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Abstract

In this paper we study a new problem of online discovering diffusion provenances in large networks. Existing work

on network diffusion provenance identification focuses on offline learning where data collected from network de-

tectors are static and a snapshot of network is available before learning. However, an offline learning model

does not meet the needs of early warning, real-time awareness, and real-time response of malicious information

spreading in networks. To this end, we propose an online regression model for real-time diffusion provenance

identification. Specifically, we first use offline collected network cascades to infer the edge transmission weights,

and then use an online l1 non-convex regression model as the identification model. The proposed methods are em-

pirically evaluated on both synthetic and real-world networks. Experimental results demonstrate the effectiveness

of the proposed model.

Keywords: Provenance, Social Network, Online Identification, L1 Regression

1. Introduction

In recent years, information diffusion in large networks has attracted much attention. The spread of malicious

information such as viruses, spams and rumors has made various networks vulnerable to privacy attacks, viral

advertising, etc. To stop the propagation of malicious information, researchers recently proposed several models

to identify the diffusion provenances in large networks. Online diffusion provenance discovery is also a significant

presence on social networks in business. No matter how small, medium or large a business is, a brands health

and reputation is often defined by the information diffused in social media. While fake reviews or deceptive mes-

sages, spread by malevolent people, in social media are inevitable, they may cause damage to brands or corporate

reputation. A recent study (i.e., Spam Trends in Today’s Business World [1]) reported that the productivity cost

of malicious information to European companies was an estimated US$2.8 billion, while US-based companies
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Figure 1: The rumor “Malaysian Flight 370 has been found” propagated on Twitter from March 22 to April 21, 2014. The x axis is the time

and the y axis is the total number of tweets including the rumor.

reported a loss of US$20 billion. According to The Washington Post 1, on Tuesday, April 24, 2013, a single hoax

message sent via Twitter erased $200 billion from the US stock market in 2 minutes. In cases like these, locating

and severing the provenances of the diffusion in a timely manner is critical.

A false rumor (i.e., libelous statement) about the financial performance of a firm may be spread by market

manipulators to influence the price of the firms stock, resulting in fines from regulators or data protection enforce-

ment agencies. While legal recourse exists for victims of libel, law enforcement agencies still need to identify the

original source of the rumor and those who spread it. If the perpetrators are anonymous, tracing the IP address and

identities of the individual profiles carrying or linking to the opinion piece becomes significantly more difficult and

time-consuming.

Existing diffusion provenance identification models can be roughly categorized into two classes: the snapshot-

based provenance identification [2, 3] and the detector-based identification [4, 5, 6]. The snapshot-based methods

are under the assumption that a snapshot of the entire network can be obtained and the provenances can be esti-

mated under stochastic propagation models such as the SI [7] and SIR [8] models. Although these methods have

shown promising results in experiments, fetching a snapshot of the entire network is very expensive, if not impos-

sible. The detector-based methods assume that only a small subset of nodes in a network can be monitored, and

the provenances can be inferred from the observations (samples) from these detectors. This group of methods has

recently attracted increasing attention due to its potential usage in real-world applications.

However, to our best knowledge, most existing work on the diffusion provenance locating problem falls into

the category of offline identification, where the data are assumed to be static and available all the time. In fact,

for time-critical security monitoring applications, it is necessary to unveil the diffusion provenances as soon as

an observation arrives. This way, it is important to detect diffusion provenances as early as possible to enable

early warning, real-time awareness, and real-time response of malicious information spreading. For example,

Fig. 1 shows the propagation of the rumor of “Malaysian Flight 370 has been found” on Twitter. The rumor was

1http://rt.com/business/tweet-hackers-wall-street-us-326/
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Figure 2: An example of twitter diffusion path. At the unknown time t = t∗, the information provenance S 0 initiates the diffusion of a tweet.

The propagation time delay between any two nodes is τ and the time window T = [t∗, t∗ + 3τ].

retweeted more than 3, 500 times in a single day (3/24). It can be seen that the rumor can be propagated to a large

population in a very short time. Hence, it is imperative to detect a rumor provenance promptly.

Motivated by the urgent demand of real-time and continuous diffusion provenance detection in networks, we

propose to use regression learning as the basic detection model. The regression learning is favorable for real-

time applications due to the freely available prior distribution. Fig. 2 shows a network propagation with only

one provenance S 0. We extract a propagation path with seven nodes {S 0, · · · , S 6}. Assume that we have the

privilege to observe nodes S 2 and S 4 (detectors). The two nodes are activated at time points t∗ + τ and t∗ + 2τ

respectively. The goal is to use the least square regression to minimize the error rate between the observed time

delay and the estimated time delay. Assume at time ti ∈ T = [t∗, t∗ + 3τ], the ith node is observed. At any

time ti, we have, min
x

∑
i=2,4 [(t∗ + i ∗ τ) − aT

i x]2, s.t. : x ≥ 0, where x ∈ R7 is the target variable with element

xi denoting the probability that node i is the diffusion provenance, ai ∈ R7 is a column vector with element

ai j denoting the propagation path length from the detector i to the jth node, e.g., a2 = (1, 2, 0, 1, 3, 4, 2)T and

a4 = (2, 1, 3, 4, 0, 1, 5)T . The objective function is convex and non-negative and achieves its minimum value 0 when

x = (1, 0, 0, 0, 0, 0, 0)T . For offline detection, since data from both nodes S 2 and S 4 are known, we can obtain the

result as x = (1, 0, 0, 0, 0, 0, 0)T , which correctly indicates that S 0 is the diffusion provenance. However, for online

detection, we first estimate x by only observing data from the detector S 2 and the result is (0, 0.8, 0, 0.2, 0, 0, 0)T .

When data from S 4 arrive, the result of x is updated to (1, 0, 0, 0, 0, 0, 0)T . We can see that an online algorithm

demands dynamic and continuous computation of x, and the result of online learning is expected to approximate

(or equal to) the offline result.

Compared to offline identification methods, online identification models have the following challenges:

• Challenge 1: how to design an online identification model? The online identification model needs to address

five questions, the unknown number of diffusion provenance k, both activated and inactivated detectors, the

unknown initial propagation time t∗, the uncertain propagation path, and the uncertain propagation time
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delay. The unknown number of diffusion provenance k expects a sparse solution of x. Both activated

and inactivated detectors lead to partially labeled data and a non-convex objective function. The uncertain

propagation path and propagation time delay demand an aggregate Gaussian distribution to describe the

estimated propagation time delay.

