit rate per node (see Figures 11c, 12c, 13c, and 14c). For these scenarios, all
50 nodes were used from the beginning, but transmit power or rate was successively changed
in each experiment round.

The repetition of the above scenarios without background user traffic revealed that CPU
and memory consumption do not significantly differ in both cases: thus, only the resulting
impact on protocol overhead is shown in Figure 10.

In order to obtain an experimentation-based picture of the self-healing capabilities of each
protocol, we probed the end-to-end path between two nodes. This was realized using a 20-
node subset (given by the upper two rows) of the original 50-node topology and an additional
“mobile” node installed on a robot that was programmed to move with different speeds just
below the second row of nodes in the W-ILab.T deployment from near the leftmost node
column to the eighth column and back. Figure 7d illustrates this setup. The robot turning
points were located 42 meters (or seven inter-column spaces) apart from each other. Path
health to this moving node was probed using the ping6 command from the fourth node of
the second row, located in the middle between the turning points. Figure 15a shows, based
on a TX power and rate setting of 3 dBm and 36 Mbps, that for each protocol the average
ping success rate to this moving node depending on its velocity, each reflects a scenario with
differently fast changing links. It can be seen how the success rate, around 90% at velocities

Table 4: Experimented parameters, defaults, and ranges

Parameter Default Range

Transmit power [dBm] 3 3, 4, 5, 6, 7, 8
Transmit rate [Mbit] 36 6, 9, 12, 18, 24, 36, 48, 54
Used nodes 50 10, 20, 30, 40, 50
Network Load active none versus active (single TCP stream

between most distant nodes of a row)

17

●

●

●

●

●

10 20 30 40 50

10
0

20
0

30
0

40
0

Number of nodes

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

●

●

●

●

●

●

●

olsr
bmx6
babel

(a) Impact of Network size

●

●

●

● ●
●

3 4 5 6 7 8
0

20
00

60
00

10
00

0

TX power [dBm]

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

● ● ●
● ●

●

●

olsr
bmx6
babel

(b) Impact of TX power

●

●

●

●

●

●

●

−40 −30 −20 −10

0
10

00
30

00
50

00

TX rate [−Mbps]

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

● ●
● ● ● ●

●

●

●

olsr
bmx6
babel

(c) Impact of TX rate

Figure 10: Data overhead (bytes/s) depending on network size and density (power, rate), no TCP user
traffic

●

●

●

● ●

10 20 30 40 50

20
0

40
0

60
0

80
0

Number of nodes

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

●

●

●

●

●

●

●

olsr
bmx6
babel

(a) Impact of Network size

●

●

●

●

●

●

3 4 5 6 7 8

0
20

00
60

00
10

00
0

TX power [dBm]

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

●
● ● ● ● ●

●

●

olsr
bmx6
babel

(b) Impact of TX power

●

●

●

●

●

●

●

−40 −30 −20 −10

0
10

00
20

00
30

00
40

00
50

00

TX rate [−Mbps]

N
et

w
or

k
ov

er
he

ad
 (

@
80

2.
11

)
[B

yt
es

/s
]

●

●
●

● ●
●

●

●

●

olsr
bmx6
babel

(c) Impact of TX rate

Figure 11: Data overhead (bytes/s) depending on network size and density (power, rate)

of 5 cm per second for all protocols, decreases with increasing destination velocities down to
around 60% for BMX6 and below 40% for OLSR and Babel. The repetition of this scenario
with slightly increased power settings at 4 and 5 dBm (see Figure 15b and 15c) lead to
a broader continuous coverage of the moving node, giving routing protocols more time to
adapt to weakening links and narrow the performance gap between the three protocols.

