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Abstract

Given that nowadays users access content mostly through mobile apps and

web services, both based on HTTP, several filtering applications, such as pa-

rental control, malware detection, and corporate policy enforcement, require

inspecting Universal Resource Locators (URLs) contained in HTTP requests.

Currently, such filtering is most commonly performed in end devices or in mid-

dleboxes. Filtering applications running on end devices are less resource in-

tensive because they operate only on traffic from a single user and possibly

leverage a hook at the HTTP level to access protocol data, but it is left to

the user whether to execute them. On the other hand, middleboxes present

the challenge of ensuring that they lay on the path of all the traffic from any

relevant device. Residential gateways seem to be the ideal place where to imple-

ment traffic filtering because they forward all traffic generated by the hosts on

home(-office) networks. However, these devices usually have very limited com-

putation and memory resources, while URL-based filtering is quite demanding.

In fact existing approaches rely on a large database of rules coupled with either

deep packet inspection or transparent proxying for URL extraction.

This paper introduces U-Filter, a URL filtering solution based on a dis-

tributed architecture where a lightweight, efficient URL extraction and policy

enforcement component runs on residential gateways, delegating to a remote
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policy server the resource intensive task of verifying policy compliance. Thanks

to the lightweight communication between the two components and the very

limited resource requirements of the local module, U-Filter (i) can be deployed

on resource-limited devices such as residential gateways, and (ii) has almost

no impact on the performance of the device, as well as on the users’ browsing

experience, as demonstrated by the experiments presented in the paper.

Keywords: Deep packet inspection, Policy enforcement, Residential gateway,

URL filtering

1. Introduction

Modern residential gateways are widely deployed to provide broadband In-

ternet access to families, small and medium-sized enterprises supporting a wide

range of data rates, from a few Mbps up to 1 Gbps [1]. The architecture of resi-

dential gateways is characterized by special purpose hardware chips that forward

packets at high speed at the data link layer, while general-purpose components,

such as CPU and central memory, are usually employed for other operations

that require more sophisticated processing. Since all the traffic directed to In-

ternet hosts (i.e., outside the residential or corporate branch network) must

pass through the residential gateway, it is the ideal appliance to apply traf-

fic filtering. Hence, its processing capabilities, often underutilized, could be

leveraged by Internet access service providers to offer such additional service to

their customers. However, the limited computing and memory resources that

residential gateways have by design make the implementation of new features

working at wire-speed very challenging, particularly when complex operations

such as parsing packets up to the application layer (a.k.a. Deep Packet Inspec-

tion or DPI) are involved. This is the case for many critical modern filtering

applications, such as malware protection, corporate policy enforcement, paren-

tal control, advertisement block, that are based on inspection and filtering of

Uniform Resource Locators (URLs). In fact, users access and exchange content

mostly through mobile apps and web applications, both based on HTTP, which
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uses URLs to identify data objects to be transferred.

Currently, the above URL filtering-based services are most often operated

in web proxies [2] or in end-user devices (e.g., laptop, tablet, smartphone), as

a mobile app [3] or a browser plugin [4]. None of these solutions can guarantee

that all the outgoing traffic is analyzed and filtered; in fact, a user can switch

to a different device, disable the filtering software or change the client network

settings in order to bypass a web proxy. The residential gateway is the perfect

spot where to implement services that require all the web page requests to be

analyzed. This would require matching URLs against large, dynamic blacklists,

which far exceeds the limited hardware capabilities of this category of devices.

For example, an effective parental control service, which is a valuable offer to

residential customers, is based on a very large database of URLs that cannot

be stored in the limited memory of common residential gateways (usually in

the order of tens of MB). An additional challenge comes from the fact that

the database must be frequently updated. Last but not least, URL matching

cannot be limited to the hostname, but the entire URL should be considered

because the same web server can host both appropriate and inappropriate or

malicious pages. Hence, looking up a URL within a huge list of blocked resources

exceeds the processing capabilities of a residential gateway, especially if it must

be done for live traffic, which implies that the additional introduced delay must

be limited.

This paper presents U-Filter, an efficient solution to integrate a URL filtering

service in a resource constrained device, such as a common residential gateway,

leveraging a distributed architecture. A remote policy server in charge of keeping

the URL database up-to-date provides a fast API that can be accessed through

the network in order to establish if a request for a specific URL is allowed. It is

reasonable that the above mentioned server is operated by a service provider (or

the network service provider) and can rely on powerful hardware resources to

serve multiple residential gateways with minimal response time. However, this

architecture does not necessarily require the network service provider awareness

and collaboration. The presented solution greatly alleviates the load on each
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residential gateway, even though it must still perform a limited form of DPI on

outgoing packets to extract the URL from every HTTP request, and afterwards

query the server in order to determine the policy that must be applied. We adopt

specific techniques to optimize this task and limit the latency introduced by the

client-server interaction, striking a balance between the load they introduce and

the limited resources available in residential gateways. Although the U-Filter

design and the adopted optimizations are presented here in the context of policy

enforcement on HTTP traffic, they offer a general solution for in-network policy

enforcement suitable for a wide range of network protocols, thanks in particular

to the decoupling of policy checking and enforcement phases, as detailed in

Section 2.2.2.

This paper is organized as follows. Section 2 presents the architecture of

U-Filter, describing the design principles that led to our solution and the opti-

mizations used to provide real-time policy enforcement on resource-constrained

devices. In section 3 we evaluate the proposed solution by discussing its limi-

tations and analyzing the additional delay introduced by U-Filter. We validate

U-Filter in Section 4 through various experiments showing the impact on the

user experience. Section 5 presents the state of the art of HTTP-level policy en-

forcement and Section 6 concludes the paper with a discussion of future research

directions.

2. Architecture and implementation

2.1. Operating principles

A typical deployment scenario of U-Filter is presented in Figure 1. A user

surfing the web generates many HTTP requests that transit through her/his

residential gateway. These requests are analyzed by U-Filter, which extracts the

requested URL through a lightweight DPI algorithm. This allows to process line

rate traffic with a small overhead for the residential gateway. Afterwards the

HTTP request is released and can continue its journey towards the web server,

while the URL is simultaneously sent to the policy server that provides the
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Client

Figure 1: U-Filter workflow.

policy to enforce. This policy is enforced by U-Filter on the packet carrying the

HTTP response by either blocking or allowing it. Thanks to the parallelization

of the policy server and web server processing, this workflow greatly reduces the

latency experienced by the user, making it comparable with the one that can

be obtained with the same hardware without the service in place.

