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Abstract

In this paper, we suggest a new research direction and a future vision for Self-Healing (SH) in Self-Organizing
Networks (SONs). The problem we wish to solve is that traditional SH solutions may not be sufficient for the
future needs of cellular network management because of their reactive nature, i.e., they start recovering after
detecting already occurred faults instead of preparing for possible future faults in a pre-emptive manner.
The detection delays are especially problematic with regard to the zero latency requirements of 5G networks.
To address this problem, existing SONs need to be upgraded from reactive to proactive response. One of the
dimensions in SH research is to employ more holistic context information that includes, e.g., user location
and mobility information, in addition to traditional context information mostly gathered from sources inside
the network. Such extra information has already been found useful in SH. In this paper, we suggest how
user context information can not only be incorporated in SH but also how future context could be predicted
based on currently available information. We present a user mobility case study as an example to illustrate
our idea.

Keywords:  Self-Organizing Network, Self-Healing, User Context, Context Aware System, 5G Networks

1. Introduction contribute to the network management by pro-
viding more data about the service quality, chan-

At the time of 1G and 2G networks deployment, nel quality index (CQI), reference signal received

mobile terminals were dumb devices and process- power (RSRP), device location, and many other at-
ing was done on the network side. At the ad- tributes. This opens new opportunities to gather
vent of 2.5G, 3G, and 4G technologies, the termi- data from User Equipment (UE) and to make the
nals started to become more intelligent, and nowa- network better aware of the user perspective of
days mobile phones are called smart phones because the network coverage and services. Currently, all
they have much of the processing power and in- the data available from millions of mobile devices
telligence that was previously believed to be done is not yet being fully used for network operation
only by the network. Now mobile terminals can purposes, though. Instead, network operation and

management is mostly based on only a few Key Per-
formance Indicators (KPIs) measured from inside
the network, thus using only a network perspec-
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have made network management more challenging
[1, 2]. The traditional network management tools
are not enough to capture the complete behavior of
the system and to propose optimal configurations.

Roughly following the definition of self-
organization given in the survey [3], Self-Organizing
Networks (SONs) are networks that are adaptive
and autonomous and also scalable, stable, and
agile enough to maintain their services in the face
of all potential environmental dynamics. In future
wireless networks, SON enabled operations are
expected to be the default operational mode, and
SON functions will have to operate in an environ-
ment with multiple operators, vendors, and radio
access technologies [2, 3, 4]. The three categories
of SON are Self-Configuration, Self-Optimisation,
and Self-Healing (SH).

SH refers to autonomous fault management in
wireless networks, including performance monitor-
ing, detection of faults and their causes, triggering
compensation and recovery actions, and evaluating
the outcome. SH improves business resiliency by
eliminating disruptions and ensuring network avail-
ability, reliability and retainability.

Traditional fault management based on KPI
thresholds neglects user behavior and mobile phone
usage patterns. Consider the situation, where many
mobile users send text messages frequently and the
text activity is high. Then, because of some prob-
lem in the network, the messages fail to go through.
When users will experience delays or no service at
all, they may silently stop using the service and may
eventually shift to another operator. The operator
would assume that the network is functioning well
all the time. On the other hand, if user behavior
was being monitored and used for anomaly detec-
tion, the problem could have been noticed and di-
agnosed.

The SH functions of 3G/4G are designed in such
a way that they would trigger only when a problem
has occurred, which makes the fault management
reactive in nature. A certain time is required to
observe the situation, diagnose the problem, and
then trigger the compensating action. For exam-
ple, a cell outage compensation function is triggered
when the cell outage has been detected and user
calls started to drop already. The network oper-
ator would already start losing revenue. This re-
active fault management of current SONs will not
be able to meet the performance requirements or
the targeted quality of experience (QoE) levels of
5G network, especially the zero latency perception

requirements.

Instead of detecting problems that have already
occurred, an optimal SH system could also pre-
dict problems beforehand, and prevent them, thus
transforming network management from reactive to
proactive. Even if all problems cannot be predicted
beforehand, the proactive approach could substan-
tially reduce the intrinsic delay between the obser-
vation and compensation phases compared to cur-
rent state-of-the-art SH.

