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Abstract

Network design and operation of a mobile network infrastructure, especially its

base station systems, need to consider survivability as a fundamental require-

ment. To this end, quantifiable approaches to survivability analysis of such

infrastructures are crucial. The objective of this paper is to propose a model for

quantification of the survivability of wireless communication networks subject

to massive failures, e.g., caused by natural disasters, common mode hardware

and software failures, and security attacks. This means to analyze the transient

behavior of the recovery phases. We use a Markov model approach, and ap-

ply this in a case study of a two-tier infrastructure-based wireless network. To

take location information of base stations into consideration, the spatial aver-

age network performance is estimated by means of a stochastic geometry based

approach. Further, in order to avoid state space explosion while addressing

large networks, an approximate product-form analysis approach is also present-

ed, where the two base stations tiers are decoupled such that their survivability

analysis can be studied independently. The assumptions used in the proposed

models, including Poisson point process (PPP) assumption and product-form

decomposition assumption, are validated on real data. Numerical experiments

are also performed to investigate the approximation accuracy and computational

efficiency of the product-form analysis approach, as well as to examine the effec-

t of different parameters on the network’s survivability. The results show that
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the approximate product-form approach is more scalable with reasonably good

accuracy and hence may be more preferred for analysis of large size networks.

Keywords: survivability, analytical models, disastrous failures, product-form

approximation

1. Introduction

1.1. Motivation

With the explosive growth of mobile usage around the world, wireless com-

munications plays a fundamental role in supporting effective coordination be-

tween first responders and victims in case of disasters. Since mobile networks5

are to be relied upon as a critical communication infrastructure, their survivabil-

ity to disasters must be maximized. Following a disaster, critical infrastructure

issues affecting a mobile network often include a loss of base station (BS) due to

damage to the station itself (or the transmission), lack of power and logistics is-

sues. Although other network elements should not be ignored, BSs are often the10

most vulnerable part of the whole infrastructure under natural disasters such as

hurricane, earthquake, tsunami, etc., or human-made disasters such as massive

Distributed Denial of Service (DDoS) attacks. When a disaster strikes, it may

affect a large region of areas causing multiple failure of BSs located in those

areas (e.g., [1],[2],[3]). Under such a case, mobile network operators (MNOs)15

face many challenges to ensure continuous network operation.

Since restoring the mobile network to operational levels as soon as possi-

ble after a disaster is critical, MNOs have increasingly invest in their disaster

response toolkits. For example, KDDI of Japan has taken a set of measures

associated with ensuring network reliability during disasters, such as back-up20

communication modes for the dissemination of warnings and other critical in-

formation. One of the fastest methods of restoring damaged cellular network

is constructing emergency communication network (ECN) with the rapid de-

ployment of temporary and portable cell sites. For example, NTT of Japan has

proposed a Deployable Base Stations (DBSs)-based ECN to be deployed after25

2



a disaster occurs. Users can use the DBS to send messages from a disaster area

[4]. Vodafone Foundation proposes an Instant Network Solution to enable e-

mergency communications in disaster areas through the deployment of portable

mobile GSM BSs. It is able to deliver voice and SMS connectivity to areas

that are not normally connected. By deploying DBSs on an partially damaged30

cellular network, a two-tier heterogeneous network (HCN) is formed with two

types of BSs, macro cellular BSs (MBSs) and DBSs.

In general, lightweight (DBSs)-based ECN solutions are desired by all M-

NOs to enhance their network’s ability to continuously deliver services under

failures. However, survivability evaluation of different (DBSs)-based ECN solu-35

tions is still an ongoing research problem. This is not only because of the size

and complexity of the problem, but also because the quantifiable approaches of

survivability are lacking. In order to evaluate the survivability of such overlay

networking accurately and tractably, it is essential to develop effective models

for assessing the network performance during the (transient) period that starts40

after a failure till the system fully recovers. The resulting survivability modeling

and analysis provides a promising new direction for mobile network design to

avert the impact of geographical disasters or attacks.

1.2. Related work

Geographically correlated failures have been considered in survivability and45

vulnerability assessment of optical backbone networks with preplanning [5],[6]

or reactive routing protocols [7]. In many prior works, the objective is to find

the most vulnerable network area of a predefined size, under specific disaster

models, e.g., under line disasters [8], circular disasters [8],[9], or general polygon

disasters [10]. For all the network components that intersect the disaster, they50

may become definitely inoperative [5],[8] or fail with a probability [9],[11]. How-

ever, the research of survivability under geographically correlated failure has

been less conducted on wireless access networks. Evaluating survivability of BS

system against disaster is very complicated and challenging due to the problem

complexity and the limitation in scalability, in particular for a heterogeneous55
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networking scenario consisting of different types of BSs.

In order to accurately estimate the network’s survivability performance, it is

critical to take into account the spatial placement of BSs, since, as highlighted

above, a disaster strike may affect a large region of areas causing failure of BSs

in those areas. Generally, wireless network deployment can be modelled as a60

collection of points distributed on a two-dimensional plane. Each point, rep-

resenting a wireless transceiver, is assigned wireless network related properties,

such as downlink transmit power and operational frequency. Then, the average

performance experienced by a user of such a network may be obtained either

using stochastic geometry or through computer simulations. In stochastic geom-65

etry a typical assumption is to use a homogeneous Poisson point process (PPP)

to represent network deployment, while in computer simulations the hexagonal

lattice model is used. PPP has been widely used in performance evaluation

of large-scale wireless network due to its simplicity and tractability [12]. Also

research has shown that the PPP model is accurate when compared to actual70

BS deployment [13], [14]. Networks will continue to become increasingly hetero-

geneous as we move toward 5G [15]. Heterogeneous cellular networks (HCNs)

can be a key element for emergency communications. This novel networking

paradigm is based on the idea of deploying short-range, low-power, and low-

cost BSs that operate in conjunction with the main 5G macro cellular network75

infrastructure. A heterogeneous small cell network with overlay small cells and

macrocell is a promising solution to enhance service survivability of mobile net-

works in large-scale failure scenarios [16]. Modeling BS deployment patterns

in multiple-tier heterogeneous cellular network scenarios have been studied in

[17], [18]. Most of the stochastic geometry works on HCNs focus on the spatial80

average performance of the network, but neglects the temporal dynamics due

to disaster failure. Our work differentiates with previous work in that we are

interested in modeling the temporal dynamics of the network performance, not

only a ”snapshot” of one time instant.

