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Predicting Software Revision Outcomes on GitHub Using Structural 
Holes Theory 

Abstract 

Many software repositories are hosted publicly online via social platforms. Online users contribute to the 

software projects not only by providing feedback and suggestions, but also by submitting revisions to 

improve the software quality. This study takes a close look at revisions and examines the impact of social 

media networks on the revision outcome. A novel approach with a mix of different research methods (e.g., 

ego-centric social network analysis, structural holes theory and survival analysis) is used to build a 

comprehensible model to predict the revision outcome. The predictive performance is validated using real 

life datasets obtained from GitHub, the social coding website, which contains 32,962 pull requests to 

submit revisions, 20,399 distinctive software project repositories, and a social network of 234,322 users. 

Good predictive performance has been achieved with an average AUC of 0.84. The results suggest that a 

repository host’s position in the ego network plays an important role in determining the duration before a 

revision is accepted. Specifically, hosts that are positioned in between densely connected social groups are 

likely to respond more quickly to accept the revisions. The study demonstrates that online social networks 

are vital to software development and advances the understanding of collaborations in software 

development research. The proposed method can be applied to support decision making in software 

development to forecast revision duration. The result also has several implications for managing project 

collaboration using social media.  

Keywords: software development, social network analysis, structural holes theory, survival analysis, 

predictive modeling 

1 Introduction 

Managing software projects is a difficult task. Software needs to be constantly maintained to support 

companies in a dynamic business world. Revising computer software in the development process and in 

later stages is unavoidable. Firms revise software for different purposes, e.g., to increase productivity, to 

meet customer demands, and to comply with regulations. Tracking changes of software versions (often 
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known as software version control) allows companies to continuously support the development of software 

projects [1-3]. While companies benefit from computer software, they often find managing software 

projects challenging, due to budget limit, skill shortage, and other factors. Projects in IT often overrun in 

cost and schedule and yet fail to deliver the expected benefits [4]. As a result, software revision becomes a 

necessary but difficult task for companies to succeed in IT projects. Companies can improve project 

performance in a number of ways, such as by utilizing internal/external talents and nourishing better 

managerial practices with rigorous quality checks [4].   

Open source software (OSS) communities attempt to tackle some of these issues using the wisdom of the 

crowd by embedding social features in software development. Increasingly, more software projects are 

hosted on public, open websites like SourceForge (sourceforge.net) and GitHub (github.com). Open source 

software merits the attention of many different stakeholders. End users might use OSS as an alternatives to 

commercial solutions, for example, open source operating systems, office tools, and image processing. 

Organizations, realizing the shortcomings of closed source commercial software [5], are interested in 

investigating the impact of open source software and adopting managerial practices to achieve better 

business outcomes [3, 6]. Among the many benefits, one significant advantage of hosting software projects 

online is the ability to allow online users to interact with each other, so that OSS websites become a social 

media platform for users to form a community.  

Researchers are seeking to understand the impact of social networks on organizations [7, 8]. The social 

network, which links different users, has been proven to be an instrumental piece of organizational 

performance [9, 10] and brings both opportunities and challenges to organizations [11-16]. Therefore, 

networks from the social media are relevant to study software development and project management issues 

in organizations. In OSS communities, active users contribute by submitting revisions to software 

repositories. Once submitted, maintainers of the software repository choose whether to accept or reject the 

revision. In general, maintainers accept revisions that will improve the quality of the software, and reject 

revisions that are unsatisfactory or untrustworthy. 

The acceptance of the revision is an essential topic in the context of OSS.  Past studies have sought to 

develop explanatory and predictive models to study acceptance [17-20]. It is important to know the time it 

takes for a revision to become accepted or rejected, as the timing is an important issue in project delays and 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the software life cycle [21-23]. However, none of these studies explored the link between revision outcome 

and the structure of the social media networks. Yet studying this link is relevant as companies are now 

adopting the practices of the OSS community to improve their performance in software development [3, 

24].  

The goal of this paper is to investigate the predictive power of social network data on OSS revision 

outcome and the time elapsed before a revision is accepted. Capitalizing on findings within OSS, this paper 

will provide practical solutions to support organizations in managing software projects by taking into 

account the social network context. This paper uses social networks and structural holes theory together 

with survival analysis. Social network data demonstrates the complex networks of connections among users. 

The structural holes theory offers solid theoretical background for the structural aspects of the social 

networks, and links the social networks to individual outcomes in software development. The survival 

model utilizes the operationalized social network information, and provides a comprehensible statistical 

model to predict the revision outcome over time. Empirical data collected from the GitHub event archive 

involves 20,399 software projects repositories, 234,322 users, and 32,962 revisions. Statistical methods are 

used to validate the prediction results on the datasets, such as the Area Under the Curve (AUC) [25, 26] and 

cross validation [27, 28]. The literature review follows in section two. The third section explains the 

research method, the data collection procedure and the evaluation metrics. Lastly, section four is a 

discussion of the research results. 

2 Literature review 

2.1 The “social” development of Open Source Software  

The impact of open source software has been discussed for more than 10 years [29, 30]. Stakeholders in the 

domain have gradually recognized the identifying traits of OSS. The research area covers but is not limited 

to transparency [31], trustworthiness [32], team organization [21, 33, 34], and performance measures [17]. 

The influence of the OSS tunnels through the boundary between the open and the closed source industries. 

