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Abstract

Optical switching is a promising technology to scale the performance of data centers. We address two scenarios: hybrid data centers,
in which an optical circuit switching network operates in parallel to an electronic packet switching network that interconnect the
servers, and full optical data centers, in which all the traffic is switched in the optical domain. The traffic on the optical network is
scheduled proactively by configuring the optical fabric according to a precomputed sequence of configurations. We consider that
fast optical circuit switching is implemented through micro-mechanical devices (like MEMS) at each crosspoint, whose lifetime
is limited by a maximum number of configuration cycles, due to the experienced mechanical fatigue. We consider the traffic
scheduling problem on the optical network and address specifically the problem of minimizing the number of reconfigurations at
each crosspoint, in order to maximize the MEMS lifetime, while maximizing the throughput. We propose a family of scheduling
algorithms and discuss the achievable tradeoff between lifetime, throughput and computational complexity, throughout a set of
extensive simulations and theoretical results.

Keywords: Optical data centers, MEMS-based optical fabrics, frame-based packet scheduling.

1. Introduction

In the last few years the design of high-performance data
centers has been evolving toward hybrid design approaches,
in which an Optical Circuit Switching (OCS) network comple-
ments the operation of a classical Electronic Packet Switching
(EPS) network [1, 2, 3, 4, 5, 6, 7]. This trend has been mainly
driven by two factors.

First, a large amount of traffic within a datacenter is gener-
ated by few long-lived flows, whose demand is quite stable if
measured at a proper timescale [8, 9]; thus, the network-wide
traffic demand can be estimated [1, 10]. Due to its overhead,
circuit switching is adopted only for such long-lived flows, that
can be routed across specific and dedicated network paths. No-
tably, circuit switching improves the communication efficiency,
thanks to the complete control of the achievable performance
and of the induced network congestion. Differently from the
Internet scenario, circuit switching can be efficiently supported
in data centers. Indeed, a centralized traffic arbitration is fea-
sible thanks to the fact that servers and the network devices
are physically collocated (“under the same roof”) and under the
same administrative domain.

Second, optical switching provides the most efficient way to
forward traffic in terms of power and bandwidth, but suffers
from inherent reconfiguration latency (in the order of ms or µs)
that make it convenient only for circuit switching, and not for
packet switching. Thus, switching occurs at flow level with
temporal dynamics much slower than packet level (occurring
with temporal dynamics of few nanoseconds). Two main ap-
proaches can be adopted to integrate OCS in data centers. In a

less disruptive solution, an OCS network is adopted to connect
Top-of-Rack (ToR) switches to create dedicated bypass connec-
tions that adapt to the current traffic conditions. Thus each ToR
switch is “dual-homed” to a traditional EPS network and to an
OCS network. The main idea is to distribute the traffic among
the two networks, based on its level of predictability. E.g.,
elephant flows are sent through the OCS whereas mice flows
are sent to the EPS. Some commercial products are already ex-
ploiting this hybrid approach [11]. Recently, [12] has provided
an economic analysis of their proposed hybrid data center and
shown the lower costs with respect to full electronic data cen-
ters, given the same capacity. A more disruptive solution is
to adopt only OCS to connect the ToR switches, as discussed
in [13, 14]. This may pose extra burn on the optical switching
devices due to the possibly higher frequency by which the OCS
must be configured.

Regarding the control of OCS networks, proactive traffic
scheduling has been proposed [7, 10, 15, 16] to switch traf-
fic based on a-priori knowledge of the traffic demands between
ToR switches. Periodically, the scheduler computes the new
traffic demands and compute the future switching configura-
tions for the OCS network, defined by (i) the temporal se-
quence of flows that each ToR switch must send to the OCS
network, (ii) and the corresponding routing path in the OCS net-
work topology. In other terms, the scheduler must compute the
temporal sequence (called “frame”) of switching configurations
and the routing paths compatible with the available bandwidth
in the OCS network.

To build the OCS network, one of the most common ap-
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proach is to exploit optical MEMS, as proposed in [5, 7, 10,
17, 18]. The MEMS technology [19, 20], nowadays mature, is
based on the mechanical movement of micro mirrors which de-
flect the laser beam. The switching performance of the MEMS
is limited, mainly due to two factors. First, the maximum
switching speed is limited to ms-µs [18], which is compatible
with the temporal dynamics of the relatively slow OCS. For
example, [7] designs an hybrid data center exploiting a MEMS-
based switch Mordia, previously proposed by [10]. This optical
switch manages 24 ports running at 100 Gbps, with a reconfig-
uration delay of around 10 µs.

Second, the lifetime of the MEMS is limited, indeed ven-
dors suggest a maximum number of switching cycles, which
can reach at most 109 switching cycles for the most recent tech-
nologies [17, 21]. This is due to electrical or mechanical over-
stress and applies at each individual optical mirror [22, 23]. The
peculiar stress reason (e.g., creep, contact wear, friction) is sig-
nificantly articulated and depends on the actual technology, ma-
terials and design adopted in the MEMS [24]. Thus, we will
assume that the maximum number of switching cycles refers to
each single micro mirror.

The aim of our work is to schedule the traffic in order to
minimize the number of reconfigurations (thus, the mechanical
fatigue) experienced by each single micro mirror in the OCS
network, thus maximizing the lifetime of the optical devices,
while guaranteeing high throughput. Intuitively, our approach
is based on changing the switching configuration in a “lazy”
way, i.e., trying to keep the switching configuration as similar
as possible in consecutive times in order to minimize the num-
ber of micro mirrors that are moved. We expect that by decreas-
ing the number of reconfigurations by a factor α, we can either
improve the lifetime of the OCS devices by the same factor,
or, given the same lifetime, we can increase by α the number
of flows that can be optically switched. We can also expect an
higher reliability for larger values of α.

Our work applies to the OCS architecture for hybrid data cen-
ters proposed by [7], to which we refer for all the implementa-
tion issues. We propose a scheduling approach which can run
in the implementation of [7] and can obtain the experimental
performance shown there. Notably our approach is able to max-
imize the lifetime of the MEMS-based OCS network, which is
not taken into account in previous works, as discussed in Sec. 6.
Our approach is general and applies to any MEMS-based full
optical switch. Notably, it can be integrated into existing traffic
schedulers at a negligible additional cost in term of computa-
tional complexity, greatly compensated by the improvement in
the MEMS lifetime.

The main contributions of our work are the following:

• First, we propose a fatigue-aware scheduling framework,
based on different combinations of algorithms, aimed at
maximizing throughput and minimizing the fatigue, at the
same time, in order to maximize the lifetime of the OCS
network while preserving the performance.

• Second, we consider a set of random traffic patterns and
we assess the performance analytically under different
scheduling algorithms.
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Figure 1: Hybrid data center architecture based on N ToR racks, each of them
hosting S servers. Each server is connected to both an ELN-ToR switch and
an OPT-ToR switch. The former switch accesses an electronic packet switch
network (ELN-fabric) and the latter accesses an optical circuit switch network
(OPT-fabric). Each fabric has N bidirectional ports, one for each rack.
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Figure 2: Datapath in the OCS-ToR switch for ingress and egress flows. In-
coming flows are buffered in electronic memories organized with one queue for
each destination rack.

• Third, we validate the approach on a wide set of traffic
patterns through simulation and we highlight the algorithm
achieving the best tradeoff between throughput, fabric life-
time and computational complexity.

The paper is organized as follows. Sec. 2 defines the schedul-
ing problem and in Sec. 3 we which is propose our fatigue-
aware scheduling approach, whose performance is later inves-
tigated in terms of fatigue and throughput both analytically
(Sec. 4) and by simulation (Sec. 5). Sec. 6 is devoted to dis-
cuss the related work. Finally, Sec. 7 draws the conclusions of
our work.

2. Problem Definition

We consider a data center with physical servers distributed
across N racks, as shown in Fig. 1, where each rack hosts S
servers. Typical values are S = 40 for a standard 42U 19-
inches rack, but can reach also some hundreds in the case of
blade servers. In total, the data center comprises NS servers. In
the considered hybrid scenario, each rack is equipped with two
Top-of-Rack (ToR) switches. The first ToR is denoted as ELN-
ToR (Electronic ToR) and is connected to the EPS network.
Despite the complex switching network (e.g., multi-layer, hi-
erarchical) required to interconnect the ELN-ToR switches, we
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abstract it as a single EPS fabric, denoted for simplicity as ELN-
fabric. Similarly, the second ToR switch in the rack is denoted
as OPT-ToR (Optical ToR) and is connected to an OCS net-
work, denoted as OPT-fabric. Note that both ELN-ToR and
OPT-ToR are electronic switches, but in particular the OPT-
ToR is equipped with the optical interfaces needed to access
the OPT-fabric. The number of bidirectional ports in each fab-
ric is N, equal to the number of racks. Each server is con-
nected to both ToR switches with two dedicated interfaces and
it is responsible of classifying the traffic and routing it to the
proper ToR switch. We refer to the similar architecture pre-
sented in [7, 12] for the implementation details of the traffic
management within each server.

