
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting parallelism in hierarchical content stores for high-speed ICN routers / Mansilha, Rodrigo B; Barcellos, Marinho
P.; Leonardi, Emilio; Rossi, Dario. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - ELETTRONICO. - 125:(2017),
pp. 132-145. [10.1016/j.comnet.2017.04.041]

Original

Exploiting parallelism in hierarchical content stores for high-speed ICN routers

Publisher:

Published
DOI:10.1016/j.comnet.2017.04.041

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2681205 since: 2018-02-27T13:01:08Z

Elsevier B.V.

Exploiting Parallelism in Hierarchical
Content Stores for High-speed ICN Routers

Rodrigo B. Mansilhaa, Marinho P. Barcellosa, Emilio Leonardib, Dario Rossic

aInstitute of Informatics – Federal University of Rio Grande do Sul
bDepartment of Electronics and Telecommunications – Politecnico di Torino

cNetwork and Computer Science Department – Telecom ParisTech

Abstract

Information-centric network (ICN) is a novel architecture identifying data as a first class citizen, and caching
as a prominent low-level feature. Yet, efficiently using large storage (e.g., 1 TB) at line rate (e.g., 10 Gbps)
is not trivial: in our previous work, we proposed an ICN router design equipped with hierarchical caches,
that exploits peculiarities of the ICN traffic arrival process. In this paper, we implement such proposal in
the NDN Forwarding Daemon (NFD), and carry on a thorough experimental evaluation of its performance
with an emulation methodology on common off the shelf hardware. Our study testifies the interest and
feasibility of the approach.

1. Introduction

Among the architectures that go under the Future Internet umbrella, the Information-Centric Networks
(ICN) paradigm is without doubts among the most prominent ones. One of the reasons of ICN appeal
concerns its efficiency as far as content dissemination over the Internet is concerned. This is especially
important given that, according to Cisco Visual Networking Index 2016 [1], global IP traffic is expected
to grow nearly threefold by 2020 to reach 194 EB per month, with most of the traffic growth due to the
distribution of digital content.

Traffic reduction is achieved in ICN via natural support for multi-casting and transparent caching ca-
pabilities, implemented as low-level network functions. Notice that the pervasiveness of the cache function
(also referred to as “ubiquitous caching” in the ICN lingo) is recognized of limited usefulness [2], since there
is a diminishing return on deploying caches that are further away from the network edge [3]. Thus, it is
recognized [4] that most of the traffic reduction gains in the backhaul can be attained by placing caches at
the network edge, with an amount memory on the order of 100 GB (lower-bound due to optimal prefetching)
to 1 TB (expected size of LRU cache for comparable reduction).

Consequently, one fundamental precondition to the effectiveness of the ICN paradigm for content distri-
bution is the feasibility of caches satisfying three requirements: (i) large size [5], (ii) line speed operation [6]
and (iii) affordable cost. These requirements are inherently conflicting: as such, the scientific community
agrees in identifying DRAM as the only affordable storage technology that can sustain a data rate on the or-
der of 10 Gbps, which practically limits on the order of 10 GB the maximum cache size for ICN routers [6, 7],
hence several orders of magnitude less of what would be needed to attain sizeable traffic reduction [4].

While a single monolithic cache is limited by the characteristics of a single memory technology, exploiting
hierarchy of caches using heterogeneous memory technologies allows to circumvent the limit of a specific
technology [8]. Specifically, in [8] we proposed a cache hierarchy able to satisfy the aforementioned ICN
requirements. Given that caches are also known as Content Stores (CS) in the ICN lingo, in this paper we
refer to our previous proposal [8] as Hierarchical Content Store (HCS). Although hierarchical memory is
not a new idea per se [9], in the ICN context a peculiarity of the traffic arrival pattern allows a particularly
efficient design. In ICN, contents are split into multiple named chunks. Using the terminology of NDN[10],
one of the most prominent ICN architectures, clients issue interests packets to retrieve and consume data

Preprint submitted to Elsevier February 21, 2017

packets. When an interest packet hits a router, it triggers a lookup in the Content Store (CS). In case the
lookup fails, the interest is added to a Pending Interest Table (PIT) and the interest is routed according to
name-based Forwarding Information Base (FIB) lookup. In case the interest hits a cached copy of the data
in the CS, the data packet is returned. This patter continues for all data within a flow (e.g., video stream,
voice call, data file). Thus, within any flow, an arrival of an interest request for a given chunk can be used as
a predictor of future requests for subsequent chunks of the same content. This prediction can be exploited
to proactively prefetch batches of chunks from a large but slow cache (such as a Level-2 SSD) to a faster but
smaller memory swap area (such as a Level-1 DRAM) able to serve ongoing requests at line-rate. Batching
memory transfers allows to move the L2 SSD operational point from the random memory access rate (as it
would be accessing individual chunks) to the sequential memory access rate (also known as external data
rate), which is much faster. The individual chunks are then served by the L1 DRAM swap, whose random
access latency is low enough to sustain line rate (unlike in the SSD case).

While our previous work [8] designs and analytically models a Hierarchical Content Store (HCS), it how-
ever abstracts from a number of details (such as the data structures for performing lookups, the management
of lock-free multi-thread application in multi-core CPUs, etc.) that become crucial in the implementation
of a fully working HCS system. In this work, (that extends [11], see Sec. 6) we implement an HCS sys-
tem based on the NDN Forwarding Daemon (NFD) [12] and perform a thorough evaluation of the system
performance. Rather than performing experiments on a specific fully-fledged prototype as we did in [11]
(which would allow to confirm HCS to be feasible in practice but would not allow to generalize the results,
or understand fundamental limits in HCS design), in this work we prefer to explore the broad HCS design
space via emulation (which allows greater freedom in the control of the key system parameter). In our
investigation, we make the following three main contributions:

• Methodology to evaluate HCS. We extend NFD to support HCS operation, through a component named
NFD-HCS, and devise a set of techniques for emulating SSD technologies. Our techniques enable the
investigation of an HCS equipped with memories up to 1 TB, capable of L2 to L1 transfer rates up to
64 Gbps, a parallelism up to 16 threads and with multiple options to map requests among threads.

• Performance calibration of single-core HCS. We evaluate the performance of a single-core HCS and its
components, and contrast it to the expected performance from analytical models. This allows to both
verify the correctness of the NFD-HCS implementation, as well as to infer key system properties (e.g.,
lookup latencies in the real data structures).

• Performance evaluation of multi-core HCS. We finally assess the performance of a multi-threaded HCS
system: we contrast two lookup schemes, study the scaling of throughput as a function of the number
of threads (with and without hyper-threading) for different request-to-thread mapping strategies, on
bare metal as well as Cloud resources. Our results testify the feasibility of multi-TB caches, operating
at multi-Gbps rates on common off-the-shelf hardware.

In the rest of this paper, we describe the HCS design (Sec. 2), the emulation techniques and the evaluation
scenario (Sec. 3). We then report HCS emulation results in single-core (Sec. 4) and multi-core settings
(Sec. 5). Finally, we introduce related work (Sec. 6) and summarize our key findings (Sec. 7).

2. Parallel Hierarchical Content Store (HCS) Overview

In this section, we first provide a high-level description of our HCS design (Sec. 2.1), then describe our
design goals (Sec. 2.2) and means to achieve them (Sec. 2.3).

2.1. Conceptual HCS Design

We overview our original HCS design [8] with the help of Fig. 1(left-hand side). The system process
interest i and data d packets. At the high level, the system is organized as a hierarchy of cache memories.
An L2 cache memory is masked behind a smaller L1 cache memory that is capable of operating at line rate.
L1 maintains chunks of ongoing transfers for fast service in the data plane. On its turn, L2 is larger but

2

prefetch()

lookup() forward()

store()
send()

L1
Index

L1 Storage
(DRAM)

L2
Index

L2 Storage
(SSD)

i

d

i

d

lookdown()

Network
Interface

I/O
CORE(s)

Processing
 CORE(s)

SSD
CORE(s)

Next processing
stage (PIT,FIB)

 Hierachical Content Store

Emulation scope

Network
Interface

 L2 storage
emulated
(DRAM)

 L1 storage
(DRAM)

 L1 + L2
 Index

Pa
ra

lle
l

Figure 1: Synopsis of the original single-threaded HCS design [8] illustrating workflows for interest [i] and data [d] packets
(left). Scope of the multi-threaded HCS emulation system implemented in this work (right)

slower, so it can store a significant portion of the catalog, that it needs, however, to transfer opportunely to
L1. Notice that data stored in each of the L1 and L2 layers need to be indexed to be accessible.

In ICN, contents are divided into multiple named d chunks, so that a request i for a named chunk d
can be used as a predictor of subsequent requests for other chunks belonging to the same content (a trivial
example is constituted by video fragments, that will be consumed in sequence). This makes it possible to
proactively trigger a transfer of data from L2 to L1: as introduced earlier, prefetching runs over batches of
chunks, since the transfer throughput from L2 to L1 is in this case much faster than it would be operating on
individual chunks. At the upper level, as the content has been prefetched, memory operations happen at line
speed: in practice, L1 acts as a Swap area, storing chunks of ongoing downloads that were prefetched from
L2. At the lower level, cache operations occur before the request for the next batch comes: this effectively
decouples the timescale of the lower, slower, level from the timescale of the network data path on the upper
level.