• Challenge 2: how to design a stochastic learning algorithm to solve the online identification model? Because

the detectors are activated sequentially while a decision needs to be made once a detector is activated, the

algorithm needs to digest data in a continuous and converging way. Ideally, the results of the online algorithm

approximate those of the offline algorithms.

• Challenge 3: how to evaluate the performance of the proposed online identification method? Given the

unique characteristics of the problem, various data are demanded to evaluate performance.

In this paper, we propose a new online regression learning model to identify diffusion provenances in large

networks. To solve Challenge 1, we use an l1 non-convex regression learning model built on top of an aggregate

Gaussian propagation time delay, where the network transmission weights are inferred a prior from offline collected

cascades. To tackle Challenge 2, we present an Online Stochastic Sub-gradient algorithm (OSS for short) that can

converge to local minima. Also, we evaluate the model using four synthetic network data to address Challenge 3.

The contributions of the work are twofold:

• We present a new online regression learning model to identify diffusion provenances in large networks.

The proposed model can handle the issues of the unknown number of diffusion provenances k, the partially

activated detectors, the unknown initial propagation time t∗, the uncertain propagation path, and the uncertain

propagation time delay.

• We present an online stochastic algorithm to solve the proposed online regression learning model. The

algorithm uses a stochastic sub-gradient decent algorithm to continuously detect the provenances.

The remainder of the paper is organized as follows. Section 2 surveys related work. Section 3 introduces the

related preliminaries. The regression learning and online algorithm are given in Sections 4 and 5 respectively.

Section 6 empirically evaluates the algorithms. We conclude the paper in Section 7.

2. Related Work

Malicious information such as rumors and viruses has been observed recently propagating in networks, which

incurs privacy and security concerns [9, 10] and motivates the research of diffusion provenance detection. To date,

existing works on diffusion provenance detection focus on offline detection, where a snapshot of a large network or

data harvested from detectors are assumed available in advance. In order to design an online detection algorithm,
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three technical questions need to be answered: 1) how to design stochastic propagation models, 2) how to design

an objective function for online detection, and 3) how to design an online algorithm as the solution. We survey

related work regarding the three aspects.

In terms of stochastic propagation models in diffusion provenance locating, existing works simulate the spread-

ing by using infection models such as the Susceptible-Infected-Recovered (SIR) [8] model, the Susceptible-Infected

SI [7] model, and others [11, 12]. On the other hand, recent works [13, 14, 15] claimed that modeling propagation

cascades and information diffusion using continuous-time diffusion networks can provide accurate models.

Based on the stochastic models, several learning models were proposed to infer the provenances. For example,

a recent work [7] provided a systematic survey of locating rumor provenances in a network, and presented a rumor

centrality estimator to estimate the rumor provenances by assigning a score to each infected node. The work [16]

studied the problem of a single rumor provenance locating with priori knowledge. Most existing estimators are

based on either topological centrality measures [17] or distance measures between observed data. Then, maximum

likelihood estimator can be used to infer the provenances.

A limitation of the above works is that they all assume that the infection status of the nodes (i.e., labels) is

known a prior. For example, the work [4, 7] considered the multiple infection provenances estimation problem

and assumed that the number of infection provenances is unknown in advance. Some work [6] assumed that not

all nodes are infected and only a subset of detectors are used for the provenance estimation.

For online algorithms, online learning have been extensively studied in machine learning. Typical methods

include the Passive-Aggressive (PA) [18] and truncated gradient algorithms [19]. However, these online learning

algorithms are based on linear and convex optimization, which do not fit our non-convex online learning problem.

Despite the complexity of inferring the diffusion provenances in a network, a simple heuristic is to say that the

provenance is the center of the network [20]. There are many notions of network centrality, but a very common one

is known as distance centrality, e.g., betweenness centrality [21], closeness centrality [22] and Bonacich centrality

[23]. Betweenness centrality measures a nodes centrality in a network. The infection closeness centrality heuristic

claims the node with the maximum infection closeness is the source. Bonacich Centrality is a measure of the influ-

ence of a node in a network. One may argue that the most influential nodes are more likely to be the provenances

of the diffusion. However, actually, an almost isolated node that has few connections to the most influential nodes

is probably the source. Therefore, traditional central-based algorithms are hardly applicable.

To sum up, none of the aforementioned works can be directly used to address the online diffusion provenance

detection problem studied in this work.

3. Preliminaries

Consider a network G = {V, E}, where the vertex set V has N nodes, and the edge set E has L edges. In the

network, we have two types of data for model training:
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1) Offline data of cascades: a set C of cascades {c1, · · · , cn}, where each cascade c is a sequence of activated

times {t1, · · · , tN} within a given time window T . Each time point ti records the ith activated node. For nodes that

are not activated within window T , the activated time is unknown.

2) Online data collected from detectors. We budget a small subset of detectors, denoted by D = {di}
m
i=1, to

monitor the network. During the monitoring time window [t∗, t∗ + T ], where t∗ is the initial propagation time

and T is the size of the window, there are a subset of detectors activated, denoted by Da, and the remaining

inactivated detectors are denoted by Du. We aim to estimate the locations of provenances, denoted by a random

vector s∗ ∈ RN , given the status of all the detectors D = {(d1, t1 − t∗), · · · , (dm, tm − t∗)}, where tm is the activated

time point of detector dm and label tm − t∗ denotes the time delay. Note that time labels of inactivated nodes are

unknown, and their time delay exceeds window T .

We adopt an SI propagation model to describe how the infection spreads in network G. The reasons for using

this kind of propagation model are that most posts on social networks are usually not removed, i.e., an infected

node stays infected. Thus, SI is an appropriate model for online postings and modeling opinion dynamics on

social networks. In the SI model, each node in a network has three possible states: susceptible (s), infected (I)

and non-susceptible (n). As the infected nodes are those nodes that possess the infection, and will remain infected

throughout, an infected detector cannot be recovered. Therefore, a detector cannot receive the same information

multiple times and will not send the same information multiple times to the same node.