Open source software is used in closed source contexts [29], and closed source software might become 

open [35]. Moreover, software companies are trying to adopt some of the good practices from the OSS 

community [3, 6, 24, 36]. With the emerging role of social media and social software websites, many OSS 
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projects are not only hosted online, but also in a “social” context. Online repository hosting websites such 

as GitHub enable social features, allowing users to interact with each other and contribute to OSS. People 

are able to follow each other, join different organizations and subscribe to different repositories. The OSS 

projects, alongside the contributors and their social networks, become publically available. Three main 

streams of research focus on the social network features [37, 38], the pull request acceptance [18-20], and 

using data generated from OSS for forecasting [17, 30].  

Social coding is a unique experience for users to develop software projects interactively. Research is 

invested in issues raised from “coding socially.” A revision submitted to a software project might not 

always be the best revision [19]. Often a revision (sometimes also called a “pull request” on websites like 

GitHub) will experience delays before being accepted or rejected by the repository administrators, who are 

responsible for reviewing the revision and managing the repositories [20, 39]. Some research has attempted 

to investigate this problem and identified potential predictors of revision outcome, such as project and 

individual characteristics [18, 19, 33]. Researchers identified useful features to determine the acceptance of 

the revision requests, such as whether a contributor included test code before submitting the request [39], or 

worked closely with the repository administrator (sometimes called integrator) resulting a number of 

comments and feedbacks [20]. Previous successful experience of submitting revisions will help future 

acceptance [19]. However, given the complex nature of software development, some of the findings 

contradict others. For instance, while intensive communication between the users helps to strengthen social 

relations, it also may signal that the revision might be problematic, that more conversation is needed to 

resolve the problems. As a result, the role of the comments as a proxy for communication in predicting the 

acceptance could be both positive and negative [20, 40]. Similarly, while including a testing unit in the 

revision might help with testing the code, many repository administrators choose to evaluate the revision 

without the submitted tested code because they might have their own way of testing [39]. Studies 

attempting to characterize the revision requests with technical indicators are often limited by sample size 

and programming language types, and, so far, have failed to deliver a more general picture of the 

collaboration process. Social coding is not just a technical/engineering process, but also a human decision 

process and a networking experience. While the social media platform allows everyone to contribute, it 

falls upon repository administrators to evaluate those submissions and to decide whether to trust 
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contributors. The decisions by repository administrators to accept the revisions will have a direct impact on 

their projects, their co-workers, their communities, and potentially millions of the repository users 

worldwide. Managing the repository is more than a technical task; repository administrators often find it 

difficult to justify the acceptance of revision requests using only the technical indicators. Repository 

administrators often have to refer to other co-workers’ reviews of the submitted contributions, and the 

connections to their co-workers to help them to make decisions in managing contributions [39]. In light of 

those findings, this study takes a relational perspective, using the available network data on the social 

media platform to predict revision outcomes.          

2.2 Social network analysis 

Social network analysis is an essential element in social science research [41-43]. Social network analysis 

has emerged due to the advances in information technology and promotes a better understanding of 

different research topics in engineering, business, economics and social sciences [9, 42, 44-46].   

Ego-centric network analysis is a sub-branch in social network analysis that focuses on a set of particular 

nodes. In a typical social network, individual users are considered as nodes and the relationships (such as 

being friends, relatives, and colleagues) are the ties linking the nodes. In an ego-centric network design, 

research is based on one central (sometimes known as “focal”) node, called the “ego,” while the nodes 

linking the ego are called “alters.” The ego network is a subgraph of the complete full social network. 

Different ego networks form small-world networks [41] and are sometimes called “social circles”  [47]. 

The ego-centric network allows researchers to explore the social networks among a number of interested 

nodes with their directly connected “neighbors” even without having access to the full network structure. 

Gathering full network information is often difficult due to the size of the network and its ability to change 

over time. The ego-centric network is a widely used alternative to study social networks without exploring 

the whole network [41].    

Sociologists have found that people’s positions in the social networks are closely related to individual 

outcomes [48-51]. The connections in the social networks are an essential asset for people to gain access to 

vital information and resources to compete, to negotiate, and to innovate [52]. Because people have limited 

energy to maintain a finite number of relationships, the question remains of how to maintain the ties 

efficiently and effectively in order to benefit from a network of finite size. Burt discussed some of these 
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issues in his structural holes theory [52, 53], arguing that social groups that are connected tend to share 

similar information and resources. People connecting between many different social groups tend to have a 

richer share of information and resources than those who establish connections only within a limited range 

of social groups. Structural holes occur when an ego node connects to all its neighbor nodes, while those 

neighbor nodes are not themselves connected [52, 54]. Structural holes are like a “buffer” between different 

disconnected social groups [52]. Structural holes are considered to be a structural advantage in social 

networks in order to access the valuable resources exchanged between unconnected social groups. Nodes 

with structural holes are expected to get faster promotion, and have more power to negotiate in the market 

[52]. Burt’s work introduces the idea of quantifying the positional information of individuals in social 

networks by measuring the distribution of the ties to different social groups. This allows the study of 

important individual outcomes, such as the time to accept revisions in OSS.      