In our work we focus only on the traffic sent to OPT-fabric,
which is bufferless by construction and thus can be modeled as
an N × N crossbar interconnecting the OPT-ToR switches. To
avoid the performance degradation due to head-of-line block-
ing, each OPT-ToR is equipped with input queues organized
with a Virtual Output Queue (VOQ) structure, i.e. one FIFO
queue is present for each OPT-ToR switch, or equivalently for
each destination rack, as shown in Fig. 2. In total, (N − 1) per-
rack queues are available in each OPT-ToR switch. Let VOQi j

be the queue storing the data of the flows from OPT-ToR switch
(or rack) i and destined to OPT-ToR switch (or rack) j.

A traffic scheduler, denoted as OPT-scheduler, determines
the switching configuration of the OPT-fabric, by specifying
the connections among the OPT-ToR switches and their dura-
tion. Due to the lack of the internal buffers in the OPT-fabric,
at most one traffic flow must be transferred from each rack and
can be destined to the same rack, as considered in all works
on hybrid data centers. Thus, the OPT-fabric configuration can
be modeled as a matching in a bipartite graph with 2N nodes,
where the N left-most nodes correspond to the input ports of
the OPT-fabric and N right-most nodes corresponds to its out-
put ports. An edge in the matching from port i to port j corre-
sponds to the traffic flows transferred from ToR-switch/rack i to
ToR-switch/rack j. A matching can be represented by an N ×N
binary matrix M = [mi j], denoted as matching matrix, in which
mi j = 1 iff ToR-switch/rack i is connected to ToR-switch/rack j,
and at most one element is set to 1 in each row and in each col-
umn:

∑N
k=1 mik ≤ 1,

∑N
k=1 mk j ≤ 1, ∀i, j. The set of all matching

matrices is denoted byM. A matching M is complete if exactly
one element is set to 1 in each row and in each column, and it
is represented by a permutation matrix; otherwise, it is defined
as incomplete. Finally, a matching is non-null if at least one
element is set to 1:

∑
i, j mi j ≥ 1.

We assume that OPT-fabric runs in a synchronous way,
where the reconfigurations occur at multiples of a basic timeslot
of fixed duration. The data in each flow is divided into fixed-
size chunks, whose size corresponds to the data transferred in
each timeslot. Thus, by construction, during each timeslot,
one chunk of a flow is transferred across the OPT-fabric based
on a matching computed by the OPT-scheduler. Whenever a
new matching is adopted, a reconfiguration latency is experi-
enced, during which no chunk can be transferred across the
fabric. This latency depends on the technology adopted in the
OPT-fabric, and can be order of ms-µs in the case of MEMs.

The timeslot duration is chosen large enough to guarantee a
minimum throughput. For example, to guarantee at least 95%
throughput for a reconfiguration latency of 1 ms, the timeslot
duration must be chosen larger than 19 ms. This corresponds to
chunks of at least 95 MB for 100 Gbit/s optical interfaces. In
the following, without loss of generality, we will deliberately
neglect the reconfiguration latency in our model, since it can be
managed a-priori by dimensioning the timeslot duration prop-
erly. We refer to [7] for the details of the implementation of the
synchronous reconfiguration system. Notably, [7] proposes a
host-based control protocol, which injects the data to the OPT-
fabric based on 802.1Qbb Priority Flow Control. The correct
timing is crucial since one must take into account all the possi-
ble control latencies due to many practical issues, e.g.: the re-
configuration delays for the MEMS, the processing delay of the
pause commands, the packets under transmission and the lock
time of the lasers. Furthermore, in the case of TCP flows, the
scheduling decision affects the behavior of the window-based
protocol. The most notable effects, highlighted by [7], are due
to the periodic starting and pausing process on the TCP flows
and to the TCP segmentation offloading in the server network
interface. Note that ACKs are sent back through the ELN-fabric
to avoid pauses. In conclusion, all the proposed implementation
solutions adopted in [7] can be applied to the data center archi-
tecture considered in our work.

2.1. Frame-based Traffic Scheduling

The aim of OPT-scheduler is to minimize the overall fatigue
experienced by OPT-fabric on a time interval, while maximiz-
ing throughput. We assume that the scheduler operates on a
frame basis, which is a well-known approach in EPS switches
since [25]. The scheduler samples the state of the VOQs across
all the racks at the beginning of a fixed sampling period, that
lasts T timeslots; i.e. the queues are sampled at timeslot t = nT ,
for any n ∈ N. Then it computes a frame F , i.e. a sequence of
matchings, in order to empty the input queues before the next
sampling period. Finally, the OPT-fabric is configured accord-
ing to F to serve these chunks during the following T timeslots,
i.e. for any t ∈ [nT, (n + 1)T ). If some queues are not empty at
the end of the frame (i.e., at t = (n + 1)T ), the residual chunks
are kept in the queues and will be served in one of the subse-
quent sampling periods. Indeed, the queue occupancy sampled
at t = nT is given by the sum of newly arrived chunks during
the last frame and the residual chunks. According to standard
approaches, the two phases of computing the frame and serving
the chunks can be pipelined in subsequent scheduling periods;
this allows to amortize the time to compute a new frame on the
whole sampling period.

We introduce a matrix operator which returns the maximum
row and column sum of a generic matrix X = [xi j] of size N×N:

h(X) = max
{

max
j=1...N

N∑
i=1

xi j, max
i=1...N

N∑
j=1

xi j

}
Let An = [ai j(n)] be the arrival matrix, where ai j(n) is the

number of chunks arrived at VOQi j during the whole nth sam-
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Figure 3: Temporal evolution of the frame-based traffic scheduling with arrivals and departures during 4 sampling periods.

pling period. If the arrival process at the OPT-ToR switch
is stationary, we can define Λ̂ = [λ̂i j] as the average traf-
fic matrix measured in Gbps, where λi j is the offered load to
VOQi j. Given a transmission rate of B Gbps at the OPT-fabric
ports, we can compute the corresponding normalized load ma-
trix Λ = [λi j] where λi j = λ̂i j/B ∈ [0, 1] is the normalized
load at VOQi j and it holds: λi j = E[ai j]/T . Let Λ be defined
admissible whenever no input/output port of the OPT-fabric is
oversubscribed, i.e. whenever h(Λ) < 1. We are not taking
into account the reconfiguration latency, since the throughput
reduction due to it is a-priori known and can be compensated
with a large enough timeslot duration.

As toy example to illustrate the notation, consider a 2 × 2
OPT-fabric with links at B = 100 Gbps fed by traffic matrix Λ̂ =

( 40 50
10 30 ) Gbps, thus the normalized load matrix is Λ = ( 0.4 0.5

0.1 0.3 ).
Here h(Λ) = 0.9 and thus Λ is admissible.

Let Rn = [ri j(n)] be the request matrix, where ri j(n) is the
number of chunks enqueued at VOQi j, sampled at the beginning
to the nth sampling period, i.e. at timeslot t = nT . Finally, let
Dn = [di j(n)] be the departure matrix, computed by the sched-
uler based on Rn (and obliviously from An since unknown at
the beginning of the sampling period), where di j(n) is the num-
ber of chunks served from VOQi j during the nth sampling pe-
riod. According to the above definitions: Rn+1 = Rn − Dn + An.
Fig. 3 shows an example of system evolution during 4 consec-
utive sampling periods (i.e., n ∈ {0, 3} and t ∈ [0, 4T )).

We can complete the above toy example by fixing a sampling
period of T = 10 timeslots. If we assume Rn = ( 4 8

5 1 ) chunks,
then the scheduler computes a departure matrix Dn = ( 4 6

5 1 )
chunks to be applied during the nth sampling period. In the
meanwhile, an arrival matrix possible with Λ could be An =

( 5 0
2 4 ) chunks. Thus, at the beginning of the next sampling pe-

riod, the new request matrix will be Rn+1 = ( 5 2
2 4 ) chunks.

Thanks to the Birkhoff-von Neumann theorem [26], the min-
imum frame duration TR in timeslots to serve all the chunks in1

R is TR = h(R). Thus, when TR > T , it is impossible to serve all
chunks in R during the sampling period, whereas when TR ≤ T
there exists at least one sequence of matchings able to empty
all the chunks in R and we say that R is T -compatible. Equiv-
alently, if we define the frame maximum load as ρR = TR/T ,
the request matrix R is T -compatible when ρR ≤ 1. Due to
the stochastic nature of the arrivals to the OPT-ToR switch, the
admissibility of Λ does not imply the T -compatibility of R. In-
deed, even if h(Λ) = ε for some small ε > 0, it can occur that
ρR > 1 with small probability due to a continuous sequence of

1For the sake of notation, we omit n from the notation when not necessary

chunks directed to the same output port. But [27] showed that
for large enough T , precisely when T = θ(log N), being N the
size of the OPT-ToR switch, the admissibility of Λ implies the
T -compatibility of R with high probability.