The L1 and L2 caches can be managed by different replacement policies, e.g., such as Random (RAND),
First In First Out (FIFO), Least Recently Used (LRU) or Last Frequently Used (LFU). We note that LFU
is not only more complex to implement, but also meaningful only for stationary catalogs [13], whereas LRU
is often used as a benchmark and FIFO is implemented in the NDN Forwarding Daemon. Additionally, we
note that cache decision policies have been found to have a major impact with respect to cache replacement
policies [14]: rather than deterministically accepting new content as in the classic Leave a Copy Everywhere
(LCE) policy implicitly assumed, more effective strategies include for instance simple probabilistic schemes
Leave a Copy Probabilistically (LCP) [6] or multi-stage LRU policies (k-LRU) [15] that are more suitable
in practice and converge to LFU for stationary catalogs [16]. For the sake of simplicity, in this paper, we
consider a FIFO cache in what follows.

Fig. 1(right) shows an HCS attached into a complete ICN router system. The system handles packets
arriving at the Network Interface Card (NIC) through a pipeline of threads performing operations such as
packet I/O, packet processing (PIT, FIB and CS lookup), and SSD I/O. In Sec. 3.1, we will explain the
scope of the study, after proposing our scheme for parallelizing HCS.

2.2. Design goals

Our general design goal is to couple optimally L2 and L1 considering their transfer rates and sizes.
Achieving the goal is a challenging task considering hardware specifications (e.g., indexing L2 content,
access to L2 data, use of multiple physical SSDs in parallel) and software aspects (e.g., SSD driver, threads,
and memory management).

We explain our design goals in more details with the help of Fig. 2, that reports useful characteristics
of the memory technologies (left) as well as illustrates the cache miss rate of requests exiting the router
(y − axis) as a function of the overall memory size (x− axis) of a router receiving requests at full line rate
(right). The two highlighted regions correspond to different memory technologies (i.e., DRAM and SSD).

3

Metric
DRAM SSD SSD

a b c
Hardware Interface 288 Pin PCIe-3 x4 SATA 3
Max. Sequential Read - 3,000MB/sec 550MB/sec
Max. Random Read - 250,000 IOPS 80,000 IOPS
Max. Transfer Rate 25,600MB/sec - -
Size 2× 4GB 480GB 1,920GB
Price (USD/MB) 0.0232 0.0007 0.0005

C
a
ch

e
 m

is
s
fl
o
w

(u

p
st

re
a
m

)

Aggregate cache size (Cache/catalog ratio)

c

b

a

DRAM SSD

L2
 t

h
ro

u
g

h
p

u
t

α1<α2α2

Wasted
SSD space

Slower SSD hardware
 and/or software

Faster SSD hardware
and/or software

{ }
Fully exploited

SSD space

Figure 2: Examples of current off-the-shelf memory technologies [17] suitable for HCS (left) and sketch of expected performance
for combining them in multiple HCS settings (right)

Intuitively, the larger the catalog portion that fits the router memory, the lower the cache miss flow exiting
the router. The plot shows two example lines, with different slopes depending on the workload settings (i.e.,
the catalog size |C| and Zipf skew α).

Three operational points a , b , c are further illustrated and refer to different system settings (e.g.,
simple vs hierarchical memory system). In a single-level CS based on DRAM (i.e. which typically provides
higher throughput than the line rate of routers), the cache miss flow follows the slope up to the expected
operational point a , which depends on the amount of available DRAM.

In a hierarchical system, the cache miss rate may either follow the linear slope as in b , or may saturate
due to an L2 throughput bottleneck as in c . The latter case occurs because L1 misses cause a flow of
requests to L2 that may exceed its maximum prefetching rate. Chances that this happens increase with L2
size, so that content is possibly present in L2 but cannot be accessed in a useful time. Notice also that the
read demand from L2 depends linearly on the hit probability at L2, which, in turn, grows with the storage
size. Consequently, the system works at the expected operational point until the cache miss flow from L1 to
L2 exceeds the maximum read rate of L2. After this point, the extra L2 size brings no benefits, resulting in
some wasted L2 space. Clearly, operating HCS at points such as c must be avoided, while situations such

as b are desirable.

2.3. Parallelizing HCS

To achieve the above design goals, the key is to exploit parallel execution with a lock-free design. Intu-
itively, while a single SSD of size S is limited by a throughput T , the efficient use of two independent SSDs
of size S/2 each, would allow doubling the access rate 2T to an aggregate L2 size S. Threads compete for
CPU resources to access DRAM and SSD content, sharing a PCIe-3 bus (whose throughput is on the order
of 120 Gbps in the 16x lane configuration, and thus far from being a system bottleneck).

We consider a parallel software design where independent subsets of the requests are served by different
threads. Packets are distributed among threads using a hash function that operates on the packet name:
the hash function ensures that all chunks of a specific batch are always handled by the same processing
thread. This has two consequences: first, since all chunks of a specific batch are always handled by the same
processing thread, this increases cache efficiency with respect to e.g., randomized load balancing. Second,
since the portions of the catalog that are managed by each thread are separated contents, it follows that
each thread manages an independent HCS: thereby, multiple HCS can perform prefetching operations in a
lock-free multi-thread manner. The remainder of this paper further details this design, as well as carefully
assesses the performance of its fully working implementation.

3. Evaluation Methodology

In this section, we propose the emulation-based evaluation methodology to investigate HCS and its
parallelizing extension. We start by refining the scope of our study (Sec. 3.1), describe our software tool
and the emulation techniques (Sec. 3.2), and report details of the emulated scenario (Sec. 3.3).

4

3.1. Investigation Scope

We now restrict the investigation scope by specifying the components of interest, as illustrated in
Fig. 1 (right). We assume that if the NIC is not capable of performing hash operations on non-IP header
fields, this can be handled by I/O cores. The NIC (or the I/O cores) use a hash function to distribute
packets to processing cores assuring that a specific batch is always handled by the same core (represented
by multiple shades of gray). This is important, since to avoid locking and to increase the cache efficiency, it
is necessary that requests for the same content are always consistently handled by the same thread, which
manages its own independent memory portion. In the context of this work, tasks involving access to a
Content Store (CS) are managed by a processing core. For the sake of simplicity, we instead neglect the
other NDN data plane components such as Pending Interest Table (PIT), which is accessed whenever a data
packet is received, and Forwarding Information Base (FIB), which is accessed whenever an interest packet
is received.

To avoid gathering results that are representative of very specific SSD memory technologies, we further
emulate L2 hardware and drivers, abstracting the SSD as a storage device with given size and throughput.
This also means that in this work we are not directly using resources that are needed to manage Layer-2 of
an HCS, such as performing low-level read/write operations from/to SSD cores. The performance analysis
is thus to be interpreted with a grain of salt, in that extra cores for packet demultiplexing, PIT/FIB lookup
and SSD management would be needed to complete the HCS system under test.

3.2. NFD-HCS Emulation Tool

We implemented an HCS by extending the NDN Forwarding Daemon (NFD) [12], and refer to it as
NFD-HCS in what follows. We point out that NFD-HCS is fully functional so that it could be used for
experiments with real payload, and not only for emulation. However, as the L2 is emulated (i.e., SSD drivers
are not managed at this stage), this makes NFD-HCS of limited use for real deployments for the time being.

We design a basic serial algorithm for the reading operation of NFD-HCS. The algorithm first attempts
to read a chunk from the L1 CS: on a hit, the corresponding data is returned. Otherwise, a batch of B
chunks is read from the L2 CS, and each chunk of the batch is inserted on the L1 swap: after the transfer,
the data corresponding to the request that generated the transfer is returned. To keep the implementation
simple, we instead leave optimizations [8] such as prefetching subsequent batches on reception of requests
for chunks that are at position B − 1 in a batch for future work.

NFD-HCS implements the two memory layers and their operations (namely, L1.lookup, L1.insert,
L2.read, and L2.insert) as follows. The first layer instantiates an unmodified NFD Content Store (NFD-
CS). The NFD-CS implements a Skip list data structure and employs a FIFO chunk eviction policy1. The
second layer instead stores data on the main DRAM and emulates a slower memory technology (e.g. SSD)
by waiting some time before returning the data. In principle, this has some potential downsides, in that
in the emulated HCS, the DRAM is accessed more often (i.e., not only for the L1 DRAM but also for the
emulated L2 SSD) that it would be in a real HCS. In practice, however, this does not affect the results for
the L2 operational regime we explore in this work.

Notice that the testbed hardware platform constrains the range of evaluated parameter values: for
example, the aggregate size of NFD-HCS is constrained by the available DRAM. Thus, to extend the range
of emulated NFD-HCS setups (e.g. to evaluate an NFD-HCS with 1 TB storage while using a testbed with
only 32 GB of DRAM), we introduce three classes of emulation techniques, and explore two strategies in
each class. These techniques and their respective tradeoffs are summarized in Tab. 1 and detailed next.