The previously conducted research naturally raises a set of new questions. Repository administrators often 

find it difficult to act upon a received revision, due to their limited availability of various resources, e.g., 

time, energy, knowledge and support from co-workers [39]. Nodes with structural holes have the potential 

to access more resources. Can structural holes measures predict revision outcome? Are the network of 

contributors and the network of repository administrators both equally predictive? How do social network 

data such as the structural holes measures generate quantitative, accountable, yet comprehensible insights 

for organizations to support their business decisions and to foster better managerial practices? This paper 

attempts to answer these questions using social network analysis. 

2.3 Survival analysis 

Analysis of the revisions should not only consider the status (accept/reject) but also the time it takes for the 

revision to be accepted. Survival analysis addresses the time to event problems. In a classical “survival 

setting,” the dependent variables are the status and time associated with the status. Typically in clinical trial 

studies, the dependent variables are whether the patients die or survive (status) and time [55-57]. Survival 

analysis can also be used to study the reliability of material in engineering, such as when exactly a type of 

material composite fails, as well as to study customer behavior and product lifetime in business [58, 59].    

Survival analysis is different from other regression methods because it is designed exclusively to study the 

time to event behavior in the dataset. Survival analysis considers the status (such as death, recovery, failure, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

maturity, and so on) of the subjects and the time elapsed before having the status (time until death, time it 

takes to recover, and so on). Furthermore, as the data is gathered over time in a follow-up period, 

observations might not experience the event before the end of the follow up time. Alternately, observations 

may drop out. These observations are considered to be “censored.” The survival analysis is designed 

exclusively to make use of the censored data for the model inference. As a result, the survival model 

provides coefficient estimates that indicate the weights of the predictors, known as the hazard ratio [55, 57]. 

The hazard ratio is interpreted as the rate/speed to experience the event; hence, it is informative for research 

to discover the predictors that lead to faster or slower revision acceptance.  

3 Methods 

To study the time elapsed before a revision is accepted or rejected, one needs to consider the status and the 

time, respectively. In figure 1, there are a total of 7 revisions. Revision 1 was the first to be accepted, while 

revisions 7, 3, and 2 were accepted later. Revision 5 was rejected between the acceptance of 1 and 7. 

Revision 6 was eventually rejected, and revision 4 was censored during the follow-up period.   

Research methods associate these outcomes to the social networks of users, and identify the important 

variables that lead to acceptance/rejection of the revision.   

   Start  Time End 

Index Senders Receivers  

1 Barry Terry -----------● 

2 Ferry Terry ---------------------------------------------------● 

3 Gary Terry ----------------------------------● 

4 Harry Ferry ------------------------------------------------------------------------ 

5 Jerry Barry ---------------------○ 

6 Larry Barry --------------------------------------------------------○ 

7 Terry Gary -------------------------● 
 

Fig. 1. Time to event, the dependent variables 

                                                           ● Revision accepted 

                                                           ○ Revision rejected 

3.1 Data collection 

GitHub is the largest online software project platform, with 3.4 million users. At the end of 2014, GitHub 

hosted more than 2 million active repositories, according to statistics on GitHut (http://githut.info/). 

http://githut.info/
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GitHub includes many features of social media platforms. Users can follow one another, similar to other 

social media websites such as Twitter. In addition to their own repositories, GitHub users can also 

subscribe to other repositories in which they are interested, and become affiliated with different 

organizations. Users can also socialize by submitting revisions to others’ repositories. A revision is 

formally known as a “pull request” on GitHub. In a pull request, a user revises a repository by adding or 

changing the code, and then sends it to the repository owner for approval. 

This research project collected all pull requests sent from one user to another. Different pull requests 

generated from September 1
st
 to September 7

th
, 2015 are collected. Pull requests are followed up for one 

additional week, from the date they are collected, shown in Table 1. A summary of the collected data is 

shown below in Table 1.  

Table 1  
A summary of the collected data 

Dataset 

index 

Follow up 

period (2015) 

Issued pull 

requests 

Accepted pull 

requests 

Users Repositories Organizations 

T1  09.01-09.07 8712 6142 11,229 5811 4176 

T2  09.02-09.08 6466 3663 8785 5101 2975 

T3  09.03-09.09 4714 2802 6839 3751 2054 

T4  09.04-09.10 5818 1543 7374 4624 1179 

T5  09.05-09.11 2359 1394 3464 2009 1281 

T6  09.06-09.12 1761 1066 2643 1545 702 

T7  09.07-09.13 3132 1772 4511 2575 1270 

Total \ 32,962 18,382 39,694 20,399 20,234 

Total number of users in the network: 234,322 

 

3.2 Social network analysis 

The relations in a social network consisting of N nodes are presented in an adjacency matrix, which is a N-

by-N matrix that represents all sets of possible relations concerning nodes. An ego-centric network has 

been extracted among the users, resulting in a dataset with 234,322 users in total. The users have a list of 

followers, and also follow a number of other users. The “following” relationship allows the construction of 

an unweighted directed social network, where       means that node   follows node   . 

Three variables extracted from the ego network are the effective size, the efficiency, and the hierarchy. All 

three variables are based on the structural holes theory, which argues that people should distribute their ties 

to distinctive social groups rather than limit their ties to one social group. Using Figure 2 as an example, 

there is an ego network of 7 people with Barry as the ego and the rest as alters. Barry has relationships with 
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Ferry, Gary and Harry while the others do not: Ferry, Gary, and Harry are isolated from the others by Barry. 