Proactive fault management has been explored
in the broader computer systems area, e.g., in [5].
Inspired by [5], we differentiate between root cause
analysis (diagnosis) and failure prediction in com-
munication networks as illustrated in Figure 1. The
fault diagnosis mechanisms refer to the process of
identifying the causes (“faults”) of an already de-
graded network performance. On the other hand,
failure prediction tries to assess the risk of a fu-
ture degradation leading to a possible loss of ser-
vice (“failure”). For example, in case of cell outage
detection, the diagnosis mechanisms try to identify
what the reason for the cell outage is, e.g., broken
network element or software errors. The failure pre-
diction refers to the assessment of whether an out-
age is likely to occur in the future. A possible way
to achieve this goal could be the strengthened use
of context built from the available user perspective
and other relevant data.

In this paper, we briefly overview some very re-
cent proposals towards SH in 5G networks. We
then build upon the recent concepts by suggesting
the addition of a context prediction component. For
example, user behavior, such as mobility from place
to place, can be modeled and used to predict fu-
ture resource needs of the network to enable proac-
tive and pre-emptive, rather than reactive, network
management. Our main contributions are the fol-
lowing:

e A proposal of using user context and predic-
tor models to transform SH from reactive to
proactive response.

e A case study demonstrating future context pre-
diction.

The remainder of this paper is organized as fol-
lows. In Section 2, we explain the background and
the central concepts of this work, and cover some
recent related works on the topics. In Section 3, we
propose an approach to incorporate further context
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Figure 1: Difference between fault diagnosis mechanisms and failure prediction (cf. [5]).

information and especially future context predic-
tion in SH. In Section 4, we present a practical
example of context prediction. Finally, Section 5
concludes this paper.

2. Background and Related Work

2.1. Classical Approaches

Modern networks are very complex pieces of
equipment [6, 7]. Besides the large variety of hard-
ware like antennas, the backbone network, and
routing components, there is also a myriad of dif-
ferent software stacks in these components. Fur-
thermore, these devices are deployed in harsh en-
vironments. Hence, in practice, faults happen on a
regular basis. Typical examples of network faults
are software faults, broken hardware components,
and inappropriate network configuration settings.

There are many performance metrics/indicators
available for wireless networks that capture the net-
work status at any given moment. These measure-
ments are the low-level network counters and KPIs
derived from them. Each KPI describes a specific
aspect of the network. A KPI can be a simple av-
erage of consecutive measurements during a time
period, or it can be a more advanced statistic. Typi-
cally, KPIs describe the success or non-success rates
of the most important events such as handovers or
dropped calls. The operator usually sets the time
window for collecting network counter values before
recording them as KPIs. The length of this window
is a balancing act between how fast the operator can
act upon a problem in the network, window size re-
quired to detect the problems, and how much data
can be transferred from the base stations to the
place where the SH functions are running.

When the network does not contain any (known)
faults, it is possible to collect one or more KPIs and
create what is called a profile of the network. This
profile contains the typical values of the different

indicators. The profile can be built on a per-cell
basis, for each base station, or even on a wider ag-
gregation layer (e.g., considering traffic in a cluster
of base stations). Once the profile is built, contin-
uous monitoring of the KPIs is conducted and sta-
tistically significant deviations from the profile will
trigger an alarm. Often a deviation is determined
by using a fixed threshold and the alarm will be
triggered if the value goes beyond this bound. For
example, an alarm could be raised when the call
drop rate exceeds 0.1%.

Typically, the thresholds and profiles of the net-
work are maintained in centralized Operations and
Maintenance Centers (OAMs) where the KPIs and
alarms are directly presented to the operator who
then filters out high quality alarms manually. There
can be multiple alarms generated by one fault and
the same single alarm may be generated by multi-
ple faults. It is also possible that alarms are gen-
erated without the presence of a fault. For exam-
ple, any external factors, e.g., bad weather, could
cause some alarms when there is no real malfunc-
tion. Sometimes it is also possible that alarm mes-
sages are not conveyed to the OAM. So alarms are
not a complete/reliable source of information for
fault diagnosis.