The main advantage of all the above definitions is that the
concept of T -compatible request matrix is well defined also for
non-stationary and/or non-admissible and/or correlated arrival
processes.

In the above toy example, TRn = 12 and thus Rn is not 10-
compatible since it is not possible to transfer all the enqueued
chunks in T = 10 timeslots (ρRn = 1.2 in this case). Instead,
TRn+1 = 9 and thus Rn+1 is instead 10-compatible (ρRn+1 = 0.9).

The departure matrix Dn must be defined according to a
sequence of matchings as follows. The frame F PR computed
by a specific scheduler P on the request matrix R is defined
as an ordered sequence of K distinct and non-null matchings:
F PR = {(Mk, φk)}Kk=1, with Mk ∈ M and φk ∈ N is the number of
consecutive timeslots in which matching Mk is used to config-
ure the OPT-fabric. To serve all chunks in R, it must hold2:

R =

K∑
k=1

φk Mk (1)

Let FPR =
∑K

k=1 φk be the frame duration, i.e. the total num-
ber of timeslots to transfer the chunks and to empty the queues.
Note that T is fixed, whereas FPR varies with R. A T -compatible
request matrix R is said to be sustainable by scheduling algo-
rithmP if during a sampling period all the chunks in the request
matrix are transferred, i.e. if

FPR ≤ T (2)

Note that a T -compatible request matrix could be non sustain-
able if the scheduling algorithm was not able to serve all the
chunks within T timeslots (even if in theory it could be possi-
ble by an optimal algorithm).

In general, it can also happen that FPR ≥ TR and we define the
frame-expansion factor S (with S ≥ 1) as:

S = FPR /TR (3)

where S depends from both R and P, but we omitted them to
preserve concise notation. Combining (2) and (3), R is sus-
tainable if S ≤ 1. If Rn happens to be sustainable for any n

2Thanks to the definition of the matching matrix, which may be incomplete,
(1) holds with the equal sign.
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under some scheduling policy P, thus 1/S is defined as the nor-
malized maximum sustainable load under P. Two possible ap-
proaches can be devised to compensate a maximum sustainable
load less than one. As a first solution, a rate-limiting scheme
can be directly implemented at the servers, ensuring that no
more than 1/S fraction of traffic is sent to the OPT-fabric from
any ToR switch. As a second solution, it is possible to compen-
sate with a bandwidth over-provisioning on the optical fabric by
a factor 1/S . The additional cost of such solution is expected to
be limited in case of full optical fabric, also thanks to the fact
that the switching capabilities of MEMS are independent of the
data rate of the optical signal.

Fig. 3 shows an example of S values based on the mini-
mum frame duration TRn and the actual frame duration FPRn

.
In the first period, only arrivals and no departures occur (since
R0 = 0). In the second period, the frame duration is twice the
minimum one (S = 2), but R1 is still sustainable. The same
occurs for the two subsequent frames. In this example, since all
the request matrices are sustainable, all the enqueued chunks at
the beginning of each sampling period are served and thus each
new request matrix depends only on just the arrivals during the
previous sampling period.

We highlight the self-adaptive property of the proposed
frame scheduler approach. It does not require any a-priori
knowledge of the traffic matrix, since at each new sampling pe-
riod the updated state of the queue is considered to compute the
new frame. This is different from [7], which assumes to know
in advance the traffic matrix, relying on standard methods (as
the ones proposed by [1]) to estimate it.

2.2. Fatigue model for the OPT-fabric

In order to maximize the lifetime of the OPT-fabric, we min-
imize the variations among matchings in consecutive timeslots.
More precisely, the fatigue cost during some period of time is
defined as the number of variations at edge level occurring in
the sequence of matchings, i.e. the number of movements oc-
curring at single micro-mirror level. If input i is connected to
output j at timeslot t and then becomes connected to a differ-
ent output k , j at timeslot t + 1, two variations arise: the first
one to remove the connection from input i to output j and the
second one to setup the new connection from input i to output
k. The fatigue cost in this case is assumed to be 2 since this
event corresponds to change the position of two micro mirrors.
In the case a single micro-mirror was associated to each input
port, the change of destination for one port would cost just one
variation, instead of two as considered in our work. Since in
this case the fatigue cost would be half than the one considered
in our work, the corresponding optimization problem would be
the same as in our paper.

The fatigue cost of a new matching is obtained as the sum
of variations required to remove all connections selected in the
previous timeslot and not selected in the current timeslot, plus
the cost required to setup all connections selected in the cur-
rent timeslot and not selected in the previous one. This im-
plies that the fatigue cost between consecutive matchings is al-
ways between zero (no change) and 2N (complete change). Let

Table 1: Throughput and fatigue for constant uniform request matrix

Maximum Fatigue
Frame FPR S sustainable cost

load per frame
F1 TR 1 1 2uN2

F2 TR 1 1 2N2

F3 NTR N 1/N 2N2

E(Mh,Mk) be defined as the total fatigue cost occurred to mod-
ify matching Mh = [mh

i j] into Mk = [mk
i j]. It can be formally

computed as follows:

E(Mh,Mk) =

N∑
i=1

N∑
j=1

|mh
i j − mk

i j|

By construction, E(Mh,Mk) = E(Mk,Mh).
The total fatigue cost needed to reconfigure the OPT-fabric,

according to frame F PR , is:

E(F PR ) =

K−1∑
k=1

E(Mk,Mk+1)

Note that E(F PR ) is independent of the values of φk, since the
configuration contribution due to consecutive identical match-
ings is null.

2.3. A Toy Example

To understand the possible tradeoff between throughput and
fatigue, we consider the case of a constant uniform request ma-
trix R, where ri j = u, ∀i, j, and u is a fixed positive integer ≥ 1;
in this case, TR = Nu. Let Dk = [dk

i j] ∈ M be the permutation
matrix corresponding to the i-th diagonal, for i = 1 . . .N. As
example, in a 3 × 3 OPT-fabric,

D1 =

(
1 0 0
0 1 0
0 0 1

)
, D2 =

(
0 1 0
0 0 1
1 0 0

)
, D3 =

(
0 0 1
1 0 0
0 1 0

)
Let us consider three possible frames, all of them satisfying (1):

• F1 = {(D1, 1), . . . , (DN , 1), . . . , (D1, 1), . . . , (DN , 1)}: the
matchings are cyclically selected among all the N diag-
onals in a round robin fashion, keeping each matching for
one timeslot.

• F2 = {(D1, u), . . . , (DN , u)}: the matchings are cyclically
selected among all the N diagonals in a round robin fash-
ion, keeping each matching for u consecutive timeslot.

• F3 = {(U11, u), . . . , (U1N , u), . . . , (UN1, u), . . . , (UNN , u)}:
where U i j is a matching with only one edge, from input i
to output j.

Table 1 reports the corresponding sustainable load and configu-
ration cost per frame. From the throughput point of view, only
F1 and F2 are optimal. From the fatigue point of view, instead,
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F2 and F3 are optimal, thanks to the fact that they force the use
of the same matching in consecutive timeslots. As a conclu-
sion, under the considered traffic matrix, F2 is the best schedul-
ing decision, achieving optimality in terms of both fatigue and
throughput.

3. Fatigue-Aware Frame Scheduling

We aim at finding scheduling policies that maximize
throughput (i.e., achieving the maximum sustainable load) and
minimize the fatigue cost (i.e., the variations between consecu-
tive identical matchings are minimum), under a generic request
matrix.

Our fatigue-aware frame-scheduling problem can be mod-
eled as a two-objective optimization problem: define a frame
that minimizes the fatigue costs whilst maximizing the through-
put (or, equivalently, minimizing the frame duration FPR ). We
propose to solve this problem in two phases, each of them
aimed at a specific objective:

• Matching selection: given the request matrix R, define
an algorithm P that computes an unordered frame UPR =

{Mk, φk}
K
k=1 such that condition (1) is satisfied and the cor-

responding frame duration is minimized. The objective
is to serve all the enqueued chunks in R to maximize
throughput.

• Frame sorting: compute the final frame F PR by ordering
UPR to minimize the switching fatigue cost.

In the following sections, we will discuss each phase sepa-
rately.

3.1. Matching Selection
We consider five different algorithms for the matching se-

lection. The first four are iterative algorithms, exploiting the
same decomposition algorithm Gen-DEC as template, whose
pseudo-code is reported in Fig. 4. At each iteration of Gen-
DEC, a specific algorithm Ω(R) computes a matching matrix M
on R (line 3). Each of the four algorithm is characterized by a
specific Ω(R). Then, the value of the minimum element in R
among those selected by the matching matrix M (line 4) is sub-
tracted from all selected elements in R (line 5), and a residual
request matrix is obtained (line 6). The process iterates until R
becomes empty. Since, at each iteration, at least one element (at
most N elements) of R becomes zero, N2 iterations are needed
in the worst case to fully schedule R.