Hypothetically, if Ferry, Gary, and Harry have important information, Barry will be the next person to 

know, as he is their unique contact. These unique ties of Barry with Ferry, Gary, and Harry are considered 

to be non-redundant. Barry also connects to Jerry, Larry, and Terry. Those ties do not isolate Jerry, Larry, 

and Terry from each other. Ideally, one tie with either Jerry, Larry or Terry is enough for Barry to get 

information from all three, as those three are connected. If Barry connects to Larry, the other ties spent with 

Jerry and Terry can be considered “redundant” since these ties have no added value. In other words, the ego 

Barry establishes a connection to one social group including Jerry, Larry, and Terry, at a cost of 

maintaining three ties. The structural holes act as the separations between non-redundant contacts, for 

example, between Gary and Harry.   

   

 
Fig. 2. Redundant and non-redundant ties in the ego network 

 

Effective size (ES for short) computes non-redundant ties in the network for each node  . 

                

 

   

 

      

(1) 

 where     is the fraction of ties connecting   with node  : 

     
       

           

      
(2) 
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and     is the relative strength of the tie between node   and   over the maximum tie strength of  : 

    
       

             
     

(3) 

For example, the effective size of node Barry (as node  ) is the sum of the non-redundant ties to all other 

nodes (Larry, Terry…). A specific non-redundant tie in (1), such as the tie between Barry (node  ) and 

Larry (node  ) is computed based on the connectedness of Barry and Larry to other nodes such as Jerry (as 

node  ). The effective size of Barry is higher when there are more disconnections among other nodes 

observed. The fewer connections in Barry’s neighboring nodes, the more necessary it is that neighboring 

nodes need to refer to Barry, and the more information and resources Barry gets.  

Effective size divided by total number of ties    (degree of node  ) leads to efficiency (Ef for short): 

    
   

  

 
(4) 

High efficiency means a high percentage of ties are non-redundant.  

Constraints compute the direct and indirect ties between a pair of nodes that lead to the absence of 

structural holes: 

                 

 

          (5) 

Taking constraints between Barry (node  ) and Larry (node  ) as an example, the more connections Larry 

has to other nodes (such as Jerry and Terry, indexed as node  ), the more constraints Larry poses to Barry. 

This is because Larry will share the resources Jerry and Terry have with Barry.      

Total constraints (TC) give an overview of the constraints of a node: 

          
 

     (6) 

Hierarchy (H) is the extent to which a node’s constraints (e.g., node  ) concentrate on its relations to other 

nodes.  

    
 

   
     

    
   

     
  

          
 

 

(7) 
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Effective size, efficiency, and hierarchy represent the social network information and will be used in the 

survival model as independent variables. Those structural holes variables measure how “important” a node 

is in the social networks. The overview of the variables will be given in the data collection section. 

For clarity we note that in the context of social media networks, there can be many types of social ties [60]. 

For example, social media users might be connected because they directly communicate with each other, or 

– as is the case in this paper: they may just be linked because they follow each other. 

3.3 Survival analysis 

Assuming there are   observations with   variables (also known as covariates) in the dataset  , and each 

observation (a pull request) is one row in  , then                       describes the characteristics of 

observation  . An observation contains information in a pull request: user who sends the pull request 

(sender), who receives it (receiver), their networks, repositories, organizations, and so on. There are 

              different timestamps at which the revisions are accepted.  

Denote      as a hazard function to quantify the probability (  ) that a revision will be accepted at given 

time  .      can be viewed as the limit within the time interval between    and     , which is the 

instantaneous potential of the revision being accepted at  . The probability is conditioned on     meaning 

it only applies to those revisions that have not been accepted at  .  

        
    

                 

  
 

(8) 

 

The most widely used survival model is the Cox proportional hazard model (Coxph). This semi-parametric 

model is robust and able to approximate other parametric models very well [55, 57]. The Cox proportional 

hazard model is used in this paper: 

            
    (9) 

 

  are the model coefficients, and       is a baseline hazard function [61]. The baseline hazard is a function 

corresponds to the hazard for an individual having 0 for all the covariates, thus serving as the “baseline” 

comparing to other observations with non-zero value variables [55]. 

The inference of the Coxph model is based on the partial likelihood function     : 
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(10) 

     is the joint probability from the distinctive timestamps              . At each specific time     , 

a fraction is calculated. The       in the numerator in (10) encodes the variables of the revision accepted at 

the exact moment of the time     .  The denominator is the sum of a set of the remaining revisions that are 

not accepted up to time     , known as the risk set   . Maximum likelihood estimation is performed to 

infer the parameters   [55, 57].  

The Coxph model gives hazard ratios    to its variables. For instance, suppose a hazard ratio value of 1.3 is 

obtained for a particular variable to study the time to accept the revisions. Then an increase of 1 unit in the 

variable (while other variable values remain the same) leads to     times faster acceptance of the revisions, 

based on the model estimates, whereas an increase of 2 units leads to           times faster acceptance.  

The Cox proportional hazard model has two major assumptions: non-informative censoring and 

proportional hazard. The non-informative censoring assumption was initially discussed in clinical studies, 

and concerns the fact that the patients drop out when they feel they are dying (e.g., when studying HIV) as 

time elapses [62, 63]. In this case, the censoring (dropout) time distribution might depend on the event time 

distribution, which might introduce errors in model estimation. Different from the clinical settings, this 

study does not suffer from such dropout syndrome, since it studies one user sending revisions to another. 