2.2. Architecture overview and design principles

Our prototype has been built around three objectives. First comes flexi-

bility, as it is essential to be able to enforce effective protection to end users

in a prompt response to newly discovered threats. Second is efficiency since

the system is targeted to resource-constrained devices. Third, we took care of

ensuring an excellent user experience, hence limiting the impact of the system

in terms of possible additional latency when inspecting traffic to apply filtering

policies. The above high-level objectives have translated in the following four

design choices.

2.2.1. Three-tier processing architecture

As shown in Figure 2, U-Filter includes (i) an online module, which sits

on the data plane of the router and is mainly in charge of identifying (and

extracting) requested URLs from network traffic (more details in Section 2.5)

and apply the policy decisions on the return traffic, (ii) an offline module that
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Figure 2: U-Filter architecture.

queries a remote policy server to know whether such URL should be allowed

or not (described in Section 2.6), and (iii) a remote server that implements

the complex protection logic and returns a boolean value with the result of the

classification, i.e., if the corresponding HTTP session handled by the online

module has to be allowed or the URL is malicious and the response has to be

blocked. The first two modules are built with efficiency in mind, while the latter

allows to achieve the required flexibility.

The U-Filter online module is inserted on the path that packets being for-

warded by the residential gateway take through the system. It leverages a hook

provided by the netfilter [5] framework, as detailed in Section 2.3, available in

the mainline Linux kernel, to enable interaction with the IP forwarding function.

To achieve high performance, the online module is executed in the kernel space;

this allows to avoid expensive kernel-to-user context switching and enables shar-

ing the required data structures with the rest of the kernel (e.g., direct access

to privileged memory areas), hence minimizing communication overheads. In

fact, by working in kernel space, the online module can implement a zero-copy

approach, since the data structure containing the packet data is not copied in
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the user space memory and is only referenced by the online module. On the

other hand, the offline module is invoked a limited number of times compared

to the online module because it operates only when a new URL is detected,

but it requires more time to complete due to its interaction with the (remote)

policy server. As a consequence, an asynchronous execution model is preferred

for this module in order not to block the execution of the data path. This could

be implemented as either a dedicated kernel thread or as a user-space process,

which is the solution chosen in our implementation1 because of the complexity

of the tasks it executes and to avoid that any possible misbehavior (or bug)

can be propagated to the kernel, hence affecting the overall operation of the

residential gateway.

The policy server can be executed on a remote host (or on a cluster of hosts

for performance reasons), as its only interaction with the rest of the system

is through a query/response protocol. A single policy server can be queried by

offline modules running on multiple (remotely distributed) residential gateways.

In our implementation, this interaction has been implemented with the ad-hoc

dedicated protocol detailed in Section 2.7, but other choices (e.g., REST web

service) are surely possible.

2.2.2. Decoupling policy verification from HTTP operation

As introduced in Section 2.1, policy compliance is verified without hold-

ing outgoing packets on their ride towards the final destination. This solution

makes the system more complicated but much more efficient. In fact, keeping

the HTTP request on hold until the arrival of the response from the policy

server would add additional delay to the HTTP communication, increasing the

Round Trip Time (RTT) of the HTTP connection and hence affecting the user

experience. Vice versa, the U-Filter offline module checks the requested URL

with the policy server during the normal HTTP RTT. A temporary entry in an

1In fact, a small portion of the offline module has to be implemented anyway in the kernel

space, as shown in Section 2.6.
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HTTP session table is created by the online module in order to possibly hold a

response from the web server received before the result of the compliance check

arrives from policy server. While this allows packets to travel through the In-

ternet also if they are part of a session that shall be stopped, the answer from

the web server never reaches the user, effectively preventing possible unwanted

data to reach the user’s host.

2.2.3. Efficient memory usage

Efficient memory usage is a key problem because of (i) the limited amount of

memory usually available in current residential gateways, and (ii) the bad effects

in terms of CPU cache pollution when large memory structures (with sparse

access patterns) are used. Several implementation choices have been adopted

to ensure that memory is used efficiently. According to the best practice for

kernel module development, all the memory used by the online U-Filter module

is allocated at startup in order to avoid costly memory allocations at run-time,

and the structures that are used for the communication between online and

offline modules are shared (using the proper primitives for mapping memory

between kernel and user space) for better memory efficiency. Furthermore, all

the helper structures (detailed in Section 2.4) make use of contiguous memory

areas in order to improve data locality and, as a result, CPU cache efficiency,

except for the packets that may need to be held temporarily by U-Filter (while

waiting for an answer from the policy server), which have been allocated by

other portions of the kernel and therefore are not under our control. Finally,

the usage of additional memory is kept at minimum: (a) the data structure

dedicated to the session table defines a “default” behavior that avoids storing

accepted sessions, and (b) the number of packets held by the router while waiting

for the answer from the policy server is limited to, at most, one per session,

hence further reducing memory requirements.
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2.2.4. Per-packet operation

This is known to be much more efficient than per-TCP session processing

while, at the same time, reducing the latency required to extract application

level information (namely URLs). In fact, the former can be based directly

on the very efficient packet processing primitives available in the Linux kernel

through the netfilter framework, instead of requiring a full-blown HTTP

proxy, whose complexity is so high to make a kernel implementation problematic.

Therefore, an additional overhead is added for moving all packets from kernel

to user space, where a proxy is usually located, and then back to kernel for their

transmission on the output interface.

As a downside, working on individual packets makes the system less robust

against malicious attacks such as HTTP requests whose URLs are split across

packets (possibly deliberately sent out of order). Such attacks could be spotted

by adding lightweight, packet-based ad-hoc anomaly detection algorithms [6, 7,

8], which is outside of the scope of this paper.

2.3. Netfilter

In order to gain access to live traffic, U-Filter leverages netfilter [5], a

framework provided in the mainline Linux kernel that allows analyzing and

modifying all the packets that are being received by the kernel. netfilter

defines a set of hooks that correspond to different stages in the path packets

take in the system. An application can register one or more callbacks linked

to a specific hook; the corresponding callbacks are invoked whenever a packet

passes through it. The callback receives a pointer to the system data structure

containing the packet’s data as a parameter, therefore it can read and modify

the packet. Finally, the returned value instructs the system on whether the

packet can continue its journey (NF ACCEPT), or should be immediately dropped

(NF DROP), or should be diverted to a different (custom) processing pipeline

(NF STOLEN), which is useful if the decision about accepting/dropping the packet

has to be postponed.