Now we infer the edge transmission probability matrix W based on the cascades collected offline. Given a

cascade ct ∈ C, we use f (ct |W) to denote the likelihood function of observing the cascade ct under an unknown

transmission matrix W. The likelihood function consists of the joint probability of activated nodes vi ∈ V (ti ≤ T )

and inactivated nodes vm ∈ V (tm > T ). For an activated node vi ∈ V activated at time ti ≤ T from an adjacent node

v j ∈ V and t j < ti, the probability of observing vi activated by v j at time ti is a joint probability of v j infecting vi

at time ti and vi is not activated by any other neighbors vk which have been already activated by the time ti, i.e.,

tk < ti. By summing up all the possible neighbors v j in the network, i.e., summing up all v j with t j < ti, we can

achieve the probability f (cti |W) of a node vi activated at time ti as in Eq. (1),

f (cti |W) =
∑

v j∈g(vi)
t j<ti

[
P(t j → ti|W)

∏
vk∈g(vi)
vk,v j,tk<ti

P(tk 9 ti|W)
]
. (1)

where g(vi) denotes the set of neighbors to vi, and P(t j → ti|W) denotes the probability of the jth activated

node v j activates its neighbor vi at time ti. We can use three well-known parametric functions for P(t j → ti|W),

such as the widely used exponential, power-law and Rayleigh models [13]. Without loss of generality, we use the

exponential model, where P(t j → ti|W) equals w jie−w ji(ti−t j) if t j < ti and 0 otherwise. The probability P(t j 9

ti|W) = 1 − P(t j → ti|W).

Based on Eq. (1), the probability of observing all the activated nodes in a cascade ct is as follows,

f (ct≤T |W) =
∏

vi:ti≤T
f (cti |W). (2)
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Because inactivated nodes also provide information for transmission weight estimation, the probability of

observing an entire cascade ct , f (ct |W), is a joint probability of observing all the activated nodes in the cascade ct

and unobserving the remaining inactivated nodes as in Eq. (3),

f (ct |W) = f (ct≤T |W) ×
(∏

vm:tm>T

∏
vi∈g(vm)
ti≤T

P(ti 9 tm|W)
)
. (3)

The likelihood function of observing all cascades C is the product of all the likelihoods of each cascade given

in Eq. (3),

L(W) = log
∏
ct∈C

f (ct |W) =
∑
ct∈C

log f (ct |W) (4)

Then, the edge transmission matrix W can be estimated as follows,

W∗ = argmax L(W), s.t.,W ≥ 0. (5)

For simplicity, we denote φ(W; j, i) = P(t j → ti|W), then Eq. (4) can be rewritten as in Eq. (6),

L(W) =
∑
ct∈C

(∑
vi
ti≤T

log
∑

v j∈g(vi)
t j<ti

φ(W; j, i)
1 − φ(W; j, i)

+
∑

vi
ti≤T

∑
vk∈g(vi)
tk<ti

log[1 − φ(W; j, i)]

+
∑

vm:
tm>T

∑
vi∈g(vm)
ti≤T

log[1 − φ(W; i,m)]
) (6)

The likelihood in Eq. (6) is convex, and thus the first-order gradient guarantees a global optimum. By letting

the derivative of Eq. (6) to 0, we obtain φ′(W ji) = 0 for each cascade. That is, W ji = 1
ti−t j

for each observed pair

of neighboring nodes. For each inactivated node tm > T in a cascade, as we don’t observe the exact time of tm,

we approximately let tm = T and Wim = 1
T−ti

. Moreover, we set the default propagation probability of each edge

to be W ji = 1
T in case that we don’t observe any propagation data between nodes v j and vi in a cascade. Then, by

averaging over |C| cascades, we can obtain the final result as follows,

W∗ji ∝


1
κ

∑
ct∈C Ict (vi, v j) 1

ti−t j
, ti ≤ T, t j < ti;

1
κ

∑
ct∈C Ict (vi, v j) 1

T−ti
, ti > T, t j ≤ T .

(7)

where Ict (vi, v j) is an indicator and equals to 1 if the cascade ct satisfies the time constraint. κ is the total number

of node pairs that meet the constraint. If the given time constraints are not met, the default weigth W ji is 1/T .

4. Regression Model

In this part, we formulate the objective function for diffusion provenances detection based on online data

collected from the detectors. We assume that the prior distribution of s∗ is uniform over the network, i.e., any node

in the network is equally likely to be the provenance. Thus, the location of the provenances can be recovered by
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Figure 3: Gaussian time delay and the shortest-path propagation. The propagation path from the provenance s0 to detector S 3 is approximated

by the shortest path P(S 0, S 3) = {S 0 → S 2 → S 3}. The propagation delay is an aggregate Gaussian distribution of paths p1 and p2.

maximizing the likelihood function of the observed status of the detectors D given provenances s ∈ G, as shown

in Eq. (8),

s∗ = arg max
s∈G

P(D|s) = arg max
s∈G

P(Da|s)
[
1 − P(Du|s)

]
(8)

where P(Da|s) denotes the probability of observing Da given a set of spread provenances s, and 1 − P(Du|s)

denotes the probability that Du is inactivated under provenances s. Thus, P(Da|s)
[
1 − P(Du|s)

]
denotes the joint

probability of both observing the activated nodes Da and inactivated nodes Du.

Because malicious information such as virus and rumors are often spread under the snowball phenomenon

[24], it is reasonable to approximately use the shortest-path spread, denoted by P(i, j) between nodes vi, v j ∈ V .

Because the offline obtained edge transmission matrix W may suffer unstable change when used online, we

further use a random variable θi, j to describe delay time along edge ei ∈ E. The random variables are independent

identically distributed with Gaussian distribution θi, j ∼ N(µi, jσ
2
i, j), where the mean µi, j are from matrix W.

Figure 3 shows an example of the Gaussian time delay and the shortest-path propagation. In the worst case,

the search for the shortest path takes time O(N2).

Thus, the probability P(Da|s) in Eq. (8) can be rewritten as follows,

P(Da|s) =
∏ma

i=1

∑∏a
s

P(
∏a

s
|s)P(da|

∏a

s
) =

∏ma

i=1
P(θs,da ), (9)

where ma is the number of observers during the time window, and θs,da is the time delay. Based on the Gaussian

distribution θi, j ∼ N(µi, jσ
2
i, j), the mean and variance of the random variable θs,da are µT

a x and (σ2
a)T x respectively.