Hence, “self-withdraw” cannot occur. The non-informative censoring assumption will hold, as the major 

resource of the violation has been eliminated due to the uniqueness of the study and research design, which 

differs from the clinical studies. The proportional hazard assumption states that the effect of variables 

increases or decreases proportionally based on the hazard ratio. This assumption will be evaluated with the 

widely used weighted residual test [64] using the model results in section 4.1.  

 

3.4 Dataset compilation  

The datasets were constructed based on the pull requests, information about the senders who initiated the 

revisions, the targeted repositories, and the receivers (usually the owners or the administrators) who make 

decisions to accept revisions. The GitHub “who-follows-who” network is used as the social network data.  
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The collected network data is used to extract measures such as the total number of followers (often known 

as the in degree and the out degree in social networks), the effective size, the efficiency, and the hierarchy 

for the senders and the receivers. Users’ affiliations to organizations, their own repositories, and their 

subscriptions to other repositories provide additional insights. Hence, the number of organizations, 

repositories, and subscriptions are incorporated as variables for each sender and receiver in the different 

revisions. Furthermore, the sender and receiver in a pull request may share organizations, repositories, 

subscriptions, and followers; these are known as the shared attributes and are coded with the prefix “share” 

in Table 2. The senders’ and receivers’ number of years (“Sy” and “Ry”, respectively) on GitHub 

quantifies their experience and usage on the site. Furthermore, the variable “Is contributor” is used to 

identify whether the sender was previously listed as a major contributor of the project. An overview of all 

23 variables is included in Table 2.  

 

Table 2  

List of variables 

“Shared” measures the number of objects shared by a sender and a receiver in a specific revision. For instance 

“shareSub” is the number of subscriptions both a sender and a receiver have in common. 

Variable names Abbreviations Data types Max Min Mean Std 

Number of followers a sender has sfer Numeric  30 0 8.35 10.44 

Number of followings a sender has sfol Numeric  30 0 6.19 9.51 

Number of organization a sender is in sorg Numeric  30 0 0.68 1.54 

Number of repositories a sender has srep Numeric  30 0 15.28 11.32 

Number of subscriptions a sender has ssub Numeric  30 0 18.28 11.34 

Number of followers a receiver has rfer Numeric  30 0 10.27 12.12 

Number of followings a receiver has rfol Numeric  30 0 5.7 9.58 

Number of organizations a receiver is in rorg Numeric  30 0 0.75 1.76 

Number of repositories a receiver has rrep Numeric  30 0 17.25 11.4 

Number of subscriptions a receiver has rsub Numeric  30 0 15.23 12.94 

Number of common organizations shared  shareOrg Numeric  5 0 0.08 0.32 

Number of common repositories shared shareRepo Numeric  1 0 0 0.01 

Number of common subscriptions shared shareSub Numeric  30 0 0.81 2.65 

Number of followers and followings shared shareF Numeric  35 0 0.95 2.6 

Effective size of the sender sEffective Continuous 59.36 0 11.59 14.92 

Efficiency of the sender sEfficiency Continuous 1 0 0.57 0.35 

Hierarchy of the sender sHierarchy Continuous 1 0 0.15 0.17 

Effective size of the receiver rEffective Continuous 59.59 0 13.18 16.49 

Efficiency of the receiver rEfficiency Continuous 1 0 0.51 0.39 

Hierarchy of the receiver rHierarchy Continuous 1 0 0.12 0.15 

Survival time T (in hours) Continuous 7 0 3.13 3.02 

Acceptance Status Categorical 1 0 0.53 0.5 

Is contributor  Contri Categorical 1 0 0.7 0.46 

Years of the sender registered  Sy (in years) Continuous 7.68 0.02 2.8 1.96 

Years of the receiver registered Ry (in years) Continuous 7.68 -0.18 3.05 1.95 
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3.5 Testing and evaluation 

The research result is expected to be generalizable and reproducible; however, even high quality research 

may suffer from random, unavoidable errors. As a consequence, many research findings cannot be 

reproduced [65]. Thus, testing must be conducted in order to validate the research model. In data analytics, 

the statistical inference over the dataset is often influenced by the noise in the data. Cross validation is a 

method often suggested to deal with such situation [27, 28]. 

In this case, the dataset is split into two parts: one for building the statistical model, and the other for 

evaluating the model performance. In this way, the experiment reduces the potential bias when building and 

testing using a single dataset.  A model tested with several different datasets is often considered more 

convincing if findings are consistent over different datasets [66].  

The survival model is built based on the accepted revisions, and is then used to predict those that have not 

yet received the decision. For example, the pull requests' acceptance results on the dataset of T1 are used to 

build the survival model, which is then used to predict the future acceptance of pull requests on the other 

days, such as T2, T3, and so on. Specifically, to test the model’s consistency, it is expected that one model 

obtained using the dataset for T1 should provide good prediction results over T2, T3 and so on. Hence, 

pairwise comparisons are used.  For each day (1, 2… 7), a survival model is built and then tested against 

the rest of the days. Additionally, the model estimates are compared to discover the variables that are 

consistently significant over the 7 days. To quantify the predictive accuracy, the Area Under a receiver 

operating characteristics Curve (AUC) is used to assess the results. This strategy has been considered a 

robust testing method and has been widely used in many different applications in survival analysis [14, 67, 

68]. The AUC value ranges from 0 to 1. The higher the AUC value is, the better the prediction. An AUC 

value of 0.8 or above is considered to be excellent [69-72].   