7. Discussion and Summary of Results

In this section, we take a closer look at the measurement results obtained via emula-
tion and experimentation with the objective to gain a general understanding of how the
characteristics of a network influence the performance of various routing protocols. We
also discuss potential discrepancies of the two different methodologies. Table 5 provides a
high-level summary of the identified protocol-specific behaviors by grouping the studied per-
formance characteristics (in terms of overhead and self-healing capability) and dependencies

18

● ● ● ● ●

10 20 30 40 50

1
2

3
4

5

Number of nodes

N
et

w
or

k
ov

er
he

ad
 [P

ac
ke

ts
/s

]

● ● ● ● ●

●

●

olsr
bmx6
babel

(a) Impact of Network size

●

●

●

●
● ●

3 4 5 6 7 8

0
10

20
30

40

TX power [dBm]

N
et

w
or

k
ov

er
he

ad
 [P

ac
ke

ts
/s

]
● ● ● ● ● ●

●

●

olsr
bmx6
babel

(b) Impact of TX power

● ●

●

●

●

●

●

−40 −30 −20 −10

2
4

6
8

10
12

TX rate [−Mbps]

N
et

w
or

k
ov

er
he

ad
 [P

ac
ke

ts
/s

]

● ● ● ● ● ● ●

●

●

olsr
bmx6
babel

(c) Impact of TX rate

Figure 12: Data overhead (packets/s) depending on network size and density (power, rate)

●
●

● ●
●

10 20 30 40 50

0
1

2
3

4

Number of nodes

C
P

U
 u

sa
ge

 [%
]

● ●
● ● ●

●

●

olsr
bmx6
babel

(a) Impact of Network size

● ●
● ●

●

●

3 4 5 6 7 8

0
1

2
3

4

TX power [dBm]

C
P

U
 u

sa
ge

 [%
]

●

●

●

●

●
●

●

●

olsr
bmx6
babel

(b) Impact of TX power

● ●

●

●
●

● ●

−40 −30 −20 −10

0
1

2
3

4

TX rate [−Mbps]

C
P

U
 u

sa
ge

 [%
]

●
●

● ●

●

●

●

●

●

olsr
bmx6
babel

(c) Impact of TX rate

Figure 13: CPU consumption depending on network size and density (power, rate)

●
●

●
● ●

10 20 30 40 50

0
50

0
10

00
15

00

Number of nodes

V
irt

ua
l m

em
or

y
[K

B
yt

es
]

●
●

●
●

●

●

●

olsr
bmx6
babel

(a) Impact of Network size

●

●

●
●

●
●

3 4 5 6 7 8

0
50

0
10

00
15

00

TX power [dBm]

V
irt

ua
l m

em
or

y
[K

B
yt

es
]

●
● ●

● ● ●

●

●

olsr
bmx6
babel

(b) Impact of TX power

●
●

●

●

● ●

●

−40 −30 −20 −10

0
50

0
10

00
15

00

TX rate [−Mbps]

V
irt

ua
l m

em
or

y
[K

B
yt

es
]

●
●

● ●
● ●

●

●

●

olsr
bmx6
babel

(c) Impact of TX rate

Figure 14: Memory consumption depending on network size and density (power, rate)

19

●

●

●

●

●

0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Mobile node speed [meter/second]

P
in

g
su

cc
es

s
ra

te
 [%

]

●

●

●

●

●

●

●

olsr
bmx6
babel

(a) Poor link redundancy (TX
power 3dBm)

●

● ●
●

●

0.05 0.10 0.15 0.20
0

20
40

60
80

10
0

Mobile node speed [meter/second]

P
in

g
su

cc
es

s
ra

te
 [%

]

●

●
●

●
●

●

●

olsr
bmx6
babel

(b) Medium link redundancy
(TX power 4dBm)

●

● ●

●

0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Mobile node speed [meter/second]

P
in

g
su

cc
es

s
ra

te
 [%

]

●

●
●

●

●

●

olsr
bmx6
babel

(c) High link redundancy (TX
power 5dBm)

Figure 15: End-to-end delivery success depending on topology dynamics and link redundancy

(in terms of density, size and topology dynamics) into rows with a few comparative words
for each protocol.