3.2.1. L2 Memory Allocation

The first emulation parameter defines when (before or during the experiment) the required memory for
returning data from L2 is allocated. This parameter offers a tradeoff between memory space used by L2
(and thus the maximum |L2|) and the highest L2 throughput. We consider two options as follows.

1More precisely, NFD-CS employs a prioritized FIFO, composed of three eviction queues (fresh data, stale data, and
unsolicited data). However, in this study, all chunks go through the fresh data queue, since we do not consider scenarios with
stale nor unsolicited data.

5

Table 1: Emulation parameters, considered strategies, and their respective tradeoffs

Technique Parameter Strategy Pros Cons

1. L2 Memory Allocation M
Static Higher L2 throughput Smaller L2 size
Dynamic Larger L2 size Lower L2 throughput

2. L2 Delay Implementation D
Busy waiting More accurate Overhead
Sleep syscall Less accurate No overhead

3. Hash Function Input H
Content Simpler implementation Higher load skew
Batch Better load balancing Higher implementation cost

Static. In this option, all the required memory for both L1 and L2 is allocated during the experiment
instantiation (i.e., before the measurement starts). During the execution of the experiment, batches are
found using content and chunk indexes, resulting in L2.read operation with O(1) complexity. However,
the size of L1 and L2 sizes is constrained by the available DRAM size as |L1|+ |L2| ≤ |DRAM |. While
this setting is useful to confirm the soundness of the design in toy-case scenarios, however it severely
limits the kind of scenarios that can be explored.

Dynamic. To extend the size of L2, we can dynamically allocate the required memory upon reading data
from it. In this case, one batch of data is dynamically allocated per L2 read operation and fulfilled
on demand. This batch of data replaces another batch at L1, which is then deallocated2. Therefore,
the memory usage is constrained by the L1 size and the batch size as |L1| + nB ≤ |DRAM | (where
n is here the number of batches that are being read in parallel from the L2), which is extremely
effective in decoupling the L2 size from the available amount of DRAM. The drawback is that memory
allocation/deallocation operations represent overhead, thus gathering a conservative estimate of the
throughput the testbed could sustain, and possibly introducing a system bottleneck when running in
highly parallel setups.

3.2.2. L2 Delay Implementation

The second emulation parameter defines the algorithm used to emulate the L2 delay, and we consider
two options as follows.

Sleep syscall. This option calls a usleep() system call. The delay we can emulate using this approach is
not only limited by the time granularity of the system call (typically nanoseconds in current OS) but
also by its time precision (typically milliseconds) and by the overhead imposed by context switching.
Later on (Sec. 4.2) we will see, for example, that the maximum throughput we can reliably emulate
using this method (considering default settings) is around 4 Gbps.

Busy waiting. The second option is based on an algorithm that (i) stores the clock time, (ii) reads
content from L2, and (iii) keep reading the clock at each iteration of an idle loop until the desired
delay is reached. We can precisely emulate smaller delays using this second approach than with the
sleep syscall. On the other hand, the busy waiting approach consumes CPU cycles useful for other
HCS operations, which is of particular importance when evaluating multiple HCS in parallel.

3.2.3. Hash Function Input

The last emulation parameter defines the input to which the hash function is applied to map requests to
different cores. We again consider two alternatives, which have distinct impacts on the load skew, as follows.

Content. The simplest option is to directly use content names as input for the hash function. This
however may result in a load skew among threads, since the popularity of different contents typically
follows a Zipf distribution.

2NFD (and thus our HCS implementation) uses a special type of C++ memory pointer that deallocates memory space when
its reference counter reaches zero.

6

Table 2: Testbed hardware settings

Label Param. Value

Local

CPU 1.90GHz Intel E52420
NUMA 1 node, 6 physical, 12 logical cores
RAM 32GB - 1,333MHz
Opts. CPU Gov. = Performance, HT = {Off (default), On}

Cloud
CPU 2.00GHz Intel E52698B

(Microsoft Azure G3)
NUMA 1 node, 8 cores
DRAM 112GB (speed unknown)
Opts. None

Batch. To mitigate the above issue, we can use a batch identifier as input for the hash function. We define
the batch identifier as the concatenation of content name and the integer part of chunk id/batch size.
Notice that, in this case, the load balancing is no longer impacted by the Zipf distribution, since batches
of popular contents are now hashed to different cores. Additionally, by making all contents equally
sized, we can obtain results from scenarios with perfect load balancing (which may be particularly
important when benchmarking multiple HCS in parallel).

3.3. Evaluation Scenarios

In this section, we describe hardware platforms used to run experiments (Sec. 3.3.1), the explored software
settings (Sec. 3.3.2), and finally discuss the workload (Sec. 3.3.3) and microbenchmark process (Sec. 3.3.4).

3.3.1. Testbed Settings

We use two different testbeds, whose main characteristics are summarized in Tab. 2. The first one is a
local host, which has the advantage of being an entirely controlled environment and allowing adjustment and
evaluation of options such as hyper-threading, and settings of CPU dynamic voltage scaling. The second
platform is a VM hosted on a public cloud server, whose results can be reproduced by other researchers with
access to the same cloud. An additional disadvantage in that case is that the experiments run on shared
resources and can be subject to interference, even though statistically valid results can still be extracted
from multiple runs. We use the local host as the default platform and the cloud platform for validation
purposes. Both machines run the same software set, namely: Ubuntu 12.04 LTS, with Linux kernel 3.14.21,
NFD package v0.3.1, ndn-cxx library v0.3.1, and Boost Libraries v1.54.

3.3.2. HCS Settings

Tab. 3 summarizes NFD-HCS parameters and the range of corresponding setting values considered in
this work. The amount of data carried by a chunk3 is indicated with |c|, and we use the current default value
of NFD |c| = 8 KB. As for the memory size available at Layer-1 and 2, which are of utmost importance and
thus extensively studied in this work, we consider the ranges |L1| ∈ [10 MB,10 GB] and |L2| ∈ [10 GB,1 TB]
respectively.

The batch size B defines the amount of data transferred from L2 to L1 per L2.read operation. Notice
that the batch size must be large enough to effectively use the sequential data rate at L2, that is advertised
to be achievable for as low as 64 KB worth of data. Based on our analytical study [8], a batch size of
B = 10 chunks is operationally effective. Additionally, experimental results of the fully-fledged prototype
involving a real SSD presented in [11] confirm the range B ∈ [8,16] to be a good choice, for which we fix
B = 10 chunks in what follows.

The L2 throughput τL2 is our L2 control knob, lumping together the speed of individual disks, the SSD
drivers, static delay components, etc. For a batch of B chunks having fixed size |c|, the value of τL2 defines
the duration of the emulated delay:

dL2.read = B|c|/τL2 (1)

3We interchangeably express size in terms of bits, bytes, or chunks depending on the context.

7

Table 3: NFD-HCS software (left) and workload (right) settings
Meaning Param. Values Meaning Param. Values
Chunk Size |c| 8KB Catalog size |C| (up to) 106 chunks
Batch Size B 10 chunks Workload type W {Seq, Real, Unif}
L1 Size |L1| [10MB,10GB] Workload size |W | (up to) 107 requests
L2 Size |L2| [10GB,1TB] Streaming rate 512Kbps (8 chunks/sec)
L2 Throughput τL2 [4,64]Gbps Stream size 160 sec (10.25MB or 1,280 chunks)
Parallelism Degree R [1,16] threads Arrival rate (Real only) λ 1 request/sec

Zipf skew (Real only) α 1

We evaluate a large range of SSD throughput τL2 ∈ [4, 64] Gbps, and use τL2 = 4 Gbps as the default value
in reason of the experimental performance of current technologies gathered in our previous prototype-based
study [11]. Finally, the parallelism degree R ∈ [1, 16] defines the number of processing threads being used.

3.3.3. Workload settings

Considering the parameters shown in Tab. 3, we define three different workload settings: sequential
(Seq), random uniform (Unif), and realistic (Real). The Seq and Unif workloads are included as best-case
and worst-case references, respectively: in the former, each chunk of each content is requested sequentially;
in the latter, chunks are randomly chosen with a uniform probability. The Real workload, on its turn, is
included to yield expected performance in the typical usage. In this workload, requests for the first chunk
of contents arrive according to a Poisson process of rate λ. Requests for subsequent chunks are subject to
the streaming rate constraint and are periodically spaced (i.e., no interest shaping nor congestion control).
Contents objects are chosen from the catalog following a Zipf popularity distribution with shape α. The
workload prefills the L1 (hot start) with a warm-up period equal to ten times the L1 size, after which a
number of objects equal to the catalog size are requested |W | = |C|+ 10|L1|.

To avoid emulating other operations that cache misses would compulsorily imply (such as generating
interests packets, PIT management, FIB lookup, etc.) and focus on the performance of core NFD operations
involving the cache system (e.g., name lookup, access for data, etc.) we purposely cap the catalog size to
cache size |C| = |L2|. While this may seem an odd choice, however we point out that, as previously
illustrated, the most stressful scenario for the HCS system is the one that maximizes the L2 hit rate:
indeed, L2 hit turn into prefetching operations involving the L2 and L1 memory. As such, while the scenario
does not lead to realistic performance as far as the cache hit ratio is concerned (which is not the main aim
of this work), it however leads to a worst-case stress test for HCS capabilities (the main aim of this work).