The flow of uncorrelated alarms and the big vol-
ume of alarms can be reduced by employing alarm
correlation methods [8]. The alarm correlation con-
sists of interpretation of multiple alarms, combin-
ing low level alarms to form high level alarms. The
alarm correlation is an important part of SH, but
alarms alone do not provide enough information
to determine the root cause of the observed prob-
lems [9]. Furthermore, these methods can only
reduce the quantity of alarms but not help to in-
crease their quality. One drawback of the thresh-
old based approaches is that they essentially quan-
tify the KPIs into a binary space, i.e., normal and
abnormal, which makes it difficult to detect per-



formance degradations which have not yet devel-
oped into complete outages or total losses of per-
formance.

2.2. Developments in SH Research

Earlier research on SH focused solely on automa-
tion, but in more recent efforts more focus has been
given to the intelligent characterization of the net-
work state.

Good examples of recent practical approaches
to SH in real operational networks are found in
[10, 11, 12, 13, 14, 15]. For example, [10] addressed
the problem of verifying the effect of network con-
figuration changes by monitoring the state of the
network and determining if the changes resulted in
degradations. The proposed framework consists of
an anomaly detector and a diagnosis component.
The anomaly detector monitors a group of cells us-
ing topic modeling. The diagnosis component, in
turn, uses Markov Logic Networks (MLNSs) to gen-
erate probabilistic rules that distinguish between
different causes. Another anomaly detection ap-
proach using refined KPIs is presented in [12].

An incremental topic modeling approach was
proposed in [15]. In that approach, the authors fol-
lowed a modified version of Hierarchical Dirichlet
Processes (HDP) which utilizes stochastic gradient
optimization to allow the training process to evolve
incrementally over time. The authors adapted that
method to input all KPIs as multivariate. For
the evaluation of the incremental topic modeling
method, the authors used real data collected from
a 3G cellular network. The incremental algorithm
is run for HDP by randomly choosing timestamps
from the 3G dataset and updating the model pa-
rameters accordingly. The adaptability to different
cell scopes is achieved by first applying clustering
to the largest scope. Then, the state of the network
can be determined for subsets of the largest number
of cells. The incremental approach for topic mod-
eling will gradually update the clusters with infor-
mation from the larger scope. The paper presented
the initial feasibility of the incremental topic mod-
eling approach in the context of cellular network
data but the results are not mature yet.

In [16], an experimental system for comprehen-
sive testing of different 3rd Generation Partnership
Project (3GPP) Self-Optimization use cases is de-
veloped. In [17], the system is further extended
to a SH framework for 3GPP Long Term Evolu-
tion (LTE) networks where detection and compen-
sation of cell outages are evaluated in a realistic

environment. The impact of SH on the KPIs such
as the number of connected users and radio link fail-
ures is also shown in the paper. In [18], the authors
suggested that the correlation coefficient between
cell pairs can be used as a means of degradation
detection in cells. In these works, the KPIs are
used for detection and diagnosis of faults.

A framework for network monitoring and proac-
tive anomaly detection is proposed in [19], using
principle component analysis (PCA) for dimension
reduction and kernel-based semi-supervised fuzzy
clustering with an adaptive kernel parameter. The
algorithms are evaluated using simulated data col-
lected from a LTE system level simulator. The au-
thors claim that this framework proactively detects
network anomalies associated with various fault
classes.

2.8. User Measurements in Traditional SH

So far, the SH research has been focused mainly
on data collected from KPIs, network counters,
alarms, and drive tests. In addition to these, Next
Generation Mobile Networks (NGMN) and 3GPP
have identified other inputs for fault management,
such as direct KPI reporting in real time, UE traces,
Minimization of Drive Tests (MDT) via UE reports,
and location information [6].

A SH solution for 5G heterogeneous network
(HetNet) architectures has been presented in [20]
with separate detection methods for the control and
the data plane in the split architecture of 5G (see
[21, 22]) respectively. The cell outage detection
is achieved using MDT with user position infor-
mation. In this approach, the idea of incorporat-
ing direct reports from UEs including localization
information was presented for detecting cell out-
ages. However, the outage detection using MDT
approaches is mainly done offline. Also, except user
position information and received signal strength,
no other information was included. The analysis
was done on an elementary reference scenario using
very limited examples of network failures.

The recent advances in indoor localization and
UE data are utilized to provide sleeping cell de-
tection and diagnosis solutions for 5G ultra-dense
networks in [23]. An automatic root-cause analysis
method using UE traces is presented in [24].