V. Jindal et al. [19] analyzes the disaster survivability of a cellular network85

from a truncated continuous time Markov chain (CTMC) model. In this work,
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the transient performance variation of system from a failure to the normal mode

is taken into account as suggested by T1A1.2 definition [20]. However, the main

entity in the proposed models in both [16] and [19] is the individual BS rather

than the whole network. A direct extension of the model to network-level will90

cause state space explosion issues in solving results from the model.

In order to avoid state space explosion while addressing large networks, a

decomposition approach has been introduced [21]. This approach first decouples

the models in space by analyzing the nodes independently and then decouples

the performance and recovery models in time. The results show very good95

correspondence in performance metrics between the analytic approximations

and the simulation results. However, in [21], spatial information of BSs is not

taken into special account in the modeling and analysis. Specifically in [21] and

other works, when analyzing the impact of large-scale failures caused by one

external disturbance, the information used is often from just one ”snapshot”100

of temporal spatial network statuses, which limits the use of a more complete

temporal-spatial model of network nodes in the analysis.

1.3. Contributions

In this paper, we conduct quantitative, model-based analysis of the surviv-

ability of a two-tier HCN, which is formed by an ECN overlaid on an existing105

cellular network that is subject to disastrous breakdowns. Specifically, the fo-

cus is on characterizing the transient recovery behavior of HCN in the presence

of disastrous failures. The recovery behavior of the network is modeled as a

Markov chain, based on which the analysis is performed. To take into accoun-

t the inter-tier spatial dependence of BSs in the performance modeling, the110

two types of BSs, MBSs and DBSs deployment in the above HCN are mod-

eled as a PPP and a Poisson hole process (PHP), respectively. The spatial

average network performance is estimated and viewed as a reward process on

the Markov model. In addition, to help reduce the computation complexity, a

product-form decomposition approach is performed in the Markov models. The115

performance formulas used in the proposed models are validated against Monte
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Carlo simulation. Numerical experiments are also performed to investigate the

approximation accuracy and computational efficiency of the product-form anal-

ysis approach against the exact analysis, as well as to examine the effect of

different parameters on the network’s survivability. The experimental results120

show that the product-form approximation provides tractable and reasonably

accurate analysis of survivability performance.

The contribution of this paper are summarized as follows:

• The comprehensive spatial modeling of a two-tier HCN, which is formed by

an ECN overlaid on a partially destructed cellular network is considered.125

By extending the results in [18] based on the features of the PPP and

PHP, we conduct mathematical analysis and evaluation of the conditional

coverage probability, per-user coverage and service unavailability of the

above HCN. We present the equations and the detailed derivations for

these measures and show how they depend on the system parameters. To130

the best of our knowledge, this is the first attempt to apply stochastic

geometry into network survivability modeling.

• We present a Markov chain model that supports the survivability assess-

ment of the above 2-tier HCN during the period that starts after a fail-

ure till the system fully recovers. Further, in order to avoid state space135

explosion while addressing large networks, an approximate product-form

analysis approach is also presented.

• The correctness of the performance formulas used in the proposed mod-

els are validated against Monte Carlo simulation. We provide a realistic

numerical study on the the approximation accuracy and computational140

efficiency of the product-form analysis approach against the exact anal-

ysis. The effect of different Markov model parameters on the network’s

survivability are also studied.

The rest of this paper is organized as follows: In Section 2, the system

model and notations are given. Section 3 presents the survivability analysis in145
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detail, where the mathematical analysis of network performance is conducted in

Section 3.2 and a product-form approximation approach is introduced in Section

3.4 to reduce the computation complexity. Section 4 presents validation and

numerical results, which include validation of the performance formulas and the

assumptions used in the proposed models in Section 4.1, and numerical results150

in Section 4.2, demonstrating the analytical results and the effect of different

model parameters on survivability. Finally, a summary of this work is given in

Section 5.

2. System Models

2.1. Overall Model155

Consider the down-link communication in a network formed by a ECN over-

laid on an existing cellular network , which are located in a certain urban area

A0. The main cellular network is stroked by a large-scale disaster, and a portion

of MBSs are damaged. As illustrated in Figure 1, the ECN is established via

deployment of a number of DBSs to fill the coverage holes due to MBSs failure.160

Thus, the resulting two-tier HCN includes two types of BSs, i.e., MBSs and

DBSs.

As our goal is to investigate the survivability performance under different

resource conditions from a higher abstraction level, the Poisson point process

(PPP) is adopted as the spatial model for the locations of MBSs. Although PPP-165

based models may not be realistic, they can provide closely exact performance

results compared with the real BS deployment [13],[14]. The spatial distribution

of the MBSs is modeled by a homogeneous PPP Φm = {x1, x2, · · · } ⊂ A0 of

density λm. Under the strike of a disaster, we argue that the affected BSs

should not always be inoperative, but may fail with a probability. We propose170

a probabilistic disaster damage ratio denoted γ (0 < γ < 1) that represents the

percentage of the damaged MBSs over the total number of original MBSs in

the disaster-affected area. γ can be a function of external disaster, terrain, and

network component fragility. Here, for the sake of tractability we assume γ is a
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2. System Models

2.1. Overview

Consider a certain geographic area A0 covered by a heterogeneous wireless90

network utilizing multiple types of access nodes. For the sake of simplicity and

its typicality, the analysis is started from a two-tier radio system as illustrated in

Figure 1. The tier 1 network consists of cellular macro-cells in which users com-

municate with the central BS in each cell, while the tier 2 network is the overlaid

network containing micro-cells. Here, it is reasonable to assume that a tier 2 BS95

covers much smaller areas and requires significantly smaller transmission power

than those of a tier 1 BS.