We considered in this paper five frame decomposition algo-
rithms:

• BvN: a Gen-DEC based algorithm, exploiting the
Birkhoff-von Neumann decomposition [26] on R, satisfy-
ing condition (1). Thus, at each iteration Ω(R) is a MSM
(Maximum Size Matching) on R, i.e. the matching with
the largest number of edges corresponding to non-null el-
ements of R. The MSM algorithm complexity is O(N2.5).
Differently from the original algorithm in [26], we are not
running the initial augmentation phase on R to get a new

Gen-DEC (Input: R; Output: UR)
1. UR = ∅, k = 1,R(k) = R // initialize
2. while R(k) , 0 // while R(k) is not completely zero
3. Mk = Ω(R(k)) // find a matching

// find the minimum value of R corresponding to Mk

4. φk = min1≤i, j≤N{mk
i jri j(k)|ri j(k) > 0}

5. R(k + 1) = R(k) − φk Mk // subtract
6. UR = UR ∪ {(Mk, φk)} // frame update
7. k = k + 1 // start a new iteration

Figure 4: Pseudocode of Gen-DEC scheduling algorithm

matrix with all the rows and columns summing to the same
value. Thus, our implementation is not provably optimal in
terms of minimum frame duration. Nevertheless, for most
of the scenarios considered later, the algorithm will be able
to find the minimum frame (equal to TR) and thus achiev-
ing the maximum sustainable load. The overall computa-
tional complexity is O(N4.5).

• GMax: a Gen-DEC based algorithm, where Ω(R) is a
greedy maximum weight matching on R. I.e., at each it-
eration, the algorithm to compute Ω(R) selects the largest
element in R, then it removes the corresponding row and
column from R, and repeats the process until all the rows
and columns in R have been considered. The complexity
of each iteration is O(N2 log N), due mainly to the initial
sorting of the N2 values in R; hence, the overall computa-
tional complexity is O(N4 log N).

• GExa: a Gen-DEC based algorithm. Ω(R) is a maximal
size matching with the constraint that a queue is always
served in consecutive timeslots until it becomes empty.
More formally, if Mk−1

i j = 1 and Mk
i j = 0, then it must be

rk
i j = 0. Otherwise, on the remaining input-output pairs,

Ω(R) computes a maximal size matching. This is equiv-
alent to the exhaustive service decomposition discussed
in [28]. Since the complexity of a greedy maximal size
matching is O(N2), then the overall computational com-
plexity is O(N4).

• GMin: a Gen-DEC based algorithm. Ω(R) is a greedy
minimum weight matching on R. Thus, the algorithm
chooses the smallest elements in R, then it removes the
corresponding row and column from R, and repeats the
process until all the rows and columns in R are considered.
Thus, the overall complexity is again O(N4 log N).

• Diag: the matching selection is based on a precomputed
set of N covering diagonals Dk = [dk

i j] on R, i.e. complete
matchings with no elements in common and able to cover
all the elements in R. Formally, dk

i jd
h
i j = 0 for any h , k,

and
∑N

k=1 dk
i j = 1 for any i, j. As possibility, consider the

set of matchings considered in the toy example of Sec. 2.3.
The matching duration φk is chosen equal to the maximum
value of the elements in the request matrix selected by Dk,
i.e. φk = maxi, j{dk

i jri j|ri j > 0} and the frame duration is
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∑N
k=1 φk. The total number of iterations is N, each iteration

with complexity O(N) (since the maximum value among
N elements of R must be found). Hence, the overall com-
putational complexity is O(N2).

3.2. Frame Sorting
In this second phase of the frame definition algorithm, the

matchings found in the frameUR are now ordered to minimize
the fatigue between consecutive timeslots. One simple way to
model this problem is to consider an auxiliary graph. Each
matching inUR is associated with a vertex, and any pair of ver-
texes is connected by an edge, thus creating a complete graph
by construction. The edge connecting the vertex Mk with Mh is
tagged with the fatigue cost from one matching to the other, i.e.
E(Mk,Mh). By construction, we have that the cost of any path
in the auxiliary graph corresponds to the fatigue cost needed
to follow the particular sequence of matchings defined by the
path. The frame sequence F PR minimizing the fatigue can be
computed from UR by finding the minimum-cost Hamiltonian
cycle, also known as the Traveling Salesman Problem (TSP),
which is NP-complete. However, in our scenario, the edge costs
satisfy the triangle inequality, and the problem reduces to a met-
ric TSP [29], which is still NP-complete, but it can be simply
approximated. We consider the following algorithms to sort
UR, with the aim of approximating an average/best/worst case
analysis:

• No-Sort (NS) does not modify the sequence of matchings.

• Good-Sort (BS) is a greedy algorithm that finds an ap-
proximated minimum cost cycle by visiting all vertexes: it
chooses, at each step, the minimum cost edge towards an
unvisited vertex. The initial vertex is chosen at random.

• Bad-Sort (WS) is a greedy algorithm that heuristically
finds the maximum cost Hamiltonian cycle: starting from
a random vertex, at each step, the maximum cost edge to-
wards an unvisited vertex is chosen. This algorithm per-
mits to define a worst-case sequence of matching that max-
imizes the fatigue, and it is useful to highlight the impact
of the frame-sorting phase.

Notably, BS and WS do not provide the provably minimum and
maximum cost cycle, respectively, thus the corresponding fa-
tigue bounds could be loose.

The above frame-sorting algorithms can be freely combined
with the matching-selection algorithms defined in the previ-
ous section. In the remainder of the paper, we use the nota-
tion (matching-selection)-(frame-sorting) to denote the partic-
ular pair of algorithms considered in our investigations: e.g.
GMax-BS, GExa-NS, etc.

4. Theoretical Performance Analysis

We start to discuss the traffic scenarios adopted in the sub-
sequent sections to compare the performance of the previously
presented algorithms. We were able to evaluate analytically the
performance of Diag, in Sec. 4.2, and GExa, Sec. 4.3.

4.1. Traffic Scenarios

The traffic exchanged among servers in a data center is a-
priori unknown, since it depends on the actual applications run-
ning on the virtual machines, on their exchanged traffic and
on the mapping between each virtual machine and the physi-
cal servers. In order to overcome such unpredictability and find
general results, we devised a set of synthetic traffic scenarios
aimed to test the algorithms performance under specific (benign
or adversary) conditions.

We consider two main families of randomly generated,
integer-value request matrices. In the case of hybrid data cen-
ters, we expect a non-negligible number of null elements in
the request matrix, due to the fact that only elephant flows are
routed across the OPT-fabric. Thus, we allow zero entries in the
request matrix considered in the following cases.

The first family is denoted as Average Sum (AS), in which
matrix elements ri j are i.i.d. random variables, and satisfy the
constraints: E

[∑N
i=1 ri j

]
= E

[∑N
j=1 ri j

]
= µN, i.e. the sum of

each row and column is, on average, equal to a constant µN.
Hence µ represents, given a flow, the average number of chunks
present to each input at the beginning of the sampling period.
Let Geom(µ) be a shifted geometric distribution with average
µ, with µ ≥ 1. Among the family of AS request matrices, we
consider:

• Uniform (UniAS): ri j = Geom(µ). The coefficient of vari-
ation of the elements in R is Cv =

√
(µ − 1)/µ, which is

always ≤ 1. Thus, the variance of the elements is rela-
tively small.

• Bidiagonal (BidAS): let M1,M2 ∈ M be two randomly
chosen permutation matrices. Set ri j = w1

i jm
1
i j + w2

i jm
2
i j

(with 0 < α < 1), where the 2N random weights (corre-
sponding to non-null elements in M1 and M2) are chosen
as w1

i j = Geom(αµN) and w2
i j = Geom((1 − α)µN). Thus,

R is obtained by summing two permutation matrices with
random weights for each non-null element. On such fam-
ily of matrices, any greedy approach is not able to find a
maximum size matching, and for this reason this family
can be considered “critical” during the matching selection
phase.

• Bimodal (BimAS): ri j = 0 with probability p and Geom(µ)
with probability 1 − p. Since the coefficient of variation

is Cv =

√
(1+p)µ−1+p
µ(1−p) , we can set the values of p and µ to

obtain a given Cv. For example, setting p = 0.601 and
µ = 100 gives Cv ≈ 2. Note that, just for this scenario,
the average sum of the rows and columns is (1 − p)µN.
This family is similar to the uniform one, but with a larger
variance.