Although user measurements have been used in
network management systems, the use has been
limited so far, and comprehensive applications of
such information have not been fully addressed.
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2.4. Context-Awareness

The term Context-Awareness (CA) was first in-
troduced in the research area of pervasive com-
puting [25]. According to the authors, CA is the
ability of computing systems to acquire and reason
about the context information and adapt the corre-
sponding applications accordingly. During the last
years, there has been an increasing interest in ways
to share and exchange context information among
remote and heterogeneous CA systems. Develop-
ments in the definition of “context” is surveyed in
[26]. The early definitions, roughly to the effect of
numerical state information resulting from interac-
tions, were more primitive and limiting than the
current ones, which deal more with the dynamical
flow of information and knowledge within a system.
One example of the use of CA in heterogeneous
wireless connectivity management is [27].

There could be several types of context depend-
ing on the perspective we consider. In Figure 2,
three types of context are illustrated: Network con-
text consists of input from the network side, such as
radio measurements, performance indicators, net-
work configuration settings, history of configura-
tion changes, network commissioning and planning
information, etc. User contezt consists of all infor-
mation about users, such as their mobility patterns,
behavior, preferences, etc. Device context consists
of the information and the influence of nearby de-
vices which can be used in device-to-device commu-
nication (see [28]).

Traditionally, all the data for fault management
was collected within the network. More recently,

e.g., in [23], further kinds of data, including user
context, are proposed to be considered. Context
information can be broadly collected from the fol-
lowing three major sources:

1. UEs: location, call logs, GSM and WLAN con-
nections, etc.

2. Cellular Network: network down for mainte-
nance purposes, configuration changes, switch-
ing on new base stations, etc.

3. Environment: weather reports, new construc-
tions, new buildings, railway station, events in
the city or the indoor facility, etc.

A general framework for empowering SONs with
big data is provided in [4]. In that paper, the au-
thors list and categorize many possible data sources
for context information applicable in SH. Here we
give a few examples:

e Configuration Parameters: information on the
actual configuration of network elements.

e Alarms History: messages generated by net-
work elements when faults are detected.

e Network Counters: measurements from the
network elements periodically transferred to
the OAM.

e KPIs: combinations of other measurements.

e Drive Tests: field measurements related to,
e.g., coverage and interference, performed in
a certain area by specialized equipment such
as measurement terminals and GPS.

e Mobile Traces: information from UEs.
e Call Logs: calls history information.

e Traditional context information: time, esti-
mated UE location.

2.5. Context-Aware Self-Healing (CASH)

Recently, there has been work towards Context-
Aware Self-Healing (CASH), which takes into ac-
count more of the context information. In [29],
contextualized indicators for failure diagnosis are
presented. The authors claim that context informa-
tion can be used to support root cause analysis that
provides better diagnosis results than traditional
approaches. In their work, the user context was



defined by location, user category and service. Re-
cently, location-aware self-organizing methods are
presented in [30].

Major challenges of small cell deployments are
identified in [31]. One is “Reduced monitoring”
which refers to the limited availability of trou-
bleshooting information. Another one is “Irregular
and overlapped cell areas” which makes the fault
detection difficult because a fault would not cre-
ate coverage holes or complete outage. Yet another
one is “Performance variations” which refers to the
problems occurring due to a low number of users
connected to the cells. These variations generate
situations where there may not be enough infor-
mation about a failure for a long time. Another
problem is that the fault cases usually do not devi-
ate from the normal behavior enough to provide a
significant statistical difference.

According to [31], addition of context informa-
tion will help in distinguishing a fault scenario from
a normal one. For example, if the user moves to a
cell border, the received power will be low just as
in the case of a fault. However, with context in-
formation, the cell border measurements could be
separated from fault cases. For the indoor scenario,
positioning information is very useful as the small
cells are overlapping.