Figure 3 shows the possible paths taken by packets, together with the hooks
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NF_IP_PRE_ROUTING

NF_IP_LOCAL_OUT

NF_IP_POST_ROUTING

Figure 3: netfilter hooks chain and U-Filter.

that can be used to register callbacks. All the incoming packets are caught by

the NF IP PRE ROUTING hook, before being processed by the routing task; after-

wards, packets addressed to the host itself are caught by the NF IP LOCAL IN

hook, while those traversing the host on their way toward the destination hit the

NF IP FORWARD hook (where U-Filter is attached). The NF IP LOCAL OUT hook

catches packets sent by the host’s local processes, while the NF IP POST ROUTING

hook catches all the outgoing packets, whether they are forwarded or locally

generated.

2.4. Key data structures

The online and offline modules exchange data using three shared structures,

as shown in Figure 2: (i) a hash map for the status of the policy for a given

session, (ii) a queue for the URLs that have to be send to the policy server and

(iii) a queue with the verdict received from the policy server. Each of the data

structures is described in detail in the reminder of this section, while their usage

will be discussed in the following sections.

The HTTP session table (shown in Figure 4) stores data regarding pending
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Figure 5: URL queue, shared between the online module and the offline module user space

process.

sessions. An HTTP session is considered pending when the HTTP request has

been received, but either the HTTP response from the web server or the decision

from the policy server are yet to be received. The hash map implementing the

HTTP session table is allocated in kernel space and is shared between the online

and offline module because the former needs to know (when an HTTP response

arrives) whether a decision for an URL has been received, while the latter needs

to know, when the verdict is available, whether an HTTP response is already

waiting. An entry in the HTTP session table can be deleted as soon as both

the HTTP response and the verdict from the policy server have been received.

The URL queue (shown in Figure 5) is shared between the online module

and the offline module user space process, while the verdict queue (shown in

Figure 6) is shared between the kernel thread and the user space process of the

offline module. The two queues are managed according to a FIFO policy and
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Figure 6: Verdict queue, shared between the offline module kernel thread and user space

process.

the access to each queue is implemented with two pointers, pointing respectively

at the first free and the first full slot.

To correlate data in different data structures, an entry always contains a key

made by the 4 tuple identifying the TCP session (later referred as session ID):

(Source IP,Destination IP, Source TCP port, Destination TCP port)

The addresses are the ones present in the HTTP request and are inverted in the

corresponding HTTP response.

An entry in the URL queue contains also the URL that should be checked

with the policy server, while an entry in the verdict queue contains a session sta-

tus flag that assumes either ACCEPT or DROP, according to the policy to enforce.

The URL is stored in some pre-allocated memory whose size allows containing

a full-length HTTP payload (i.e., 1460 bytes), in order to avoid memory alloca-

tions at run-time. On the other hand, an entry in the HTTP session table stores

as value a session status flag and a void pointer to a packet (skbuff structure,

allocated by the operating system). The use of this pointer is detailed in Sec-

tion 2.5. Differently from the verdict queue, the session status flag in the HTTP

session table can assume either UNKNOWN or DROP. In fact, entries corresponding

to an ACCEPT policy are deleted as soon as the verdict is available in order to

reduce the size of the hash table. Thus, in the HTTP session table the absence

of an entry is considered as an ACCEPT policy.

As a further optimization to reduce the allocated memory, in our prototype

the TCP session ID uses only the last byte of the source IP address, instead

12



of the entire 4 bytes address, with no impact on the system proper execution.

This optimization is correct in our environment, since domestics LANs usually

adopt a 24 bits subnet, therefore all the clients have the same value for the first

3 bytes of the IP address. In general this is not valid for every deployment,

hence the optimization should be adapted to the specific addressing plan in use.

2.5. Online module

The online module sits on the data path by intercepting all the traffic

forwarded by the router through a callback registered on the NF IP FORWARD

netfilter hook2. As shown by the workflow depicted in Figure 7, most of

the processing occurs when an HTTP request or response is detected. For each

packet, the module first locates the beginning of the TCP payload and then

checks if that packet can be considered the first segment of an HTTP request

or response by matching the beginning of the TCP payload against a few sim-

ple text strings, namely an HTTP method (i.e., GET, POST, PUT, etc.) in

case of a request or a version string (i.e., HTTP/1.0 or HTTP/1.1) in case of

a response. This classification method is far more reliable than checking the

transport-layer port number, as investigated in [9]. All other packets, namely

HTTP packets that are not the first of the request/response message (hence, do

not match the signature), as well as non-HTTP traffic, are left to continue their

way as the online module returns NF ACCEPT to netfilter. Notably, since all

TCP packets containing a valid payload are matched against the signature, this

algorithm is able to intercept all the HTTP requests/responses that are issued

within a connection in HTTP 1.1 persistent mode, not only the first one, as well

as within HTTP connections terminated on a non-standard TCP port. This

algorithm could raise concerns about the cost of inspecting all packets, as gen-

eral DPI techniques are normally demanding in terms of computing resources.

However, our algorithm does not perform a full-blown DPI with full parsing of

2By choice, U-Filter does not apply policies to the packets that are received and generated

by the router itself, e.g., for management purposes.
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Figure 7: Summarized workflow of the online module.

all protocol headers and their fields. Instead, it performs a lightweight parsing

to locate the beginning of the TCP payload and a string checking (instead of

regular expressions) just on the initial bytes of the payload, which is a rea-

sonable assumption that is discussed in Section 3.1. In fact, our experimental

validation (Section 4.3, Figure 13) confirms that the online module does not

introduce noticeable overhead in the traffic processing.

In case of an HTTP request, the URL is extracted and sent to the offline

module by pushing a new entry in the (shared) URL queue (Figure 5), which

includes the TCP session identifier to later match the verdict from the policy

server with the corresponding HTTP session. A new entry is also created in the

HTTP session table; as shown in Figure 4, it includes the TCP session identifier

(as a key), a session status flag that is marked as UNKNOWN, and an additional

field that is left empty. Afterwards the packet is allowed to be forwarded by

returning NF ACCEPT to netfilter.

When an HTTP response is received, the module checks the status in the

HTTP session table and acts according to the three possible scenarios:
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• The lookup is successful and the requested URL is forbidden (DROP in the

session status flag). The HTTP response is dropped (i.e., a NF DROP is

returned to netfilter), and two new packets are generated: (i) a TCP

RESET message sent to the web server to forcibly close the connection

and (ii) an HTTP redirect message sent to the client in order to show the

user a courtesy web page notifying that the requested web resource was

blocked. Moreover the entry is removed by the HTTP session table.