Tier 1 BSs
powered by commercial grid

Tier 2 BSs
powered by renewable power

Figure 1: Illustration of a two-tier infrastructure wireless network utilizing two classes of BSs.

To simplify the modeling, we assume that the tier 1 BSs and tier 2 are pow-

ered by independent sources, and for the tier 1 BSs, there is no backup power.

For instance, while the tier 1 BSs may be fed by the commercial electrical grid,100

the tier 2 BSs may be powered by some self-supplied renewable power sources

(e.g. solar power). Note that renewable energy is more and more accepted by

the mobile communication community and has been used in small cells. For ex-

ample, Ericsson and Telecom Italia developed and tested the Eco-Smart solution

which uses solar panel to fully power a cell site [9].105

Without loss of generality, we will conduct analysis on a typical mobile

user located at the origin. The fading (power) between a kth (k = 1, 2) tier
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uniform random variable independent from MBS location. Thus, in case that a175

disaster has occurred, a thinning factor of (1− γ) will affect the original MBSs

density, and the resulting new density will become (1 − γ)λm. Such implicit

assumption of the random BS failure is due to the inherited random nature of

the effect of disasters.

One of the fastest methods of restoring networks is the rapid deployment180

of DBSs. Deploying additional BSs can either reduce local network congestion

or plug gaps in a damaged network. In order to reduce the interference and

enhance the coverage, deployment of DBSs should consider repulsion character-

istic existing among different tiers BSs. In this context, we assume that each

MBS has an exclusion region, which is a disk with radius D centered at the185

location of MBS. DBSs are only deployed outside the exclusive region to fill the

coverage holes. Under this setup, the DBSs form a Poisson hole process (PHP),

which has been defined in [18]:

Definition 1. (Poisson Hole Process, PHP): Let Φm be a PPP of spatial

density λm and Φ̃d be a PPP of spatial density λ̃d > λm. For each x ∈ Φm,190

remove all the points in Φ̃d
⋂
b(x,D), where b(x,D) is a ball centered at x with

radius D. Then the remaining points of Φ̃d form the Poisson hole process Φd

with spatial density λd = λ̃dexp(−λmπD2).

Let the potential locations of the DBSs follow a homogeneous PPP Φ̃d =

{y1, y2, · · · } ⊂ A0 of density λd. Then the actual locations of the DBSs follow

a PHP of density λd = λ̃dexp(−λmπD2). We assume that each of BSs within

the same tier have the same transmission power, which we denote Pm for MBSs

and Pd for DBSs. The path loss is represented in Eq. (1)

l(x) = (G|x|)−α, (1)

where constants G > 0 and α > 0. G is a constant to merge constant parameters

together. More specifically, the COST Walfisch-Ikegami model is taken for path195

loss as shown in L = 42.6 + 26log(d/1km) + 20log(f/1MHz) and the constant

parameters are merged in G with a non-dB form [22]. Since our area of interest

A0 is urban area, we choose COST 231 Walfisch-Ikegami Model that considers
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the buildings in the vertical plane between the transmitter and the receiver.

The path loss model can be redefined depending upon the application scenario.200

We consider Rayleigh fading between each user and the serving BS. The fading

(power) between a BS x and the typical user is denoted by hx. The impact of

fading follows the exponential distribution, i.e., that the generic fading variable

hx is exponential, with E[hx] = 1. In addition, the additive white Gaussian noise

(AWGN) power is assumed to be a constant σ2 > 0. The signal-to-interference-205

and-noise-ratio (SINR) thresholds for MBSs and DBSs are βm, βd, respectively.

As suggested in [18], the radius D of the exclusion region of MBS at x is

chosen as D = ζx( ηdPd
ηmPm

)
1
α where ζ is a cell range expansion factor, Pm and Pd

are transmit power of MBS and DBS, respectively, ηm and ηd are interference

mitigation factor of MBS and DBS, respectively. It is intuitive that D should210

be proportional to the distance between the serving MBS and its user and the

transmission power of the DBSs, and inversely proportional to the transmis-

sion power of the MBSs. Here, the definition of D differs from that of [18] in

considering the coordination and interactions among the BSs. In order to guar-

antee the network’s proper operation, intercell interference coordination (ICIC)215

techniques are required. In this paper, we approximate the reduction in the

downlink interference due to this ICIC capability by the constant factor ηm,ηd

for MBSs and DBS, respectively.

For resource allocation, we assume an orthogonal partitioning of resources,

e.g., time-frequency resource blocks in orthogonal frequency division multiple220

access (OFDMA) which has been widely used in UMTS, LTE. We assume that

each of MBSs and DBSs has Nb resource blocks and allocates at most one

resource block to one user at a time. This assumption can be easily relaxed

to incorporate users requiring more resource blocks, but this case is not in the

scope of this paper. Users are assumed to follow a homogeneous PPP Φu with225

density λu across this area of interest and supported to access both MBSs and

DBSs. Under this setup, the users located within D of an MBS get served by

MBSs within that distance, i.e., a fraction of km = 1 − exp(−λmπD2) of the

users will be served by MBSs, and the rest are served by DBSs.
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Table 1: Notation Summary

Notation Description

A0 the geographic area of interest

Φm, λm the spatial point porcess of MBSs and its density

Φd, λd the spatial point porcess of DBSs and its density

λu the density of users

γ the ratio of damaged MBSs

Pm, Pd the transmit power of MBSs and DBSs

βm, βd the SINR threshold of MBSs and DBSs

α the standard power-law path loss exponent

Table 1 summarizes the notations used in this paper.230

2.2. Failure and Recovery Description

The above section concentrates more on the spatial modeling of the system.