3.3.4. Microbenchmark Process

To perform the measurements, we developed a specific purpose micro-benchmark NFD module that
includes only the relevant functionalities. As input, it receives a component of interest (e.g. monolithic
CS or NFD-HCS) and a workload. Recall we assume that the NICs (or the I/O cores) are capable of
performing hash operations on non-IP header fields, via Receiver Side Scaling (RSS) in hardware (or similar
implementation in software). Thus in the emulation we instantiate and possibly split the workload among
threads in the evaluation setup (for R > 1). We divide workload into pieces of 10 GB to save DRAM
memory for the component size. The emulation pauses after a 10 GB workload has been processed, after
which another workload piece is loaded and the emulation resumes.

The micro-benchmark objective is to measure the time a CS or HCS system takes to process a given
workload as the main performance metric. When evaluating HCS, the micro-benchmark also registers the
L1 hit ratio, and when evaluating multi-core HCS, it registers the workload balance as well. We employ
external software (i.e., GNU time) to measure the resources of the underlying system (e.g. CPU, memory,
page faults) to be able to correlate the system performance with its underlying causes. All experimental
results are collected from five runs, with workloads generated with different random seeds, and are shown
with 95% confidence interval (Students t-distribution with 4 degrees of freedom).

8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 0 5 10 15 20
 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

Content Store Size [GB]

W=Seq
W=Real
W=Unif

CS
operations

FWD
operations

(a)

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20
 0

 20

 40

 60

 80

 100

N
u
m

b
er

 o
f

m
aj

o
r

p
ag

e
fa

u
lt

s

C
P

U
 U

sa
g
e

[%
]

Content Store Size [GB]

Page faults
CPU

(b)

Figure 3: Single-core NFD-CS performance (left) and low-level resources utilization (right)

4. Calibrating Single-Core HCS

In this section, we calibrate a single-core HCS and its components, before assessing the performance
of more complex multi-threaded designs, where we will no longer be able to model software and hardware
dependencies. We begin by measuring the NFD performance for the sake of baseline comparison (Sec. 4.1),
and assessing the accuracy of the L2 emulation techniques (Sec. 4.2). Then, we validate the HCS emulation
contrasting the results with analytical modeling (Sec. 4.3) and assess the impact of the increasing the size
and throughput of L2 in the HCS performance (Sec. 4.4). Finally, we summarize key findings (Sec. 4.5).

4.1. Baseline NFD Performance

We gather baseline single-threaded NFD performance for both (i) the forwarding engine (FWD) and
(ii) the single-layer content store (CS). Aiming to get an upper-bound of NFD performance, we engineer
scenarios such that contents always fit entirely in the router memory. We evaluate different catalog sizes:
10 MB (that in principle fits the CPU cache), 100 MB (that no longer fits the CPU cache), and in the
[1,22] GB range (all within DRAM memory capacity of 32 GB; notice that we have to account 10 GB of
DRAM for preloading pieces of the workload as explained in Sec. 3.3.3).

The system performance of the CS and FWD components evaluated in this experiment, expressed in
terms of throughput (left y-axis) as well as the operation rate (right y-axis), is reported in Fig. 3(a). Two
families of curves are shown: the bottom one corresponds to the FWD operations and the upper family
to the CS operations. A comparison between the families shows that FWD is the fundamental bottleneck
in these scenarios: hence, as long as any re-engineering of NFD does not slow down CS operations below
the FWD reading capacity (shaded region), we can expect these changes to be transparent to the current
NFD implementation. It is also important to mention that statistical properties of request process have a
significant impact on throughput. The consistent difference among the three curves in each family confirms
our choice of sequential and uniform access patterns as the best and the worst cases, respectively.

Next, notice that for all curves the performance is tri-modal (particularly visible in the CS family).
First, when the catalog fits the cache, CS throughput is especially high. Second, throughput exhibits a large
plateau in the [1,20] GB range, stabilizing to values that depend on the workload and demonstrates that
single-level memory can scale well up to the DRAM available memory size. Third, for large L1 sizes, the
throughput drops: this is as a consequence of OS memory management, as illustrated in Fig. 3(b), which
depicted the number of major page fault (left y-axis) and CPU usage (right y-axis) as a function of the CS
size. It is easy to see that native OS memory management can move the bottleneck from CPU to IO even
for relatively small CS sizes, making the system potentially unstable: these results motivate, once more, the
interest toward a hierarchical memory solution as the one we investigate in this paper.

9

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

 100

 1000

O
b
se

rv
ed

 T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 R

at
e

[K
ch

u
n
k
s/

se
c]

Target Throughput [Gbps]

M=Dynamic
M=Static

(a) D = Sleep

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

 100

 1000

O
b
se

rv
ed

 T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 R

at
e

[K
ch

u
n
k
s/

se
c]

Target Throughput [Gbps]

M=Dynamic
M=Static

(b) D = Busy

Figure 4: Accuracy of techniques for emulating L2: M = Dynamic vs M = Static memory allocation for D = Sleep (a) vs
D = Busy (b) delay emulation, considering |L1| = 1 GB, |L2| = 10 GB, and W = Real

4.2. Validating L2 Emulation Techniques

The aim of this section is to validate the L2 emulation techniques introduced earlier. Recall that we
can either use D ∈ {Busy, Sleep} delay emulation techniques to control the external data rate τL2 of the
emulated L2 devices. Additionally, we can access L2 data that has either been statically allocated or dy-
namically allocated M ∈ {Static,Dynamic}. For the time being, we consider a single-core implementation,
so we set R = 1 and defer the study of R > 1 to Sec. 5. Fixing for the time being the size of the content
stores to |L1| = 1 GB and |L2| = 10 GB, we explore a range of L2 throughput values τL2 ∈ [1, 64] Gbps,
running the W = Real workload over a range of L2 component setups, resulting from the combination of
memory allocation techniques M = {Dynamic, Static} and delay implementations D = {Sleep,Busy}.

Fig. 4 shows the observed L2 throughput as a function of the target L2 throughput (logscale). Notice
that, for any (M,D) parameter pair, the identity function f(x) = x would be the expected result in case
the combination of emulation techniques would be able to sustain the target throughput. Notice also that
a region is highlighted in the plots, corresponding to the NFD forwarding bottleneck early assessed: in case
the HCS throughput falls above the shaded region, then the emulation techniques do not introduce any
harsher bottleneck.

From Fig. 4(a), it is easy to notice that the D = Sleep wait implementation offers unsatisfactory results
when τL2 > 4 Gbps (irrespectively of the memory allocation technique M), which is expected as the system
call is not reliable to wait for short times such as the ones we are targeting here. As such, in the remainder
of this paper we select the D = Busy wait technique for emulating L2 access throughput. The downside is
that CPU utilization is higher in this case, as by design the busy wait loop saturates CPU utilization: it
follows that, in a real system, the CPU cycles spent in the busy loop would be available for other operations
(such as managing L2 SSD, forwarding, etc.).

From Fig. 4(b), notice that the D = Busy technique allows to reliably emulate throughput up to
τL2 ≈ 64 Gbps only when coupled to a M = Static memory allocation technique, whereas throughput
saturates to about τL2 ≈ 4 Gbps when an M = Dynamic memory allocation technique is used. It follows
that a (D,M) = (Busy, Static) pair allows to emulate L2 with throughput-unrestricted but size-restricted
characteristics (i.e., constrained by the amount of DRAM). Conversely, the (D,M) = (Busy,Dynamic)
pair allows to emulate L2 with size-unrestricted but throughput-restricted characteristics (i.e., constrained
to about 4 Gbps, roughly in par with NFD forwarding throughput). In what follows, depending on the
parameter under investigation, we will use one of the above combinations: for the sake of simplicity, we
default to a (D,M) = (Busy, Static) setting unless otherwise stated.

4.3. Emulated NFD-HCS vs Analytical Models

We now turn our attention to the two-layer CS architecture. For the time being, our aim is to validate
results of our NFD-HCS implementation against expected results of knowingly accurate [18] analytical

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

L
1
 H

it
 R

at
io

L1 Size [GB]

W=Seq: measured
W=Real: measured

W=Unif: measured.

model
model
model

(a) L1 hit ratio

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

 125

 150

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

L1 Size [GB]

W=Seq: meas.
W=Real: meas.
W=Unif: meas.

fitted
fitted
fitted

(b) HCS throughput

Figure 5: Validating HCS via Analytical models: (a) Comparison of L1 hit ratio for analytic models vs HCS-NFD experiments
and (b) corresponding system throughput. Layer-2 content store of |L2| = 10 GB, τL2 = 4 Gbps, D = Busy, M = Static

models (Sec. 4.3.1) and infer properties of NDF-HCS such as delay of atomic operations that would be
otherwise hard to measure (Sec. 4.3.2).