• The lookup is successful but the system is still waiting for the policy

server to respond (UNKNOWN in the session status flag). This occurs when

the response from the web server arrives before the one from the policy

server. In this case the HTTP response packet is put on hold by returning

NF STOLEN to netfilter and saved in the proper skbuff structure (shown

in Figure 4) of the HTTP session table entry, waiting for the arrival of

the answer from the policy server. This is the only case in which the

user experiences an additional delay compared to a scenario where U-

Filter is not deployed; a characterization of this delay will be provided in

Section 3.3.

• The lookup is unsuccessful. Our algorithm interprets this condition as the

URL being allowed, hence the HTTP response is forwarded to the client.

Since in common URL filtering applications most URLs are not to be

blocked, this design choice allows considerable space savings in the HTTP

session table (Figure 4), as we avoid explicit entries for all the sessions

that correspond to ‘accepted’ URLs.

Notably, the algorithm needs to hold (hence, store in the kernel session ta-

ble) no more than one packet per HTTP session. In fact, even if other segments

of the HTTP answer are in fact delivered to the destination, the TCP layer

on the destination host cannot reconstruct the entire message because of the

missing packet, which is the first segment of the HTTP response. This prevents

the message to be actually delivered to the application (e.g., web browser) while
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keeping at minimum the memory storage requirements in the residential gate-

way. However, this solution also causes the transmission of some duplicated

packets, which we analyze in Section 4.2 and that are discarded by U-Filter

since they are equal to the packet already on hold.

2.6. Offline module

As depicted in Figure 2, the offline module is split in two portions, the first

one operating as a process in user space, while the other operates as a thread

in kernel space. The former is in charge of the communication with the policy

server, as shown in Figure 8, while the latter executes the workflow summarized

in Figure 9.

U-Filter 
(offline module)

Worker1

U-Filter 
policy server

Listening
TCP-Socket

2 TCP Connections

Worker2

URL queue

Verdict queue

Figure 8: Offline module user space process.

The user space process retrieves URLs from the URL queue and sends them

to the policy server, which provides decisions stating whether they are accept-

able or to be blocked. These decisions are then pushed in the shared verdict

queue, together with the same TCP session identifier that was stored in the

corresponding URL queue entry.

The entries in the verdict queue are retrieved by the offline module thread in

kernel space, which reads the enclosed decision. In case the resource is legitimate

(the entry contains the ACCEPT flag), it checks whether a packet is stored in the

HTTP session table entry corresponding to the TCP session key present in the

verdict queue entry. This packet, if present, is injected back into the networking

stack of the operating system, exactly in the same point of the netfilter chain

where it had been stolen, so that the packet is processed by any other software
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Figure 9: Summarized workflow of the offline module kernel thread.

relying on netfilter (e.g., NAT). The HTTP session table is then updated

by deleting the entry since, as mentioned earlier, the absence of an entry is

interpreted as an ACCEPT verdict. The skbuff structure containing the first

packet of the HTTP response is stored in a memory location managed by the

operating system, hence the offline module leverages the kernel space thread to

access it.

In case the resource is not legitimate (the verdict queue entry contains the

DROP flag), if no packet is found in the HTTP session table entry, the session

status flag is updated to DROP, thus the online module will drop the response

packet when it arrives. If a packet is already stored in the HTTP session queue

entry, the offline module performs the same actions previously described for the

online module in case of a DROP policy. Additionally the packet is dropped, so

that the client cannot reassemble the HTTP response.

Additionally, the last N unauthorized URLs are cached in the offline module.

Each URL is first looked up in the ad-hoc verdict cache and, in case of a hit,

there is no need to interact with the policy server and redirection to the courtesy

web page can be immediately implemented, thus reducing the overhead for the
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module.

2.7. Communication with the policy server

The U-Filter offline module exploits two different parallel threads to interact

with the policy server, each one using a distinct TCP connection as shown in

Figure 8. The two threads establish the TCP channels when the system starts,

hence enabling the offline module to send immediately a query to the policy

server when needed, without the overhead (and the consequent latency) of the

TCP handshake3.

The offline module exploits these threads to implement an asynchronous

communication with the policy server, separately processing the requests and

the replies without any wait. The first thread cyclically collects every new entry

present in the URL queue and sends the URL and the TCP session identifier

to the policy server, which replies with a message on the second thread, using

the second connection, containing the same Session ID and a single binary in-

formation (ACCEPT/DROP) that is used to push a new entry in the verdict queue.

This solution allows to process as fast as possible both new entries in the URL

queue and new replies from the policy server. The Session ID sent back and

forth is used to correlate the requests with the replies, so that there is no need

to share data between the two threads. Since the requests are sent sequentially,

the policy server can adopt different techniques to efficiently parallelize the pol-

icy checking, such as spawning new threads without the necessity to open a

dedicated TCP connection for each of them.

It is worth noting that most TCP implementations are designed to use the

Nagle algorithm by default, in order to reduce the congestion of the network

and increase bandwidth efficiency at the expense of latency [10]. This algorithm

buffers application data until all the previously sent packets are acknowledged

3The messages sent to and received from the policy server are not intercepted by the

callback of the online module, since they are addressed to the local host and do not cross the

NF IP FORWARD hook, where the callback is registered.
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or the data reach the Maximum Segment Size (MSS). In this way the probability

of having small packets in the network (i.e. packets smaller than the MSS) is

strongly reduced, thus limiting the overhead of TCP headers, allowing for a more

efficient use of transmission links and reducing the burden on routers in terms

of packets per second to be processed. This behavior is particularly harmful for

U-Filter, since both the offline module and the policy server always send very

small packets, that most of the time would be delayed up to one RTT. It is

therefore crucial that the offline module and the policy server disable the Nagle

algorithm (typically with the TCP NODELAY socket option) when establishing the

two connections.

3. Discussion

This section analyzes the proposed technique in terms of possible limitations

(among the others, its applicability to encrypted traffic), and it performs a

theoretical characterization of the delay that can be possibly added by U-Filter

on real network traffic, which will be validated in the next section dedicated to

experimental evaluation.

3.1. General limitations

The proposed solution has been designed with the aim of providing small

delay and low overhead on resource-constrained residential gateways. This was

traded for some limitations compared to more complex solutions adopting a

full-stack HTTP proxy.

The matching process is meant to keep the number of string matching oper-

ations as small as possible, and surely it has to avoid to completely inspect the

entire payload of all the packets in order to identify HTTP messages and extract

URLs in a reasonable amount of time. Therefore, this solution does not handle

correctly packets where the HTTP header is not at the beginning of a packet.

This is not a relevant limitation since the problem arises only when HTTP
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pipelining4 is enabled, which is rarely the case in common browsers [11, 12].