• Multidiagonal (MudAS): let {Mk}Kk=1 be a set of K permu-
tation matrices: Mk ∈ M. Now ri j =

∑K
k=1 wk

i jm
k
i j (with

α = µN/K), where the KN random weights are chosen
as wk

i j = Geom(α). Thus, R is obtained by summing K
permutation matrices with random weights and it is a gen-
eralization of BidAS matrix with K random matrices.
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Table 2: Expected number of null and non-null elements for each request matrix
Request matrix Non-null Null

elements elements
UniAS, UniPS N2 0
BidAS, BidPS 2N N2 − 2N
BimAS (1 − p)N2 pN2

MudAS,UMudAS,
KN N2 − KNMudPS, UMudPS

• Unbalanced-Multidiagonal (UMudAS): it is identical to
MudAS but the weights of the K permutation matrices
vary linearly: ri j =

∑K
k=1 wk

i jm
k
i j, where the KN weights

are chosen as wk
i j = kGeom(α) and α

∑K
k=1 k = µN.

We also consider the family of Perfect Sum (PS) matri-
ces, whose rows and columns sum exactly to a constant µN:∑N

i=1 ri j =
∑N

j=1 ri j = µN. Obviously, the elements {ri j} cannot
be i.i.d.. PS matrices are an extension to the integer domain
of double stochastic matrices, for which the BvN [26] decom-
position was originally defined. Similarly to AS matrices, we
consider the following PS families:

• Uniform (UniPS): choose a set of µN random permutation
matrices Mk ∈ M and compute R =

∑µN
k=1 Mk. UniPS

matrices are characterized by elements with low variance,
because, for the Central Limit Theorem (CLT), Cv → 0, as
N → ∞.

• Bidiagonal (BidPS): let M1,M2 ∈ M be two random
matching matrices: R = αµNM1 + (1 − α)µNM2, with
0 < α < 1.

• Multidiagonal (MudPS): as generalization of BidPS, a set
of K random permutation matrices Mk ∈ M is chosen and
combined as R =

∑K
k=1 αMk, where α = µN/K.

• Unbalanced Multidiagonal (UMudPS): it is a variant of
MudPS, where the weight of each permutation matrix
varies linearly: R =

∑K
k=1 αkMk, where α = 2µN(K+1)/K.

For an easy reference, Table 2 reports the expected number
of non-null elements in the request matrices considered in our
work.

4.2. Theoretical Performance of Diag algorithm

The fatigue cost and throughput performance of Diag algo-
rithm can be evaluated analytically for some of the above sce-
narios.

For the constant uniform request matrix of the toy-example
of Sec. 2.3, Diag computes frame F2 of Table 1 and thus be-
haves optimally in terms of both maximum sustainable load and
fatigue cost. Whenever the request matrix is different from con-
stant uniform, then its performance can be quite poor, as shown
in the following.

We start now to evaluate the reconfigurations for a generic
request matrix. In the case of Diag, they can be evaluated eas-
ily because the variation between matchings is always equal to

Table 3: Fatigue costs for Diag and GExa algorithms

Request matrix
UniAS BidAS BimASUniPS BidPS

Total 2N2 4N 2(1 − p)N2
reconfigurations

Ave. total
µN2 µN2 µ(1 − p)N2

num. of chunks
Ave. fatigue 2/µ 4/(µN) 2/µper chunk

2 for each non-null ri j. Hence, for a frame of k distinct match-
ings, with k ≤ N, the overall reconfigurations are always upper
bounded by 2kN. Note that this holds independently from the
matching sorting phase, since the final frame F PR is independent
from it. Table 3 provides the average fatigue cost per chunk for
all considered traffic scenarios, assuming ri j > 0 for any i, j.
For UniAS and BidAS that value represents an upper bound on
the actual fatigue costs (due to possibly zero values in R), for
BimAS it is an average, whereas for UniPS and BidPS this fa-
tigue cost is exact. In Sec. 4.3 we will show that the results in
Table 3 hold also for GExa.

After evaluating the fatigue cost of Diag, we now move to
the throughput. To evaluate the performance of Diag algorithm
under different request matrices, we refer to the results obtained
in the appendix using extreme value theory [30]. The follow-
ing three theorems refer to the three different traffic scenarios:
UniAS, UniPS and BimPS.

Theorem 1. Let R = [ri j] be a UniAS request matrix, with
E[ri j] = µ � 0. R is sustainable under Diag algorithm with
the expected value of the frame-expansion factor S that can be
upper bounded as follows:

E[S ] ≤
log N + γ(
1 +

Γ(N)
√

N

)
Proof. To evaluate E[S ], we start to compute the average value
of FPR and then we evaluate the average value of TR. Let us
focus on FPR . Let Cd be the maximum element along the d-
th diagonal of R. By construction, under Diag policy, FPR =∑N

d=1 Cd. We now wish to evaluate the average frame size
E[FPR ]. C1,C2, . . . ,CN are i.i.d. random variables. Then

E[FPR ] = NE[Cd] (4)

Cd = maxi=1...N{Ai}, i.e. the maximum of N i.i.d. random vari-
ables Ai, distributed as each element of R. Since ri j is geomet-
rically distributed with average µ � 0, we can approximate Ai

with an exponential distribution with average µ. By Lemma 2
in appendix and (4),

E[FPR ] = µN(log N + γ) (5)

Let us now focus on TR. Define T ′R and T ′′R as the maxi-
mum row and column sums of R, i.e. T ′R = max j=1,...,N

∑N
i=1 ri j,
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T ′′R = maxi=1,...,N
∑N

j=1 ri j From the Birkhoff-von Neumann the-
orem [26], TR = max{T ′R,T

′′
R }. Since all ri j are i.i.d., we can

focus on a generic row i of R and evaluate the sum Bi of the
corresponding values: Bi =

∑N
j=1 ri j. Thanks to the Central

Limit Theorem (CLT), the distribution of Bi tends to the Nor-
mal distribution

Bi ∼ N(µN, µ2N) (6)

Rewriting T ′R as T ′R = maxi=1,...,N{Bi}, from Lemma 3 in ap-
pendix

E[T ′R]→ µN + µ
√

NΓ(N) (7)

where Γ(N) is a function defined in (A.4) of the appendix and
grows as Γ(N) ≈

√
2 log N for N → ∞. Since TR ≥ T ′R (stochas-

tically), the right side of (7) represents a lower bound on E[TR].
Combining (5) and (7), the frame-expansion ratio S is upper
bounded by: E[S ] ≤ (N(log N + γ))/(N +

√
NΓ(N)), which cor-

responds to our main claim.

Theorem 2. Let R = [ri j] be a UniPS request matrix, being
E[ri j] = µ. R is sustainable under Diag algorithm with a frame-
expansion factor S whose average is:

E[S ] = 1 +

√
1
µ

(
1 −

1
N

)
Γ(N)

Proof. By construction, TR = µN. We need to evaluate E[FPR ]
to compute E[S ]. All the elements ri j of the request matrix
are identically distributed, even if not independent. Say A is the
random variable corresponding to any ri j. Now A is obtained by
summing µN complete matchings, each of them including the
element (i, j) with probability 1/N. This is equivalent to state
that A =

∑µN
i=1 Hi with Hi = 1 with prob. 1/N and Hi = 0 with

prob. 1 − 1/N. Thanks to the CLT, A is normally distributed:
A ∼ N (µ, µ (1 − 1/N)). Define C as the maximum along a par-
ticular diagonal; C is the maximum of N i.i.d. random vari-
ables distributed as A. By Lemma 3 in appendix, E[C] →
µ +

√
µ(1 − 1/N)Γ(N). Since E[FPR ] = NE[C], we obtain our

final assert: E[S ] = (Nµ + N
√
µ(1 − 1/N)Γ(N))/(Nµ).

Theorem 3. Let R = [ri j] be a Bim-AS request matrix, being
E[ri j] = µ(1− p). R is sustainable under Diag algorithm with a
frame-expansion factor S whose average can be upper bounded
as:

E[S ] ≤
log(1 − p) + log(N) + γ

1 − p +
Γ(N)
√

N

√
1 − p2

(8)

Proof. We can repeat the same arguments as the proof of The-
orem 1. To compute E[FPR ], thanks to Lemma 1 in appendix,
simply substitute log N with log N + log(1 − p). For E[T ′R],
it can be shown that Bi is normally distributed as N(µN(1 −
p),Nµ2(1 − p2)). The result immediately follows.

Fig. 5 shows the average frame-expansion ratio obtained by
simulating a large number of request matrices for different val-
ues N. We have investigated the different families of request
matrices: UniAS, BimAS with Cv = 2 (large variance) and
Cv = 4 (very large variance) and UniPS. The points (SIM) refer
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Figure 5: Analytical and simulated results for the average frame-expansion ratio
E[S ] and for different request matrices under the Diag algorithm.