7.1. Protocol Data Overhead

Protocol data overhead has been measured in bytes and packets per second and depending
on network size, density, and dynamics.

Regarding byte overhead depending on network size, both, emulation- and ex-
perimentation-based measurements (Figures 10a and 3a) show (apart from one exception
in experimental Babel measurements, which we will discuss later) consistent results of an
essentially linear increase with a protocol specific slope and base load. In addition, BMX6
shows the highest base load but lowest slope, while Babel shows the lowest base load and
a slightly greater slope and OLSR shows the greatest slope which, given the emulation-
based results, raises up to 400 bps, about 120% more than Babel and 50% more than
BMX6 for a network of 70 nodes. The different absolute numbers between experimentation-
and measurement-based results can be explained by the greater average number of links
(neighbors) per node in the different scenarios, with three versus up to five (compare Figure
8a).

A different picture arises when experimentally comparing the byte overhead in the
presence of TCP user traffic as shown in Figure 11a. Then, transmissions naturally
cause interference and thereby affect the perception of link qualities between neighbors
(Figure 8a) as well as the propagation of routing information. In this scenario, we see that
the overhead of Babel increases dramatically because Babel reacts to topology changes by
sending unscheduled route updates. On the other hand, BMX6 and OLSR propagate routing
updates periodically, independently of topology changes; therefore, this results in little effect
on the overhead.

The slight increase in BMX6 can be explained by the requirement of acknowledgements
when exchanging routing updates, which will cause overhead due to the retransmissions

20

caused by traffic collisions. The opposite is the case for OLSR where the collision of link-
information (TC messages) containing packets, if not successfully received via alternative
links, are not further propagated and eventually result in an decreased overall overhead, an
effect particularly likely in sparse networks with low link redundancy.

Another critical factor affecting protocol overhead is given by the network density
where emulation- and experimentation-based measurements show quite different results.
Looking at the former (Figure 3c), the observed shape of all protocols well matches with
what one could expect from each protocol-dissemination algorithms. The highest, quite lin-
ear, slope for OLSR represents that of a non-optimized link-state protocol where information
about all links in the network are propagated to all nodes for calculating a local view of the
total topology. For this purpose, every node contributes to the propagation of this informa-
tion by re-broadcasting new link state information once (via TC messages) and thus causing
respectively increasing transmission overhead by each node. This non-optimized link-state
behavior could be explained by the non-standard behavior of the OLSR implementation
using a default MPR selector set of seven (instead of one, see also Section 3.3). However,
compared to the experimentation-based results in Figure 11b, in the beginning the greatly
increasing OLSR overhead quickly flattens for densities of around 10 or more links per node
(corresponding to a TX power of 5dBm according Figure 8b), an effect which indicates that
the OLSR-implementation specific MPR selector set value of seven still yields significant
optimization in very dense networks.

The moderate overhead slope for BMX6 and the constant seeming slope for Babel from
the emulation-based results correspond with the typical characteristics of distance-vector
routing protocols, where link-quality information is only exchanged between neighboring
nodes and thus affects each nodes’ overhead only by a few additional link-probing related
messages and as far as the size of its local neighborhood increases but not beyond. Here the
aggregation of many messages into much less eventually broadcasted packets help to even
flatten the observable overhead on layer 2.

Interestingly, a significantly different picture could be observed for the Babel overhead
when considering the measurement-based experiments where the amount of transmitted data
increases by a factor of 10 when the node density (at a power level of 6 dBm) exceeds 15
links per node. We attribute this behavior to the high susceptibility of the Babel protocol
to topology dynamics, which was already observed for the impact of interfering TCP traffic
in Figure 11a. In this case, such topology dynamics are caused by natural interference
and consequent collisions due to the dense wireless deployments, a factor not existing in
the emulation-based analysis. In fact, protocol performance instabilities, which are likely
related to similar topology dynamics, were measured repeatedly in different scenarios. The
exceptional experimental Babel measurements points mentioned earlier for byte overhead
depending on network size are one example.