The CASH framework presented in [31] consists
of 5 major blocks, i.e, indicators’ acquisition, con-
text acquisition, context aggregation, inference en-
gine and record update blocks, as shown in Figure
3. For the purposes of this paper, the illustration
is simplified from the original in [31]. The indi-
cators’ acquisition block collects network and user
measurements and accumulates them in indepen-
dent buffers. A profiling window is used to select
a group of samples for statistical profiling of UEs.
This block considers current measurements for gen-
erating profiles, and old samples are discarded. The
context acquisition block builds the current con-
text by combining the data obtained from different
sources. The context aggregation block associates
the current context with the previously recorded
situations and retrieves the contextualized profile
of the KPI with the same context. The inference
engine block performs the detection and diagnosis
of problems by comparing current KPI distributions
with the contextualized profiles obtained from the
context aggregation block. The record update block
stores historical KPI measurements.

Incorporating user context in SH involves some
challenges such as context data storing, processing,

and overhead caused by transmitting extra informa-
tion over the air interface. However, the feasibility
of context inclusion has been already demonstrated
[32].

3. Towards Proactive CASH

As observed in [5] with online failure prediction,
our vision on proactive CASH can be well expressed
in the words of the Greek poet C. P. Cavafy [33, p.
53]: “Ordinary people know what’s happening now,
the gods know future things because they alone are
totally enlightened. Of what’s to come the wise
perceive things about to happen”.

3.1. Vision of Context Prediction Applications

It is wise to predict the near-term future rather
than attempting long-term prediction forecasts. In
the indoor and small-cell scenarios, the near-term
future is more relevant than things far ahead. The
small cells are so dynamic that it does not make
sense to make long-term predictions based on radio
measurements and KPIs collected for small-cells.
However, in these dynamic and complex indoor en-
vironments, the short-term predictions of near fu-
ture are very relevant and important. In this sit-
uation, the prediction of near-future context will
provide a base for forecasting the near-future net-
work performance and the failure probabilities of
the network elements.

It is known that before a cell goes into a com-
plete outage, its performance first starts to degrade
and then only after a while the cell becomes under-
performing or totally dead. Finding the early signs
of cell outage is very challenging because the signs
may not be strong enough to be detected. In ad-
dition, it is not at all possible to detect faults that
present no signs of degradation in the observed per-
formance indicators. This is where context informa-
tion comes to help by providing extra background
information. In practice, the prediction of failures is
not much different than early detection of the very
first signs of performance degradations. By having
the predicted future context, it is possible to de-
tect those early signs of performance degradations
which would lead to failures in near future.

The current CASH proposals deal with current
measurements, and they are thus still reactive in
nature. In what follows, we augment the SH system
shown in Figure 3 to make it more proactive and
pre-emptive, in order to better meet the network
availability requirements of 5G.
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Figure 3: A simplified illustration of the CASH system presented in [31].

3.2. Proposed Augmentation: Context Prediction
Engine

Our proposed extension to the system described
in [31] is shown in Figure 4. What is added, is a
Context Prediction Engine (CPE). It has been tra-
ditional to use current measurements to diagnose
the root cause of a current problem. We propose
that the same analysis methods could be used also
to predict future failures and their causes. This
scheme is illustrated in our figure that contains the
same blocks as in [31] but adds the CPE compo-
nent that includes a prediction model that feeds a
duplicate of the inference engine with predicted fu-
ture values. Also the outputs of the CPE are of
the same form as in the original inference engine,
but they relate to the near-future predicted situa-
tion, thus giving a forecast of possible problems and
their possible causes. These outputs could be used
to schedule preventive actions before the problems
ever occur.

3.8. Data Processing and Analysis

Basically, any of the usual predictive methods
from the machine learning vocabulary, e.g., [34]
could be used. Not one method fits all purposes, so
the methods should be customized and selected for
each of the key attributes that are deemed worthy
of inclusion in the engine. Common to these meth-
ods is that they require a comprehensive training
dataset of numerical data.

The major steps required in training a predictor
for one output variable usually include roughly the

following:

1. Selection of the base model(s), learning algo-
rithm(s) and the features, i.e., input measure-
ments, to use.

2. Pre-processing and transformation of the data
into a representation that is useful for the se-
lected base algorithm(s).

3. Tuning and validating model parameters, and
selecting the best-performing model for actual
use.

4. Possibly combining a selected subset of the
models into an ensemble that works better
than any of the individual models.