Table 4: Approximated performance for Diag and GExa when N → ∞

Algorithm Request matrix Maximum sustainable load

Diag

UniAS,
≥

√
2

N log NBimAS

UniPS ≥

√
1

2 log N
GExa any ≥ 0.5

to the results obtained by simulation, and the curves (TEO) re-
fer to the analytical curves of Theorems 1, 2 and 3. The graphs
show that the bounds of Theorems 1 and 3 are quite tight, espe-
cially for large N, and the approximation of Theorem 2 is very
accurate.

We can assess the maximum sustainable load by recalling
that it grows as 1/S, as discussed at the end of Sec. 2.1. Ta-
ble 4 shows the approximated performance of Diag for enough
large N, evaluated by the computing the limit for N → ∞ for
the relations proved in the previous theorems. For both cases,
the throughput, in the worst case, decreases quite fast as N in-
creases. Recall, that this low performance is traded with mini-
mum computational complexity and minimum fatigue.

4.3. Theoretical Performance of GExa algorithm
We now evaluate the fatigue cost and the throughput for

GExa algorithm. Since the service is exhaustive for each input-
output pair, the reconfigurations are always 2 for each non-null
ri j, as for Diag. Hence, Table 3 is also valid for GExa and we
can claim that GExa is optimal in terms of fatigue and thus fab-
ric lifetime. Regarding the performance, we can claim:

Theorem 4. Let R = [ri j] be any request matrix. R is sustain-
able under the GExa algorithm with a frame-expansion factor
S ≤ 2.

Proof. Observe that GExa decomposes R using a sequence of
maximal matchings. From Theorem 2.2 in [25] or Theorem 4.2
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Table 5: Average fatigue cost per chunk for UniAS request matrices when µ =

100, for a 64 × 64 switch

Decomposition Good No Sort Bad
algorithm Sort (WS) (NS) Sort (BS)

BvN 0.872 0.810 0.741
GMax 0.425 0.415 0.377
GMin 0.723 0.045 0.049
GExa 0.866 0.020 0.020
Diag 0.020 0.020 0.020

in [28], if a matrix is decomposed by any sequence of maxi-
mal matchings, then the number of matchings needed is at most
twice than the number obtained by BvN. Hence, FPR ≤ 2TR and
thus S ≤ 2.

Note that this result is generic since holds for any request
matrix. As a consequence, the maximum sustainable load by
GExa is at least 0.5, independently of the switch size. By com-
paring GExa and Diag in Tab. 4, GExa is largely outperforming
Diag in terms of performance, but with the same fatigue costs.
As a conclusion, GExa must be preferred to Diag as matching
selection algorithm.

5. Simulative performance analysis

In this section we evaluate the fatigue costs and the perfor-
mance of all the combinations of matching selection and sorting
algorithms, through Montecarlo simulations. In this way, we
were able to extend the analysis to a wider scenarios than the
ones considered in the previous sections and chosen for being
amenable to analytical treatment.

Results have been obtained through an ad-hoc simulator in C
language.

The average number of chunks per input flow, µ, is set equal
to 100. All simulations’ results are obtained as an average of
100 simulation runs, each one with a different randomly gener-
ated request matrix, to obtain statistically significant results. In
all the reported results, we have evaluated the 95% confidence
interval, using the batch mean approach; we have observed al-
ways a relative error varying between 0.1% and 3% at most.

In our results, we will evaluate the frame-expansion ratio and
the fatigue cost. We do not report the achievable delays, which
are discussed in [7] and depend on the particular arrival process
and all the temporal latencies typical of the adopted implemen-
tation.

5.1. Effect of Frame Sorting

We first evaluate the effect of the algorithms to sort the frame.
Table 5 reports the fatigue cost by combining a specific match-
ing selection algorithm with a particular sorting algorithm, un-
der UniAS request matrices in a 64×64 OPT-ToR switch. Very
similar results were obtained for different switch sizes and dif-
ferent random request matrices. The Diag algorithm is not af-
fected by the sorting and the fatigue cost per chunk is coherent

with the analytical formula 2/µ reported in Table 3. Recall that
2/µ is the minimum cost achievable by any algorithm under the
UniAS scenario, but it requires a large frame-expansion factor
S , as shown in Theorem 1.

As a general comment for the results of Table 5, the bene-
ficial effect of the frame-sorting algorithm on the fabric life-
time depends from the specific matching-selection algorithm.
By construction, in general, we could expect that Good-Sort
(BS) will outperform No-Sort (NS) which, in turn, will outper-
form Bad-Sorting (WS). This is not always true, as discussed
below.

For the BvN matching-selection algorithm, BS allows to re-
duce the fatigue costs by 10% with respect to NS, and 17% with
respect to WS. In all cases, BvN shows the largest number of re-
configurations, and this is due to the specific algorithm adopted
in BvN, based on computing a maximum size matching at each
iteration, without considering the cost to change the matching.

When combined with GMax, BS reduces the fatigue cost
similarly for the BvN case. In absolute terms, the reconfigu-
rations are less than BvN, since the greedy algorithm based on
the queue length induces a correlation between the matchings
computed in subsequent iterations of the algorithm.

The effect of the correlation is highlighted in GMin, where
the frame-sorting has always a negative effect. Indeed, fatigue
costs without sorting (i.e. with NS) are already very small, and
increases with BS. This is not surprising, since BS is an approx-
imated algorithm to solve the TSP problem and its solution is
worse than the initial sequence offered by keepingUR unsorted.
Although not completely intuitive at a first glance, this effect
is due to the particular metric used to compute the matching
at each iteration. By subtracting the minimum weight match-
ing Mk from Rk at iteration k, there is a high probability that
the new minimum weight matching Mk+1 shares some (at most,
N−1) edge with Mk. This correlation induces an efficient “self-
sorting” property, providing an efficiency comparable with, and
in some situations even better, than the one achieved by BS sort-
ing. On the contrary, when running GMax algorithm, Mk is a
(almost) maximum weight matching; as such, there is a very
low probability that Mk+1 shares edges with Mk. This explain
the fewer reconfigurations of GMin with respect to GMax. As
a remark, GMin is the only matching selection algorithm which
appear to be efficient in terms of lifetime without any additional
sorting algorithm.

Similarly to Diag, GExa-NS and GExa-BS are both optimal
in terms of fatigue, since the matching order induced by GExa
is already optimal. On the contrary, WS changes the order and
(differently from Diag), the fatigue increases.

Since the above reported results hold qualitatively in many
scenarios, we focus only on the following optimized combi-
nations of frame scheduling algorithms in the next sections:
BvN-BS, GMax-BS, GMin-NS, Diag-NS and GExa-NS. These
algorithms have very different computational complexities and
memory requirements; the sorting procedure itself requires to
store the whole frame sequence to sort it. The ranking among
the algorithms in terms of increasing complexity is: Diag-NS
(less complex), GExa-NS, GMin-NS, GMax-BS and BvN-BS
(more complex).
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Figure 6: Throughput and fatigue tradeoff under UniAS traffic for N = 16
(white shapes) and N = 128 (black shapes).

5.2. Switching Fatigue and Throughput Tradeoff

We mainly report the results for N = 16 (denoted with white
shapes in the graphs) and N = 128 (denoted with black shapes
in the graphs); however, similar results hold also for N = 32
and N = 64, and are not reported here for the sake of conciness.

In all the reported plots, each point corresponds to the aver-
age value; two bars around each point (one horizontal bar and
one vertical bar) show the maximum and minimum values ob-
tained considering all 100 runs. When the error-bars are not vis-
ible, the results of each run are almost identical to the average
value, i.e., results do not change for different seeds to generate
the random matrices. The traffic matrices MudAS, UMudAS,
MudPS, UMudPS have been obtained by fixing K = 10.

Fig. 6 shows the tradeoff between the maximum sustainable
load (introduced in Sec. 2.1) and average fatigue cost per chunk
obtained by the different algorithms, under UniAS traffic. This
kind of graphs provides a direct view of the tradeoff between
performance and foreseen lifetime of the fabric. Indeed, it is
possible to compare both the achievable maximum load and the
fatigue between different frame scheduling algorithms. We pro-
vide as reference also Fig. 7, that shows the number of distinct
matchings computed by each algorithm.

All the algorithms achieve almost the maximum through-
put, except for Diag-NS whose maximum sustainable load de-
creases with N as shown in Theorem 1 and in Table 4. GExa-NS
is optimal from the throughput point of view, and in this case the
bound provided by Theorem 4 is loose since actually S ≈ 1. As
expected, Diag-NS and GExa-NS achieve the minimum fatigue,
coherently with the formulas in Table 3. Fig. 7 shows an inter-
esting difference between the two: while Diag-NS uses exactly
N matchings (i.e. the minimum possible), GExa-NS uses almost
the largest number of distinct matchings in a frame. Indeed,
roughly N2µ chunks must scheduled in a frame, and, to achieve
the maximum frame load, each single matching should roughly
serve N chunks. Hence, there are at most Nµ different match-
ings in a generic frame under UniAS and GExa-NS adopts a
number of distinct matchings comparable with the maximum
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Figure 7: Average number of matchings per frame and fatigue tradeoff under
UniAS traffic for N = 16 (white shapes) and N = 128 (black shapes).

allowed one. Nevertheless, in GExa-NS the overall fatigue is
small because the variations between any pair of consecutive
matchings are very small.