Let Λ = (σ2
a)T x, the Eq. (9) can be converted to Eq. (10),

P(Da|s) =
∏ma

i=1
(2πΛ)−1/2e−(ta−t∗−µT

a x)2/(2Λ). (10)

Similarly, for unobservers, let Λ′ = (σ2
u)T x, we have

P(Du|s) =
∏mu

i=1
(2πΛ′)−1/2e−(tu−t∗−µT

u x)2/(2Λ′). (11)

Thus, Eq. (8) can be rewritten as

P(D|s) =
∏ma

i=1
(2πΛ)−1/2e−(ta−t∗−µT

a x)2/(2Λ) �
∏mu

i=1
[1 − (2πΛ′)−1/2e−(tu−t∗−µT

u x)2/(2Λ′)]. (12)
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Let all time delays share the same variance σ2, then the log-likelihood function in Eq. (12) is

lnP(D|s) = −
1

2Λ

∑ma

i=1
(ta − t∗ − µT

a x)2 +
1

2Λ

∑mu

i=1
(tu − t∗ − µT

u x)2 + C, (13)

where C is a constant, ta(u) − t∗ is the observed (unobserved) time delay.

Then, maximizing the log-likelihood2 in Eq. (13) is tantamount to minimizing a quadratic regression function

in Eq. (14), where the target vector t ∈ Rma is the observed time delay, i.e., ta − t∗ for detector da, the coefficient

matrix A = (µT
1 , · · · , µ

T
ma

) ∈ RN∗ma is the shortest path time delay w.r.t. nodes da ∈ Da. T ∈ Rmu is a vector of value

T , which approximates the time delay of nodes Du, i.e., tu−t∗ ≈ (T +t∗)−t∗ = T . Matrix B = (µT
1 , · · · , µ

T
mu

) ∈ RN∗mu

denotes the shortest time delay w.r.t. inactivated nodes du ∈ Du. The parameter λ > 0 controls the weight. The

constraints guarantee the optimal solution sparse and non-negative.

s∗ = arg min
x

1
2
‖t − AT x‖22 − λ‖T − BT x‖22 s.t. : eT x ≤ τ, x ≥ 0. (14)

The above formulation relaxes traditional discrete optimization on graphs. Such a relaxation leads to efficient

algorithms. Now we intuitively explain the above problem from the viewpoint of multi-criteria quadratic pro-

gramming. The first objective function, ‖t − AT x‖22, aims to fit time delay of activated detectors Da, the second

objective function ‖T − BT x‖22 aims to fit time delay of inactivated detectors Du. Because Du are not actually

activated during the time window T , a negative parameter −λ < 0 is used to avoid the fitting. The trade-off Pareto

solutions can be obtained by varying parameter λ.

5. Online Algorithm

In this section, we present an Online Stochastic Sub-gradient algorithm to solve the regression model in Eq.

(14). The proposed regression model, compared to the classical regression learning, has several new challenges: 1)

the dependent variable t is implicit, because the initial propagation time is unknown, 2) the l1 non-convex objective

function expects sparse and fast convergent algorithm, and data collected from detectors arrive continuously. To

solve the challenges, we use the Relative Time Difference of Arrivals and Online Sub-gradient based on convex

approximation as the solutions.

5.1. Relative Time Difference

The dependent variable t in Eq. (14) is implicit, because the initial propagation time t∗ is unknown. To solve

this challenge, we can use an “anchor node” to cancel out the initial time t∗. Assume the αth detector dα is the

“anchor node”, its activated time is tα = t∗ +
∑

ei∈P(s∗,dα) θi, where θi is the time delay along edges ei ∈ P(s∗, dα).

2 the log-likelihood is ln P(D|s) ∝ −1/2
∑ma

i=1(ta − t∗ − µT
a x)2 + λ

∑mu
i=1(tu − t∗ − µT

u x)2, where ta − t∗ is the observed time delay, and the same

goes to inactivated nodes du. The second part is obtained because ln(1 − ex) ≈ −ex ≈ −x.
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Then, the Relative Time Difference of Arrivals (RTDA) between dα and the kth (k , α, 1 ≤ k ≤ ma) detector dk is

tk := tk − tα =
∑

ei∈P(s∗,dk) θi −
∑

ei∈P(s∗,dα) θi.

Based on RTDA, Eq. (14) has an elementary column change, i.e.,

A(:, ck) := A(:, ck) − A(:, cα), B(:, ck) := B(:, ck) − B(:, cα). (15)

Thus, the dimension of t, A and B are t ∈ Rma−1, A ∈ RN∗(ma−1) and B ∈ RN∗(mu−1) respectively. Then, Eq. (14)

can be relaxed to Eq. (16),

s∗(x) = arg min
x

1
2
‖t − A

T
x‖22 − λ‖B

T
x‖22 + ρ‖x‖11. (16)

5.2. Convex Approximation

To address the non-convex challenge, we wish to find a sequence of convex programs, through which the non-

convex function can be approximated and converge to a local minimum. To obtain a convergent sequence, at step

k + 1, the concave part −λ‖B T x‖22 is linearly approximated by using the differential at the previous iterative point

xk, i.e.,

∂

∂x
(−λ‖B T x‖22)|xk , x ≥ −2λB T B xk x. (17)

At step k + 1, we only solve a convex optimization as follows:

xk+1 ←

{
min
x≥0

1
2
‖t − A T x‖22 − 2λB T B xk x + ρ‖x‖11

}
. (18)

Lemma 1. The non-convex program in Eq. (16) converges under iterations {x1, · · · , xk, · · · } generated by Eq. (18).

Proof. Denote Eq. (16) as J(x), which is a combination of the convex part Jvex(x) = 1
2 ‖t − A T x‖22 and the concave

part Jcav(x) = −λ‖B T x‖22. At step k + 1, we have Jvex(xk+1) + J′cav(xk)xk+1 ≤ Jvex(xk) + J′cav(xk)xk. Moreover,

due to the definition of concavity, Jcav(xk+1) ≤ Jcav(xk) + J′cav(xk)(xk+1 − xk). Adding both sides of the above

two inequalities, we obtain the result J(xk+1) ≤ J(xk). Therefore, Eq. (16) under the sequence {x1, · · · , xk, · · · }

generated by Eq. (18) is convergent.

5.3. Online Sub-gradient

We use the sub-gradient method to solve the l1 regularization problem in Eq. (16). Let J(x) = F(x) + G(x) =

1
2‖t − A

T
x‖22 − 2λB T B xk x, which is an approximation of the first two parts in Eq. (16) by using the CCCP

programming [25] at the concave part −λ‖B
T

x‖22. The sub-gradient of J is as follows,

5 jJ(x) = F′j(x) + G′j(x) =
1
2

[
ma∑
i=1

(ti − ai
T x)2]′j + [−2λ

mu∑
i=1

(bi
T bixk x)]′j = −(A

T
t − A

T
A x) j − 2λB

T
Bxk.