4. A Case Study for Prediction of Future
Context

The seeds for the idea presented in this paper
were sown already some years ago when the first au-
thor of this paper participated in the Nokia Mobile
Data Challenge organized by Nokia [35]. The task
in the challenge was to create a user-specific pre-
dictor that learns from the user’s mobility history,
and predicts, based on the current user context, the
next location he will visit. The next location would
be considered future context, which is exactly what
our proposed CPE should provide. In this paper,
we use the method created for the challenge as a
case study that illustrates the plausibility of the
CPE.
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The prediction of future location of a mobile user
is beneficial to a network management system be-
cause of its potential application in traffic planning,
radio network optimization, location-based services
and also fault detection and cell outage compensa-
tion.

While, in this case study, we present the predic-
tion of the future state of one context attribute (fu-
ture user location) from the already known current
context, similar methods could be used for the pre-
diction of other attributes just as well, which could
be useful in CASH.

The challenge dataset consisted of data collected
from the mobile phones of 80 users, over periods
of time varying from a few weeks to two years. As
this was a competition, only a training dataset was
given, and the final scoring was based on a testing
dataset for which the true outputs were not dis-
closed. The sets contained smartphone data logs
from disjoint time periods.

4.1. Selection of Base Models and Algorithms

The first step is to select a suitable model and
useful features to use. In our scenario, the prob-
lem statement can be expressed clearly: “Given
the finite set of possible locations where a mobile
user can reside at a time, where will the user be
next, given the current context information”. This
is clearly a case of classification, i.e., the prediction
of the next “place ID” based on some appropriate
features that can be extracted from the wealth of
data obtainable from a smartphone. As usual in su-
pervised learning tasks, the dataset was given with

labels that indicate the true classes, in this case,
the true destination place IDs.

From among the methods available for classifi-
cation, the easiest choice during the time of the
challenge was to use a specific implementation of
a Multi-Layer Perceptron (MLP) that was being
developed by a contemporary research group close
to the competition participant. The implementa-
tion had been used earlier for continuous variable
prediction in [36] and it had been found to work
well also for classification tasks in other industrial
projects. For further comparison and verification
of the functionality of the MLP, we used also the
standard, widely used, Classification and Regres-
sion Tree (CART) method available in Matlab [37].

MLPs belong to the class of feed-forward arti-
ficial neural networks [38]. They are models that
comprise a number of layers of computational units,
each of which performs a weighted summation and a
possibly nonlinear transformation. Each unit feeds
its output forward to each of the units on the next
level. The structure of an MLP is illustrated in Fig-
ure 5. In this case study, only two layers were used.
The knowledge acquired by an MLP is stored in the
numerical values of the connection weights.

A simple MLP can be written out and computed
using a compact matrix notation addressed, e.g., in
[39]:

o’ =x;, o =F (W'Y for 1=1,...,L.
(1)

Here the “zero-th” output vector o is the in-
put vector x € R”, i.e., the n selected numerical
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Figure 5: Schematic of a MLP neural network.

features of the current user context. For the re-
maining L layers, the output vector of the previous
layer is always prepended with an initial element
of value 1, which is denoted in the equation by a
circumflex (a “hat”). The prepended vector is then
multiplied by a layer-wise weight matrix, and op-
erated element-wise by an activation function F'.
This way the bias terms of layer [ can be written
as the first column of the matrix W!. The activa-
tion function used was the hyperbolic tangent on
the inner layer and identity function on the output
layer.

For compatibility with the MLP, the classes
(place IDs) were encoded as binary vectors where
the element with the index corresponding to the
place ID is given the value 1, and the others are
given the value —1. Each label ¢; in a training set
{(x4,¢;)} Y| was also thus encoded, yielding the set
{(x4,t;)}, with target vectors t;. With an encod-
ing like this, the MLP output will be decoded back
to a class index by taking the index of the largest
component. Numerical input features were scaled
to the range [—1,1]. For training the network, the
conjugate gradient method was used. For further
details on the formulation, we refer to [39]. The
CART [37] of Matlab was used with the default pa-
rameters.

What matters in the end is that the predic-
tions are made as accurately as possible for all the
users recorded for the dataset, in average. Before
comparisons of methods by their measured vali-
dation accuracies were deemed meaningful, some
idea needed to be found about what is possible to
achieve, e.g., by random guessing or similar crude,
“baseline” methodology.