4.3.1. Validating NFD-HCS implementation

As we have previously seen, the L1 hit ratio has a fundamental impact on the HCS performance, as
the L2 request rate depends on the miss stream at L1. Hence, we start our analysis by modeling the L1
hit probability for the three workloads. For the uniform request workload, the hit probability necessarily
equals the fraction of the catalog that is stored in the L1 cache, independently from the identity of contents
which are stored in the cache. Therefore, denoting by |L1| and |C| the size of the L1 cache and catalog,
respectively, we have:

E[Puni] =
|L1|
|C| (2)

Under the sequential request workload, we have that the request associated with the first chunk within
every batch yields a cache miss4 while the remaining chunks of the batch yield a hit due to HCS prefetching.
Denoting by B the batch size, we have:

E[Pseq] =

{
1, if |L1| = |C|
1− 1/B, otherwise

(3)

that also accounts for the specific |L1| = |L2| case where, since in these experiments the whole catalog fits
|L2| = |C|, the L1 hit probability degenerates to 1. Finally, under the realistic workload, the first chunk
of a batch is found in L1 with a probability P 1st

real while, due to prefetching, all the other chunks within the
same batch are found in L1 w.h.p as for the previous case, thus:

E[Preal] =
1

B
P 1st
real +

(
1− 1

B

)
= 1− 1− P 1st

real

B
(4)

The value of P 1st
real can be estimated numerically using the Che’s approximation [19], that has recently been

extended for FIFO5 caches [16]. Assuming that a request for an object m ∈ C arrives according to a Poisson
process of rate λm, we have:

P 1st
real =

∑
m

λ2mTC
1 + λmTC

(5)

4Notice that an optimized design [8] would prefetch the next batch at the penultimate chunk, which is not currently supported
in our implementation.

5Recall that NFD implementation uses FIFO replacement.

11

Table 4: Inferring lookup duration of NFD-HCS data structures

Variable Value (µs)
Asymptotic

RMSE
error

dseqL1.lookup 6.6 ± 0.06 0.9%
0.076

dseqL1.insert 67.2 ± 3.63 5.4%

dreal
L1.lookup 7.4 ± 0.06 0.9%

0.097
dreal
L1.insert 42.1 ± 5.31 12.6%

duni
L1.lookup 12.1 ± 0.02 0.9%

0.007
duni
L1.insert 37.0 ± 0.74 1.9%

with TC being the only solution of ∑
m

λmTC
1 + λmTC

= |L1| (6)

which can be obtained with arbitrary precision by a fixed point procedure.
In the experiments, we configure NFD-HCS system with fixed L2 size |L2| = 10 GB and L2 throughput

τL2 = 4 Gbps (emulated with M = Static memory and D = Busy wait), and vary L1 size in the range
|L1| ∈ [0.1, 10] GB. For each workload W ∈ {Unif, Seq,Real}, Fig. 5(a) contrasts the experimental curves
to the corresponding model-based estimation: the agreement between modeling and experimental results
validates our NFD-HCS implementation. More precisely, we found the following root mean square error
(RMSE) between model and empirical data for each workload: RMSESeq = 1·10−6, RMSEReal = 1.6·10−2

and RMSEunif = 4 · 10−4.

4.3.2. Inferring NFD-HCS properties

While L2 delays are known as we emulate them with busy sleep and information concerning L1 memory
read/write delays is available from data sheets, the software overhead of managing L1 content store in NFD
(i.e., the delays resulted from lookup dL1.lookup and insert dL1.insert operations in the
Skiplist data structure) is harder to determine. Indeed, instrumenting the NFD code to measure these
delays would provide biased results, since clock precisions do not allow accurate timestamping of an indi-
vidual operation and would additionally interfere on the system performance. A more promising direction
is to infer these characteristics from a model of NFD-HCS system performance. We start by observing that
the throughput can be expressed as:

E[Throughput] = |c|/E[d] (7)

where |c| is the chunk size and E[d] the average chunk service time, which in its turn can be expressed as:

E[d] = Phitdhit + (1− Phit)dmiss (8)

where Phit is the L1 hit ratio computed as either (2), (3), or (4), whereas the hit/miss delays account for the
different CS operations performed by NFD-HCS. Specifically, for an L1 hit, the service time equals the time
needed to access a chunk in L1 (i.e., find a pointer to the content in L1 and access the memory location):

dhit = dL1.lookup + dL1.read ≈ dL1.lookup (9)

where the last approximation follows from the fact that NFD lookup is expected to dominate the DRAM
access latencies.

On an L1 miss, the delay in accessing a chunk stored in L2 is given in NFD-HCS by the sum of three
terms: (i) a dL1.lookup term modeling the time needed to recognize that the content is not in L1, (ii) a
dL2.read term to read the content from L2, and (iii) a dL1.insert term to insert the whole batch in L1:

dmiss = dL1.lookup + dL2.read + dL1.insert (10)

By fitting our experimental results (i.e., hit probabilities and throughput), we can infer estimates of
dL1.lookup and dL1.insert. Fitting results are shown in Fig. 5(b) (again showing the NFD forwarding bottleneck

12

 0

 2

 4

 6

 8

 10

 10 25 50 100 250 500 1000
 0

 25

 50

 75

 100

 125

 150

1 0.2 0.1 0.04 0.02 0.01

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

L2 size [GB]

HCS |L1|/|L2| Ratio

Baseline NFD
|L1|∈[10, 24]GB

HCS: measured model

(a) |L1| = 10 GB, τL2 =4 Gbps, W = Real, M = Dynamic,
D = Busy

 0

 2

 4

 6

 8

 10

4 8 16 32 64
 0

 25

 50

 75

 100

 125

 150

164 82 41 20 10

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

L2 Throughput τL2 [Gbps]

L2 Busy wait batch latency [µs]

Baseline NFD
|L1|=10GB

HCS: measured model

(b) |L1| = 1 GB, |L2| = 10 GB, W = Real, M = Static,
D = Busy

Figure 6: Impact of emulated L2 size (a) and throughput (b) on the NFD-HCS system performance

as a shaded region) and summarized in Tab. 4, from which we gather small asymptotic errors (especially
for dL1.lookup). Two remarks are worth stressing. First, Skiplist per-chunk insert and lookup operation have
both logarithmic cost: yet, the fitting suggests that inserting consecutive chunks of a batch may bring some
gain in terms of memory management (as the memory lines prefetched for the insertion of the first chunk are
useful for subsequent chunks of the batch). Second, notice that the lookup duration L1.lookup is on the order
of 10µs and would not allow to sustain operation on the order of 10 Gbps: i.e., L1 memory management
overhead is about 3 orders of magnitude larger than the DRAM access time, which is on the order of 10 ns.
This confirms that CS indexing on an off-the-shelf architecture can become a software bottleneck as well [7],
motivating the need for parallel NFD-HCS execution.

4.4. Impact of L2 characteristics on NFD-HCS Performance

We now evaluate the impact of L2 on the single-threaded NFD-HCS performance considering the |L2|
size and τL2 throughput parameters: specifically, we expect that, the larger L2, the higher the stress on
the NFD-HCS system; conversely, we expect that prefetching at higher L2 rates can be beneficial for NFD-
HCS performance. We now neglect the optimistic W = Seq and pessimistic W = Unif benchmarks, and
limitedly consider a W = Real workload for the sake of brevity.

4.4.1. Scaling L2 Size

In this experiment, we consider an NFD-HCS with fixed τL2 = 4 Gbps, |L1| = 10 GB, and a range of
|L2| = [10, 1000] GB size. We employ M = Dynamic memory allocation for L2 to overcome the memory
constraints of the testbed. Fig. 6(a) shows NFD-HCS system performance as a function of the L2 size, to
which, for reference purpose, we superimpose the single-layer NFD baseline performance early gathered.
First, notice that for the smallest L2 size of 10 GB, NFD-HCS exhibits some overhead with respect to NFD:
this penalty is expected, and further exacerbated by the use of M = Dynamic memory allocation technique.
Second, notice furthermore that despite its simplistic sequential algorithm (with no optimizations such as
prefetching on the penultimate chunk hit), NFD-HCS remarkably outperforms NFD already for cache size
of about 24 GB. Finally, notice that as the L2 size increases, the system performance logarithmic decreases:
since |C| = |L2|, the L1 hit ratio decreases and L2 has a larger stream of requests to satisfy. However, even
for L2 as big as 1 TB, the overall NFD-HCS throughput is still close to the L2 transfer rate τL2 = 4 Gbps,
and to the NFD forwarding rate (shaded region). It follows that we can expect a parallel implementation
being able to serve requests from large caches at line rate.

4.4.2. Scaling L2 throughput

Although a single-threaded NFD-HCS solves the cache-size challenge, it fails in achieving the line rate
requirement. We thus aim at understanding to what extent this downside is due to a hardware limitation

13

(e.g., which can be get rid of by simply increasing the L2 throughput, as we do in this section) and to what
extent the NFD-HCS limit is due to a single-threaded software bottleneck (which could be get rid of by
multi-core implementation, which we deal with in Sec. 5). We thus explore a broad range of throughput
τL2 = [4, 32] Gbps: whereas 4 Gbps is the throughput of the SSD technology we used in [11], we argue that
this range is plausible both due to advances in the SSD technologies (i.e., higher individual rate), as well as
due to the possibility to use multiple SSDs (i.e., higher aggregate rate). Since we are considering cases where
τL2 > 4 Gbps, we use M = Static memory (recall Sec. 4.4), which imposes a maximum L2 size restriction:
we thus set NFD-HCS content stores to |L1| = 1 GB and |L2| = 10 GB, which safely fit in DRAM.