10



Function 1 Online Detecting During the Time Window
Input:

A: Observation matrix;

t: Time delay;

ε: Stop criteria;

ηt: Learning rate;

Output:

X∗ = {x1, · · · , x j}: The indicator vector X∗;

1: xk+1 ← a best guess;

2: L(x) = f (x) = 1
2 ‖t − A

T
x‖22

3: ŝ∗(x) = arg min
x≥0
L(x) + ρ‖x‖11

4: repeat

5: xk ← xk+1;

6: for i = 1 to ma do

7: 5L(x) = (ti − ai x)T (−ai);

8: xk+1 ←
{
xk − ηt(5ŝ∗(x))

}
;

9: end for

10: until ‖xk+1 − xk‖ 6 ε

11: X∗ ← xk+1 in a descending order;

12: j∗ =argmax
j
|x∗j − x∗j−1|;

13: return X∗ = (x1, · · · , x j∗ );

Now Eq. (16) turns to s∗(x) = arg min
x
J(x) + ρ‖x‖11 and this objective function is non-differentiable. Assume

X = (x1, · · · , xn)T is the global optimal point. Consider the jth variable x j. The first-order optimality conditions

are: 
5 jJ(x) + ρsign(x j) = 0, s.t. |x j

| > 0{
5 j J(x) + ρe : e ∈ [−1, 1]

}
, s.t. x j

= 0
(19)

where sign(x j) = 1, x j > 0;−1, x j < 0; 0, x j
= 0.

These conditions can be used to define a sub-gradient for each x j:

5 js∗(x) =



5 j J(x) + ρsign(x j), |x j
| > 0

5 j J(x) + ρ, x j
= 0,5 jJ(x) < ρ

5 j J(x) − ρ, x j
= 0,5 jJ(x) > ρ

0, x j
= 0,−ρ ≤ 5 jJ(x) ≤ ρ

. (20)

Thus, based on the three solutions, the sub-gradient method uses iterations:

xk+1 = xk − ηt(5s∗(x)), (21)

11



Function 2 Online Detecting After the Time Window
Input:

A: Observation matrix;

B: Unobservation matrix;

t: Time delay;

ε: Stop criteria;

ηt: Learning rate;

Output:

X∗ = {x1, · · · , x j}: The indicator vector X∗;

1: xk+1 ← a best guess;

2: repeat

3: xk ← xk+1;

4: xk+1 ←

{
xk − ηt(5s∗(x))

}
;

5: until ‖xk+1 − xk‖ 6 ε

6: X∗ ← xk+1 in a descending order;

7: j∗ =argmax
j
|x∗j − x∗j−1|;

8: return X∗ = (x1, · · · , x j∗ );

where the parameter ηt > 0 is the learning rate. In our analysis, we only consider constant learning rate with a

fixed ηt > 0.

5.4. The Online Stochastic Sub-gradient (OSS) Algorithm

In this part, we design an Online Stochastic Sub-gradient detection algorithm to continuously infer the diffusion

provenances. Algorithm 1 summarizes the solution to Eq. (16), where the sparse non-convex regression is solved

by iteratively calculating the convex program in Eq. (18) and the non-smooth l1 program in Eq. (19). In terms of

online learning, we use stochastic sub-gradient iterations to calculate 5 jJ(x) during the time window T , i.e.,

5 jJ(x) = (ti − aix)T (−ai). (22)

As shown in Algorithm 1, the proposed online algorithm calls two functions for continuous learning. Function

1 corresponds to the online computation within the time window T where the detectors are activated one by

one. Function 2 corresponds to the one-time computation after the time window T . The corresponding overall

framework can be found in Figure 4.

Based on the input of the proposed algorithm and the overall framework in Figure 4, there are some assumptions

for the OSS algorithm. 1) At least 1 detector needs to be activated during the time window. We used the time delay

of both activated detectors (matrix A and Da) and inactivated detectors (matrix B and Du) in the proposed algorithm.

During the time window, Function 1 is only called for activated detectors, and each is activated sequentially. After

12



Algorithm 1 The Online Detection Algorithm
Input:

G: Network Graph;

D: Detectors {Da ∪ Du};

u: The propagation mean parameters µ = (µ1, · · · , µ|E|)T ;

σ: The propagation variance parameters σ2 = (σ2
1, · · · , σ

2
|E|)

T ;

ε: Stop criteria;

Output:

s∗ = {s1, · · · , sm}: A set of diffusion provenances s∗;

1: dα(β) ← anchor(Da(u)); // randomly pick anchors

2: if t < T then

3: for each di ∈ Da do

4: for each v j ∈ V do

5: P(d j, v j)← BFS (G, di, v j); // breath first

6: Ai j =
∑

ek∈P(di ,v j) µk; // matrix A

7: Bi j =
∑

ek∈P(di ,v j) µk; // matrix B

8: if i > α then

9: for each k ≤ ma do

10: A(:, ck)← A(:, ck) − A(:, cα); // matrix A

11: t := tk − tα; // build t

12: end for

13: X∗ ← Function 1(A, t, ε, ηt); // Call Function 1

14: end if

15: end for

16: end for

17: else

18: for each k ≤ mu do

19: B(:, ck)← B(:, ck) − B(:, cβ); // matrix B

20: end for

21: X∗ ← Function 2(A, B, t, ε, ηt); // Call Function 2

22: end if

23: return s∗ ← G(X∗);

the time window, Function 2 is called because data from both the activated and inactivated detectors are available.

Therefore, the proposed algorithm can be used to infer diffusion provenances when there is at least one activated

detector (i.e., the activated detector set Da is non-null and Function 1 can be called). 2) The network structure is

known prior, i.e., the network graph G, the propagation mean µ and variance σ.

13
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Figure 4: An illustration of the OSS algorithm. Detectors are split into two sets. The first set is observed (activated) within the time window,

and the second set is unobserved (inactivated) outside the time window. Function 1 is called by OSS within the time window T , and Function

2 is called after the time window T .

In the sequel, we introduce the two functions respectively.

Function 1: During the time window T , detectors are activated sequentially. To conduct continuous detection,

once a detector is activated, the regression learning model is used for provenance estimation. At this stage, data

from the inactivated nodes are unavailable, the parameter λ in Eq. (16) equals 0, i.e.,

s∗(x) = arg min
x≥0

1
2
‖t − A

T
x‖22 + ρ‖x‖11. (23)

Each row of A and t in Eq. (23) denotes the shortest path and time delay from an observed detector to other

detectors. By choosing an anchor node, Eq. (15) is used to calculate the matrix A and t in Eq. (23). Due to the

increasing of the number of activated detectors, matrix A and t in Eq. (23) increase dynamically.