The measurement results for network overhead in terms of packets in Figures 4 and
12 illustrate on the one hand the dominance of protocol-specific link-probing and update
intervals causing a constant and minimal packet transmission rate even in the simplest
possible deployment. On the other hand, once protocol-stress factors (such as network size,
density, or dynamics) cause a protocol to disseminate more data than could be aggregated

21

into the packets sent at a minimal transmission rate, they show how packet overhead first
increases in steps before scaling linearly with the byte overhead discussed earlier. In this
sense, the high base rate of BMX6, at two packets/second compared to 0.5 packets/second
for OLSR and even less for Babel, should only be considered relevant for deployments of
rather stable and sparse networks. For more complex deployments the initial lowest packet
rate of Babel can easily turn into a rate several times higher rate than that of OLSR and
BMX6.

7.2. CPU and Memory Consumption

Experimentation-based measurements show (see Figures 13 and 14) that network size
and density only have a very limited and generally non-critical impact on the CPU and
memory consumption caused by the respective routing-protocol process. Given the em-
bedded hardware and studied parameter space of up to 50 nodes and densities above 20
links per node, protocol-specific CPU usage always remained below 2% of the total CPU
processing capacity, and virtual memory consumption (including all shared library objects
mapped into the process) remained significantly below 1.5 MByte while showing only a very
low increase over the studied ranges. Given these experimentation-based measurements, the
memory consumption of Babel is the lowest and least increasing, while OLSR and BMX6
both show a very similar low linear increase depending on network size. Regarding density,
BMX6 demonstrates a similar low slope as Babel, which matches what can be expected from
any distance-vector protocol that only has to maintain the next hop towards any distant
node. However, the link-state based OLSR protocol, which must keep track of all relevant
links in the overall network topology, shows only a slightly greater increase of memory usage
depending on density.

In contrast, the emulation-based measurements in Figure 6 depict the writable memory
requirements (instead of virtual) of OLSR and Babel as completely unaffected by network
size and density and below those of BMX6, which also shows a more spread requirement
of memory for networks with more than 50 nodes or densities with more than 14 links per
node. Nonetheless, the total memory requirements of all protocols remain non-critically low,
given memory provisioning, even of resource-constrained embedded devices.

7.3. Self-healing Performance

A number of cases have been studied based on emulation or experimentation to char-
acterize the capabilities of the different protocols to react to topology changes in different
scenarios.

Emulation-based results studying the average time needed by each protocol to fix an end-
to-end path depending on its length (Figure 5a) show that the two distance-vector based
protocols outperform the link-state based OLSR, particularly in end-to-end scenarios with
many intermediate hops.

While the poor performance of OLSR could be explained by the implementation of fish-
eye optimisation, the better convergence time of BMX6 compared to Babel is surprising given
the reactive nature of the Babel algorithm that should encounter spontaneously detected
topology changes on demand instead of delaying the propagation of corresponding routing

22

updates for the next update period. However, the better performance of BMX6 regarding
topology dynamics is consistently confirmed in all further measurements (emulation- or
experimentation-based, such as shown in Figures 5b, 5c, and 15) and must be attributed
to the prevailing of other protocol characteristics. One reason is certainly given by the
different link-probing and route update intervals (see Table 1) used by each protocol that
allow BMX6 (using a Hello interval of only 0.5 seconds) to detect and react to local topology
changes much faster than Babel and OLSR. On the other hand, to enhance the self-healing
performance of a protocol, such intervals cannot be decreased without introducing additional
protocol overhead, which is already significantly higher for the latter two protocols in large
and dense networks and which, if further increased, would also lead to further protocol
instabilities due to self-caused collisions and interference.