4 Result and discussion 

4.1 Survival analysis results 

The prediction results (AUCs) are summarized in Table 3. The research result shows good predictive 

performance. The research model identifies several important predictors, such as the efficiency measure 

(rEfficiency) and whether a sender previously contributed (Contri), see Table 4.  
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Table 3  
Cross validated results on different dates (AUC) 

 

T1 T2 T3 T4 T5 T6 T7 Average 

T1 \ 0.826 0.828 0.89 0.811 0.808 0.844 0.835 

T2 0.835 \ 0.837 0.891 0.823 0.837 0.851 0.846 

T3 0.835 0.834 \ 0.896 0.827 0.823 0.854 0.845 

T4 0.824 0.821 0.827 \ 0.799 0.792 0.841 0.817 

T5 0.83 0.833 0.841 0.888 \ 0.828 0.851 0.845 

T6 0.834 0.845 0.844 0.887 0.832 \ 0.859 0.85 

T7 0.836 0.834 0.841 0.887 0.826 0.824 \ 0.841 

Average 0.832 0.832 0.836 0.89 0.82 0.819 0.85 \ 

Mean Std 

0.840 0.024 
 

 

 

The prediction results have an average AUC above 0.8 with a standard deviation of 0.024, indicating sound 

and stable accuracy over time. A model is built using one of the seven days’ datasets to predict the 

acceptance of the revisions on each of the other days. The row averages of the AUC values reveal how well 

a single dataset’s model predicts the other datasets.  

The column averages show how well the other six days’ models predict on one specific day. Individual 

difference is observed when comparing the column averages using Friedman's test [73], as p value < 0.001. 

It has been observed that in column average AUCs, T5 and T6 are ranked the lowest. One explanation for 

this difference is that T5 and T6 are weekends (September 5
th

 – 6
th 

2015), and the sample sizes are 

relatively smaller and thus more difficult to predict. Similarly, T4 in the row averages yield the lowest in 

AUC to predict other datasets because the number of accepted cases are relatively smaller, subjected to the 

coming weekends. No other differences are observed in row average values, as Friedman's test returns p 

value = 0.077. 

Table 4  

Survival model estimates  

*p < .05; **p < .01; ***p < .001 

NA: sharedRepo found to be consistently 0 across all observations within some of the days 

Hazard ratio shown below 

Variables T1 T2 T3 T4 T5 T6 T7 

Sfer 1.006 0.99 0.988 0.989 1.007 0.977* 0.99 

Sfol 0.999 0.994 0.99 0.979* 0.998 0.969** 0.978* 

Sorg 0.997 0.993 0.981 0.866*** 1.017 0.962 0.973 

Srep 1.012*** 1.011*** 1.015*** 1.011* 0.993 1.006 0.993 

Ssub 0.993*** 0.99*** 0.982*** 0.987** 0.993 0.986* 0.99** 
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Rfer 1.031*** 1.033*** 1.048*** 1.059*** 1.056*** 1.039*** 1.033*** 

Rfol 1 1.017*** 1.028*** 1.007 1.014 1.007 0.971*** 

Rorg 1.024*** 1.026*** 1.037*** 1.052*** 1.023** 1.006 1 

Rrep 1.021** 1.017 1.07*** 1.121*** 1.026 0.961 1.075*** 

Rsub 0.98*** 0.978*** 0.968*** 0.955*** 0.965*** 0.979*** 0.978*** 

shareOrg 0.972 0.975 1.004 1.247* 0.985 1.2 0.875 

shareRepo 0 Na Na Na Na 0 3.14 

shareSub 1.012** 1.032*** 1.029*** 1.063*** 1.006 1.036* 1.018* 

shareF 

sEffective 

1.054*** 

0.996 

1.077*** 

1.008 

1.058*** 

1.014* 

1.101*** 

1.023* 

1.073*** 

0.998 

1.118*** 

1.03* 

1.149*** 

1.02 

sEfficiency 0.911* 0.901 0.919 1.133 0.915 0.89 0.884 

sHierarchy 1.132 1.353** 1.065 1.168 1.531** 1.284 1.021 

rEffective 0.986*** 0.978*** 0.958*** 0.972*** 0.975** 0.991 1.013 

rEfficiency 3.25*** 2.913*** 2.95*** 4.309*** 1.953*** 1.864** 3.754*** 

rHierarchy 2.945*** 2.821*** 2.195*** 4.244*** 2.955*** 2.181*** 2.642*** 

Contri 1.798*** 2.311*** 2.449*** 1.812*** 2.44*** 2.739*** 2.93*** 

Sy 0.927*** 0.923*** 0.952*** 0.894*** 0.955* 0.958 1.005 

Ry 0.992 1.035** 0.978 0.979 0.979 1.044 1.002 

 

Hazard ratios are reported in Table 4 for data collected from 7 different days. The receivers, who are in the 

pivotal role of accepting revisions, have 7 variables significantly associated with the acceptance in more 

than half of the datasets, while the senders have only 4. The senders’ number of repositories and 

subscriptions are significant, but carry little weight to predict the outcome. When senders are previous 

contributors, the revisions are likely to be accepted at a minimum of 1.8 times faster. Receivers’ followers, 

organizations, subscriptions, and repositories carry little weight to influence the outcome. However, the 

receivers’ efficiency and hierarchy in their ego network have been found to significantly contribute to the 

acceptance of the revisions; the higher the value, the faster the revisions will be accepted. Receivers’ 

effective size is likely to contribute as well, but the exact role is unknown since the results are inconsistent. 