The frequencies of visits in different places dif-
fered greatly. The target class frequencies were de-
termined by finding the total number of visits to
each place during the available data collection pe-
riod, which also varied between tracked individuals.
Based on the class frequencies, we determined the

most common place IDs, i.e., the places where the
user is most likely to reside at any given time. For
the baseline guess of the destination place IDs, we
used the most common place always. This provided
a baseline for the prediction of the next destination.
By always predicting the most common place, the
validation result would equal the class frequency,
which turned out to be 32.5% on the average over
all the different persons. Anything above this ac-
curacy would be an improvement to the most naive
guess. Conversely, any method with a result worse
than 32.5% would be practically useless. In this
case, even the maive guess is better than uniform
random guessing due to the prior knowledge em-
ployed.

4.2. Selection and Generation of Features

From among the various features available, we
first tried only the number of available WLAN con-
nections and GSM cells present during particular
time intervals. This was not enough information
to create a classifier better than the naive baseline
guess. After experimentation, we ended up with
the following features:

e Time of a visit: day of week (1-7), hour of
day (0-23), and the length of the visit. It was
assumed that much of human behavior can be
explained by the rhythm of the society, where
different things tend to happen on office days
than during weekends, for example.

e The place of current visit. A person’s mobility
patterns could repeat themselves, as in pos-
sibly going to the supermarket directly from
work every day.

e GSM and WLAN information: number of
available WLAN connections and GSM cells
present during the current visit. Perhaps such
“connectiveness information” could give clues
about the kind of location, even if it was not
exactly the same as some other similar loca-
tion.

e (Call log information: we computed the num-
ber of calls made during a visit, number of text
messages sent or received, and total duration
of the calls. A person might relocate as a re-
sponse to communication such as an invitation,
or a certain level of communication could be in-
dicative of some activity (e.g., work/hobbies)
regardless of the current location.



e Other integrative measures of phone system
information: whether the phone was charged
during a visit, whether new media was noted,
and whether media player had been active.
These details would give further clues of what
kind of activity was taking place, which might
bear information about the situation preceding
the next relocation.

Details including characteristics of the dataset,
its partition, and the availability of different por-
tions for the various challenge tasks are described
in [35]. After the framework was built, it would
have been very easy to append new, more elabo-
rate features based on some kind of modeling of
the rich smartphone data available, including, e.g.,
detailed data from the acceleration sensors and the
actual identities of GSM cells, WLAN devices and
phone numbers. Alas, there was a limited time for
the competition, so a lot had to be left as future
work for novel studies.

We focused on a sequence of place visits longer
than 20 minutes. Besides the user identity, each
entry consisted of current place ID, start and end
times (normalized to hour-of-day, taking different
time zones into account), and whether the visit’s
start, end, and transition to the next location were
to be trusted (i.e., tracking data had been avail-
able between the locations). We considered only
the trusted transitions in this study. Also, many
place IDs occurred only once or twice in the train-
ing dataset. No classifier could have enough sam-
ples to do classification with regard to such rare oc-
currencies. Thus the training based on those place
IDs would not be reliable for the test data, and we
decided to disregard those.

4.8. Pre-processing and Transformation

We opted for a modular approach to address the
problem: All users had to be modeled separately
because the data was anonymous and user-specific.
Also, the mobility of each user was independent of
other users. A future research challenge would be to
average activity patterns between models of differ-
ent users of a network or a part of a larger network.
After loading all available data, we pre-processed it:
Anonymized user-specific strings were converted to
integral numbers to make it easier to read in Matlab
which was our chosen tool. Then we built a fully
numeric input matrix. Each row of the input ma-
trix represented one time period and the columns
represented the features available that constituted
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our context during the current place being visited
by the user.

4.4. Measuring of the Accuracy for Validation

We developed a prediction and validation frame-
work to check the performance of the classifiers.
The true labels can be used for evaluating vali-
dation accuracy on data rows that have not been
used in training the model. A common way is to
use some 70% of a given dataset for training and
the remaining 30% for validation. However, in this
case, for some users the data was very limited, and
to make better use of all the available data, we chose
to use cross-validation using 5 folds: Out of 5 ran-
domly chosen subsets of the data, 4 subsets were
used for training the model, and the remaining 1
(unseen during training) for measuring prediction
accuracy. The overall accuracy, i.e., the percent-
age of correct predictions, was taken as the average
over the 5 different divisions of the folds. Both the
MLP and CART classifiers were employed in such
a way. More folds were initially used, but after ex-
perimentation we found that the results were not
greatly different when using only 5, which was suit-
able from the point-of-view of computational time.