GMin-NS, despite its relative simplicity, offer a reasonable
tradeoff, since achieves almost the maximum throughput with
a fatigue only 2-3 times larger than Diag-NS and GExa-NS.
In Fig. 8 we focus on the tradeoff obtained by GExa-NS and
GMin-NS by varying N under UniAS traffic. Regardless of fab-
ric size, the maximum sustainable load is always significant for
both algorithms, and the growth of the fatigue as a function of
N is marginal for GMin-NS and null for GExa-NS.

Coming back to Fig. 6, both BvN-BS and GMax-BS achieve
the maximum throughput, but, as observed in Sec. 5.1, GMax-
BS shows lower fatigue costs than BvN-BS, due to the met-
rics used to compute the matching. In particular, the fatigue
in BvN-BS is between 6 and 50 times larger than GExa-NS,
and for GMax-BS is between 5 and 25 times. Finally, fatigue
increases for larger switch size, as expected. In general, GExa-
NS reveals the best overall tradeoff, with minimum fatigue and
almost maximum throughput.

Fig. 9 shows the performance of the previous algorithms un-
der BimAS scenario. The same observations as in the previous
UniAS scenario holds, also from a quantitatively point of view.

In the case of UniPS scenario, Fig. 10 shows that BvN-BS
is the worst algorithm in terms of fatigue, especially when the
switch size grows. The best results are obtained by GExa-NS
and Diag-NS, the latter providing higher throughput, differently
from the UniAS scenario. This is mainly due to the smaller vari-
ance of the values in the diagonal elements of the request matrix
R: the maximum element on a diagonal is close to the average
and Diag-NS shows better performance. GExa-NS and GMin-
NS show the best tradeoff, since they achieve the minimum fa-
tigue, close to Diag-NS, and almost the maximum throughput.

We now consider the BidPS scenario. Because of the par-
ticular traffic matrix, the average fatigue cost is always equal
to 4/µ/N, but different algorithms achieve different through-
put, as shown in Table 6. Diag-NS is the worst and achieves
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Figure 9: Throughput and fatigue tradeoff under BimAS traffic for N = 16
(white shapes) and N = 128 (black shapes).

Table 6: Performance under BidPS scenario with α = 1/3

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 1.00 1.00 0.0025 0.00031
GMax-BS 1.00 1.00 0.0025 0.00031
GMin-NS 1.00 1.00 0.0025 0.00031
GExa-NS 0.75 0.75 0.0025 0.00031
Diag-NS 0.12 0.02 0.0025 0.00031

a throughput around 2/N since it requires N slots to serve one
packet from each of the two non-empty queues. Because of its
poor performances, we will omit Diag-NS from the following
results. GExa-NS suffers a 25% throughput reduction, and this
is due to the greedy approach adopted in the decomposition.
Table 7 shows the performance under MudPS traffic, which is
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Figure 10: Throughput and fatigue tradeoff under UniPS scenario for N = 16
(white shapes) and N = 128 (black shapes).

Table 7: Performance under MudPS scenario (K = 10)

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 1.00 1.00 0.0109 0.0015
GMax-BS 0.75 0.64 0.0113 0.0015
GMin-NS 0.75 0.64 0.0099 0.0015
GExa-NS 0.72 0.63 0.0095 0.0015

a generalization of BidPS scenario with K = 10 permutation
matrices. From the fatigue point of view, all the algorithms be-
have the same as in BidPS, but now all the greedy approaches
for the frame decomposition obtain a throughput lower than
the throughput-optimal BvN. This is expected, since BidPS and
MudPS are carefully crafted to avoid maximum throughput for
any greedy approach.

In Table 8 we show the performance under UMudPS traffic,
built with unbalanced permutation matrices. Also this scenario
shows some throughput impairment for all greedy approaches,
but now the fatigue cost of GExa-NS appear to be around 4
times smaller than BvN-BS.

Finally, Table 9 reports the performance achieved by Bi-
mAS. In terms of throughput, all the algorithms achieve almost

Table 8: Performance under UMudPS scenario (K = 10)

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 1.00 1.00 0.0308 0.0061
GMax-BS 0.85 0.86 0.0201 0.0043
GMin-NS 0.77 0.80 0.0111 0.0014
GExa-NS 0.81 0.76 0.0086 0.0014
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Table 9: Performance under BidAS scenario, with α = 1/3

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 1.00 1.00 0.0060 0.0043
GMax-BS 1.00 1.00 0.0040 0.0014
GMin-NS 0.98 0.99 0.0029 0.0004
GExa-NS 0.99 0.99 0.0025 0.003

Table 10: Performance under MudAS scenario (K = 10)

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 1.00 1.00 0.0583 0.0891
GMax-BS 1.00 1.00 0.0407 0.0579
GMin-NS 0.93 0.94 0.0157 0.0027
GExa-NS 0.97 0.98 0.0093 0.0015

the maximum throughput. Instead, among such throughput-
optimal policies, only GExa-NS is able to obtain an average
fatigue cost equal to the minimum one, corresponding to 4/µ/N
already computed in the BimPS scenario. Thus, the throughput
degradation of GExa-NS observed in BimPS appears to depend
on the deterministic values of the traffic matrix; some random
perturbation in the BimPS matrix, resulting into BimAS, allows
GExa-NS to achieve the maximum throughput, while keeping
an optimal behavior in terms of fatigue costs, differently from
all other algorithms.

In conclusion, GExa-NS offers the best tradeoff in terms of
throughput, fatigue costs and computational complexity, since
in most of the scenarios it obtains the maximum throughput
while keeping a minimum fatigue cost.

5.3. Real traffic matrices

To further investigate the behavior of the proposed algo-
rithms, we evaluated their performance under real case scenar-
ios, in particular using the data demand measured in two pro-
duction data centers, respectively from Facebook [9] and Mi-
crosoft [31].

Table 11: Performance under UMudAS scenario (K = 10)

Algorithm
Maximum Average fatigue

sustainable load cost per chunk
N = 16 N = 128 N = 16 N = 128

BvN-BS 0.99 0.99 0.0533 0.0820
GMax-BS 1.00 1.00 0.0331 0.0465
GMin-NS 0.93 0.94 0.0141 0.0025
GExa-NS 0.97 0.98 0.0085 0.0014

Table 12: Performance under a real traffic matrix measured in a Facebook data
center

Algorithm Maximum Fatigue cost
sustainable load per chunk

BvN-BS 0.99 0.578
GMax-BS 1.00 0.111
GMin-NS 0.92 0.055
GExa-NS 0.93 0.044
Diag-NS 0.79 0.015

In [9] authors collected 24-hours traces from a Facebook’s
data center, gathering different classes of traffic matrices. The
measurements refer to the communication among 64 ToRs, cor-
responding to a 64 × 64 traffic matrix. Around 80% of the
traffic is generated within the data center (denoted usually as
east-west traffic). Two traffic matrices are claimed to be typi-
cal in Facebook data centers: either the traffic is homogenous
for Hadoop/MapReduce applications or it is very unbalanced.
From the numerical values shown in [9], the first case is very
similar to the constant uniform request matrix considered in
the toy example of Sec. 2.3, for which all the algorithms (also
Diag-BS) behave exactly the same and obtain the maximum
sustainable load and the minimum fatigue costs, corresponding
to frame F2 in Table 1. The second scenario with unbalanced
traffic is due to the traffic from/to the front-end servers of the
main Facebook services, running web-services and caching ap-
plications. The traffic is strongly unbalanced, with 75%of ToR
switches sending most of their traffic toward 25% of destination
ToRs and vice versa.

In our investigation, we exactly adopted the unbalanced traf-
fic matrix shown in Fig. 5(b) of [9] and showed the results in Ta-
ble 12 for the most relevant algorithms considered so far. Note
that the Facebook traffic matrices have been reported in relative
values and thus we had to renormalize them coherently with the
previous synthetic traffic matrices. From our results, all con-
sidered algorithms are able to reach at least 90% of maximum
sustainable load, except for Diag-NS which obtains a slightly
lower load but with the minimum fatigues cost (equal to 1/64).
These results corroborate qualitatively the results observed in
the previous traffic scenarios. In more details, GExa-NS out-
performs GMax-BS in term of fatigue by a factor 3.