The matching algorithm also cannot handle sessions where the header of the

HTTP request spans multiple packets and the necessary fields (e.g., the Host

field) are not on the first one. According to [13], less than the 5% of HTTP

requests are bigger than the common 1500 byte Ethernet maximum transmis-

sion unit. Considering that large HTTP requests are often POST messages

carrying a long payload, e.g., users submitting the content of a form to a web

service5, the possibility that the URL cannot be extracted from the first packet

is presumably much smaller than this amount.

Moreover, various encapsulation techniques (e.g., GRE tunnels) are not sup-

ported by the presented version of the algorithm. These limitations can be

avoided at the cost of additional complexity of the URL extraction procedure.

3.2. HTTPS

HTTPS uses data encryption to guarantee confidentiality, which makes traf-

fic opaque to a possible observer. As a result, any in-network service requiring

visibility into application layer content, such as U-Filter, becomes ineffective.

Several studies [14, 15, 16] have addressed the problem of HTTPS traffic pro-

cessing in middleboxes, which shows that this is a general open problem, not

specific of U-Filter. As a sample general solution, [14] proposes an evolution

of HTTPS that supports the operation of trusted middleboxes while retaining

the security properties of HTTPS. We leave as future work the analysis of the

interaction of U-Filter with such solutions.

We can envision a number of ways to enable U-Filter to operate (possibly

4HTTP pipelining allows a client to send multiple HTTP requests on a single TCP connec-

tion without waiting for the corresponding responses. It requires support in both the client

and the server.
5It is worth noting that this case falls outside the scope of U-Filter, as the apparent URL

submitted in an HTTP POST request contains, in fact, user data. As a consequence, this

would require a more sophisticated filtering mechanism based on a content inspection, not

just URL inspection.
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with limited capabilities) on HTTPS traffic. A first option is to deploy a trusted

proxy [17], such as the one presented in [18], at the cost of a significant processing

overhead, which inevitably limits the performance on a resource constrained

device like a residential gateway, as shown in Section 4.4 with respect to a

similar solution.

Secondly, U-Filter can be extended to inspect unencrypted messages ex-

changed during the TLS session establishment, extract the domain name (from

the fields Common Name, Subject Alternative Name or Server Name Indica-

tion), and enforce a policy according to the extracted value. With this solution

it is possible to block only an entire domain, not just a single resource. It is

worth noticing that a client can resume a previously established TLS connection

with a web server by sending a past TLS session ID in the first message, which

results in an abbreviated handshake without the exchange of the server domain

name. Thus, if the initial connection was not inspected (e.g., because it was

performed on a different, unprotected network), it is not possible to discover

the server domain name by looking only at unencrypted data. Although this

happens only in a quite uncommon network setup, it is to be kept in mind that

the solution is not bullet proof.

As studied by [19], the cost of the security provided by HTTPS is non-

negligible in particular in case of mobile devices and smart objects. In addition,

there are a number of applications for which confidentiality is not strictly re-

quired, for which their users may not willing to pay the additional cost of the

encryption. Therefore a significant fraction of HTTP traffic is expected to re-

main unencrypted in the near future. Although we leave to future work the

architectural and implementation details of a solution to support HTTPS traf-

fic, we envision U-Filter as a low-cost solution for URL filtering on the fast

path of HTTP traffic, while HTTPS traffic can be steered toward a slower path,

where a trusted proxy is used to provide the same level of policy enforcement.
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3.3. Delay characterization

In this section we analyze the additional delay introduced by U-Filter to

identify the components that can be relevant and must be evaluated to quantify

the impact on the user experience.

Specifically, the delay experienced by the end user when requesting a web

page depends on: (i) the time for having a verdict from the policy server TP ,

(ii) the time until the first packet of the response from the webserver is received

TW , (iii) the difference between (i) and (ii) ∆delay, as detailed in Figure 10.

The latency in the communication from the client to the residential gateway is

not relevant in this context since it is not affected by the presence of U-Filter.

Let’s first characterize TP . When U-Filter receives the first packet of an

HTTP request, the online module extracts the URL, pushes a new entry in the

URL queue and sends the HTTP request forward. The entry spends a time

TUqueue in the URL queue, until it is extracted by the offline module and sent

to the policy server, with a time TP
req,tx required to transmit the bits on the
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channel. The verdict is available to the offline module after a Round-Trip Time

RTTP , a time TP
proc required by the policy server to check its database and

choose a verdict, and a time TP
resp,tx needed to transmit the response into the

channel. At this point, the verdict is stored as a new entry in the verdict queue.

An additional queuing time TV queue lapses before the entry is retrieved by the

offline module kernel thread and the proper action is performed to unlock the

response. As a result, the total delay introduced by the policy checking process

is equal to:

TP = TUqueue + TP
req,tx + RTTP + TP

proc + TP
resp,tx + TV queue (1)

Moving now to the characterization of TW , the time required to receive the

first packet of the HTTP response from the web server is given by:

TW = TW
req,tx + RTTW + TW

proc + TW
resp,tx (2)

where:

• TW
req,tx is the HTTP request transmission time;

• RTTW is the Round-Trip Time with the web server;

• TW
proc is the time taken by the web server to provide the HTTP response

(fetch a file, execute server side computation, query a database, etc.);

• TW
resp,tx is the time needed to transmit the first packet of the HTTP

response.

The interval:

∆delay = TP − TW (3)

when positive, is the delay that U-Filter adds to any HTTP request. Exper-

imentally, we observed that TUqueue and TV queue are negligible, since the two

consumer tasks are rather fast. Moreover, TP
req,tx is always less than TW

req,tx,
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since the request to the policy server contains only a small subset of the data

contained in the HTTP request. Similarly, TP
resp,tx is always less than TW

resp,tx,

since the policy response packet is very small (it consists only of the session

ID and a binary flag). Consequently, the most significant components of the

U-Filter delay are the Round-Trip Times and processing times.

In case ∆delay is negative, the user experience is completely unaffected by

the presence of U-Filter. Even when ∆delay is positive, though, thanks to the

parallelization described in Section 2.7, the overall delay in a web page load time

is not noticeable if the distance and the processing time of the policy server TP
proc

are comparable with the ones of common web servers, as shown in Section 4.

4. Experimental validation

In order to validate the proposed solution we conducted a broad range of

experiments. Specifically our goal has been to study the interaction between

the presented algorithm and TCP, as well as the conditions in which a web

page load time is increased, quantifying to what extent the user experience is

affected.