This section discusses the temporal behaviors of the system, during the period

that starts after a failure till the system fully recovers. Figure 2 shows the

various operational stages of the commercial cellular network and ECN. Upon235

the disaster occurrence, the commercial cellular network is in failure state: part

of MBSs are damaged or out of service. After the first response time, the

operator establishes disaster recovery network via deploying a random number

of DBSs overlaid the existing cellular network. The DBSs act as a backup for

the operational MBSs due to the destruction of cellular infrastructure. Until240

the deployment of DBSs is finished, the commercial cellular network undergoes

partial recovery state.

On the other hand, a network-level restoration process on the commercial

network also starts. Disaster failure restoration on cellular networks is often

done by dispatching crews to the field to repair directly. All restorations are245

finished in a random period, since the promptness of failure restoration de-

pends on a combination of various factors, such as environmental constraints,

11
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Figure 2: Commercial network and ECN operational stages.

preparedness and resources. After the full restoration, the existing cellular net-

work goes back to normal operation. Then the ECN could roll-off. Considering

the DBSs are newly deployed, independent random failures and restorations are250

assumed to occur at individual DBSs.

In order to model the failure and recovery process described above, we in-

troduce a spatial-temporal process as follows,

Definition 2: {(Nm(t,A0), Nd(t,A0)), t ≥ 0} is a spatial-temporal process

with

Nm(t,A0) =
∑

1≤i≤Nm;x∈A0

I[Xi(t, x) = 1],

Nd(t,A0) =
∑

1≤j≤Nd;y∈A0

I[Xj(t, y) = 1],
(2)

which essentially tells the evolution of total number of operational MBSs and

DBSs in region A0 over time. I(A) is an indicator function, I(A) = 0 if event255

A occurs, I(A) = 1 otherwise. We assume for simplicity that each of MBSs and

DBSs only have two states: Xi(t, x) = 0 if the MBS x is in a failure mode, e.g.,

no power supply; Xi(t, x) = 1 if the MBS x is in normal operation. It is similar

case in the operational states of DBSs. Nm and Nd are the maximum possible

number of operational MBSs and that of DBSs, respectively. Given the disaster260

failure occurs at time t = 0, then (Nm(t,A0), Nd(t,A0)) defines a stochastic

process with state space Ω = {(i, j); i, j ∈ Z+, 0 ≤ i ≤ Nm, 0 ≤ j ≤ Nd} to

characterize the temporal evolution of recovery of the network.
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3. Survivability Analysis

3.1. Survivability of the Network265

The objective of the present paper is to quantify the survivability of a cellular

network that is subject to disastrous failures. In the evaluation, we adopt the

definition of survivability as in [21], which is ”the system’s ability to continuously

deliver services in compliance with the given requirements in the presence of

failures and other undesired events”.270

The network survivability is essentially quantified by the transient perfor-

mance from the instant when an undesired event occurs until its steady state is

reached. As a mathematical description of this temporal process, we adopt the

survivability quantification definition given by ANSI-T1A1.2 [20] as illustrated

in Figure 3. Let M denote the measure of the performance of interest. The275

measure M has the value m0 before a failure occurs. The survivability behavior

can be depicted by the following attributes: ma is the value of M just after the

failure occurs; mu is the maximum difference between the value of M and ma

after the failure; mr is the restored value of M after some time tr; and tR is the

relaxation time for the system to restore the value of M [20] [21].280

t

M

ma+mr

ma

mu

mr

t0 t1 t2

tr

tR

m0

Figure 3: Example of survivability attributes (adapted from [21]).

Note that the model illustrated in Figure 3 is generic. For a specific scenario,

in order to evaluate the effectiveness of different survivable designs and mecha-

nisms, it is important to further define what sort of service must be offered, and

to specify the performance targets to be achieved. As suggested in [23], the first

major goal in survivability of wireless networks is to establish and maintain a285
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connected network, since the breakdown of one BS may affect tens or hundreds

of users. Motivated by this, for our work, (i) we define the service to be the

capacity assigned to users, (ii) the service requirement is expressed that the

per-user capacity Cu must be higher than a threshold TC , i.e., Cu ≥ TC , and

(iii) the undesired events are MBSs failure caused by disasters. Accordingly,290

the measure of performance interest M in the model shown by Figure 3, is the

expected per-user capacity for the work of this paper. Specifically, after the fail-

ure occurs, ma denotes the post-disaster value of Cu ; mr denotes the restored

value of Cu after some time tr; and tR is the relaxation time for the system to

restore the pre-disaster value of Cu [20] [21].295

3.2. Average Number of Users under a Operational State

Given the presence of perturbations to the operational state of the network,

survivability measures service performance variation during the transient period

that starts after a failure till the system fully recovers. However, considering

the largeness of state space, it is impossible to measure the performance under300

different operational state states continuously. In order to limit the number

of states, the operational space of the network may be constructed by a finite

number of states. For a given set of operational conditions, the network provides

a certain level of service. The models with the set of operational states and state

transitions during the failure and recovery process will be detailed in subsection305

3.3. This subsection discusses how to obtain per-user capacity of the network

under a given operational state.

Since MBSs and DBSs follow two different types of distribution, it is better

to study the case that the user is associating with MBSs and DBSs, respectively.