Effective size varies among the egos because different ego networks have different sizes. A large effective 

size may be a result of a large network size, which takes more effort to maintain and is therefore not 

efficient. Hence, the effective size is likely to slow down acceptance, as found in the significant results 

shown in T1-T5. The number of shared friends and shared subscriptions to repositories contribute to the 

acceptance as well, but in a limited way.  

In conclusion, the receiver’s efficiency, hierarchy, and whether the sender was a previous contributor, are 

found to be the strong predictors. The other characteristics in general carry very limited weight in 

predicting the revision outcome.   

The proportional hazard assumption is evaluated using the weighted residual test [64]. Time interaction 

terms are added to those variables that violated the proportional hazard assumption and compared with the 
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original model as suggested from the literature [74, 75]. There are no major changes of significance and 

polarity of the coefficients signs regarding the variables tested in this study across the 7 datasets. 

It is not surprising to find non-proportional variables in the datasets because networks on the social media 

platform are likely to change over time as users continue to interact with each other. However, researchers 

often empirically find that after correcting the proportional hazard assumption violation using the time 

varying coefficients, the new model estimation is similar to the original one [75, 76]. In conclusion, the 

model coefficients will change with time, but the changes are numerically insignificant in a week’s follow-

up time. Hence, we could assume they are approximately constant.  

Further tests have been conducted to see if direction of the social network ties matter in predictions. The 

social network data is a directed network. The effect of the directions are tested by converting the directed 

network to an un-directed network. The social network then becomes a network of friendship ties, despite 

who follows who. The Cox proportional hazard model estimates are found to be consistent with the original 

model, as no major change of significance and polarity of the coefficients signs are found across the 7 

datasets. The new un-directed model does not increase or decrease the predictive accuracy, as a Wilcoxon 

rank sum test returns   value = 0.8195 when comparing the AUC values of the un-directed network versus 

the directed one. Hence, the direction of the ties does not have an impact on the predictive results.  

Finally, the Akaike information criterion (AIC) based stepwise model selection procedure [77] was 

deployed to find alternative models with better fit. However, the method did not lead to model results with 

significant improvements. 

4.2 Implications 

These research findings contribute to the literature in multiple aspects. This paper broadens the horizon of 

OSS research by exploring the time until acceptance issue in software revisions. Previously, software 

project size, knowledge domain, contributors’ capability, and the developers’ interaction [18-20] have been 

shown to influence the outcome of a revision. However, social network information is often neglected or 

studied with limited scope, e.g., focusing only on revision comments [20]. This paper investigates the 

problem with a different lens by addressing the structural aspect of the social networks. Formalized with 

the structural holes theory, repository owners’ positional advantage has been found to be closely related to 

the time of acceptance. 
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The research findings distinguish the role of project contributor (the sender) and the maintainer (the 

receiver) during the revision process, which is composed of the submission and the review. Hence, the 

acceptance of a revision is not just based on how a sender programs, but also depends upon the receiver’s 

effort to acknowledge the sender’s contribution. As indicated in a previous study that interviewed the 

receivers [39], receivers as the project maintainers often find it difficult to assess the revisions. The 

receivers need to consider many different aspects including the quality of the submission, the coding style, 

and the general fit with other parts of the project. The primary focus is to assess the quality and the integrity 

to the whole project, regardless of whether the sender has a good record or belongs to a specific community. 

Receivers also note that assessing revision quality is a difficult task, as they have no prior knowledge to 

refer to, and it is currently not possible to automate the reviewing process to help them make the decision 

whether to accept in a timely manner. A sender’s status, for instance organizations and networks are not a 

primary concern of the receiver. A sender’s characteristics, such as number of years since registered as a 

user, might not be representative of the submission quality.  

Given the fact that no specific features on both the submission and the sender could consistently support the 

decision, receivers often attempt to rely on other co-workers for review to make decisions, but other 

reviewers are often not available [39]. The receivers are in a position that requires sufficient experience in 

reading the code, understanding the functionality of the submission, thinking about the projects’ general 

picture, and referring to co-workers’ for support. These tasks require a lot of social resources, such as co-

working experience, other people’s opinions about the projects, and their input. A sender who has 

previously contributed lowers the demand of these resources, as the receiver has experience in dealing with 

the contributor. Thus, the sender having previously contributed reduces acceptance time. On top of the 

technical demands [19, 20, 40], a maintainer also has a managerial role, which relies on communication 

and experience to manage the product quality, the conversation with co-workers, and time.  

Structural holes are related to various social resources in the networks. Revisions sent to certain receivers 

with structural holes in the network are found to be accepted 1.8 to 4.3 times more quickly than others. 

Structural holes in the receivers’ network imply that they have access to different communities with 

different expertise; they are more experienced in working with different kinds of coders, with different 

types of coding style, functionalities, and so on. It is fair to imagine that they might also have more referees 
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with different expertise to review the code. In total, receivers with structural holes have more resources to 

make faster decisions to accept. This explains why the structural holes measures of the receivers are more 

highly predictive than other measures such as the individual characteristics and the senders’ networks. It is 

similar with some cases in other contexts where structural holes are related to higher profits in the 

competitive markets, or to faster promotion speed in organizations. In all these examples, people with 

structural holes in their networks benefit from more social resources to support their decision making.   