4.1. Testbed setup

We deployed U-Filter on a commercial low-cost residential gateway, a TP-

Link Archer C7 (single core MIPS32 CPU clocked at 720MHz, 16MB Flash,

128MB RAM) running OpenWrt 12.09 [20] with the version 3.3 of the Linux

kernel. OpenWrt is an open source operating system specifically optimized for

the execution on resource constrained residential gateways. As shown in Fig-

ure 11, multiple workstations (whose number and setup varies according to the

specific test) acting as clients are connected on a Gigabit Ethernet LAN repre-

senting the “domestic side” of the residential gateway. Another 1 Gbps interface

(“WAN side”) hosts the policy server and the traffic sink of our experiments,

which is represented by a web server during TCP interaction and throughput

experiments or a vanilla Internet connectivity when evaluating browsing expe-

rience. All the workstations and the servers are equipped with an Intel Core
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Figure 11: Testbed setup.

i7-4770 CPU and 32GB of main memory in order to guarantee not to become

the bottleneck.

Since a production-grade policy server is not in the scope of this work, we

use a policy server that gives always a positive verdict, with a customizable

delay in order to simulate the processing time. Moreover, in the policy server

we use Linux Traffic Control (tc) to add a custom delay to any outgoing packet

in order to simulate various network RTTs.

To generate single HTTP requests we use curl and ab [21], while for real-

life simulations we start multiple VMs on the workstations to emulate multiple

end-users. Each VM runs an instance of WebTrafficGenerator6, an automation

tool that can drive a web browser to replay a user browsing history. For ev-

ery entry in the provided browsing history, the browser loads a complete web

page (i.e. retrieving the web page with all the associated resources such as

images, javascript files, etc.)7. In this respect, WebTrafficGenerator can also

issue HTTPS requests, which happens when a page, appearing in HTTP in the

browsing history, includes content that has to be retrieved using an encrypted

connection. The time between multiple web page requests, a.k.a. the Thinking

6https://github.com/netgroup-polito/WebTrafficGenerator
7The community have not yet reached a consensus on when a web page should be considered

completely loaded. Particularly, WebTrafficGenerator considers a page complete when the

javascript “onload” event is fired on the “body” HTML tag.
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Time, is randomly selected using a random variable with the same statistical

distribution as the actual thinking time of the user as measured from his/her

browsing history. A realistic thinking time is required not only to simulate a

real user behavior, but also to avoid that web services (e.g. Google) recognize

that the client is an automaton and thus provide a different response web page

with the intent of testing whether or not the user is human. In the event that a

new request must start before the previous web page is completely loaded, the

tool creates a different browser window, in order to load multiple web pages in

parallel (which simulates multi-tabbing).

4.2. Interaction with TCP

This section shows how the TCP algorithm reacts when one specific packet

(the first packet of an HTTP response) is repeatedly lost on its way to the

destination, for a certain amount of time. The aim of this analysis is to show

that U-Filter has been designed taking into mind the peculiar characteristics of

the TCP protocol, hence our algorithm that possibly delays the first packet of

the HTTP response does not cause additional delay in the TCP data exchange.

To reduce external interferences, in this test we use a web server directly

connected to the WAN interface of the gateway (as shown in Figure 11a) running

the Apache HTTP Server 2.4.7 ; TW measured in this setup is less than 1 ms,

thus we can consider ∆delay = TP . Moreover, in this test the Linux Traffic

Control (tc) in the policy server is disabled, hence the RTT is negligible and we

can consider TP = TP
proc. A client workstation runs curl to request a 512 KB

web page stored on the webserver. The gateway executes U-Filter with a fixed

TP
proc ≈ 100 ms delay in the policy server response. As detailed in Section 2.5

and 2.6, only the first packet of any HTTP response is buffered by U-Filter. In

the scenario created for these experiments, such packet is eventually forwarded

to the client about 100 ms after the HTTP GET request traverses the residential

gateway. All subsequent packets are forwarded correctly. We capture the traffic

on both the LAN and WAN links of the residential gateway and extract the

sequence numbers (SEQ) of the TCP segments from the web server to the client
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and the acknowledgment numbers (ACK) of the ones from the client to the

webserver, together with their timestamp. The resulting data are presented in

Figure 12 (the SEQ and ACK numbers are relative).

This experiment enables us to observe how a TCP connection progresses

during the U-Filter operation. The presented results show that, while the first

TCP segment of the HTTP response is blocked, the server TCP endpoint sends

the subsequent segments as well as duplicates of the first segment (visible only

on the WAN side, in Figure 12a), until the TCP window is full. As expected,

the TCP receiver repeatedly acknowledges the segment arrived before the one

missing (Figure 12c); specifically one ACK is sent for each of the subsequent seg-

ments received out of sequence. All the modern TCP implementations include

the TCP selective acknowledgment (SACK) option [22] in the duplicated ACK,

which is used to selectively acknowledge correctly received segments logically

following the missing one(s). Thanks to the selective acknowledgments, these

segments are not re-transmitted, as it happens for the blocked segment, as the

traditional Go-Back-N algorithm would require. When the blocked packet is

released (after 100 ms in our experiment, as shown in Figure 12b) and properly

delivered, all the previously received segments are cumulatively acknowledged

and the transmission can continue from a new segment (Figure 12c).

Abiding by TCP Fast retransmit [23] algorithm, the web server re-sends the

blocked segment for every 3 duplicated acknowledgments. These re-transmitted

segments are the only overhead induced by U-Filter. In our test these dupli-

cates amount to 12.8% of the packets sent by the server during ∆delay, and

half that number if we consider all the packets transmitted during the same

interval; however, considering the entire lifespan of the TCP connection, this

overhead accounts (in average) no more than 1.6% of all the packets, which can

be considered negligible.

From the point of view of the users’ experience, selective acknowledgments

are particularly beneficial because, even if the policy server replies after the web

server (i.e. ∆delay is positive), the actual delay perceived by the user is smaller

than ∆delay because several TCP segments are correctly received during the
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Figure 12: Progress of a TCP session.

28



∆delay interval and are ready to be used to render the web page as soon as the

missing segment is delivered.

4.3. Browsing experience

This section presents the results of several tests executed in a realistic sce-

nario to show how much a real user browsing experience is affected by U-Filter.

Using the testbed in Figure 11b, we launched WebTrafficGenerator in 6 VMs

(running on 2 workstations) in order to simulate 6 users simultaneously brows-

ing the Internet. This number of concurrent users is reasonable for a residential

gateway. Moreover, with a large number of users, the browsing experience would

be limited by the network speed. As expected, the latency of the policy server

proved to be the parameter that has the greater impact on the user-perceived

performance of U-Filter.