We denote the users associating with MBSs, DBSs as macrocell users (MUs),

deployable cell users (DUs), respectively. The average number of the MU and

DU, respectively, are

cm = Pmc λuλm|A0|2, (3)

cd = Pdcλuλd|A0|2, (4)
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where Pmc and Pdc are the coverage probability of an arbitrary user by MBS and

DBS, respectively. Thus, the overall average number of users Cu is given by

Cu = kmcm + kdcd (5)

where km = 1− exp(−λmπD2) is the fraction of the users served by MBSs, and

the rest are served by DBSs.

For cell selection, we assume that the user connects to the BS from which

the received power is the highest. Without loss of generality, we will conduct

analysis on a typical mobile user located at the origin in our following analysis.

The coverage probability of an arbitrary user by the nearest MBS x0 located

at distance rm is defined as the probability at which the SINR is larger than a

pre-defined threshold βm:

Pmc = P[SINR(rm) > βm]

= P(
Pmhrm l(rm)

Irm + σ2
> βm)

(a)
= LIrm (

βm
Pml(rm)

)e
−βmσ2
Pml(rm) ,

(6)

where (a) follows from Rayleigh fading assumption. Similarly, the coverage

probability Pdc of the arbitrary user by DBS y0 located at distance rd can be

obtained

Pdc = P[SINR(rd) > βd]

= P(
Pdhrd l(rd)

Ird + σ2
> βd)

= LIrd (
βd

Pdl(rd)
)e
−βdσ

2

Pdl(rd) .

(7)

In order to further derive the coverage probability Pmc ,P
d
c , we employ the310

comprehensive study on interference modeling. We consider two spectrum allo-

cation strategies, 1) DBSs have dedicated spectrum band, which is independent

from spectrum band of MBSs; 2)MBSs and DBSs share the same spectrum

band. These two strategies result in two cases in interference modeling,

• Case 1: Interference only exists in the same tier, rather than across tiers;315

• Case 2: Interference exists cross tiers.
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3.2.1. Case 1: average user number analysis without cross-tier interference

In the case of without cross-tier interferences, there are two types of inter-

ference: the interference from the MBSs to the MUs Imm and the interference

from the DBSs to the DUs Idd. Since the MBSs are distributed as a PPP which

is stationary, the interference does not depend on the MBS location. Therefore,

we denote LIrm in Eq. (6) by LImm , which is

LImm(s) = E!x0

Φ′m,h
[
∏
x∈Φ′m

exp(−sPmhxl(x))]

(a)
= E!x0

Φ′m
[
∏
x∈Φ′m

1

1 + sPml(x)
]

(b)
= exp(−(1− γ)λ

′

m

∫
R2\b(o,rm)

(1− 1

1 + sPml(x)
)dx)

(c)
= exp(−π(1− γ)λ

′

m

(Pms)
2
αG−α

1− 2
α

r2−α
m F (1, 1− 2

α
; 2− 2

α
;−Pms(Grm)−α),

(8)

where (a) follows from Rayleigh fading assumption, (b) follows from probability

generating functional (PGFL) of PPP, and (c) can be obtained with a change

to polar coordinates. Substituting Eq. (8) into Eq. (6), Pmc can be obtained.

Similarly, LIdd is calculated as

LIdd(s) = exp(−πλ̃′d
(Pds)

2
αG−α

1− 2
α

r2−α
d F (1, 1− 2

α
; 2− 2

α
;−Pds(Grd)−α). (9)

Substituting Eq. (9) into Eq. (7), Pdc can be obtained.

3.2.2. Case 2: average user number analysis with cross-tier interference

In this case, there are four types of interference: the interference from the320

MBSs to the MUs Imm, the interference from the MBSs to the DUs Imd, the

interference from the DBSs to the MUs Idm, and the interference from the DBSs

to the DUs Idd.

The MUs suffer two types of interference: Imm and Idm. The Laplace trans-

form of Imm has been derived in Eq. (8). Idm is stochastically dominated by

the interference from the points except those that are within distance D from
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the desired MBS. Denoting the disk centered at the location of the serving MBS

with radius D as Hm, we obtain the Laplace transform of Idm using a modified

path loss law l̃(x) = l(x), where x ∈ R2\Hm,

LĨdm(s) = EΦ̃
′
d,h

[
∏
x∈Φ̃

′
d

exp(−sPdhx l̃(x))]

= EΦ̃
′
d
[
∏
x∈Φ̃

′
d

1

1 + sPd l̃(x)
]

= exp(−λ̃′d
∫
R2\b(o,rm)

(1− 1

1 + sPdl(x)
)dx)

= exp(−λ̃′d(
(Pds)

2
α 2π2/α

sin(2π/α)
− πD2Am(s,D))),

(10)

where

Am(s,D) =
1

πD2

∫
b(o,rm)

(1− 1

1 + sPdl(x)
)dx)

=
1

πD2

∫ 2π

0

∫ rmcosϕ+
√
D2−r2msin2ϕ

0

rdrdϕ

1 + (sPd)
−1

(Gr)α

(11)

Independent thinning of Φ
′

p outside the exclusive regions with probability

exp(−λmπD2) yields a good approximation on Idm. Hence, the coverage prob-

ability can be approximated as the product of Laplace transform of Imm and

Idm.

Pmc ≈ LImm(
βm

Pml(rm)
)LĨdm(

βm
Pml(rm)

) (12)

Denote the disk centered at the location of the serving DBS with radius D,

we have

LImd(s) = exp(−λ′d(
(Pds)

2
α 2π2/α

sin(2π/α)
− πD2Ad(s,D))), (13)

where

Ad(s,D) =
1

πD2

∫ 2π

0

∫ rdcosϕ+
√
D2−r2dsin2ϕ

0

rdrdϕ

1 + (sPm)
−1

(Gr)α
(14)

Similar to the interference to the MUs, the DU also experiences two types of

interference: Imd and Idd. The coverage probability of DU can be approximated
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as the product of Laplace transform of Imd and Idd.