Table 5: Summary of observed and interpreted protocol performance characteristics from Section 7

Characteristic OLSR BMX6 Babel

Increase of protocol overhead depending on size, density, and dynamics
Size: high linear low linear moderate linear
Density (low density): high linear low linear lowest
Density (high wireless
density):

logarithmic low linear in non-linear steps

Topology dynamics
due to interference
from TCP user traffic:

negative unimpaired highly susceptible
with typical strong
growth

Increase of memory usage depending on size and density
Size: low linear low linear lowest, unaffected
Density: linear, acceptable low linear low, unaffected

Comment: Non-critical given the studied range of size, density, and dynamics

Increase of CPU usage depending on size and density
Size: low, total max <

0.5%
low linear, total
max < 0.2%

low linear, total
max < 0.2%

Density: varying, total max
< 1.5%

varying, total max
< 1%

varying, total max
< 2%

Comment: Non-critical given the studied range of size, density, and dynamics

End-to-end path-healing performance due to topology changes
Off time versus path
length:

high, increasing
slope with jump
between 7 and 9
hops, avg ∼ 35s

low, unaffected,
avg ∼ 8s

medium, unaf-
fected, avg ∼ 16s

Outage versus BMX6 shows least outage in highly changing environments
changing rate: All protocols equally good at low changing rates

23

8. Conclusion

This paper presents an evaluation of mesh routing protocols for wireless community
networks. We study the scalability, performance, and stability of BMX6, OLSR and Babel,
three proactive routing protocols commonly used in these networks, through emulation and
experimentation.

Our emulation and testbed-based experiments with various network conditions at dif-
ferent scales have provided several detailed results that compare the three protocols. In
summary, we can say that Babel is the most lightweight protocol with the least memory,
CPU, and control-traffic requirements as long as it is used in networks with stable links and
low node densities.

However, if the protocol is used in large or dense wireless deployments with frequent
link changes due to dynamic interference or nodes leaving or joining the network, then its
reactive mechanisms to encounter topology changes by sending additional routing updates
and route request messages turn into massive control-traffic and processing overhead. In
such scenarios, OLSR and BMX6, with their strictly constant rate for sending topology
and routing update messages, outperform Babel in terms of overhead, stability, and even
self-healing capabilities.

The OLSR protocol significantly benefits from the MPR mechanism that (despite the
highly redundant parametrization used within our experiments) achieves only a logarithmi-
cally increasing overhead depending on network density.

The BMX6 protocol benefits from its generally low control overhead due to the usage
of compact local identifiers and the hiding of local state (e.g. link qualities) from globally
propagated information. It differentiates from OLSR with higher memory requirements but
lower control overhead and a better reaction on dynamic link changes.

Data sets and other details are at: http://dsg.ac.upc.edu/eval-mesh-routing-wcn.

Acknowledgement

This work was carried out with the support of the European Commission through the
7th ICT Framework Programme in the Fed4FIRE project (“Federation for FIRE”, 318389),
the CONFINE project (“Community Networks Testbed for the Future Internet”, 288535),
and by the Spanish government under contract TIN2013-47245-C2-1-R.

References

[1] Guifi.net, http://guifi.net/.
[2] Athens wireless metropolitan network, http://www.athenswireless.net/.
[3] A. Neumann, E. Lopez, L. Navarro, An evaluation of BMX6 for community wireless networks, in: IEEE

WiMob 2012, no. CNBuB, 2012, pp. 651–658.
[4] A. Neumann, R. Baig, V. Oncins, Mobility performance evaluation of mesh routing protocols (memo),

Tech. rep., Fed4FIRE (December 2014).
[5] R. Baig, Evaluation of Dynamic Routing Protocols on Realistic Wireless Topologies, Master’s thesis,

Universitat Autònoma de Barcelona (2012).
[6] olsrd - an adhoc wireless mesh routing daemon, http://olsrd.org.