Fig. 6(b) depicts the NFD-HCS throughput as a function of the L2 throughput τL2, and additionally
report the throughput of a baseline NFD with single-layer CS having size |L1| = 10 GB. Two observations
are in order. First, given the x-axis log scale, a linear slope implies a logarithmic return for the system
throughput as a function of advances in L2 hardware: e.g., when the τL2 increases 16-fold from 4 to 64 Gbps,
the NFD-HCS throughput gains less than a 2-fold increase. Second, increasing the L2 throughput is not
enough to make NFD-HCS reach the performance of a single-layer CS with equivalent size. This result is
probably due to the prevalence of a software bottleneck tied to the additional overhead of handling a second
memory layer, and reinforces the need for multi-threaded execution.

4.5. Lessons Learned

In this section, we learned the following main lessons:

• Baseline NFD performance shows that a single-level CS scales well up to the DRAM capacity, with
a single-core implementation able to fetch (but not to forward) content close to the line rate. As the
CS size approaches the DRAM size however, there is a risk that OS memory management moves the
bottleneck from CPU to IO, leading to severe starvation and motivating the investigation of HCS.

• A single-threaded NFD-HCS supports well large cache sizes, which makes ICN appealing at the network
edge, but is not capable of sustaining CS operation at line rate. The main bottleneck of NFD-
HCS is software (i.e., single-core operations) and while hardware improvement helps (e.g., higher L2
throughput) it cannot however completely relieve such bottleneck.

• Ingenuity is necessary to craft emulation techniques able to cope with either very large or very fast L2
technologies. The performance of NFD-HCS is well matched by analytical models, that additionally
enable to gather understanding in fundamental system characteristics that are otherwise hard to
directly measure (e.g., duration of lookup in NFD Skiplist data structures).

5. Evaluating Multi-Core HCS

We now deal with issues that are important when emulating multi-threaded NFD-HCS systems, such as
the performance scalability as a function of the parallelism degree R and of hardware settings such as Hyper-
threading (Sec. 5.1). We then refine the performance evaluation by comparing two schemes for sharing the
workload among threads (Sec. 5.2) and project on achievable gains of refined lookup algorithms (Sec. 5.3).
Finally, we assess the impact of the underlying off-the-shelf testbed hardware on the emulation results by
using Cloud resources (Sec. 5.4), and summarize key findings (Sec. 5.5).

5.1. Impact of Parallelism Degree

In this experiment, we observe NFD-HCS throughput for varying number of threads R ∈ [1, 16]. We
fix content store sizes to |L1| = 1 GB, |L2| = 10 GB, and consider L2 throughputs of τL2 ∈ {4, 32}Gbps,
emulated via the reliable M = Static memory allocation with D = Busy wait technique. We consider the
W = Real workload, which we split among threads using H = Content names as input to the hash function.
As we cannot emulate the low-level details of the shared access to a single L2 device in a non-blocking multi-
threaded fashion, notice that we implicitly assume that (i) each thread accesses a physically separate L2

14

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 6 8 12 16
 0

 100

 200

 300

 400

 5006 Physical
Cores

12 Logical
Cores

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

Number of Threads

HT=On, τL2= 4Gbps
HT=Off, τL2= 4Gbps

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 6 8 12 16
 0

 100

 200

 300

 400

 5006 Physical
Cores

12 Logical
Cores

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

Number of Threads

HT=On, τL2=32Gbps
HT=Off, τL2=32Gbps

Figure 7: Impact of parallelism degree: NFD-HCS Performance for |L1| = 1 GB, |L2| = 10 GB, W = Real, M = Static,
D = Busy, H = Content for (a) slow τL2 = 4 Gbps, vs (b) fast τL2 = 32 Gbps SSD technologies

instance, and (ii) the aggregate throughput toward all L2 memories is lower than the bus capacity6. Since
we have full control on the server, we set the CPU governors to the “performance” settings (i.e., where
Dynamic Voltage Scaling is effectively disabled) and vary the Hyper-threading (HT) option: when HT is
enabled the number of logical cores available to the OS is exactly twice the number of physically available
CPU cores. In general terms, we may say that HT lets either the CPU or the OS manage the scheduling
among threads.

The NFD-HCS throughput as a function of the parallelism degree is reported in Fig. 7, from which several
interesting remarks can be gathered. First, notice that NFD-HCS is able to break the 10 Gbps barrier already
at low levels of parallelism. Second, multi-threading exhibits gains regardless of the physical properties of
the system (i.e., slow vs fast L2 throughput), although the effect of increasing the number of threads is
more beneficial for systems with large L2 throughput. Third, Hyper-threading (HT) exhibits larger gains
with respect to OS scheduling, and should therefore be enabled. Finally, note that multi-threading achieves
diminishing returns, with a logarithmic scaling in the number of threads (the picture is also annotated with
linear slopes, interpolating the point with 1 and 2 threads for reference). Further, there is a knee in the
curve, where the number of threads exceeds the number of cores, which is especially visible in the most
constrained system with HT = Off and τL2 = 4 Gbps.

Yet, it is interesting that the gains shown in Fig. 7 do not completely flatten out even when the number
of threads exceeds the number of logical cores. This can be explained as follows: (i) increasing the number
of threads not only reduces the per-thread CPU operation workload, but also increases the aggregated
L2 bandwidth, removing hardware bottlenecks; (ii) by splitting workload into smaller tasks, the difference
between the most and the least loaded threads becomes smaller, reducing software bottlenecks. Additionally,
notice that, while the aggregated system throughput does not exceed PCI bus speed (so that our former
assumption holds), the performance of the actual system may exhibit additional correlation (e.g., among
multiple SSD disks) which we cannot account for and that can further degrade the performance.

5.2. Impact of Hash schemes for Workload Balancing

As previously observed, a hashing scheme is needed to ensure that: (i) requests are spread over the
different cores, to enable parallel operations; and (ii) cores always gets a coherent set of requests, to enable
cache-efficient operations. Whereas a simple hash-based scheme operating on H = Content names satisfy
the above requirements, it is however expected to yield suboptimal performance: indeed, due to skew of
request arrival rates for popular vs unpopular contents, the content-level hashing schemes penalized the
cores managing popular contents and led to a skew in the workload distribution. To cope with this, we

6Notice that nowadays PCIe-3 bus supports R = 16 threads reading at τL2 = 4 Gbps each. The PCIe-4 bus (due in 2017)
would support up to 256 Gbps aggregate rate from L2, corresponding to R = 8 threads reading at τL2 = 32 Gbps each.

15

 0

 20

 40

 60

 80

 100

1,content

1,batch

2,content

2,batch

4,content

4,batch

6,content

6,batch

8,content

8,batch

12,content

12,batch

16,content

16,batch

W
o
rk

lo
ad

 %

Parallelism degree (R), Hash Function (H)

1
0
0

%

1
0
0

%

5
5

%

5
0

%

3
3

%

2
5

%

2
6

%

1
7

%

2
3

%

1
2

%

2
0

%

9
%

1
9

%

6
%

(a) Workload Balancing (showing % of the most loaded
thread)

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 6 8 12 16
 0

 100

 200

 300

 400

 500
6 Physical

Cores
12 Logical

Cores

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

Number of Threads

H=Content
H=Batch

Speedup
1.20x

(b) System Performance

Figure 8: Impact of hash schemes for workload balancing on the system performance considering an NFD-HCS with |L1| = 1 GB,
|L2| = 10 GB, τL2 = 4 Gbps, M = Static, D = Busy, W = Real, HT = On

contrast H = Content with an H = Batch scheme, in which hashing also takes into account a batch index,
so that consecutive batches of a popular content are likely hashed to different cores.

We now evaluate the impact of workload balancing on the parallelized NFD-HCS. In this experiment,
we limitedly consider an NFD-HCS with |L1| = 1 GB, |L2| = 10 GB, τL2 = 4 Gbps. We vary the number of
threads R ∈ [1, 16] and split the W = Real workload among threads using the two H ∈ {Content,Batch}
schemes. Results of the experiments are presented in Fig. 8, that depicts both (a) the breakdown of the
workload on each core depending on the hashing scheme H as well as the (b) NFD-HCS throughput under
either scheme. As expected, partitioning requests using batch identifiers yields superior load balancing
properties: notice indeed that when R = 16 the most loaded core is 3-times more loaded under H = Content
than under H = Batch. As a result, the whole system throughput increases by about 20% under H = Batch.