Pdc ≈ LImd(
βd

Pdl(rd)
)LĨdd(

βd
Pdl(rd)

) (15)

The number/density of operational MBSs and DBSs in A0 might determine

the network performance, including coverage probability and per-user capaci-325

ty. In the next subsection, a Markov chain based analysis on operational state

{(Nm(t,A0), Nd(t,A0)), t ≥ 0} is established, with which how the per-user ca-

pacity and service unavailability evolves over time after the occurrence of the

disaster is further derived in the subsection afterwards.

3.3. Markov Chain Analysis on the Numbers of Operational BSs over Time330

In this subsection, we detail the phased recovery model, where each phase

may have different set of available resources for the wireless access. It charac-

terizes the set of operational states during the transient period that starts after

a failure till the system fully recovers. We assume that the state holding times

are exponentially distributed, which serves to illustrate our model analysis in a335

simple setting. Extending the model to allow for general distributions for the

state holding times is left as future work. Formally, when used in modeling, the

assumptions are characterized as:

• The system suffers disastrous breakdown resulting in part of MBSs out

of-service. After the disaster occurrence, the operator establishes disaster340

recovery network via deployment of a random number of DBSs overlaid

the existing cellular network. It is followed by a full restoration process

on the MBSs. All the state holding times are exponentially distributed.

• DBSs have independent transient failures according to Poisson processes

with rate ν. The transient failure of each DBS can be recovered shortly and345

the recovery time for DBSs is exponentially distributed with parameter µ.

The sequence of phases are described as a continuous-time Markov chain

(CTMC) model to characterize the transient network response behavior, in
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terms of numbers of operational MBSs and DBSs in the system, after the dis-

aster until the system stabilizes again. The state transition diagram of this350

Markov chain is illustrated in Figure 4. In Figure 4 the life cycle of the failure

and restoration is described in four phases, y = I, II, III, IV, which represent

four operational stages of ECN: no exist, partial deployment, full deployment

and roll-off. The composite CTMC state (y, i, j) constitutes of the phase y, the

number of operational MBSs i and the number of operational DBSs j. The355

transition from state (y, i, j) to state (y, i, j − 1) denotes a transient failure of

one DBS. The corresponding transition rate is jν. The transition from state

(y, i, j−1) to state (y, i, j) denotes the transient recovery of one DBS with mean

rate µ.

Note that for survivability analysis, our focus is on the system’s transient

behavior after the disaster. For this reason, disastrous failure is forced (dashed

arc in Figure 4). The various transition rates q(y,i,j),(y′,i′,j′) of the CTMC are

q(y,i,j),(y,i,j−1) = jν, y = II, III, i = {(1− γ)Nm, Nm}, j = 0, 1, · · · , Nd

q(y,i,j−1),(y,i,j) = µ, y = II, III, i = {(1− γ)Nm, Nm}, j = 0, 1, · · · , Nd

q(II,(1−γ)Nm,j),(III,Nm,j) = τf , j = 0, 1, · · · , Nd

q(I,(1−γ)Nm,0),(II,0,Nd) = τp

q(III,Nm,Nd),(IV,Nm,0) = τr

(16)

Based on the above transition rate regulations, the state transition rate360

matrix of this model can be obtained as Q = [q(y,i,j),(y′,i′,j′)].

3.4. Service Unavailability over Time

To facilitate the representation, we denote the per-user capacity under a

given system state (y, i, j) as C(y,i,j)(t). It can be viewed as a reward process on

the CTMC model {Nm(t,A0), Nd(t,A0)}, whose analysis has been established365

in the previous subsection.

Let P (t) = [P(I,0,0)(t) · · ·P(y,i,j)(t) · · ·P(IV,N1,0)(t)] denote a row vector of

transient state probabilities at time t. In order to calculate P (t), the Kolmogorov-

forward equation expressed in the matrix form should be satisfied as follows:

19



μNdν

μ(Nd-1)ν

μν

...

Forced transition to a 

disastrous failure

τf

Phase II Phase III

III,Nm,Nd

μNdν

III,Nm,Nd

-1

μ(Nd-1)ν

III,Nm,0

μν

...

Phase I

IV,Nm,0

Phase IV

Network Failure Partial Recovery Normal Operation

Not 

Exist
Partial Deployment Full Deployment Roll-off

Commercial 

Network

ECN

Disaster 

occurs

τf

τf

τrτpI,

(1-γ)Nm,0
II,

(1-γ)Nm,Nd

II,

(1-γ)Nm,

Nd-1

II,

(1-γ)Nm,0

Figure 4: State transition diagram for the network operational stages.
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dP (t)

dt
= P (t)Q (17)

where Q is the transition rate matrix. Then the transient state probability

vector can be obtained as follows:

P (t) = eQt (18)

where eQt is defined as follows:

eQt =

∞∑
i=0

Qi t
i

i!
(19)

The simplest method to compute Eq. (19) is to truncate the summation to

a large number (e.g., K), which can be expressed as follows:

eQt =

K∑
i=0

Qi t
i

i!
(20)

An alternative way to compute the transient probabilities is by using eigen-

values. In this method, Q is assumed to be diagonalizable,

Q = UVU−1 (21)

where V is a diagnoal matrix of eigenvalues. The transient probabilities can be

defined as follows:

V =


ev1t

ev2t

. . .

evN t


Then, the transition probabilities can be written as follows:

P (t) = U(

∞∑
i=0

V
ti

i!
)U−1

= UeVtU−1

(22)
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Finally, combining the above calculated transient probabilities P(y,i,j)(t) and

average number of users associated with each state C(y,i,j)(t), the expected

instantaneous reward rate E[C(t)] gives the expected number of users at time

t, which is expressed as follows:

E[C(t)] =

IV∑
y=I

∑
i,j

C(y,i,j)(t)P(y,i,j)(t). (23)

3.4.1. Product-Form Approximation

The above so-called exact modeling approach for calculating the transition370

probabilities needs to visit each state and to repeat the transient state analysis,

which could be computational challenging when the network size is large. As

a result, such transient analysis can be too complex for a symbolic closed-form

solution, and even too difficult for a numerical solution.