In every test, a single VM browses 600 web pages collected from the browsing

histories of 30 anonymous users (we consider only web pages downloaded using

HTTP, since those using HTTPS are irrelevant for U-Filter). In order to use

realistic values for the policy server processing time and RTT, we analyzed

several traffic traces captured using Tstat [24] during 24 hours in 4 different

points of presence (POPs) of an Internet Service Provider and extracted the

median and 90th percentile values for the RTT of HTTP requests and processing

time of web servers. Tstat infers the RTT from the POP to an endpoint by

measuring the inter-arrival time of a packet and its acknowledgment and infers

a web server processing time by measuring the interval between the arrival of

the acknowledgment for the request and the arrival of the first response packet.

In fact, a host’s operating system usually sends a TCP ACK as soon as a packet

is received.

Table 1 shows the statistical values for the RTTs from a client to the POP

and from a client to the destination server, supposedly in a data center (DC).

We use these values in our tests to simulate the RTT in the case that the policy

server is either in the POP or in a remote data center. Additionally Table 2

shows the statistical values of the processing time for web servers. These values
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Table 1: Inferred RTT values with the policy server in different locations (RTTP ).

Location Type of measure RTT

POP
Median 25 ms

90th percentile 100 ms

Data Center (DC)
Median 45 ms

90th percentile 200 ms

Table 2: Inferred policy server latency values (TP
proc).

Type of measure Latency

Median 2 ms

90th percentile 80 ms

are used to simulate the processing time of the policy server: since the operations

performed are somewhat similar (parsing of a request, look up in a database,

preparation of a response), we assume the complexity to be comparable with

(or even lower than) the one of any web server.

At the end of a test, WebTrafficGenerator provides a file containing a sum-

mary of various aspects of every request. Among the provided values, we are

interested in the complete page load time (the time needed to load the web

page with all its resources, such as pictures, libraries, etc.) and the timings of

the individual HTTP requests issued to get the main HTML page and the

associated resources.

4.3.1. Individual HTTP requests

The timing of an HTTP request is the sum of multiple components, such

as the queuing time, the DNS resolution time, the connection setup time, etc.

The only component that can be affected by U-Filter is the time spent waiting
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Figure 13: Waiting time for a single HTTP resource - Cumulative distribution function.

for a response from the server (waiting time), equal to max{TP , TW }, if the

RTT between the client and the gateway is negligible. Figure 13 shows the

cumulative distribution of the waiting time for HTTP requests with different

values of RTT and processing time (latency) for the policy server, together with

the baseline (i.e., the latency without U-Filter) and the case in which the policy

server immediately provides verdicts (in which case the delay TP is negligible),

as if U-Filter and the policy server are on the same LAN.

These results show that U-Filter adds a negligible delay if the policy server

provides an immediate response, therefore proving our claim that the online

module does not introduce noticeable overhead in the traffic processing. On the

other hand, when the policy server response is received after a certain amount

of time, the cumulative distribution is shifted toward that value, since all the

HTTP responses that arrived earlier are delayed by U-Filter. In summary, the

impact of U-Filter on the single resource loading time is highly dependent on

the distance from the policy server and its processing time.

Considering only the worst case (i.e., the 90th percentile of the processing

time and RTT with the policy server in a data center), we show in Figure 14

the waiting time for each requested HTTP resource, with and without U-Filter.
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Figure 14: Resource waiting time considering the 90th percentile of the processing time and

RTT with the policy server in a data center.

The figure shows a cluster of requests on the horizontal line corresponding to

the delay TP , supporting the conclusion that this delay highly influences the

loading time of a single resources.

Both figures show that, even with U-Filter, some resources are received be-

fore the policy server delay (TP ≈ RTTP + TP
proc). This happens because some

resources are retrieved through HTTPS, even if the main HTML page is on

HTTP, therefore they do not experience the policy server delay.

4.3.2. Complete pages

Figure 15 shows the cumulative distribution function of the complete web

page load time, while Figure 16 shows for every requested URL the relation

between the complete page loading time with and without U-Filter, in the worst

conditions (policy server in the data center, 90th percentile values for RTT and

latency). These results show that the impact caused by the presence of U-Filter

is not noticeable, therefore we can assert that the overall page loading time is

not affected by U-Filter and also the browsing experience is unaltered.

This is justified by the fact that multiple resources are requested in parallel
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Figure 15: Complete page loading time cumulative distribution.

by the browsers, hence the policy server processes all the requests concurrently.

As a result, the increase in the overall time for loading the complete web page

is not dependent on the number of resources and is, in any case, approximately

equal to a single policy server delay TP . Since the time needed to receive, parse

and render the main HTML web page and all its resources is usually an order

of magnitude greater than the policy server delay, the added latency (and the

impact of U-Filter on the browsing experience) is in effect negligible.

4.4. Residential gateway aggregated throughput

In this section we evaluate the overhead introduced by U-Filter by compar-

ing the average aggregated throughput of the residential gateway in 3 scenarios:

(i) without a URL filtering service in place, (ii) with U-Filter and (iii) with

Tinyproxy [25], a URL filtering solution for OpenWrt based on a lightweight

HTTP proxy that intercepts and analyzes all the outgoing web traffic and can

operate in either explicit or transparent (a.k.a. man-in-the-middle) mode. These

experiments assess the impact of U-Filter with respect to the maximum forward-

ing capabilities of the residential gateway, which is basically limited by the CPU

consumption of the on-board software.
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Figure 16: Complete page loading time considering the 90th percentile policy server processing

time with the policy server in a data center.
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Figure 17: Application-level throughput when downloading files of different sizes.
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These experiments employ the testbed setup depicted in Figure 11a; the

policy server is configured to simulate a deployment in a data center with the

median processing time and RTT, while the web server has the same RTT. The

client workstation uses ab to request files of different sizes from the web server;

each file is requested 100 times. As suggested by the HTTP/1.1 standard [26]

with respect to persistent HTTP connections, each client issues two concurrent

requests toward the server. The goal of this experiment is to evaluate how

much packet inspection and policy checking in the residential gateway affects

the download speed and the latency. We show in Figure 17 the minimum,

maximum and average application-level throughput for the 3 scenarios, while in

Figure 18 we show the time needed to download the entire file.