Function 2: After the time window T , data from both the activated and inactivated nodes are available. Thus,

we can use Eq. (16) to locate the diffusion provenances.

We use Figure 4 to show the procedure of the online learning: (1) During the time window T , the detectors are

activated one by one. Once a detector is activated, we use Function 1 to estimate the provenance; (2) After the time

14
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Figure 5: A network with one provenance S 0, and three detectors S 1, S 3 and S 5. At the unknown time t = t∗, propagation starts from S 0.

Time delay along each edge is θi ∼ N(1, 0.01). Monitoring time window T = [t∗, t∗ + T ], where T is the size of the time window. Detector S 1

is activated at time point t = t∗ + 1
2 T . Detectors S 3 and S 5 are inactivated during time window T . We only consider eight nodes {S 0, · · · , S 7}.

window, we obtain all the activated detectors and inactivated detectors, and Function 2 can be used for detection.

Example: Consider a network in Figure 5. Assume t∗ = 1,D = 3, and the time window T is [1, 5]. Also, we

assume detectors S 1, S 3 and S 5 are observed at time t1 = 1, t3 = 3 and t5 = 5 respectively. Let S 1 be the anchor

node. At t = 1, we have A = [1, 0, 1, 2, 4, 4, 2, 4]T . Then, at t = 3, S 3 is activated, and we update the matrix A and

t as follows,

A =

1 0 1 2 4 4 2 4

1 2 2 0 2 2 2 2


T

, t =

1 − t∗

3 − t∗

 .
The A and t are used to calculate A and t by Eq. (12),

A =

[
0 2 1 −2 −2 −2 0 −2

]T
, t = [2].

At the last step, t = 5 and S 5 is observed. The variables A and t are continuously updated to

A =

0 2 1 −2 −2 −2 0 −2

2 4 3 0 −2 −4 2 −2


T

, t =

24
 ,

B =

0 2 2 0 0 0 −2 0

2 4 3 0 −3 −2 2 −4


T

.

The corresponding online solutions of x approximate the offline optimal solution when the time window T

ends. We will leave the competitive boundary analysis in the future work. We have used Figure 5 to show how

to calculate matrix A, B and t in the above example. Figure 5 shows the shortest path from nodes {S 0, · · · , S 7} to

anchor node S 1. For example, the elements value in matrix A are based on calculating shortest path to S 1 in Figure

5.

6. Experiments

In this section, we report experimental results on two synthetic network data sets and two real-world data sets.

The experiments are designed to validate 1) the optimal parameters for the new model, 2) the superiority of the
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Table 1: List of the four data sets.

DataSet Nodes Edges Avg. Degree Avg. Path length Avg. Clustering Coefficient Other parameters

Albert-Barabasi 1000 3990 7.98 3.172 0.037 n = 4

Small World 1000 3999 7.99 5.079 0.473 α = 4, p = 0.1

Twitter 10269 36173 30.54 5.702 0.627 µ = 0.01, σ = 0.01

Facebook 3320 10352 19.78 3.892 0.671 µ = 0.01, σ = 0.01

proposed model compared with benchmark methods, and 3) the performance of the proposed methods.

6.1. Experimental Data

We use two synthetic data sets (Albert Barabasi [26] and Small world [27]) and two real-world data sets

(Twitter and Facebook from SNAP 3) for parameter study, performance testing and algorithm comparison. The

parameter settings are listed in Table 1.

Barabasi-Albert generates random scale-free networks using a preferential attachment mechanism. The net-

work begins with an initial connected network containing β0 nodes. New nodes are added to the network one at

a time. Each new node is connected to β ≤ β0 existing nodes with a probability proportional to the number of

links that existing nodes already have. Formally, the probability pi that the new node is connected to node i is

pi = ki�
∑

j k j, where ki is the degree of node i and the sum is made over all pre-existing nodes j. In this model,

we set the parameter n = 4, which denotes the number of edges created by each new node.

Small World is defined as a network in which the typical distance ζ between two randomly chosen nodes (the

number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is

ζ ∝ log N. We use parameter α to denote that each node is connected to α nearest neighbors in the topology, and

p denotes the rewiring probability. In particular, we set alpha = 4 and p = 0.1 in our experiments.

The original datasets only contain network structure information without time propagation labels. We use

Gaussian distribution N(1, 0.001) as the time delay distribution. We simulated the propagation by randomly setting

five diffusion sources.

We used the Independent Cascade Model to generate cascades. When node u becomes active, it has a single

chance of activating each currently inactive neighbor v. The attempt to activate succeeds independently with a

probability of puv, set to puv = 0.5 as a constant in our experimental setting. Because the cascades are generated

by the Independent Cascade Model, each node has a single chance of activating each currently inactive neighbor,

so this is one-to-one communication. Thus, the datasets can be considered as half-real data.

3http://snap.stanford.edu/data
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6.2. Experimental Setup

We assess our methods w.r.t the average distance (hops) between actual locations of the diffusion provenances

and the estimated locations. Smaller hops indicate that the algorithms have higher accuracy. Let S ∗ denote the

actual provenance, and the estimated provenance set as Ŝ . Since the size of S ∗ may not be equal to that of Ŝ ,

we measure their distance h(S ∗, Ŝ ) by calculating the average number of hops between each element si ∈ Ŝ ,

h(S ∗, Ŝ ) = 1
|S ∗ |

|Ŝ |∑
i=1
‖ŝi − f (S ∗, ŝi)‖2, where fi(S ∗, ŝi) selects the node in S ∗ that is closest to ŝi, and ‖ŝi − Fi(S ∗, ŝi)‖2

denotes the hops between nodes ŝi and f (S ∗, ŝi).

6.3. Experimental Results

Parameter study. We first test the parameters in Eq. (16) w.r.t. the number of diffusion provenances k,

the number of detectors m, the length of monitoring time window T , and the parameters λ and ρ. The default

parameters are: the number of diffusion provenances k = 5, the number of detectors d = 20% ∗ N, the monitoring

time window T = 5 minutes. The selection of provenances and detectors are random. The propagation time delay

along each edge follows a Gaussian θi ∼ N(1, 0.01). Figure 6 demonstrates the model performance w.r.t. different

parameters on the synthetic and real-world datasets. We replicated the algorithms five times and used the mean as

the evaluation indicator.