Since the transient failures and repairs of two classes of BSs are independent,

we can apply an approximation to facilitate the calculation of the transient

probability P(y,i,j)(t) for state (y, i, j). This is a product-form approach as

follows:

P(y,i,j)(t) = P (t, i) · π(y, j) (24)

where P (t, i) is the transient probability of a state i (0 ≤ i ≤ N1), and π(j) is375

the steady state probability of a state j (0 ≤ j ≤ N2).

To calculate the steady state π(j), the equilibrium state equations are used:

π(0)µ = π(1)ν

π(0)µ+ 2π(2)ν = π(1)(µ+ ν)

...

π(N2 − 1)µ = N2π(N2)ν

With µ and ν, the closed-form steady state probability π(j) can be derived:

π(j) =
1

j!
(
µ

ν
)jπ(0) (25)
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Table 2: System Parameter Setting

Notation Description

A0 2.5× 1.9(km2)

λm 0.95(1/km2)

λd 1.9(1/km2)

λu 5(1/km2)

γ 0.1

Pm, Pd 43dbm,30dbm

βm, βd 5dB,5dB

α 4

G 6910(km−1)

where π(0) is obtained according to the normalization condition
∑N2

j=0 πj = 1,

π(0) =
1∑N2

k=0
1
k! (

µ
ν )k

(26)

Then, the expected number of connected users E[C(t)] becomes:

E[C(t)] =
∑

P (t, i) · π(j) (27)

As a highlight, the product-form approach requires only transient solution

of evolution of macrocell BSs and the steady-state solution of evolution of small

cell BSs.

4. Results380

In this section, the assumptions used in the proposed survivability quan-

tification models are first validated, before results and insights from numerical

experiments are presented.

4.1. Validity of Model Accuracy

In this subsection, the decomposition assumption used in the proposed sur-385

vivability quantification models is validated.
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Table 3: Failure/Recovery Rate Parameter Setting

Parameter Value

τp 10(hour−1)

τf 10(hour−1)

τr 0.2(hour−1)

ν 20(hour−1)

µ 10(hour−1)

4.1.1. Validity of the Equations in Section 3.2

Figure 5 shows the variations of coverage probability with respect to the

SINR thresholds. It can observed in 5(a) that the MU coverage probability de-

creases with the increasing SINR threshold θm and in 5(b) that the DU coverage390

probability decreases with the increasing SINR threshold θd. We can observe

that the bounds derived for the coverage probability of both types of users are

quite tight and the approximation matches the simulation result very well.

The effects of different range expansion bias ζ are also shown in Figure

5(a) and 5(b). In Figure 5(a), we find that the larger of ζ, the lower coverage395

probability of MUs. We can clearly also notice the performance degradation in

Fig. 5(b) for higher values of γ. On the other hand, ζ affects the performance of

the DUs less strongly than that of the MUs. This is because ζ has a direct effect

on the exclusion radius D, which determines the number of users accessing the

MBS.400

The average number of connected users as a function of the damage ratio γ is

shown in Figure 6(a) and 6(b), with different densities λd of DBSs. These results

show that the average number of users in Eq. (5) decreases with the increasing

damage ratio γ. This observation suggests that the number of operational MBSs

has a pronounced effect on the user performance. These results also show that405

the performance improves with more number of DBSs.
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Figure 5: Effects of cell range expansion bias on coverage probability (Case 2).
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Figure 6: Effects of damage ratio on average number of connected users.
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4.1.2. Validity of the Decomposition Assumption

We validate the decomposition assumption used in our proposed product-

form modeling approach. Table 2 lists the default value of system parameter-

s. Consider one urban area A0 with 2.5 ∗ 1.9(/km ∗ km) covered by a two-410

tier infrastructure-based wireless network. The density of two tiers BSs are

λm = 0.95(/km2), λd = 1.9(/km2), respectively. The density of users in A0 is

λu = 100(/km2). The maximum number of operational BSs can be estimat-

ed as N1 = λ1|A0|, N2 = λ2|A0|. The transmit power of two tiers BSs are

P1 = 43(dbm), P2 = 37(dbm), respectively. We set α = 3.8 and K = 6910km−1
415

(which corresponds to the COST Walfisch-Ikegami model for urban environ-

ment) [24]. It is a natural assumption to say that the transient failure/recovery

rates are larger than the network-level full restoration rate.

We verify the decomposition assumption by considering the system fail-

ure/recovery parameters setting in two scenarios: 1) a small scale network in420

area |A0| = 2.5∗1.9 with parameter (ν = 2, µ = 10, τ = 0.2), 2) a relatively larg-

er scale network in area |A0| = 3.4∗2.8 with parameter (ν = 3, µ = 15, τ = 0.2).

As shown in Figures 7(a) and 7(b), the product-form approach and the exact

approach results match reasonably well for different parameter settings. This

comparison shows that the decomposition assumption is accurate in the case of425

spatial independence existing between the two BSs tiers of the network.

We examine the way in which parameter τ affects the survivability model.

Comparing to the smooth curve of service unavailability E[C(t)] when τ =

0.08(hour−1), the curves of service unavailability when τ = 0.8(hour−1) reach

the steady state faster. This difference in curves’ trend reflects the impact of430

τ on service unavailability: τ is larger, then service unavailability decreases to

0 faster. In other words, faster global repair may bring the networked system

back to pre-disaster level in a shorter period of time.