5.3. Projected Gains of Refine Lookup Operations

We now assess whether alternative designs to the serial algorithm of NFD-HCS lookups algorithm that
exploit parallel hardware are worth investigating. We observe that performance of all possible implemen-
tations are comprised between our fully serial design and an ideal implementation where all key operations
(i.e., L1.lookup, L1.insert, L2.read) happen in parallel. Clearly, the fully parallel design represents an
ideal abstraction that, while not feasible in practice, is however useful to upper-bound the gain that can be
achieved by ameliorating our serial NFD-HCS implementation.

Notice that in case of L1 hit, the delay dhit is the same for the both serial and parallel implementations.
In case of L1 miss, the delay instead differs: in the fully sequential case, the delay dsermiss is given by (10)
and sums up several components. In a fully parallel design, since all operations are performed in parallel,
the delay would be the maximum among:

dparmiss = max{dL1.lookup, dL1.insert, dL2.read} (11)

Fig. 9(a) contrasts numerical results of the expected system throughput for the serial and parallel version
of the lookup algorithm (considering for the sake of simplicity a single-core NFD-HCS instance). From the
plot, it clearly emerges that, given current technological limits for which a single component dominates the
others (namely, dparmiss ≈ dsermiss ≈ dL2.read) the actual gain of a parallel implementation is marginal. At the
same time, the maximum theoretic gain of 2/3 could be achieved when the three components are equal, so
that technology evolution may force to re-evaluate this issue later on.

5.4. Validating Results Over Multiple Off-the-shelf PCs

To testify the consistency of the results provided by our methodology, we contrast experiments performed
over different hardware: in addition to the local machine, we also consider Cloud resources. We disable

16

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

 125

 150

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

L1 Size [GB]

Speedup
1.13x

parallel
serial

(a) |L2| = 10 GB, τL2 = 4 Gbps, W = Real, M = Static,
D = Busy, H = Content

 0

 10

 20

 30

 40

 50

1 Thread 6 Threads 1 Thread 6 Threads
 0

 200

 400

 600

 800

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

O
p
er

at
io

n
 r

at
e

[K
ch

u
n
k
s/

se
c]

Local Cloud

Speedup
4.05x

4.69x

Speedup 3.95x

4.80x

CS (10GB) HCS (1GB+10GB) HCS (5GB+50GB)

(b) τL2=4 Gbps, W = Real, M = Static, D = Busy, H =
Content, HT = Off

Figure 9: Comparison of (a) fully-serial vs fully-parallel lookup operations in a single-core NFD-HCS and (b) multi-core
NFD-HCS performance under bare-metal vs Cloud resources

Hyper-threading (HT) option of the local machine because we are not able to configure this option on
the cloud machine. As a baseline, we consider a single-layer baseline NFD content store equipped with
|L1| = 10 GB cache. We next include two configurations for a multi-threaded NFD-HCS: (i) equipped with
|L1| = 1 GB and |L2| = 10 GB in both the local and remote testbed and (ii) |L1| = 5 GB and |L2| = 50 GB in
the cloud testbed. Given HT limitations and the number of cores in the Cloud machine, we consider a R = 1
single-thread vs a R = 6 six-thread systems. We do not optimize for workload balancing (H = Content),
and use default speed (τL2 = 4 Gbps) and techniques (M = Static, D = Busy). Results are reported in
Fig. 9(b): despite the machines have close but different specification (cfr. Tab. 2) we notice that both baseline
NFD as well as NFD-HCS yield similar absolute performance (when comparing for any given parallelism
degree R) and scaling gains (when comparing ratios of multi-core/single-core performance). Additionally,
Fig. 9(b) confirms our local testbed to provide conservative results (notice the performance gain with the
Cloud platform). Finally, we observe that also in the Cloud platform, scaling the L2 size does not negatively
affect the NFD-HCS throughput.

5.5. Lessons Learned

Our investigation on multi-core hierarchical content stores allowed us to establish the following main take-
aways:

• Our experimental results show that, by exploiting parallelism, NFD-HCS is able to manage a 1 TB
content store and operate it at 10 Gbps (and beyond).

• The expected system throughput exhibits a logarithmic return in the number of parallel threads, up
to the number of the available (logical) cores. Hardware knobs such as Hyper-threading provides an
advantage over OS-level thread scheduling. Software knobs such as hashing schemes that avoid skew
in the workload distribution are equally desirable.

• While the specific performance figure is related to properties of the testbed, the general trends ob-
served in this paper also hold on different hardware (as we verified via Cloud-based experiments).
Additionally, while alternative designs may bring further optimizations, we remark that more complex
software designs may not payoff the deployment effort (e.g., due to technological constraints, the gain
of an ideal parallel scheme over our näıve implementation is limited to about 10%).

6. Related Work

We begin by emphasizing the differences between our investigation and three research areas that, al-
though referred to using similar terms, focus on actually different challenges. First, in historical work on

17

“hierarchical caches” [19, 20], the hierarchy relates to the topological position in a cache network. In con-
trast, this investigation considers “hierarchical cache” system within a single node. Second, a work on
“hybrid storage” [21] refers to the combination of SSD and HDD technologies to reduce the cost of cache
servers to CDNs, which have requirements in terms of ubiquity and transparency quite different from ICN.
Third, it is also worth stressing that “hierarchical memory systems”, which have been long studied in the
context of computer architectures [9], consider very different workload (e.g., reading inputs, dot product,
shuffle-exchange, merging two sorted lists, etc.) than the sequence of “interest” messages generated by con-
tent distribution over ICN that we consider here, which is precisely one of the most important key insights
that motivate this investigation.

Within the ICN realm, most work focuses on algorithmic, protocol or performance aspects. Fewer
studies address ICN router design [6, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] and, thus, are closer in spirit
to this work. Specifically, seminal papers [6, 7] tackle the design of ICN routers. More recent works refine
particular aspects of ICN routers, such as PIT/FIB management [22, 23, 24, 26, 27], packet forwarding and
filtering [29, 30, 28] and power efficiency [31]. These references are relevant from the perspective of an ICN
router, but evaluation of CS is limited (or absent) and hence far from our goals.

As many-cores designs are increasingly common in networking software [32, 33], some ICN work [34, 35,
36] considers, similarly to what we do here, a parallel design for ICN router (i.e. enabling lock-free parallelized
operations by partitioning requests among threads). Such parallel design was first, although preliminarily,
brought to ICN by [34]. More recently, [35] proposed a full blown NDN router for programmable networks
and [36] presented a method for designing high-speed ICN routers. All this research considers the parallelism
as a key concept to enable high-speed operations, in line with our conclusions. This is further reinforced
by complementary effort such as [37], which assess the (severe) limits of single-core NFD implementations.
However, ICN multicore research [34, 35, 36] has focused on other aspects than caching, so that the CS
component is either only minimally evaluated [35, 36] or even not explicitly considered [34].

To the best of our knowledge, there are only a few papers concerning the development of large-size
high-speed content stores for ICN routers [8, 11, 38]. In [38], authors present a micro-benchmarking of SSD
technologies to assess their suitability for the HCS purpose. In contrast, we abstract from specific hardware
technologies, that we instead emulate: as such, our focus is complementary to [38]. Finally, [8, 11] are our
own work on the topic. Particularly, [8] introduces the HCS design and analytically models its performance,
abstracting from system-level details that we instead consider here. More recently, [11] investigates HCS
by emulation and experiments on a fully-fledged prototype. The main result in [11] is to demonstrate via
prototype experiments the feasibility of HCS design, gathering results that are specific to the implementation
and available hardware. In contrast, the emulation-based work presented in this paper extends –in breadth
and depth– the analysis of the key parameters in the HCS design space.

7. Discussion and conclusion

In this paper, we study hierarchical memory systems fit for Information-centric networks (ICN), where
caches not only have to be large to be useful, but also operate at line rate. Particularly, we address the
implementation of, on common off-the-shelf hardware, a hierarchical cache that is capable of holding 1 TB
worth of contents to be served at a line rate of 10 Gbps. To achieve these goals, a key idea is to use arrivals
in ICN data plane as predictors of future arrivals, which allows to prefetch the data from a large-but-slow
L2 memory into a small-but-fast L1 memory.

We provide a system level implementation of the above principle, and carefully evaluate its performance
with a controlled emulation approach. Our system implementation is based on the NDN Forwarding Dae-
mon [12], and our system design exploits a lock-free multi-thread design. At very high level, the main
takeaway of our performance evaluation is that hierarchical ICN caches, serving 1 TB of content beyond
10 Gbps rates are possible with nowadays DRAM and SSD technologies.

In more details,

• we find that single-threaded baseline NFD implementations managing a monolithic DRAM cache of
few 10 GB approaches but not reaches a 10 Gbps line rate. Nevertheless, the software bottleneck of

18

a single-threaded NFD implementations is represented by forwarding operations, capping throughput
at about 4 Gbps in our tests.

• We thus develop a number of emulation techniques that allow to precisely emulate either very large
or very fast SSD disks. We investigate the combination of these techniques, carefully calibrating our
emulator. A side effect of this step is to infer precise characteristics of our implementation (e.g.,
duration of software lookup for individual packets) that would otherwise be hard to measure.

• With our emulation study, we find that single-threaded hierarchical cache implementation such as
NFD-HCS can operate on very large cache sizes, to a rate close to 4 Gbps in our experiments and thus in
par with forwarding operations. As the main system bottleneck can be identified in software operations,
it cannot be relieved simply by hardware improvements (e.g., SSDs with higher L2 throughput).