24

http://guifi.net/
http://www.athenswireless.net/
http://olsrd.org

[7] BMX6 mesh networking protocol, http://bmx6.net.
[8] J. Chroboczek, The babel routing protocol, RFC 6126 (Experimental) (2011).
[9] U. Ashraf, G. Juanole, S. Abdellatif, Evaluating Routing Protocols for the Wireless Mesh Backbone,

in: IEEE WiMob 2007, pp. 40–40.
[10] A. Zakrzewska, L. Koszalka, I. Pozniak-Koszalka, Performance Study of Routing Protocols for Wireless

Mesh Networks, in: IEEE ICSEng 2008, pp. 331–336.
[11] Q. Feng, Z. Cai, J. Yang, X. Hu, A Performance Comparison of the Ad Hoc Network Protocols, in:

IEEE WCSE 2009, pp. 293–297.
[12] F. Z. Mughal, Comparative analysis of proactive, reactive and hybrid ad hoc routing protocols in Client

based Wireless Mesh Network, in: IEEE ICIET 2010, pp. 1–6.
[13] S. Kumar, J. Sengupta, AODV and OLSR routing protocols for Wireless Ad-hoc and Mesh Networks,

in: IEEE ICCCT 2010, pp. 402–407.
[14] A. Zakaria, H. Mohamad, N. Ramli, M. Ismail, Performance Evaluation of Routing Protocols in Wireless

Mesh Networks, in: IEEE ICACT 2013, pp. 1111–1115.
[15] M. Ikeda, E. Kulla, M. Hiyama, L. Barolli, M. Takizawa, Experimental Results of a MANET Testbed

in Indoor Stairs Environment, in: IEEE AINA 2011, pp. 779–786.
[16] D. Johnson, N. Ntlatlapa, C. Aichele, A simple pragmatic approach to mesh routing using BATMAN,

in: IFIP WCITD 2008, Pretoria, South Africa.
[17] E. Borgia, Experimental Evaluation of Ad Hoc Routing Protocols, in: IEEE PerCom 2005 Workshops,

2005, pp. 232–236.
[18] D. Rastogi, S. Ganu, Y. Zhang, W. Trappe, C. Graff, A Comparative Study of AODV and OLSR on

the ORBIT Testbed, in: IEEE MILCOM 2007, pp. 1–7.
[19] J. Friginal, D. de Andrés, J.-C. Ruiz, P. Gil, Towards benchmarking routing protocols in wireless mesh

networks, Ad Hoc Networks 9 (8) (2011) 1374 – 1388.
[20] D. Murray, M. Dixon, T. Koziniec, An experimental comparison of routing protocols in multi hop ad

hoc networks, in: IEEE ATNAC 2010, pp. 159–164.
[21] F. Maan, N. Mazhar, Manet routing protocols vs mobility models: A performance evaluation, in: IEEE

ICUFN 2011, pp. 179–184.
[22] F. Bai, N. Sadagopan, A. Helmy, Important: a framework to systematically analyze the impact of

mobility on performance of routing protocols for adhoc networks, in: IEEE INFOCOM 2003, Vol. 2,
pp. 825–835 vol.2.

[23] N. Shah, D. Qian, K. Iqbal, Performance evaluation of multiple routing protocols using multiple mobility
models for mobile ad hoc networks, in: IEEE INMIC 2008, pp. 243–248.

[24] N. Javaid, M. Yousaf, A. Ahmad, A. Naveed, K. Djouani, Evaluating impact of mobility on wireless
routing protocols, in: IEEE ISWTA 2011, pp. 84–89.