The number of diffusion provenances k. From Figure 6(A), we can see that the error rate (hops) decreases w.r.t.

the number of diffusion provenances. We can conclude that the more diffusion provenances, the higher probability

to be found out at least one provenance.

The number of detectors m. Figure 6(B) shows the average distance (hops) w.r.t the number of detectors. The

result demonstrates that the accuracy improves w.r.t the number of detectors.

The monitoring time window T . The monitoring time window indicates the detection time span. Figure 6(C)

shows that the error hops drop with the time window.

The parameter λ. The parameter λ controls the preference between the activated nodes (convex part) and the

inactivated nodes (concave part). As shown in Figure 6(D), the parameter λ should weigh the convex part and the

concave part. If λ is selected too large, it overfits the inactivated nodes; otherwise, it overfits the activated nodes.

The parameter ρ. ρ > 0 is the regularization parameter, and restricts the size of x. If ρ is too large, the algorithm

surfers from time cost, especially on large scale networks. From Figure 6(E), we observe the minimal hops when

ρ is 6.

Continuous detection. We test the proposed online algorithm on the synthetic and real-world date sets. Also, we

empirically study the learning rate parameter ηt in the sub-gradient algorithm. Figure 6(F) shows the performance

of the algorithm OSS. The hops reduce along with the propagation time because more activated detectors lead

to better performance. At the end of the time window, the hops shrink as the inactivated detectors are obtained.
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Figure 6: Parameter study on synthetic and real-world data sets by using the proposed regression learning model and Online Stochastic Sub-

gradient algorithm. The number of hops (error rate) w.r.t: (A) the diffusion provenances number k; (B) the detector number m; (C) the

monitoring time window T ; (D) the parameter λ; (E) the parameter ρ. (F) the online detection. The average distance on synthetic/real-world

data sets w.r.t propagation time.
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Figure 7 demonstrates the OSS algorithm with learning rates ηt. The algorithm reaches the least average distance

when ηt is 0.1.

Compare with benchmark methods. We compare the proposed non-convex sparse regression model (NSR
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Figure 7: Parameter ηt in the proposed Online Stochastic Sub-gradient OSS algorithm.

Table 2: Comparisons on the four data sets.
K = 5 K = 10

Detectors (m) 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Albert-Barabasi

NSR 3.47±0.64 2.33±0.66 2.21±0.50 1.47±0.24 3.40±0.21 2.19±0.48 2.08±0.45 1.52±0.26

CVXR 3.48±0.25 2.37±0.31 2.38±0.69 2.17±0.34 3.72±0.51 2.38±0.47 2.05±0.58 1.78±0.47

CAVR 3.82±0.66 2.77±0.68 2.99±0.26 2.10±0.43 3.86±0.44 2.98±0.63 2.93±0.57 2.20±0.39

Betweenness 3.48±0.34 3.19±0.26 3.07±0.58 3.25±0.20 3.02±0.41 3.82±0.23 3.92±0.44 3.78±0.30

Bonacich 3.48±0.33 3.30±0.33 3.30±0.25 3.00±0.30 3.00±0.33 3.55±0.30 3.00±0.44 3.44±0.23

Small-World

NSR 4.31±0.56 3.32±0.68 2.30±0.28 2.02±0.65 3.27±0.48 3.05±0.53 2.28±0.30 1.86±0.48

CVXR 4.44±0.48 3.51±0.20 3.35±0.60 2.08±0.30 3.32±0.58 3.14±0.33 2.79±0.55 1.49±0.20

CAVR 4.53±0.41 3.62±0.27 3.47±0.20 2.10±0.68 3.82±0.61 3.17±0.21 2.95±0.47 2.03±0.34

Betweenness 3.27±0.38 3.46±0.48 3.11±0.22 3.09±0.40 3.32±0.60 3.17±0.66 3.26±0.29 3.52±0.25

Bonacich 3.30±0.50 3.45±0.44 3.00±0.33 3.00±0.33 3.30±0.55 3.10±0.50 3.30±0.44 3.50±0.22

Twitter

NSR 4.33±0.51 3.67±0.24 2.50±0.35 2.33±0.47 3.67±0.44 3.33±0.52 2.01±0.52 1.50±0.31

CVXR 3.77±0.69 4.25±0.65 3.0±0.65 2.37±0.35 3.67±0.33 3.67±0.55 2.43±0.40 1.62±0.67

CAVR 4.50±0.43 4.39±0.60 3.09±0.29 2.57±0.65 3.77±0.46 3.75±0.49 2.99±0.46 2.67±0.49

Betweenness 4.40±0.24 3.75±0.27 3.20±0.23 3.73±0.36 3.96±0.20 3.87±0.31 3.56±0.37 3.41±0.63

Bonacich 3.66±0.45 3.66±0.55 3.00±0.33 3.50±0.30 3.66±0.25 3.62±0.40 3.55±0.44 3.33±0.25

Facebook

NSR 3.5±0.31 3.20±0.21 3.21±0.25 2.10±0.33 2.80±0.32 2.67±0.16 1.85±0.51 1.33±0.60

CVXR 3.67±0.33 3.32±0.51 3.09±0.56 2.66±0.43 3.02±0.48 2.87±0.48 1.92±0.32 1.70±0.66

CAVR 3.85±0.27 3.67±0.35 3.24± 0.66 2.52±0.59 3.50±0.31 3.06±0.54 2.12± 0.45 2.03±0.40

Betweenness 3.37±0.59 3.21±0.23 3.02±0.44 3.83±0.21 3.63±0.23 3.26±0.32 3.44±0.46 3.19±0.23

Bonacich 3.50±0.33 3.33±0.25 3.00±0.44 3.00±0.30 3.55±0.50 3.55±0.30 3.30±0.44 2.88±0.30

for short) with three benchmark methods: 1) the convex-based sparse regression method (VEXR for short) [28],

which uses activated nodes for regression and locating; 2) the concave-based sparse regression method (CAVR for

short) [28], which uses inactivated nodes for regression; 3) Betweenness centrality [21], which measures a node’s

centrality in a network. We use betweenness centrality to measure how often a node appears on the shortest path.

The betweenness centrality of a node v is given by the function: g(v) =
∑

s,v,t
σst(v)
σst

, where σst is the total number

of the shortest paths from node s to node t and σst(v) is the number of those paths that pass through v; and 4)

Bonacich centrality [23], also known as Eigenvector Centrality, measures the influence of a node in a network.
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Figure 8: The online detection under the Linear Thresh-

old propagation process.
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Figure 9: Running time w.r.t the propagation time on the

synthetic and real-world data sets.