During the training phase, a classifier looks for
patterns in the training data. Here it tries to find
out the patterns that connect the the mobile user’s
current context to the next place the user will visit.
The patterns discovered may be spurious and noisy,
i.e., they may be valid in training data but not valid
or not strong in the test data. Validation attempts
to alleviate this phenomenon.

4.5. Final Selection of the Classifier and Feature
Set

Table 1 lists the cross-validation accuracies ob-
tained with different classifiers and feature subsets.
Observe that the models were generated indepen-
dently for each user in the dataset, and what is
shown is the average performance over all the 80
different users in the dataset. From top to bottom,
the table shows the accuracies for CART, MLP and
the naive baseline guess for various selections of fea-
ture combinations:

e “all” means that all the features listed in Sec-
tion 4.2 were used.

e “t&p” means that only the time and place fea-
tures were selected.



Table 1: Cross-validation accuracies for method and feature
selections (% correct: mean, worst, and best over all users,
and average weighted by the users’ occurrence in the data).

method feat. mean min max wtd
CART all 41.9 0 64.7 45.4
t&p 43.1 0 62.6 46.4
MLP all 42.1 10.0 63.1 459
t&p 45.5 10.0 69.4 49.1
t 43.4 10.0 65.3 46.6
g&w  36.7 9.5 69.4 39.7
calls  29.6 0 52.6  30.7
other 33.4 10.0 62.6 35.8
ensl 46.4 100 71.2 499
baseline 32.5 6.2 53.8 32.7

e “g&w” means that only the GSM and WLAN
features were selected.

e “calls” means that only the call log feature was
used.

e “other” means that the last feature set of Sec-
tion 4.2 was used.

The first numerical column of the table contains the
average (mean) accuracy of each method over all
the users. The second column (min) gives the worst
result obtained among the users. There were some
very difficult cases with very few example measure-
ments available. The third column (max) gives the
best result obtained on a single user. The last col-
umn (wtd) gives an estimate that is weighted us-
ing the number of data points available for each
user. For the competition, and possibly also for a
real use scenario, such a measure, even if optimistic,
could be more realistic, because it compensates for
the difficulties posed by rare and possibly irrelevant
users.

The accuracy percentages seem low at first (less
than 50% when weighted with user data abun-
dancy), but one has to understand that the data
was extremely sparse and originated from a noisy
real-world collection endeavour. Further feature
modeling would certainly have helped. For the com-
petition, and thus these results, there was barely
enough time to create an MLP ensemble classifier
that uses a weighed vote of the classifiers trained
with other features. The weights were determined
by trial and error.

All of the prediction results show a clear improve-
ment over naive guessing, and they could certainly
have been made better with more elaborate fea-
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ture extraction. From the results, we can conclude
that the feature based on the number of calls and
messages was bad, giving results worse than guess-
ing. All other features, on the other hand, showed
consistently better accuracy than guessing. The
MLP performed better than the standard CART,
and the very best results were obtained by an en-
semble that combined the information from other
classifiers. This, in part, supports the hypothesis
that different features obtainable from the context
contain different aspects of the user activity. Pre-
diction of future situations based on the current
and obtainable information is possible using ma-
chine learning methods.

5. Conclusion

In this paper we overviewed recent developments
towards the inclusion of context information in Self-
Healing solutions for Self-Organizing Networks. We
suggested a way to make Self-Healing proactive via
the prediction of near-future context, which should
be especially useful in the small-cell scenarios in fu-
ture 5G networks. As a technical example of plau-
sibility, an earlier case study for predicting a user’s
mobility pattern was published here for the first
time.

Training accurate prediction models requires
more data than was available in the small case study
presented here. Should obvious ethical and legal
issues be resolved, long-term tracking and storage
of user data would enable such models to become
increasingly accurate within areas where the same
users appear often.
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