These results show that the throughput and the download speed reached

with U-Filter are higher than with Tinyproxy for files larger than 8 KB, while

for small files the two solutions show the same level of performance. In fact,

with very small files, we experience an additional small delay with U-Filter,

compared to the baseline. We ascribe this delay to the time needed for the

context switch between the online and offline module, given that the residential

gateway has a single core. This delay is negligible for larger files, for which
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U-Filter provides almost the same performance reached without the filtering

service in place. We expect that a residential gateway with at least a dual core

processor would not experience this delay, therefore U-Filter would provide the

same level of performance as the baseline. However, even with a single core

gateway, the impact of U-Filter on the download time is only 3% with large files

and never exceeds 54%, while Tinyproxy has an overhead ranging from 44%

to a remarkable 322%. As an example, the download of a 1 GB file requires

approximately 1 minute and 12 seconds without a filtering service, 6 seconds

longer with U-Filter and more than 5 minutes with Tinyproxy.

It is worth mentioning that U-Filter can easily implement a whitelist contain-

ing the IP addresses of trusted devices whose traffic should not be filtered. This

is a useful feature that allows to avoid the additional delay for delay-sensitive

clients.

4.5. Memory footprint

Given the limitations in terms of available memory in current residential

gateways, we extracted the number of pending entries in the HTTP session

table every time a new HTTP request was received and plotted the resulting

probability distribution in Figure 19 in order to assess the impact of U-Filter in

terms of memory consumption. The observed values confirm the small memory

footprint of U-Filter: even in the worst case, the number of pending entries are

always less than a hundred. In the case in which every entry stores a packet

(usually 1518 bytes at most), together with IP addresses (8 bytes), TCP ports (4

bytes) and a binary session flag, the HTTP session table requires less than 200

KB of main memory, a value far below the memory size of low-end residential

gateways (usually in the order of at least tens of MB).

5. Related work

Currently several solutions for filtering traffic based on URLs are available

commercially or as open source packages, often used as parental control or ad
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Figure 19: U-Filter load.

block. Many are based on software executing on the client machine to control

outgoing traffic. Among them, it is worth mentioning k9 Web Protection [27],

a powerful free software for URL filtering that comes with a large database of

URL categorization data. New websites are categorized in real-time and their

information published on a server that is used to update the local database.

This software needs to be installed on any device that must be protected and is

tuned to run on common PC hardware.

Among existing parental control solutions that do not require execution of

a software agent on clients, some are based on applying the filtering policing

in the DNS server [28]. While this is a low complexity and efficient solution

that enables achieving high performance, it is not effective as it can be easily

bypassed choosing a different DNS server. Moreover, filtering is based on server

domain names rather than URLs, as required when the same server or name

domain can deliver both appropriate and inappropriate content, such as in case

of public services like facebook.com.

As an alternative approach, filtering policies can be applied by network ap-

pliances on the path of the protected client traffic. Blue Coat WebFilter [29] is

a sophisticated URL filtering solution that runs on business level network appli-
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ances and provides policy enforcement on web traffic, blocking malware down-

loads and web threats. WebFilter combines URL filtering and anti-malware

technologies, exploiting an engine with a local rule database continuously up-

dated from a remote master database. The engine detects hidden malware and

provides reputation and web content categorization based on input from actual

users.

None of the above-mentioned solutions is designed to run on resource-con-

strained devices, such as a typical residential gateway, which would not ensure

acceptable performance when executing computationally intense tasks. Among

the efforts to integrate web filtering service in low-end residential gateways, the

ones related to the OpenWrt platform are noteworthy, such as Tinyproxy [25].

Tinyproxy can filter HTTP requests checking their URL against a list of regu-

lar expressions contained in a local file, which may be rather big and needs to

be frequently updated. A similar technology has been proposed in [18], where

an access gateway performs mobile app policy enforcement deploying a trans-

parent HTTPS proxy to gain access to encrypted traffic, extract relevant field

values, and pass them to an external policy-checking module. However, de-

ployment of an HTTP proxy is critical on resource-constrained devices since it

must terminate all the TCP connections, pair them with new TCP connections

with the remote endpoint, parse every packet, identify and extract patterns of

interest, and match them against a large blacklist. Therefore it becomes easily

a bottleneck with high traffic loads, thus impacting user experience.

The work presented in [30] represents an attempt to perform efficient HTTP

traffic filtering in OpenWrt. The authors propose a two-tier architecture, with

a kernel module that intercepts and analyzes HTTP traffic and a user-space

process in charge of policy compliance checking. The computational load of

the user space module, that performs string matching on URLs, grows with

the length of the list of rules, and so does the introduced delay. Consequently,

when this approach is implemented on a residential gateway with limited re-

sources, only short lists can be supported without user experience degradation,

thus limiting the effectiveness of the policy enforcement system. Moreover, the
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proposed architecture makes it difficult for a trusted third-party to push real-

time updates to the local database in order to ensure prompt detection of newly

discovered threats. Finally, the URL analysis is performed by each edge systems

in isolation, hence excluding the possibility of a (centralized) cross-correlation

mechanism that identifies new threats by analyzing URLs requested from dif-

ferent sources.

Traffic processing in residential gateways has been proposed also in the con-

text of Network Function Virtualization (NFV) [31, 32]. An existing NFV infras-

tructure can employ residential gateways to deploy lightweight Native Network

Functions [33] or eBPF data plane programs [34], in order to provide delay-

sensitive services to the user, while computation intensive services are hosted

in the data center of the service operator. This solution offers flexibility in the

type and number of network services that can be provided and represents an

interesting target platform for the deployment of U-Filter.

6. Conclusions

This paper presents U-Filter, a distributed system for efficient HTTP traffic

filtering in resource-constrained residential gateways. Leveraging an external

policy server and an intelligent combination of kernel and user space process-

ing (and a careful implementation), U-Filter is able to inspect the URL in

every HTTP request and block unwanted web pages with a very small memory

footprint and processing overhead. This makes U-Filter appropriate for the de-

ployment on resource-constrained devices and also reduces at a minimum the

additional delay introduced on page download, which leaves the overall browsing

experience of the user practically unaltered.

Since U-Filter operates on a packet-by-packet basis, it assumes that the en-

tire HTTP header is on the same packet. This makes URL extraction easier and

avoids to have to store additional information to correlate subsequent packets.

Since the maximum size of an IP packet is usually 1500 bytes, this does not

represent a problem in a real scenario, as confirmed by [13].
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The policy server, where multiple mechanisms and optimizations can be

implemented, was purposely kept outside of the scope of this work as it involves a

completely different set of challenges and solutions. Similarly, we did not address

how providing additional information to the residential gateway can increase its

efficiency in caching verdicts, thus reducing the number of interrogations. The

study of such improvements is left to future work. Other future directions will

involve evaluating the performance improvement achievable by deploying U-

Filter on real-time linux kernels [35, 36], as well as investigating the benefits

that stem from deploying U-Filter in novel and currently strategic fields such as

IoT [37] and Big Data [38].
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