[25] Y. Huang, S. Bhatti, D. Parker, Tuning olsr, in: IEEE PIMRC 2006, pp. 1–5.
[26] S. Azzuhri, M. Portmann, W. L. Tan, Evaluating the performance impact of protocol parameters on

ad-hoc network routing protocols, in: IEEE ATNAC 2012, pp. 1–6.
[27] J. Fang, T. Goff, G. Pei, Comparison studies of ospf-mdr, olsr and composite routing, in: IEEE

MILCOM 2010, pp. 989–994.
[28] M. Ikeda, M. Hiyama, L. Barolli, F. Xhafa, A. Durresi, Mobility effects on the performance of mobile

ad hoc networks, in: IEEE CISIS 2010, pp. 230–237.
[29] E. Kulla, M. Ikeda, L. Barolli, R. Miho, V. Koliçi, Effects of source and destination movement on manet

performance considering olsr and aodv protocols, in: IEEE NBiS 2010, pp. 510–515.
[30] Serval project, https://www.servalproject.org.
[31] Village telco project, https://villagetelco.org.
[32] Wireless battlemesh, http://battlemesh.org/.
[33] Official BattleMesh download server, http://download.battlemesh.org/.
[34] J. Avonts, B. Braem, C. Blondia, A questionnaire based examination of community networks, in: IEEE

WiMob 2013, pp. 8–15.
[35] T. Clausen, Comparative Study of Routing Protocols for mobile Ad-hoc NETworks, Tech. rep., INRIA

25

http://bmx6.net
https://www.servalproject.org
https://villagetelco.org
http://battlemesh.org/
http://download.battlemesh.org/

(2004).
[36] L. Cerdà-Alabern, A. Neumann, P. Escrich, Experimental evaluation of wireless mesh networks: A case

study and comparison, in: NICST 2013.
[37] Libre-mesh, http://libre-mesh.org.
[38] Better approach to mobile ad-hoc networking (b.a.t.m.a.n.), http://www.open-mesh.org/.
[39] C. Adjih, E. Baccelli, T. H. Clausen, P. Jacquet, G. Rodolakis, Fish eye OLSR scaling properties,

Journal of Communications and Networks (2004) 343–351.
[40] D. S. J. De Couto, D. Aguayo, J. Bicket, R. Morris, A high-throughput path metric for multi-hop

wireless routing, in: Proceedings of the 9th Annual International Conference on Mobile Computing
and Networking, MobiCom ’03, ACM, New York, NY, USA, 2003, pp. 134–146. doi:10.1145/938985.
939000.
URL http://doi.acm.org/10.1145/938985.939000

[41] D. Johnson, G. Hancke, Comparison of two routing metrics in {OLSR} on a grid based mesh network,
Ad Hoc Networks 7 (2) (2009) 374 – 387. doi:http://dx.doi.org/10.1016/j.adhoc.2008.04.006.
URL http://www.sciencedirect.com/science/article/pii/S157087050800053X

[42] L. Cerda-Alabern, On the topology characterization of guifi.net, in: IEEE WiMob 2012, pp. 389–396.
[43] Mesh linux containers, https://github.com/axn/mlc.
[44] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, P. Demeester, The w-ilab.t testbed, in:

T. Magedanz, A. Gavras, N. Thanh, J. Chase (Eds.), Testbeds and Research Infrastructures. De-
velopment of Networks and Communities, Vol. 46 of LNICST, 2011.

26

http://libre-mesh.org
http://www.open-mesh.org/
http://doi.acm.org/10.1145/938985.939000
http://doi.acm.org/10.1145/938985.939000
http://dx.doi.org/10.1145/938985.939000
http://dx.doi.org/10.1145/938985.939000
http://doi.acm.org/10.1145/938985.939000
http://www.sciencedirect.com/science/article/pii/S157087050800053X
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2008.04.006
http://www.sciencedirect.com/science/article/pii/S157087050800053X
https://github.com/axn/mlc

	Introduction
	Related Work
	Mesh Routing Protocols
	Babel
	BMX6
	OLSR
	Summary

	Evaluation Metrics
	Emulation Experiments
	Network Overhead
	Stability and Reactivity
	Memory Usage

	Testbed Experiments
	Experiment Setup
	Measurements

	Discussion and Summary of Results
	Protocol Data Overhead
	CPU and Memory Consumption
	Self-healing Performance

	Conclusion