First, we consider a small network case |A0| = 3.4 ∗ 2.8(km2). We plot

the quantification results as shown in Figure 8(a), solid curves represent the435

results of product-form model approach while the dashed curves are the results
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Figure 7: Validation of the decomposition assumption (τ = 0.2, ν1 = 1, µ1 = 20).

of exact model approach. As this figure suggests, the survivability quantification

notations are displayed as ma, tR,m0 and the curves decrease with time elapse

as expected .

Then we extend the analysis to a larger network case |A0| = 5 ∗ 2.9(km2).440

The survivability quantification results ma, tR,m0 are shown as the notations

as in Figure 8(b). Similar observations can be found that the curves of service

unavailability with larger τ reach the steady state faster. Since the mean time

for a global repair is much longer than the mean repair time of one access point

is obvious, it is naturally assumed that τ is much less than µ.445

Comparing to Figure 7, there exists a more noticeable small difference gap

between the two curves of both approaches in Figure 8(a) and 8(b). This is

due to that the decomposition in the product-form approach is based on the

assumption that the transient failures and repairs of two types of BSs are inde-

pendent. In addition, in the decomposition approach analysis, we have assumed450

during the transient failure/recovery of tier 1 BSs, tier 2 BSs’ operation states

have reached steady state. Nevertheless, the observation in Figure 8(a) and 8(b)

demonstrates that the product-form approach, though not exactly accurate, ap-

pealingly provides a tight lower bound to the exact approach.
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Figure 8: Log-plot of service unavailability E[U(t)] versus time t.

4.2. Numerical Results455

In this subsection, we attempt to gain more insights from numerical ex-

periments which were run using Mathematica [25]. First, to demonstrate the

applicability of the proposed product-form solution, we compare it with the ex-

act model approach in terms of performance and scalability. Then we examine

the effect of different model parameters on the defined performance measures.460

4.2.1. Computational Complexity Analysis

To show the computational advantages of the product-form approach over

the exact model approach, we compare the time needed for calculating the

transient probabilities using the two approaches. We run experiments with

three network scales (case 1: N1 = 2, N2 = 2; case 2: N1 = 3, N2 = 2; case465

3: N1 = 3, N2 = 3). Note that here we choose these N1, N2 ideal values

only for testing the computational speed. The other parameters are chosen as

ν = 0.005, µ = 2, τ = 0.02. In all the experiment cases, 30 runs are performed

and the mean running time (unit: seconds) are recorded as shown in Table 4.

The observation from Table 4 suggests that the product-form approach is470

able to almost immediately give the transient probabilities. However, it may

take about 0.6 seconds by using the exact model approach in case 1. Similar

results can be obtained from experiments case 2 and case 3. For the exact
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model approach, it takes more time (about 2 seconds in case 2 and 8 seconds

in case 3) than in case 1. The growing of network size has significant impact475

on the computational complexity of the exact model approach. The product-

form approach reduces the state space of the transient solution as indicated in

Equation (27). This explains why the product-form approach has advantages in

transient solution computation than the exact model approach. For large-scale

networks, it can be expected that the exact model approach will be more time480

consuming in transient solution computation while the product-form approach

may then be preferred.

4.2.2. Impact of Parameters on Survivability Performance

In the following, both approaches are used to numerically obtain the sys-

tem survivability performance. The system parameters are chosen as: ν =485

2(hour−1), µ = 10(hour−1), P1 = 43(dbm), P2 = 37(dbm), α = 3.8, λ1 =

0.95(/km2), λ2 = 1.9(/km2), λu = 100(/km2).

In brief, compared with the exact model approach which is preferred for small

size models, the product-form approach is more scalable with reasonably good

accuracy and hence may be more preferred for analysis of large size networks.490

5. Conclusion

We have conducted analysis on the survivability of a two-tier heterogeneous

infrastructure wireless network that is subject to disastrous breakdowns. The

focus has been on the transient behavior of the network under disastrous fail-

Table 4: Comparison of computational time for transient probabilities using the two approach-

es under three cases (mean ± standard error, unit: seconds).

case 1 case 2 case 3

Exact 0.581± 0.316 1.997± 0.890 7.899± 0.895

Product-form 0.021± 0.017 0.041± 0.026 0.041± 0.016
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ures, of which a continuous-time Markov chain (CTMC) model is established.495

Detailed analysis has been performed based on the CTMC model. In the analy-

sis, the location of BSs and users are considered, by modeling their distributions

with Poisson point processes (PPPs). In addition, to help reduce the computa-

tion complexity, a product-form spatial decomposition approach is introduced.

The Poisson point process (PPP) assumption and the product-form decompo-500

sition assumption are validated on real data. Moreover, numerical experiments

have been performed to study the approximation accuracy and computational

efficiency of the product-form analysis approach against the exact analysis. The

results show that the product-form approximation provides tractable and rea-

sonably accurate analysis. In addition, the numerical results have also examined505

the impact of different parameters on the network’s survivability.

As another concluding remark, we highlight that, the recovery time in the

current model has for simplicity been assumed to be exponentially distributed

which may not be true in real scenario. More general model, such as phase-type

model or semi-Markov model may be used. In addition, this paper considers a510

static disaster failure scenario, where all affected macro BSs in one geographical

area are assumed to fail simultaneously. In reality, disasters may not be static.

For example, a hurricane usually has a landfall with a strong force wind, and

then gradually fades down when moving in land. As a result, the affected

network components might fail progressively over time due to the influence of515

disaster spreading, rather than being out of operation at the same time. Our

future work will attempt to characterize such dynamic nature of failures and

recoveries due to evolution of external disturbances in the survivability model.
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