The research results provide insight into various other distinct but relevant research questions. The study of 

software quality [78] is an example, since revisions sometimes improve the quality of the software. 

Likewise, project delay is widely studied in different industries [78-83]. Studying the delays in OSS 

development can glean new insights regarding an extended period for a repository to accept the revision. 

Collective software revisions in social media networks can be viewed as collaborative innovations. This 

paper extends the understanding of the collaboration network to the OSS community. Collaborative 

networking is often related to innovative product design [84-86], as it is believed that the unique features of 

a new product could be nourished by and harvest from the wisdom of the crowd [87]. Researchers are 

interested in de-centralized and self-organized teams’ performance on innovative tasks [88]. In practice, it 

is often difficult to apply such organizational changes to reach the full potential for pursuing the innovation. 

This study shows that the OSS could be a pivotal spot to study innovation through the de-centralized nature 

of the social networks. While the repositories are hosted by their owners, contributors from other parts of 

the world can send innovative revisions to add value.  

From a methodological perspective, the contribution of this paper is the use of social network analysis in 

conjunction with survival analysis to study the “time to accept” problem. The structural holes theory has 

served as a conductor to operationalize the social network data for survival analysis. Distinct from 

canonical regression methods, as seen in past works [18, 20], the survival model uses follow-up data 

samples to estimate the weights of the variables in order to study the time to acceptance. Additionally, the 

survival model is capable of using censored data. This mix yields a novel analytical approach that is based 

on profound social network theories. The research model’s predictive performance was validated with real-

life data from social media platform [89, 90].  
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Practitioners may find the research results interesting, as the research indicates a quantitative method to 

support the decision making in software development by forecasting revision acceptance. This allows 

project managers to deal with the potential risks by considering the project delay and maturity. Besides the 

research methods, the research findings suggest possible managerial actions to assist with the software 

development process. Software project team managers should not underestimate the value of social 

network ties, which link to the successful integration of contributions from external and internal 

programmers. Managers should realize that the social networks are valuable resources to investigate the 

different development and revision time of software projects. Significant results of receivers’ structural 

holes variables indicate the importance of interacting with different programmers in social networks. In 

order to facilitate the successful integration of the software revision to the project, managers should acquire 

skills to efficiently distribute their ties to the developers. Acting as boundary spanners, managers should 

learn to work with different groups of software developers internally and externally. For instance, 

companies could organize offline and online events, workshops, and other activities to provide 

opportunities for their managers to approach external software developers more easily. Adopting different 

communication channels could enable managers to connect broadly with the community and benefit from 

the diverse knowledge and expertise of developers. 

In this study, network data derived from social media platform is found to be useful to understand 

collaboration, without using domain-specific terminologies such as the technical features. This allows the 

findings to be transferred to manage the collaboration in many other domains. Collaborative product design 

teams should learn to leverage tools such as social media to engage contributors outside of organizations. 

With the changing nature of the market, only products with unique features appreciated by the public will 

stand out. Although this paper primarily studies the OSS community, closed-source organizations can also 

benefit, since increasingly more closed-source companies are using OSS, and the OSS working style is 

influencing the managerial style in other organizations [3, 6, 22, 24]. GitHub revisions are active during 

weekdays with very predictive outcomes indicated in Table 3. It seems possible to integrate the GitHub 

usage seamlessly during working days in companies. Furthermore, though the research focuses on software 

collaboration, websites such as GitHub would also be a good place for general-purpose collaboration. 

Online users might work jointly on a document despite not being programmers [91]. 
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The impact of studying the time to accept a revision is meaningful not just for software engineering but 

also for studying group work in general. Social media networks have the potential to contribute to 

organizations in different aspects including performance improvement, task distribution and information 

sharing. From a human resource perspective, network position gives an additional indicator to project 

“teamness”— the team-oriented nature of a candidate and his/her ability to contribute. It also implies that 

individuals, such as programmers, may want to market themselves better through participating actively in 

their community by submitting contributions.             

4.3 Limitations and future work 

The scope of the paper is limited to user-user networks. The co-ownership of the repositories and co-

membership in organizations could be the alternative sources of social networks to extend the current study. 

However, working with multiple types of objects in the social networks can be cumbersome, as different 

types of network have different underlying assumptions [92]. This work mainly considers the social 

network structure among the users. It is possible to extend the study by integrating the multilevel effect, 

such as the organizations and the subscriptions.  

5 Conclusion 

The research presented in this paper studied the role of social networks to predict software revision 

outcome from the online OSS host GitHub. A data sample of 32,962 revisions, 20,399 software projects, 

and the social network of 234,322 users was collected. Research methods such as survival analysis and 

social network analysis were used to explore the research topic. The approach was tested with statistical 

methods to ensure the stability and generalization of the results. The study obtained good prediction 

accuracy with an average AUC of 0.84. Research findings pointed out that positional advantage in social 

networks is closely related to the faster acceptance of the revision. The paper deepens the understanding of 

the software revision process. The social networks play a role in the OSS development, tightly related to 

quality management, project duration, and collaborative innovation. The research outcome further suggests 

that social media provides vital information that could support the decisions in the organization regarding 

managerial practice and product design. 
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