We also considered the performance achievable for another
traffic matrix, that was measured by the authors of [31] in a
Microsoft data center, composed by 73 ToR switches connect-
ing around 1500 servers. The main applications running in
such data center were data mining based on Map Reduce and
other distributed storage applications. The measured traffic ma-
trix appears to be unbalanced (similarly to Facebook data cen-
ter) but now it is also quite sparse with a few set of hot-spot
ToR switches that send and receive most of the traffic. Ta-
ble 13 shows the performance under the traffic matrix reported
in Fig. 2 of [31]. All the algorithms achieve the maximum
throughput, thanks to the sparsity of the traffic matrix which
appears ”simple to schedule”. The only exception is Diag-NS,
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Table 13: Performance under a real traffic matrix measured in a Microsoft data
center

Algorithm Maximum Fatigue cost
sustainable load per chunk

BvN-BS 1.00 1.273
GMax-BS 1.00 1.247
GMin-NS 1.00 0.224
GExa-NS 1.00 0.152
Diag-NS 0.18 0.013

which is completely inefficient in terms of throughput due to
sparsity of the traffic matrix and thus cannot be considered a
practical solution for scheduling. Instead, the behavior in term
of fatigue cost is quite different among the various algorithms,
due to the large variance in the value of the traffic matrix.
BvN-BS and GMax-BS show a similar behavior with respect
to UniAS scenario. Instead, excluding Diag-NS, GExa-NS is
the best algorithm, reducing the fatigue cost by a factor 10 with
respect to BvN-BS and GMax-BS.

Thus, under traffic matrices typical in Facebook and Mi-
crosoft data centers, GExa-NS offers the best tradeoff between
complexity, throughput and fatigue.

6. Related Work

Proactive traffic scheduling has been proposed [10, 15, 16]
to switch traffic based on a-priori knowledge of the traffic de-
mands between racks or ToR switches. All these works are
completely oblivious of the particular nature of the optical data
center fabric, assuming an ideal non-blocking behavior with-
out reconfiguration delays and with unlimited lifetime. Further-
more, they assume to know the traffic matrix in advance. The
proposed approaches are always based on a standard Birchkoff-
von Neumann decomposition, which is also considered in our
paper as term of comparison (see Sec. 3.1). We have shown
that such approach applied in our scenario maximizes through-
put but not the OPT-fabric lifetime.

In optical switches based on MEMS, tunable lasers and other
technologies, a reconfiguration latency must be paid when the
switching fabric changes configuration; a “blackout” period is
experienced in packet transmissions, during which the whole
switching fabric is not available to transfer packets. In [32] the
optimal frame scheduling to compute was studied in such sce-
nario. The cost function minimized in [32] is similar to the
one considered in our paper since it considers a reconfiguration
cost paid anytime the switching configuration changes. How-
ever, differently from our case, the cost in [32] is independent
of the number of input-output connections that change inside
the switching fabric: a single connection modification implies
that the whole switching fabric becomes unavailable, thus in-
troducing the cost of a complete reconfiguration. Hence, differ-
ently from ours, the scheduling policy is designed to minimize
the number of matchings to serve all the packets in the request

matrix and not the number of variations in the matchings. No-
tably, [32] showed that the optimal scheduling problem with
reconfiguration latency belongs to the NP-complete class, and
proposed two sub-optimal algorithms Min and Double. Min al-
gorithm decomposes the request matrix into N matchings as our
Diag, but the corresponding frame-expansion factor S grows as
S ≈ 4 log2 N. As an alternative, Double algorithm decomposes
the request matrix with 2N matchings while keeping S = 2.

Regarding the design of hybrid data centers, an alternative
implementation with respect to [7], often referred in our work,
is proposed in [12], which adopts a 320 port MEMS switch as
OPT-fabric.

The authors propose VLAN tagging based on OpenFlow (at
the switch) and OpenvSwitch (at the server) to forward the traf-
fic flows into the OCS network. Notably, their proposed imple-
mentation is compatible with the scheduling approach proposed
in our work. But, differently from our work, [12] supports
multi-hop routing, according to which the final ToR switch is
reached through a sequence of intermediate ToR switches con-
nected to the OPT-fabric.

An alternative hybrid data center architecture has been pro-
posed in [18], built with a MEMS-based OCS network inter-
connecting the ToR switches as in our work. The frequency at
which the scheduler computes the solution adapts to the traffic
conditions and it is not fixed as in our case. The main schedul-
ing algorithm is based on the maximum weight matching com-
puted on the number of chunks enqueued in the ToR queues;
this approach is very similar to GMax considered later in our
work.

In conclusion, all the previous implementation and design ef-
forts have not considered the limited lifetime of a MEMS-based
OCS-fabric. Our traffic scheduling approach can be adopted in
all these cases.

7. Conclusions

We have considered an optical fabric to interconnects ToR
switches in a data center, allowing fast reconfigurable circuit
switching among the racks. We have assumed that MEMS are
adopted for full optical switching, and this technology is af-
fected by limited lifetime due to the mechanical fatigue.

We addressed the problem of scheduling the traffic across
racks to maximize the performance in terms of throughput and
to maximize the lifetime of the switching fabric. The main idea
is to minimize the number of single variations between con-
secutive switching configurations. We have proposed a family
of fatigue-aware frame scheduling algorithms that offer differ-
ent tradeoff between performance (throughput and fatigue) and
computational complexity. We have investigated the achieved
tradeoffs using both analytical and simulative approaches, un-
der both synthetic and realistic traffic matrices observed in op-
erational Facebook and Microsoft data centers. As result, we
have shown that, in a majority of the scenarios, the specific al-
gorithm denoted as GExa-NS, is outperforming all the other
approaches based on state-of-art algorithms. Notably, GExa-
NS can substitute the standard decomposition algorithms for

14



the traffic scheduling in optical fabrics, without incurring in any
extra computational cost, but providing an important improve-
ment in the lifetime of the MEMS-based switches.
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Appendix A. Results from extreme value theory

We obtain here some results based on classical extreme value
theory [30]. The aim of this theory is to evaluate the properties
of the maximum among N i.i.d. random variables. Let γ be the
Euler constant (γ ≈ 0.58).

Lemma 1 (Bimodal case). Consider a set of N i.i.d. random
variables {Xi}

N
i=1, in which Xi = 0 with probability p and

Xi = Ui with probability 1 − p, where Ui is a random variable
exponentially distributed with average 1/λ. Then, for N → ∞:

E
[

max
i=1,...,N

Xi

]
→

1
λ

(γ + log N + log(1 − p))

Proof. Let Y be the random variable corresponding to the max-
imum among N samples: Y = maxi=1,...,N{Xi}. Following stan-
dard methodology, the corresponding cumulative distribution
function (CDF) of Y can be obtained as follows:

FY (y) = P(Y ≤ y) = P
(

max
i=1,...,N

{Xi} ≤ y
)

=

N∏
i=1

P(Xi ≤ y) =

N∏
i=1

FX(y) = FX(y)N

Given the definition of X and recalling the CDF of an exponen-
tial distribution:

FX(x) = p + (1 − p)(1 − e−λx) = 1 − (1 − p)e−λx

for x ≥ 0 and then

FY (x) =
(
1 − (1 − p)e−λx

)N
(A.1)

Apply the following change of variable:

(1 − p)e−λx =
e−y

N
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then
x =

1
λ

(y + log N + log(1 − p))

Exploiting (A.1):

FY

(
y + log N + log(1 − p)

λ

)
=

(
1 −

e−y

N

)N

For N → ∞: (
1 −

e−y

N

)N

→ e−e−y

and
P(λY − log N − log(1 − p) ≤ y) = e−e−y

for −∞ < y < +∞. After defining

Z = λY − log N − log(1 − p) (A.2)

we obtain P(Z ≤ y) = e−e−y
, which corresponds to the Gumbel-

type distribution [33] whose average is the Euler constant γ.
Hence, by combining (A.2) with E[Z] = γ, for N → ∞ and,
finally, we get our claim: E[Y] → (γ + log N + log(1 − p))/λ.

Lemma 2 (Exponential case). Consider a set of N i.i.d. random
variables {Xi}

N
i=1. If all Xi are exponentially distributed with

average 1/λ, then

E
[

max
i=1,...,N

Xi

]
→

1
λ

(γ + log N) for N → ∞ (A.3)

Proof. The bimodal case for p = 0 corresponds to the exponen-
tial case. Just apply Lemma 1 to get the assert.

Lemma 3 (Gaussian case). Consider a set of N i.i.d. random
variables {Xi}

N
i=1. If all Xi have normal distribution with av-

erage a and variance b2: X ∼ N(a, b2), then, for N → ∞:
E

[
maxi=1,...,N Xi

]
→ a + bΓ(N), where Γ(N) is defined as

Γ(N) =

(2 log N)
1
2 −

1
2

(2 log N)−
1
2 (log(4π) + log log N) (A.4)

Proof. The proof can be found in [30].
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