• Finally, we find that multi-threaded hierarchical cache implementation such as NFD-HCS can operate
on very large cache sizes, to a rate exceeding 10 Gbps for various levels of parallelism. System per-
formance benefits both of ICN-specific software tuning (e.g., consistent hashing at batch level, that
avoids skew in the workload distribution), as well as general-purpose hardware tuning (e.g., enable
hyper-threading).

The employed methodology provides results that must be read with proper consideration. On the one
hand, the reduced scope of the system may under-estimate the number of cores needed by a fully-functional
prototype, since we ignore the overhead associated with additional operations (e.g. fetching incoming packets
from the NIC, and forwarding outgoing packets to the NIC). On the other hand, considering that NFD is
allegedly designed with a focus on extensibility rather than performance, implementations such as NFD-HCS
offer many opportunities for software improvements. Nonetheless, our work shows that already an NFD-
based non-optimized and multi-threaded implementation of hierarchical ICN caches can serve terabytes of
content at several tens of gigabits per second. We hope that this work paves the way for system-level work
able to ameliorate performance even further.

Acknowledgments

This work was performed while Rodrigo B. Mansilha, supported by CNPq (Proc. GM/GD 146078/2012-8)
and CAPES (Proc. BEX 3925/14-5) foundations, was visiting LINCS (http://www.lincs.fr). This work
benefited from support of NewNet@Paris, Cisco’s Chair “Networks for the Future” at Telecom Paris-
Tech (http://newnet.telecom-paristech.fr). Any opinion, findings or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of partners of the Chair.

References

[1] Cisco, Cisco visual networking index: Forecast and methodology, 2015-2020 (2016).
URL http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.pdf

[2] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs, K. Ng, V. Sekar, S. Shenker, Less pain,
most of the gain: Incrementally deployable ICN, in: ACM SIGCOMM, 2013. doi:10.1145/2486001.2486023.

[3] G. Rossini, D. Rossi, Coupling caching and forwarding: Benefits, analysis, and implementation, in: ACM ICN, 2014.
doi:10.1145/2660129.2660153.

[4] C. Imbrenda, L. Muscariello, D. Rossi, Analyzing cacheable traffic in isp access networks for micro CDN applications via
content-centric networking, in: ACM ICN, 2014. doi:10.1145/2660129.2660146.

[5] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, J. Wilcox, Information-centric networking: seeing the forest
for the trees, in: ACM HotNets-X, 2011. doi:10.1145/2070562.2070563.

[6] S. Arianfar, P. Nikander, Packet-level Caching for Information-centric Networking, in: ACM SIGCOMM, ReArch Work-
shop, 2010.

[7] D. Perino, M. Varvello, A reality check for content centric networking, in: ACM SIGCOMM, ICN Workshop, 2011.
doi:10.1145/2018584.2018596.

[8] G. Rossini, D. Rossi, M. Garetto, E. Leonardi, Multi-Terabyte and multi-Gbps information centric routers, in: IEEE
INFOCOM, 2014. doi:10.1109/INFOCOM.2014.6847938.

19

[9] A. Aggarwal, B. Alpern, A. Chandra, M. Snir, A model for hierarchical memory, in: ACM Annual Symp. on Theory of
Computing, 1987.

[10] NSF NDN, http://www.named-data.net/.
[11] R. B. Mansilha, L. Saino, M. P. Barcellos, M. Gallo, E. Leonardi, D. Perino, D. Rossi, Hierarchical content stores in

high-speed ICN routers: Emulation and prototype implementation, in: ACM ICN, 2015. doi:10.1145/2810156.2810159.
[12] Alexander Afanasyev et al., NFD Developer’s Guide (2014).

URL http://named-data.net/publications/techreports/nfd-developer-guide/

[13] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, S. Niccolini, Temporal locality in today’s content
caching: why it matters and how to model it, ACM SIGCOMM Computer Communication Review 43 (5) (2013) 5–
12. doi:10.1145/2541468.2541470.

[14] G. Rossini, D. Rossi, A dive into the caching performance of content centric networking, in: IEEE 17th International
Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’12), 2012.

[15] T. Johnson, D. Shasha, et al., 2Q: A low overhead high performance buffer management replacement algorithm, in: ACM
VLDB, 1994.

[16] M. V., M. Garetto, E. Leonardi, A unified approach to the performance analysis of caching systems, in: IEEE INFOCOM,
2014. doi:10.1109/INFOCOM.2014.6848145.

[17] http://www.corsair.com/.
[18] C. Fricker, P. Robert, J. Roberts, A versatile and accurate approximation for LRU cache performance, in: ITC, 2012.
[19] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: Modeling, design and experimental results, Journal on

Selected Areas in Communication 20 (7) (2002) 1305–1314. doi:10.1109/JSAC.2002.801752.
[20] N. Laoutaris, S. Syntila, I. Stavrakakis, Meta Algorithms for Hierarchical Web Caches, in: IEEE ICPCC, 2004.

doi:10.1109/PCCC.2004.1395054.
[21] T. Kim, E.-J. Kim, Hybrid storage-based caching strategy for content delivery network services, Springer Multimedia

Tools and Applications 74 (5) (2015) 1697–1709. doi:10.1007/s11042-014-2215-8.
[22] W. You, B. Mathieu, P. Truong, J.-F. Peltier, G. Simon, Realistic storage of pending requests in content-centric network

routers, ICC, 2012. doi:10.1109/ICCChina.2012.6356864.
[23] W. You, B. Mathieu, P. Truong, J.-F. Peltier, G. Simon, DiPIT: A distributed bloom-filter based PIT table for CCN

nodes, in: ICCCN, 2012. doi:10.1109/ICCCN.2012.6289282.
[24] M. Varvello, D. Perino, L. Linguaglossa, On the design and implementation of a wire-speed Pending Interest Table, in:

NOMEN, 2013. doi:10.1109/INFCOMW.2013.6970719.
[25] D. Perino, M. Varvello, L. Linguaglossa, R. Laufer, R. Boislaigue, Caesar: A content router for high-speed forwarding on

content names, in: ACM/IEEE ANCS, 2014. doi:10.1145/2658260.2658267.
[26] G. Carofiglio, M. Gallo, L. Muscariello, D. Perino, Pending interest table sizing in named data networking, in: ACM ICN,

2015. doi:10.1145/2810156.2810167.
[27] H. Dai, B. Liu, CONSERT: Constructing optimal name-based routing tables, Elsevier Computer Networks 94 (2016) 62

– 79. doi:10.1016/j.comnet.2015.11.020.
[28] J. Shi, T. Liang, H. Wu, B. Liu, B. Zhang, NDN-NIC: Name-based filtering on network interface card, in: ACM ICN,

2016. doi:10.1145/2984356.2984358.
[29] T. Song, H. Yuan, P. Crowley, B. Zhang, Scalable name-based packet forwarding: From millions to billions, in: ACM

ICN, 2015. doi:10.1145/2810156.2810166.
[30] M. Papalini, K. Khazaei, A. Carzaniga, D. Rogora, High throughput forwarding for ICN with descriptors and locators,

in: ACM ANCS, 2016. doi:10.1145/2881025.2881032.
[31] T. Hasegawa, Y. Nakai, K. Ohsugi, J. Takemasa, Y. Koizumi, I. Psaras, Empirically modeling how a multicore software

ICN router and an ICN network consume power, in: ACM ICN, 2014. doi:10.1145/2660129.2660142.
[32] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, K. Park, Kargus: a highly-scalable software-based intrusion

detection system, in: ACM CSS, 2012. doi:10.1145/2382196.2382232.
[33] N. Kim, G. Choi, J. Choi, A scalable carrier-grade DPI system architecture using synchronization of flow information,

IEEE Journal on Selected Areas in Communication 32 (10) (2014) 1834–1848. doi:10.1109/JSAC.2014.2358836.
[34] W. So, A. Narayanan, D. Oran, M. Stapp, Named data networking on a router: Forwarding at 20gbps and beyond, in:

ACM SIGCOMM, Demo Session, 2013. doi:10.1145/2486001.2491699.
[35] D. Kirchner, R. Ferdous, R. L. Cigno, L. Maccari, M. Gallo, D. Perino, L. Saino, Augustus: A CCN router for pro-

grammable networks, in: ACM ICN, 2016. doi:10.1145/2984356.2984363.
[36] K. Taniguchi, J. Takemasa, Y. Koizumi, T. Hasegawa, A method for designing high-speed software NDN routers, in: ACM

ICN, Poster session, 2016. doi:10.1145/2984356.2985234.
[37] X. Marchal, T. Cholez, O. Festor, Server-side performance evaluation of NDN, in: ACM ICN, 2016.

doi:10.1145/2984356.2984364.
[38] W. So, T. Chung, H. Yuan, D. Oran, M. Stapp, Toward terabyte-scale caching with SSD in a named data networking

router, in: ACM/IEEE ANCS, Poster session, 2014. doi:10.1145/2658260.2661767.

20