The influence of nodes is based on assigning relative scores to all nodes in the network. The centrality score of

node v is defined as: xv = 1
λ

∑
t∈M(v)xt

= 1
λ

∑
t∈G αv,t xt, where G is network, A = (αv,t) be the adjacency matrix, i.e.,

αv,t = 1 if node v is linked to node t, and αv,t = 0 otherwise, M(v) is a set of the neighbors of v, and λ is a constant

(we set it as 1 in our experiment). We use UCINET 6 for Windows to compute the Bonacich centrality.

We compare the four methods on the two synthetic networks and two real-world networks. The parameters are

set as default. We test two settings, the number of diffusion provenances k = 5 and k = 10 on the four synthetic

datasets. For each group, we randomly sample different numbers of detectors m. From the results in Table 2, the

reslus can be summarired as follows.

1). the proposed NSR model, by leveraging both activated and inactivated nodes, performs better than both

CVXR and CAVR models on most of the data sets, achieving the lowest expected hops, especially when m

is large. For example, on the ForestFire data set, NSR achieves the best result of 1.33 hops when k = 10 and

m = 0.2 ∗ N.

2). The NSR model performs better than the heuristic Betweennes model when the sample rate m/N is high.

This is because the betweenness algorithm aims to find the central nodes in a network, and it cannot make

proper use of information from detectors. However, when the sample rate is low, betweenness shows better

results than the other three.

3). When the number of detectors increases, the error rates of NSR, CVXR and CAVR reduce significantly,

among which NSR reduces the most. The performance of the betweeness model is stably poor.

4). The accuracy of centrality increases with an increased the number of sources, because centrality finds the

most influential nodes in a social network. However, sometimes the source may not be among the most

influential nodes. For example, malicious information may be misforwarded by one user and then spread
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by the other influential users. That is, centrality approaches tend to discover key infrastructure nodes or

super-spreaders, but do not necessarily pinpoint the diffusions source. The accuracy increase is because

more provenances have a higher probability that the influential nodes are provenances.

5). The NSR model outperforms the other benchmarks in most cases, because centrality finds the most influ-

ential nodes in a social network. However, sometimes the source may not be among the most influential

nodes. For example, malicious information may be misforwarded by one user from and then spread by other

influential users. That is, centrality approaches tend to discover key infrastructure nodes or super-spreaders

but do not necessarily pinpoint the diffusions source. By leveraging both activated and inactivated nodes,

NSR can achieve better results than VEXR (only uses activated nodes) and CAVR (only uses inactivated

nodes).

6). The NSR model outperforms the other benchmarks in most cases, because centrality finds the most influ-

ential nodes in a social network. However, sometimes the source may not be among the most influential

nodes. For example, malicious information may be misforwarded by one user from and then spread by other

influential users. That is, centrality approaches tend to discover key infrastructure nodes or super-spreaders

but do not necessarily pinpoint the diffusions source. By leveraging both activated and inactivated nodes,

NSR can achieve better results than VEXR (only uses activated nodes) and CAVR (only uses inactivated

nodes).

Online algorithm in the different propagation processes. We evaluate our algorithm in the different propa-

gation processes, i.e., Linear Threshold propagation process. A node v has threshold θv ∼ U[0, 1], and is influenced

by each neighbor t according to a weight bvt such that:
∑

t neighbor o f v
bv,t ≤ 1. A node v becomes active when at least

θv fraction of its neightbors are active
∑

t active neighbor o f v
bv,t ≥ θv. Compared with Figure 6(F), Figure 8 shows the

proposed online algorithm can achieve similar results in different propagation process.

Online algorithm time cost. Figure 9 plots the average running time of the algorithm OSS on the synthetic

and real-world datasets. The running time raises moderately at the beginning due to the increase of activated nodes

(Function 1), and then increases sharply in the end because all the activated and inactivated detectors are used for

calculation (Function 2).

7. Conclusions

This paper discusses a solution for discovering the diffusion provenances in social networks in online setting.

We proposed a real-time source detection algorithm by placing detectors randomly across a network. Our approach

converts the problem to a regression problem, and uses an online stochastic sub-gradient algorithm to solve regres-

sion as the information is gathered from detectors in real time. This work focuses on online detection rather than
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offline, to meet the practical needs for early warning, real-time awareness and real-time responses to malicious

information spreading within an online social network. This work can therefore be used in time-critical security

monitoring applications, such as locating false rumors in business areas.

Although our algorithm for detecting the diffusion provenances detection achieves high accuracy and meets the

need for a real-time response, some limitations exist that need improvement in the future work: 1) the simulation

study used real network data but the propagation process was synthetic, dubbed half-real data, so experiments on

real network propagation data need to be undertaken; and 2) the proposed algorithm, based on sub-gradients, is

a straightforward solution for online learning problems, however more state-of-the-art online learning algorithms

could be applied to this online diffusion provenance problem, such as passive-aggressive (PA), second-order per-

ceptron (SOP) and confidence-weight learning (CW).

This work inspires some interesting directions for future work: 1) the problem could be further extended by

using popular stochastic epidemic models such as the SR and SRI models; 2) previous mobile social network

mining techniques could be used to harness geographical information to identify a culprits physical location.
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[24] E. Onur, H. Deliç, C. Ersoy, M. U. Çaglayan, Measurement-based replanning of cell capacities in gsm net-

works, Computer Networks 39 (6) (2002) 749–767.

[25] P. Zhang, B. J. Gao, P. Liu, Y. Shi, L. Guo, A framework for application-driven classification of data streams,

Neurocomputing 92 (2012) 170 – 182.

[26] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (5439) (1999) 509–512.

[27] D. J. Watts, S. H. Strogatz, Collective dynamics of’small-world’networks., Nature 393 (6684) (1998) 409–10.

[28] N. E. Aguilera, L. Forzani, P. Morin, On convex regression estimators, arXiv preprint arXiv:1006.2859.

24


	Introduction
	Related Work
	Preliminaries
	Regression Model
	Online Algorithm
	Relative Time Difference
	Convex Approximation
	Online Sub-gradient
	The Online Stochastic Sub-gradient (OSS) Algorithm

	Experiments
	Experimental Data
	Experimental Setup
	Experimental Results

	Conclusions
	Elsevier.pdf
	Blank Page


